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The nonlinear evolution of waves propagating on a spatially varying opposing
current has been observed in a wave–current flume. Regular waves with different
initial periods and different initial steepness, s (0.05 < s < 0.19), were generated and
observed. Frequency downshift, even with very small initial steepness, was identified.
As expected, it was found that opposing currents can have significant interactions with
wavetrains. The ultimate frequency downshift increases with the increase in initial
steepness. The evolution of frequency modulation was observed via the instantaneous
frequency extracted by the Morlet-wavelet transform. The instantaneous frequency
showed that often the process of frequency downshift can be local in time and gradual,
but abrupt changes of local frequency were also detected. The presence of an opposing
current can gradually block the primary wave energy and destroy the conservation of
the wave action at downwave locations, thus increasing the asymmetric modulation
and accelerating the effective frequency downshift.

Key words: surface gravity waves, wave breaking

1. Introduction
An important problem of surface waves propagating into regions of decreasing

depth that remains largely unsolved is that of waves travelling against an opposing
current. This problem is fundamental to several physically relevant situations for
coastal and ocean engineering as well as of interest to those who study general wave
phenomena. Many interesting observations arise as a consequence of this interaction
between waves and currents including gradual and abrupt frequency downshift and
complete blockage of the waves. This paper discusses these processes as established
through a laboratory investigation.

To begin, a brief discussion of wave–wave interaction, of which wave–current
interaction can be considered as a special case, is appropriate, and in particular the
associated frequency-downshift phenomenon is relevant here. One kind of wave–wave
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Evolution of waves propagating on a spatially varying opposing current 109

interaction is the so-called ‘resonant’ interaction, which for gravity waves generally
involves four or more wave components and may require many wavelengths/periods
to transfer energy among free waves; resonant interactions are dominant mainly in
deep and intermediate water (Phillips 1960; Hasselmann 1962). Nonlinear resonant
wave–wave interactions in deep and intermediate depth can lead to wave modulation
of both amplitude and frequency. Wave modulations are very important in ocean
engineering and can have important consequences for marine structures. One obvious
result caused by nonlinear resonant interactions is the frequency downshift (the wave
peak-frequency shift from the initial dominant frequency to a lower one) which is
closely related to the Benjamin–Feir sideband instability, a degenerate four-wave
resonant interaction (Benjamin & Feir 1967). Due to the existence of the frequency
downshift, waves can be more stable and have the potential to grow higher and
propagate faster (Huang, Long & Shen 1996).

Over the past several decades, much effort has been expended to determine the
mechanisms of modulation of deep-water waves, and many insightful results have
been obtained from both numerical and experimental approaches. Significant progress
has been made to explain the physical mechanisms of the frequency-downshift
phenomenon. Lake et al. (1977) first observed the frequency-downshift phenomenon
in experiments by observing the long-time evolution of deep-water waves. Later,
Melville (1982) and Su (1982) also found the frequency downshift in their experiments.
They suggested that the phenomenon was closely related to the Benjamin–Feir
instability, and occurred following wave breaking. However, no plausible physical
mechanism of the frequency downshift was given by either Melville (1982) or Su
(1982). Ramamonjiarisoa & Mollo-Christensen (1979) used ‘crest pairing’ (which is a
phenomenon where one crest overtakes the previous crest and disappears, resulting in
a local increase of period) to explain the abnormal phenomenon. Chereskin & Mollo-
Christensen (1985) also suggested that crest pairing is the mechanism responsible for
the frequency downshift and that the process was gradual. Melville (1983) analysed
the process of deep-water wave modulation in detail, and used phase reversals to
explain the frequency downshift that appeared after wave breaking. Huang et al.
(1996) gave a detailed analysis of deep-water wave modulation. Their explanation
of the mechanism of frequency downshift was a ‘wave fusion’ process, and they
suggested that the process was local, discrete and abrupt. Experiments on the
evolution of wave modulation with known initial sidebands (the upper and lower
frequency sidebands were simultaneously imposed by the signal sent to the wave
generator) were also conducted (Tulin & Waseda 1999; Chiang & Hwung 2007;
Hwung, Chiang & Hsiao 2007); temporary frequency downshift was observed in non-
breaking cases, which is consistent with the theoretical result of Lo & Mei (1985),
but permanent frequency downshift occurred only after breaking. Wind effects on
nonlinear wave modulation were also considered by both numerical (Hara & Mei
1991) and experimental (Waseda & Tulin 1999) methods.

