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SUMMARY
Null space velocity control is essential for achieving good
behaviour of a redundant manipulator. Using the dynam-
ically consistent pseudo-inverse, the task and null space
motion and forces are decoupled. The paper presents a
globally stable null space velocity controller and the
gradient projection technique in conjunction with the
dynamically consistent pseudo-inverse. The physical mean-
ing and influence of the compensation terms in null the
space velocity controller are explained. The performance of
the proposed null space controller is tested on 4. d.o.f planar
redundant manipulator interacting with the environment.

KEYWORDS: Pseudo-inverse, Velocity control; Null space;
Redundant manipulator.

1. INTRODUCTION
Kinematic redundancy is characterized by extra degrees of
freedom with respect to the given motion constraints posed
by an assigned primary task. It provides a mean for solving
sophisticated motion tasks such as avoiding obstacles,
avoiding singularity, optimizing manipulability, joint
torques, etc., while performing the desired primary task.
However, this requires complex solutions on both mechan-
ical and control design.1,2 In order to solve the kinematic
redundancy, many control strategies have been proposed
based on two primary approaches – local and global
optimization.1,3,4 Although global optimization is generally
more successful, it requires optimization over the entire
range of control and is thus not suitable for real-time
control. On the other hand, local optimization needs less
computation, but can result in a poorer performance from
the global viewpoint. Nevertheless, local optimization
remains the only choice for sensory guided robots, where
the task path is generally not predictable. Regarding the
control input the redundancy can be solved at the velocity,
the acceleration or the torque level. Most approaches
published in the past are based on local optimization
techniques with a redundancy resolution at the velocity level
using the gradient projection technique. Using the gradient
optimization technique a variety of performance criteria,
such as the collision avoidance, the torque optimization, the
singularity avoidance and the manipulability optimization,
can be easily incorporated into the control. The choice of
the pseudo-inverse in the redundancy resolution determines

the null space motion of the redundant manipulator.
Whitney5 solved the redundancy using the weighted pseudo-
inverse, which minimizes null space velocities. The inertia
weighted pseudo-inverse, as proposed by Khatib,6 mini-
mizes instantaneous kinetic energy of the null space motion.
It has been later proved by Khatib and Park7,8 that this is the
only pseudo-inverse, that is consistent with the manipulator
dynamics, i.e. the null space motion does not produce the
operational space acceleration. Using the null space con-
troller formulation as proposed by Hsu and Sastry,2 we have
shown that the null space controller ensures that no task
space acceleration is generated irrespective of the type of
the pseudo-inverse used.9 However, this does not assure a
decoupling on the force level and hence the inertia weighted
pseudo-inverse remains the only choice. Additionally, the
null space motion that optimises a given criteria also
depends on the type of pseudo-inverse, i.e. different
mapping of the Jacobian to the null space requires different
trajectories to optimize the same criteria. Recently, a
weighted joint space decomposition has been proposed to
find a minimal parametrisation of null-space joint veloci-
ties.10 In this paper we present a new formulation of the null
space velocity controller that uses the dynamically con-
sistent pseudo-inverse. It is well known that a null space
projector rotates a solution optimized in a task space.
Therefore, the desired null space velocity has been obtained
using a modified gradient optimisation technique.

2. KINEMATICS OF REDUNDANT MANIPULATOR
Redundant manipulators have more degrees of freedom (n)
than the dimension of the work-space (m), required to
perform the given task. The joint and task coordinates are
related by the following equation

x = p(q), (1)

where q is n dimensional vector of joint coordinates, x is m
dimensional vector of the task coordinates and p is m
dimensional vector representing manipulator forward kine-
matics. Differentiating Eq. 1 we obtain relation between the
joint and the task velocities

ẋ = Jq̇, (2)

where J denotes m� n manipulator Jacobian matrix. Map-
ping of joint velocities to task velocities is unique, while
mapping of task velocities to joint velocities is not. A
general solution of Eq. 2 is given as
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q̇ = J#ẋ + Nq̇. (3)

J# is the generalized inverse of J and N is n� n matrix which
projects q̇ to the null space of J. A general form of null
space projection matrix N is given by

N = (I�J#J) (4)

The first term of the Eq. 3 is the particular solution of the
Eq. 2, which enables to calculate joint velocities necessary
to perform the given task. The second term is the
homogenous solution of the above equation, which contrib-
utes to a motion in the null space only, without affecting the
task space motion. This motion is the self motion of the
redundant mechanism. In general, there is an infinite
number of configuration of the redundant mechanism which
satisfy the desired task coordinates.