In estuary regions, currents are usually strong and hence their influence on waves
cannot be ignored. As waves propagate onto an opposing current, their group
velocity is reduced and significant energy transfer among wave components can
occur in a very short distance. If an opposing current is sufficiently strong, then
the wave group velocity, Cg , can go to zero, causing the waves to become blocked
(Chawla & Kirby 2002). Chawla & Kirby (2002) found that the frequency downshift
occurs with opposing currents present, even in the absence of breaking, indicating
that an opposing current can play an important role in the process of frequency
downshift.
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Turpin, Benmoussa & Mei (1983) derived a cubic nonlinear Schrödinger equation
that included the effects of currents and varying depth. The numerical results showed
that the instability parameter is a function of variation of currents and depth. A
following current has a stabilizing effect on a wavetrain, but an opposing current
can cause major wavetrain changes in all depths. Gerber (1987) studied the influence
of non-uniform currents on the Benjamin–Feir instability of deep-water waves using
another nonlinear Schrödinger equation. Gerber (1987) also showed that following
currents have a stabilizing effect on the waves while an opposing current can cause
a rapid instability. He explained that following currents reduce wave steepness and
therefore a longer time is required than in quiescent water for the same growth of the
sidebands. As an opposing current has a steepening effect on waves, it can shorten the
required time for the growth of the sidebands. Recently, van Duin (1999) considered
current non-uniformity on the development of modulated wavepackets, and found
similar results to Turpin et al. (1983) and Gerber (1987). Compared with theoretical
and numerical studies, laboratory observation of the modulation of waves in currents
has lagged behind. Even though the frequency-downshift phenomenon was observed
in previous experimental studies on wave–current interactions (Lai, Long & Huang
1989; Chawla & Kirby 2002), the details of wave modulation on opposing currents
are still unresolved. For example, how do waves evolve in currents? Are there any
differences between breaking and non-breaking cases? Is the physical mechanism
of the frequency downshift in a current the same as in quiescent water? Is the
characteristic of the frequency downshift gradual or abrupt? Aside from steepening
waves and more rapid energy transfer, are there other influences of opposing currents
on waves? To address the above issues, experiments were carried out in a wave–
current flume. Regular waves with different initial periods and different steepness
(0.05 <s < 0.19, where s is defined as ka with k being the wavenumber and a being
the wave amplitude at the first measure location) propagating in opposing currents
with spatial variation along the flume were considered.

This paper is organized as follows. In § 2, the experimental instrumentation and
measurement techniques are discussed. In § 3, the analytical methods used in this
study are presented. A discussion of the detailed analysis and results of the measured
wave modulation is presented in § 4. Lastly, the conclusions of this research are given
in § 5.

2. Experimental set-up
2.1. Wave flume

The experiments were conducted in the wave flume at the State Key Laboratory of
Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China.
This flume is 50.0 m long, 3.0 m wide and was used with a water depth of 0.5 m.
The detailed experimental set-up is shown in figure 1. The tank is equipped with a
hydraulically driven piston-type wavemaker and in the following x = 0 m is defined
as the mean position of the wavemaker. For this depth, currents to 0.26 m s−1 can be
generated by a pump located near the wavemaker end of the flume. The pipe system
allows the flow of water in either direction. In this paper, only adverse currents were
generated. As can be seen in figure 1, to facilitate the current flow and weaken the
effect of any inflow vortices on wave generation, two four-layer wire mesh screens
with hole size of 55 mm and a wire diameter of 1 mm were placed at the current inlet
and at the outlet. To create a gradient in the current field, a smooth impermeable
submerged bar, 0.25 m in height and 6.0 m in length along its constant-depth portion,
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Figure 1. Schematic view of the experimental set-up. (a) Elevation view. (b) Plan view.