3. CONTROL OF REDUNDANT MANIPULATOR
The approach used here is based on splitting the control
problem of an redundant manipulator into two separate
tasks: end effector motion and null space motion. The
general form of the equation of motion of the manipulator
interacting with the environment can be described by

� = Hq̈ + Cq̇ + g + JT F (5)

where � is n dimensional vector of joint torques, H is an
n� n symmetric, positive definite inertia matrix , C is n� n
matrix of nonlinear terms due to the centrifugal, Coriolis
and friction forces, g is n dimensional vector of gravitational
forces and F is an m dimensional vector of environment
contact force acting on the end-effector.

3.1 End effector control
The aim of the end effector control law is to track the
desired generalized task coordinates xd, which includes
position and force. Let the control law be given as

� = JT(�(ẍc � J̇q̇) + F) + (6)

Cq̇ + g + �0, (7)

where J denotes n� m manipulator Jacobian and � denotes
the operational space kinetic energy matrix defined as
� = (JH�1JT)�1.6 ẍc is the command acceleration vector
chosen as

ẍc = ẍd + Kv (ẋ� ẋd) + Kp(x�xd), (8)

where Kv and Kp are properly chosen positive definite
diagonal gain matrices. �0 is an arbitrary torque vector. A
proper choice of �0 enables the manipulator to achieve
secondary sub-task without affecting generalised force and
trajectory at the manipulator’s end-effector.1 Thus, the
appropriate choice of the �0 enables to investigate the
stability of the primary task independently of the secondary
task. The problem of the calculation of the appropriate �0 is
discussed in the next chapter. First we will investigate the
stability regarding the motion in the task space. Pre-
multiplying Eq. 5 by JH�1 and considering ẍ = Jq̈ + J̇q̇ we
obtain

ẍ� J̇q̇ + JH�1(Cq̇ + g) + JH�1JT F = JH�1 �. (9)

Inserting the control law 7 into Eq. 9 and considering that
vector the �0 is such that JH�1�0 = 0, yields the equation
describing the closed loop behaviour of the system.

ẍd � ẍ + Kv(ẋd � ẋ) + Kp(xd �x) = 0 (10)

3.2 Inertia weighted pseudo-inverse
In the previous section we have introduced the vector �0,
which is required to fulfil the following equation

JH�1�0 = 0 (11)

A proper choice of �0 enables the manipulator to achieve
secondary sub-task without affecting force and trajectory
tracking of the manipulator’s end-effector. One possible
choice of the �0 is projecting control acceleration vector into
null space of J with

�0 = H(I�J#J) q̈. (12)

Short calculation proves that this projection fulfils Eq. 11.
The particular solution of the Eq. 7 depends on utilization of
the generalized inverse J#. The inertia weighted pseudo-
inverse defined as

J̄ = H�1JT � (13)

is the solution of the minimization problem of cost function
q̇THq̇,5 which minimizes the instantaneous kinetic energy of
the manipulator. In references 7,8 it was proved that the
inertia weighted pseudo-inverse is the only one that does not
produce operational space accelerations with arbitrary
chosen �0, that belongs to the Jacobian transpose null-space.
Recently, it was proved by Featherstone and Kathib that an
inertial weighted pseudo-inverse is also load independent.7

3.3 Null space velocity controller
The proposed control in the case of the redundant robots
differs from that of a non-redundant case only in the last
term �0 in Eq. 7, which defines the self motion of redundant
manipulator. The control of the self motion is the major
control problem of redundant robots. In this chapter we
consider the case when the desired null space velocity q̇ns

d

that optimizes a desired criteria is known. The problem of
finding desired null space velocity q̇ns

d will be discussed in
the next section. The task of the null space velocity
controller is to track the desired null space velocity q̇ns

d , i.e.,
the null space velocity error en = q̇ns

d � q̇ns should converge to
zero. Since the null space velocity is the projection of the
manipulator velocity to the Jacobian null space, the null
space velocity error and it’s derivative can be expressed as

en = q̇ns
d � (I� J̄J)q̇ (14)