was installed near the middle of the flume. Therefore, along the horizontal portion
of the bar, the water depth was reduced to 0.25 m. The seaward slope of the bar was
1: 60 with a 1 m long approach slope (1: 20); the rearward slope of the bar was 1: 40
with a 1 m long exit slope (1: 10). The flume was subdivided longitudinally into two
sections with widths of 0.8 and 2.2 m by a Perspex wall, starting from x = 1.5 m and
continuing downwave to the end of the tank. The narrower 0.8 m wide section was
chosen as the working section to ensure two-dimensionality of the wave field (i.e. to
suppress the three-dimensional instability observed by Su 1982). Owing to the low
friction of glass and Perspex, the influence of the sidewalls on the flow was relatively
small.

The water-surface elevations were recorded with 27 capacitance wave gauges, which
are delineated by filled circles in figure 1. These gauges were placed with a relatively
coarse spacing of 1.0 m in deeper water, which was reduced to 0.5 m from the middle
part of the seaward slope of the bar to the middle of the top of the bar. The absolute
accuracy of these wave gauges was of the order of ±1 mm. Before the wave gauges
were used, they were re-calibrated to ensure their accuracy during the experiments.
The duration of each record was 102.4 s; relatively short series were necessitated to
avoid reflection by the end of the flume. The sampling frequency was 40 Hz.

Current measurements were made using a Nortek acoustic Doppler velocimeter
(ADV, velocity range 1 m s−1, sampling rate 200 Hz) with a specified accuracy of
1 mm s−1. Detailed measurements of the vertical current profile along the centreline of
the working section of the flume were conducted. Each measurement of current was
conducted following 40 min of flow to let the unsteadiness decay. These measurements
were repeated three times for each test run, and along with the measured wave
parameters, H, T and the frequency downshift were within the instrumentation-
specified error, indicating that the experiments were repeatable. Figure 2 shows the
mean current (averaged over 240 s) profile at five different locations along the flume.
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Figure 2. Vertical mean current profile at five different locations in the flume. Note that the
missing points downwave are due to bottom profile changes.

In the absence of waves, these current profiles followed the expected boundary-layer
shape, especially the closer they were measured to the source. Essentially uniform
current profiles were found from the surface to at least 20 cm below the surface.
Hence, the variations of current over depth are ignored. In the absence of waves,
the mean current along the flume is shown in figure 3, which reflects the changes of
cross-sectional area very well using the conservation of volume flux. As a result of the
change in water depth, the depth-averaged current varied from 0.255 m s−1 at x = 7 m
to its maximum value of 0.520 m s−1 at x = 22 m. The same current conditions were
implemented for all the experiments.

2.2. Wave conditions

A total of 12 experiments with regular waves of different periods, T, and steepness, s,
were considered. Details of the tests are presented in table 1. The wave-number k was
estimated using the Doppler-shift linear dispersion relation for waves on a constant
depth (i.e. (ω − Uk)2 = gk tanh(kh), where g is the gravity due to acceleration, U is the
current and ω is the radian frequency) at x = 6 m. The height H was the mean height
of the waves recorded at x = 6 m, and it was used to determine the initial steepness,
s, of each case. The relative water depth kh at x = 6 m ranges from 1.4 to 3.3, and
in the vicinity of the bar, even though the water depth is less, the values of kh can
be higher due to the presence of the stronger opposing current. Hence, the waves
generated in the experiments can be classified as propagating in intermediate water
depth.
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Case T (s) H (cm) kh s or ka

1 1.0 2.21 3.3 0.073
2 1.0 3.2 3.3 0.106
3 1.0 5.54 3.3 0.183
4 1.1 2.5 2.6 0.065
5 1.1 3.37 2.6 0.087
6 1.1 5.7 2.6 0.148
7 1.2 2.61 2.12 0.055
8 1.2 5.23 2.12 0.11
9 1.2 6.76 2.12 0.14

10 1.5 3.3 1.39 0.046
11 1.5 5.75 1.39 0.08
12 1.5 8.29 1.39 0.115

Table 1. Wave conditions at x = 6 m.
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Figure 3. Averaged current U as a function of x (with no wave generation). Filled circles
represent the measured data; the curve represents the flow using the conservation of volume
flux.

3. Analytical method
3.1. Wave spectra

Wave spectra can provide the energy distribution as a function of frequency. From
the spectrum, the evolution of the peak frequency fp and variations of the sideband
energy can be detected. In this study, wave spectra were obtained by fast Fourier
transform (FFT), and then the spectra were smoothed by a 10-point running average;
thus each spectral estimate has 20 degrees of freedom.

3.2. Instantaneous peak-frequency content

A traditional method to calculate the instantaneous frequency content of a signal
is through the Hilbert transform. As a different procedure is usually adopted to
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calculate the instantaneous frequency, some incorrect frequencies, such as a negative
frequency, will be obtained by using the Hilbert transform of a composite signal.
Delprat et al. (1992) showed that the ridges of the continuous wavelet transform of
a signal can represent the instantaneous frequencies of that signal. The instantaneous
frequencies extracted from the wavelet transforms can detect the rapid changes
of frequency (Mallat 1999). In this study the instantaneous peak frequencies of
the measured waves were obtained from the ridge of a Morlet-wavelet transform
(Kijewski-Correa & Kareem 2006). In general, the continuous wavelet transform of
an arbitrary time series ξ (t) can be obtained by dilating in scale a, which is inversely
proportional to frequency, and translating in τ the mother wavelet ψ(t):

WT (a, τ ) =
1√
a

∫ ∞

−∞
ξ (τ )ψ∗

(
t − τ

a

)
dτ, (3.1)

where the asterisk denotes the complex conjugate. To seek the harmonic character of
signals, the Morlet wavelet is often adopted:

ψ(t ′) = π−1/4 exp

(
− t ′2

2

)
exp(iωct

′). (3.2)

The function of (3.2) is defined at unit scale. Here, ωc is the central frequency of the
wavelet and a parameter that determines the wavelet resolution (i.e. it relates the scale,
a, to the Fourier frequencies). It should be larger than 6.0 to satisfy the admissibility
condition (Farge 1992). A larger ωc gives a finer frequency resolution at the expense
of a poorer time resolution. In this study, ωc was set to 12 to provide enhanced
frequency resolution. Once a mother wavelet is chosen, it is necessary to choose a set
of scales a to use in the wavelet transform. Conveniently, the scales can be written as
fractional powers of two (Torrence & Compo 1998):

aj = a02
jδ, j = 0, 1, . . . , M, (3.3)

M = δ−1 log2

(
N�t

a0

)
, (3.4)

where a0 is the smallest scale and should be set to 2�t, �t is the time interval, M is
the number of scales, and N is the number of values in the time series. The parameter
δ is the scale factor. The value of δ should be smaller than 0.5. Dilating the mother
wavelet by the chosen scales, the wavelet transform defined in (3.1) can be completed.
For the Morlet wavelet, the relationship between scale, a, and frequency, f, is defined
(Torrence & Compo 1998) as

a =
ωc +

√
ω2

c + 2

4πf
. (3.5)

The wavelet energy spectrum can be defined as

P (a, τ ) =
|WT (a, τ )|2

a
. (3.6)

The scale (frequency) having the maximum energy at each τ is the instantaneous
peak frequency. Figure 4 illustrates the Morlet wavelet spectrum and the instantaneous
peak frequencies for x =6 m of case 3. Based on the instantaneous peak frequencies
extracted via the Morlet-wavelet transform of the measured wave series, the evolution
of frequency modulation can be studied.
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Figure 4. (Colour online) The wavelet spectrum contour for the surface elevations at x = 6 m
for case 3. The black line represents the instantaneous peak frequencies of the wavetrain.

3.3. Phase function

A comparison of the phase functions is used to detect the local phase changes of time
series. Here, the detrended phase function obtained by the Hilbert transform (Huang
et al. 1992) was used to quantify the local phase changes of the wavetrains.