ėn = q̈ns
d � (J̄J̇ + ˙̄JJ)q̇� (I� J̄J)q̈. (15)

Inserting the control law 7 into Eq. 5 and denoting
� = ẍd + Kv (ẋ� ẋd) + Kp(x�xd)� J̇q̇ yields the closed-loop
dynamics equation in the form

q̈ = H�1JT �� + H�1�0. (16)

Substituting q̈ from Eq. 16 into 15 we get

ėn = q̈n
d + (J̄J̇ + ˙̄JJ)q̇� (17)

(I� J̄J)H�1JT ���

(I� J̄J)H�1�0.
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Considering H�1JT � = J̄ and (I� J̄J)J̄ = 0 the third term on
the right side of the above Eq. is zero and hence,

ėn = q̈n
d + (J̄J̇ + ˙̄JJ)q̇� (I� J̄J)H�1�0 (18)

The derivation of the null-space control law relies on the
following relation:
Lemma : If the error vector en belongs to the Jacobian null
space, where mapping to the null space is defined by
(I� J̄J) and J̄ is the inertia weighted pseudo-inverse, then

enT HJ̄ = 0 (19)

Proof: If the en belongs to the null space, it can be expressed
as (I� J̄J)e. Inserting null space error vector into Eq. 19
yields

enT HJ̄ = eT(I�JT J̄T )HJ̄ (20)

= eT(HJ̄�JT(JH�1JT)�1

(JH�1JT)(JH�1JT)�1)

= eT(HH�1JT ��JT �) = 0

∇∇∇
Let the null space control vector �0 be given by

�0 = H(I� J̄J)(q̈n
d + ˙̄JJq̇ + Knen + H�1Cen). (21)

Combining Eqs. 18 and 21 and considering that q̈n
d and en

belong to the Jacobian null-space gives

ėn = �Kn en + J̄J(J̄J̇ + ˙̄JJ)q̇� (I� J̄J)H�1Cen. (22)

Now define a Lyapunov function by

� =
1
2

enT Hen. (23)

Then

�̇ = enT Hėn +
1
2

enT Ḣen (24)

= �enT KnHen +
1
2

enT Ḣen

+ enT HJ̄J˙̄JJq̇

�enT H(I� J̄J)H�1Cen

= �enT (KnH)en +
1
2

enT( Ḣ�2C)en

= �enT (KnH)en

since enT HJ̄ is zero for an inertia weighted pseudo-inverse J̄
and (Ḣ�2C) is skew symmetric. Since v is positive definite
and v̇ is negative definite providing that KN is diagonal
matrix with positive terms, en tends to zero and the proposed
controller stabilizes the null-space motion as long as the
Jacobian is non-singular. A similar result has been inde-
pendently derived in reference 11. It is not always
straightforward to calculate vectors q̈ n

d and ˙̄J in analytical
form. In our experiments numerical differentiation was
sufficient approximation of the above signals. Moreover, the

term ˙̄JJq̇ in Eq. 21 describes the compensation of the task
space velocity can be in case of the low task space velocity
omitted without serious degradation of the performance.9

One of the advantages of the explicit null space velocity
control is that the desired null space velocity obtained from
an appropriate optimization procedure can be scaled to
maintain it within the given joint speed limits. As it has been
previously mentioned, the inertia weighted pseudo-inverse
is the only one that does not produce operational space
accelerations with arbitrary chosen �0 . It can be easily
verified by combining Eq. 9 and 21, that with the proposed
null-space controller we get no operational accelerations
regardless to the choice of the pseudo-inverse. The reason
why the use of inertia weighted pseudo-inverse is still
preferable is that this is the only one that produces no null-
space accelerations applying an external force to the
manipulator’s end effector. This propriety can be easily
verified by expressing null-space acceleration in the form

q̈n = (I� J̄J)q̈� (J̄J̇ + ˙̄JJ)q̇. (25)

Substituting for q̈ from Eq. 5 gives

q̈n = (I� J̄J)H�1(��Cq̇�g�JT F)� (J̄J + ˙̄JJ)q̇ (26)

For arbitrary chosen external force, in order not to produce
any null space acceleration, it is necessary that

(I� J̄J)H�1JT F = 0. (26)

Inserting Eq. 13 into the above equation verifies that the
inertia weighted pseudo-inverse fulfills that equation.