4. Results and discussion
4.1. Peak frequency variations along the flume

Figure 5 shows the variations of the non-dimensionalized peak frequency fp (which
were obtained by FFT) along the flume. For each experimental case, fp at each
location was non-dimensionalized by the peak frequency at x = 6 m. Frequency
downshift is observed for cases 1–9 but not for cases 10–12. As mentioned previously,
the current velocity on the top of the bar is 0.52 m s−1. Based on the linear Doppler
dispersion relation, free waves with frequency larger than 0.72 Hz should be blocked.
Thus, the primary waves (including the carrier wave and the disturbed upper and
lower sideband frequencies) for cases 1–9 should be blocked before waves reach the
top of the bar as per linear theory. However, owing to the frequency downshift (for
gravity waves lower frequency waves have larger phase speed and group velocity) and
finite-amplitude dispersion, the blocking points of some experimental cases (cases 1, 2,
4 and 5) moved downwave, and for some cases (cases 3, 6–9), the wave blocking does
not occur at all. Furthermore, for the blocked cases, the actual blocking locations
are not consistent with the results calculated using the linear dispersion relation. For
example, the peak frequency for case 1 is 0.91 Hz before blocking; hence, it should be
blocked at x = 17.5 m based on the linear Doppler dispersion relation, but the actual
blocking point is x = 19.5 m. Even for the non-blocked cases, primary waves should
also be blocked at the horizontal portion of the bar based on the linear theory.

The third-order Stokes dispersion relation can be written as (Chawla & Kirby
2002):

(ω − kU )2 = gk tanh kh

[
1 + (ka)2

(
8 + cosh 4kh − 2 tanh2 kh

8 sinh4 kh

)]
. (4.1)
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Figure 5. Variation of peak frequencies fp , which were extracted from the spectra obtained by
FFT, along the flume. For breaking cases, the breaking regions are marked in the corresponding
panels. (For each case, fp was non-dimensionalized by fp measured at x = 6 m.)

The blocking points predicted by (4.1) are quite consistent with the actual blocking
points for the blocked experimental cases (cases 1, 2, 4 and 5). Based on the third-
order Stokes dispersion relation, cases 3, 6–9 cannot be blocked at the crest of
the bar. This phenomenon indicates that the actual blocking criterion cannot be
predicted by the linear dispersion relation, suggesting that numerical models, such as
ones that use the wave-action equation (Bretherton & Garrett 1968), should use the
third-order Stokes dispersion relation to predict wave dynamics close to the blocking
point.

Furthermore, it should be noted that, in the presence of a blocking current, the
frequency downshift can appear in non-breaking waves, which is consistent with the
experiments of Chawla & Kirby (2002) over a constant depth. Cases with larger
initial steepness exhibit larger frequency downshift (see table 2 and figure 6) that
is approximately linear. It should be noted that the frequency downshift for the
blocked cases (cases 1, 2, 4 and 5) was permanent as the primary waves (carrier,
lower and upper sideband frequency waves) were blocked. For the other cases, some
primary wave energy was blocked by the opposing current and the wave action was
no longer conserved at the downwave stations. Due to the length limitation of the
present tank, it is still questionable whether the frequency downshift is permanent.
Experiments with different s in both quiescent water and a weaker opposing current,
U = 0.12 cm s−1 for horizontal depth h = 0.5 m, were also conducted but are not
presented. No obvious modulation or frequency downshift was observed in those
experiments, even for non-breaking experiments with initial s to 0.15.
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Case s or ka Frequency downshift (%)

1 0.073 9
2 0.106 16
3 0.183 25
4 0.065 9
5 0.087 11
6 0.148 16
7 0.055 4
8 0.11 8
9 0.14 11

10 0.046 0
11 0.08 0
12 0.115 0

Table 2. Frequency downshift for the experimental cases.
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Figure 6. Variations of frequency downshift versus initial wave steepness.

4.2. Modulation evolution of non-breaking waves

The measured surface elevations of case 1 are shown in figure 7. The data recorded in
the initial seconds at the locations beyond x = 16.5 m show little variation because the
waves have not yet reached those locations. At the closest measured location (x =6m),
the waves already exhibited slight amplitude modulation. As the waves propagated
and evolved, the amplitude modulations grew. At x =19.5 m, almost all the primary
and sideband waves were blocked by the current. To examine the variations of the
wave amplitude in the frequency domain, the amplitude spectra obtained by FFT at
selected locations are shown in figure 8. At x = 6m, there was some low energy at
the sidebands due to the background noise, such as fl = 0.94Hz and fu =1.06 Hz.
(Here, the subscripts l and u indicate lower and upper, respectively.) As the waves
evolved, energy of the sidebands increased, as did the spectral width. It is evident that
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Figure 7. The measured surface elevations in the flume with an initial period 1.0 s and initial
steepness 0.073 (non-breaking, case 1). Notice the increasing modulation of the wave envelope
as the waves evolved. Also note that due to a reflection-issue limit, the initial parts of the wave
records for x > 16.5 m show little change.

the evolution of the sidebands was not symmetric (i.e. the lower sideband grew with
increasing distance, but the higher sideband exhibited little change). At x = 17.5 m,
the energy of the lower lobe of the sideband was nearly equal to that of the initial
wave peak frequency f0. Eventually, the energy at the lower sideband overtook the
energy of f0 (at x = 18 m), and fp became 0.94 Hz. Note that none of this occurred in
the experiments conducted in both quiescent water and a weaker opposing current,
even for waves with steepness s (at x = 6 m) twice as large as in this experimental
case. Reiterating, the peak frequency of the waves moved to a lower frequency as the
waves entered shallower water where an increased opposing current existed. With the
increased strength of the opposing current, energy at the higher lobe of the sideband
and its higher harmonics were gradually blocked. Furthermore, the widening of the
spectrum suggests that the instability of the waves was not confined to several discrete
frequencies, but was across a continuous frequency band, which is consistent with the
results of Melville (1982) for deep-water conditions.

In figure 8, the critical-blocking frequencies, which are predicted by both the linear
and the third-order Stokes dispersion relation, are also identified. Free waves beyond
these critical frequencies should be blocked by the local current. For the results
predicted by the linear theory, it is noticed that there are significant primary waves
that are not blocked by the local current, indicating that the blocking criterion as
determined by the linear dispersion relation is not valid. Meanwhile, the third-order
Stokes dispersion relation gives reasonable results, which is consistent with the work
of Chawla & Kirby (2002). Notice that the local mean wave heights are adopted to
calculate the third-order Stokes dispersion relation.
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Figure 8. Evolution of spectra as a function of distance from the wavemaker for case 1 with
initial fp = 1.0 Hz (‘l’ denotes the lower sideband, ‘p’ indicates the initial peak waves, ‘u’ denotes
the upper sideband). Each spectral estimate has 20 degrees of freedom and is within −23.5 % to
44.6 % of the ‘true spectrum’ at the 95 % confidence level. In these spectra, due to the recorded
length changes, the frequency resolution is 0.01 Hz for x < 17 m, and for x =17m, x = 17.5 m,
x =18m, x = 18.5 m, x =19m and x = 19.5 m the frequency resolution is 0.0105, 0.0112, 0.012,
0.013, 0.0142 and 0.015Hz, respectively. The vertical solid lines in each graph identify the local
critical frequencies based on the linear dispersion relation. The vertical dashed lines in each
graph identify the local critical frequencies based on the third-order Stokes dispersion relation.

The above analysis provides the global variation of frequency, but it does not
produce the frequency modulations of the waves. To examine the detailed frequency
modulations, the variation of the instantaneous peak frequencies of waves extracted
via the Morlet-wavelet transform are shown in figure 9. For convenient comparison,
the corresponding wave elevations are shown simultaneously. At the closest measured
location, even the instantaneous frequency was nearly uniform in time, and coincides
with the initial fp . The frequency modulation grew with distance and the time
instantaneous frequencies were less than the initial fp and gradually increased with
increased distance downwave, indicating that the process of frequency downshift was
gradual (see figure 9). At x = 15 m, there was local relatively large frequency downshift
at times around 23 and 70 s, where wave amplitudes were small. As waves approached
the top of the bar, abrupt changes of local peak frequency were observed, while the
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Figure 9. The evolution of the instantaneous peak frequency for case 1. The dotted line is the
initial wave frequency. The instantaneous peak frequency was obtained by the Morlet-wavelet
transform. The corresponding wave elevations are also shown for comparison.