3.4 Calculation of the desired null-space velocity
Suppose that the desired performance criterion, which is to
be optimized, is represented by a smooth function p = p(q).
The joint coordinates are related to task coordinates by

q̇ = J̄ẋ + (I� J̄J)K�, (28)

where � is an arbitrary chosen vector. Then

� =� �p
�q1

,
�p
�q2

, . . . ,
�p
�qN

�T

(29)

minimizes p for any scalar K < 0 and maximizes p for any
K > 0. The proof of the above theorem can be found in
reference 12 and is based on the positive semi-definition of
the form �T(I� J̄J)K�. It can be easily shown that for J̄
defined as Moore-Penrose pseudo-inverse the form
�T(I� J̄J)K� is always positive semi-definite. On the
contrary, if J̄ is weighted pseudo-inverse as in Eq. 13, this
form is no more symmetrical and therefore the semi-
definition can not be assured. Therefore, the original
gradient optimization can not be utilized. Premultiplying the
vector � by H�1 gives the optimization solution in the
form

q̇ = J̄ẋ + (I� J̄J)K H�1� (30)

which assures the best optimization step in the case of
inertia weighted pseudo-inverse. The proof of the above
relation can be found in reference 13. The problem can be
represented also as the problem of finding the best
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optimization step of the vector � projected into the null
space.14 Different projection operators cause different
rotations of the vector � and thus � has to be previously
rotated by H�1 to compensate for the projection operator
rotation.

3.5 Optimization Criteria
The force and the position tracking are usually of the
highest priority for a force controlled robot. The selection of
the sub-tasks with lower priority depends on the specific
application.15 However, the collision avoidance is of great
importance, since force controlled robot interacts with the
environment. With non-redundant robots we can usually
predict the robot configuration necessary to accomplish
given task. On the contrary, with redundant robots the robot
configuration is not predictable. Another important sub-task
for the force controlled robot might be of benefit to the
mechanical advantage of the manipulator in order to
minimize joint torques when applying a certain force to the
end effector. Unfortunately, the local joint torque minimiza-
tion often brings the robot into the singular configuration.
Therefore, the singularity avoidance algorithm has to be
implemented as a third criteria. We have accomplished the
task by maximizing manipulator manipulability proposed in
reference 12. Following the idea of the obstacle avoidance
using the potential field16 we define the cost function
p =

1
2Vd 2

0, where V is an l� l rotation matrix describing the
direction of an artificial potential field pointing from the
obstacle, l is the dimension of the position sub-space and d 0

is the shortest distance between obstacle and the robot body.
In our case the desired objective is fulfilled if the imaginary
force is applied only on robot joints. In this case we can
obtain cost function gradient in simple form as

�p
�q

= Vd0(J
0,1 + J0,2 + . . . + J0,n�1), (31)

where d0 is the vector of shortest distances between the joint
and the obstacle and J0i denotes Jacobian matrices between
base (the first index in the superscript) and ith joint (the
second index in the superscript) regarding the robot
positions only. The local joint torque minimization as a
performance objective was intensively investigated by many
authors.17–19 As the joint torque depends on the system
dynamics it is difficult to express the gradient of the cost
function related to joint torques. We simplified the problem
by minimizing only joint torques related to the force applied
to the robot end effector. We define the cost function in the
form p = �T�, where � = JTF is the joint torque due to the end
effector force. Then, the cost function gradient required to
minimize the given function can be expressed in the form

�p
�q

= 2FT J∇�, (32)

∇� =

�J(1)

�q1
F

�J(2)

�q1
F

�
�J(n)

�q1
F

�J(1)

�q2
F

�J(2)

�q2
F

�
�J(n)

�q2
F

…

…

�

…

�J(1)

�qn
F

�J(2)

�qn
F

�
�J(n)

�qn
F

, (33)

where J(i) denotes ith column of the Jacobian J. This
approach can be justified by the fact that velocities and
acceleration during the force tracking are usually low.
Another advantage using this approach is that the minimiza-
tion can be related to the desired end-effector force and
therefore the manipulator can be put to the optimal pose
before the contact with the environment is established. It is
not straightforward how to combine three different optimi-
sation criterion, especially, because optimizing one criteria
can prevent the optimisation of the second one. For
example, local joint torque optimisation tends to bring the
robot to a singular position. We solved the problem using
the switching task priority formulation, where priority levels

Fig. 1. Decision tree for the task priority selection. d denotes minimal distance between obstacle and a joint and m denotes manipulability
index.
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are dynamically allocated upon the configuration of the
robot. The highest priority level task has been always
trajectory an force tracking. If the robot joints were near the
obstacle, the second priority level was the obstacle avoid-
ance. The joint torque minimization task has had a higher
priority level, if the robot manipulability was above the low
limit and the joints were not near the obstacle. The priority
switching is described by the decision tree in Fig. 1. We
have implemented a task priority algorithm for multiple
priority levels as proposed in reference 20.

4. EXPERIMENTAL RESULTS FOR A 4. D.O.F.
PLANAR REDUNDANT ROBOT
The efficiency of the proposed algorithm has been tested on
4-DOF planar redundant robot with all segments of equal
length (see Fig. 2). The robot has no limits in joint angles.
All AC brush-less motors are located in the robot base in
order to obtain lightweight links. The robot has low gear
ratios (6), thus the coupled dynamics of the robot is not
negligible. The robot base can be manually rotated from a
vertical to a horizontal position, allowing to study the case

Fig. 2. 4. D.O.F. planar redundant robot.

Fig. 3. Force and trajectory tracking.
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with the gravity or without gravity’s influence on the robot
links. We used a JR3 force sensor, which measures forces
and torques in all three axes. The sensor was too heavy to be
carried by the experimental robot, therefore we mounted the
sensor under the plate, which was used as the obstacle. The
task of the manipulator was to track the desired force while
moving along the obstacle. The robot base has been rotated
in a horizontal position. Therefore, gravity has had no
influence on the robot dynamics. The secondary subtasks
have been the obstacle avoidance and the minimization of
the joint torques due to the end-effector force. Obstacle
avoidance was carried out by prescribing an imaginary
potential field pointing from the obstacle, which forces the
robot joints to move away from the obstacle. The proposed
control algorithm was realized on SIMULINK and com-
piled using Simulink Real Time Workshop. We have
obtained the control ratio of 500 Hz using a Pentium 200
MHz processor. The calculation of the task velocity
compensation term ˙̄JJq̇ in Eq. 21, which requires high
computational effort, has been omitted without serious
performance degradation. Similar, the compensation term
H�1Cen in the control law 21 can be also omitted if the null
space controller gain Kn is big enough.13 The resulting
trajectory and force tracking are presented in Fig 3. The first
plot shows the force tracking, which is rather noisy and
oscillates around the desired force. The y component of the
task coordinates changes until the robot hits the wall, while
the x coordinate is the ramp function with the constant
velocity. Oscillations in y coordinate are due to the force
tracking. As it is evident from the figure, we have obtained
less satisfactorily results on a real robot compared to a
simulated result.9,13 The cause of the poorer results is in the
excessive elasticity of the drive belts between the robot
motors and the robot joints and friction in the gears. On the
other hand, we obtained better results with an impedance
task space control law, as compared to the hybrid force-
position control law presented in reference 21, i.e. the
position control loop additionally stabilizes the force
tracking, but causes the steady state error in the force
tracking.

5. CONCLUSIONS
In the paper we presented a new formulation of the null
space control law, which utilises the inertia weighted
pseudo-inverse. The proposed control law has been used to
solve the force control problem of a redundant robot. We
have used hierarchical task decomposition, where the
primary sub-task was to track the desired force and
trajectory, and the secondary sub-tasks were obstacle
avoidance, singularity avoidance and joint torque minimiza-
tion. To accomplish the primary task impedance control has
been implemented, but any other force control strategy can
also be used with the same null space controller. The
secondary task has been carried out by controlling the
manipulator’s null-space motion. The desired null space
motion has been optimised using the gradient projection
technique. The optimization procedures and the null-space
controller have been adapted in order to use the inertia
weighted pseudo-inverse. The proposed controller has been
tested on a planar 4. d.o.f redundant robot.
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