amplitudes which correspond to those frequency changes were close to zero. There
were not only abrupt peak frequency changes from lower to higher, but also from
higher to lower. Even though abrupt local changes of peak frequencies existed, the
global peak frequency gradually decreased to the lower sideband (see figure 5). It is
interesting to see that those higher peak frequencies, which existed at the previous
locations, do not exist at further downwave locations. For example, those larger
peak frequencies which appeared suddenly at x = 16 m and x =16.5 m (times around
65 and 85 s, respectively) vanished at x =17 m. Those waves with higher frequency
might be blocked by the current. To some extent, the existence of the opposing
current can accelerate the process of frequency downshift. The mean values of the
instantaneous peak frequencies for each measurement location shown in figure 9 and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

28
80

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010002880


Evolution of waves propagating on a spatially varying opposing current 121

5 10 15 20 25
0

0.5

1.0

N
on

-d
im

en
si

on
al

iz
ed

 f
p 

x (m) 

Figure 10. The mean values of the instantaneous peak frequencies (open circles) for case 1,
non-dimensionalized by the result measured at x = 6 m along the flume. These data are
the averages from figure 9 and other similar results that were not presented. The non-
dimensionalized fp (filled circles) obtained by FFT are also presented for comparison.
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Figure 11. The detrended phase function of the surface elevations measured at four
different locations for case 1.

some not presented are shown in figure 10. The mean values agree well with the
results obtained via FFT, indicating that the method used to extract instantaneous
frequency is meaningful and reasonable.

Figure 11 shows the detrended phase functions of the measured waves. As expected,
at the time when the abrupt peak-frequency change occurs, there are local abrupt
changes of phase. Thus, the abrupt peak frequency and phase changes correspond to
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Figure 12. The measured surface elevations in the flume with an initial period 1.0 s and initial
steepness 0.183 (Case 3). The breaking range was observed from x =13m to x = 18 m. As in
figure 7, initial parts of the elevation measurements were recorded prior to arrival of the waves.

the phenomenon known as ‘phase reversal’ (Melville 1983), or ‘phase jumps’ (Huang
et al. 1996). The physical mechanism of frequency downshift can be regarded as a
continuous n to n − 1 wave fusion process (Huang et al. 1996). In this experiment,
during the time span 20–102 s, the number of waves n, which was calculated via the
zero-up-cross method, decreased from 80 at x = 6 m to 76 at x = 18 m, indicating that
wave fusion occurred. If there is a 2π phase loss, two-to-one wave fusion occurs,
causing an abrupt local frequency downshift (Huang et al. 1996). The largest local
phase change in this experiment, case 1, was about 5 rad (t = 62 s at x = 16 m, and
t = 68 s at x = 17.5 m; see figure 11), indicating that there was no two-to-one wave
fusion or one-to-two wave fission. The above discussion suggests that the process of
frequency downshift begins locally, but can be both abrupt and gradual.

4.3. Modulation evolution of breaking waves

In this section, modulation evolution of the waves for case 3, which had the largest
initial steepness, is analysed. The breaking region of this experimental case ranged
from x = 13 m to x = 18 m. The evolution of wave elevations is shown in figure 12.
(Note that, due to the reflection limited time series, the recorded elevations are initiated
prior to wavetrain arrival for some of the downwave locations.) Initially, the wave
elevations are quite uniform, with only slight amplitude modulation. As waves evolved
with distance, surface elevations underwent a modulation–demodulation–modulation
process, i.e. wave modulation increased first, decreased slightly after wave breaking,
and then increased again. The wave groups formed by the effects of instability had a
steep front and a more gently sloping rear face. The instantaneous peak frequencies
of those wave groups have a similar asymmetric form (as will be demonstrated later
in this section). At the top of the bar the waves were not totally blocked, due to the
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Figure 13. Evolution of spectra as a function of distance from the wavemaker for case 3 with
initial fp = 1.0 Hz (‘l’ denotes the lower sideband, ‘p’ indicates the initial peak waves, ‘u’ denotes
the upper sideband). Each spectral estimate has 20 degrees of freedom and is within −23.5 %
to 44.6% of the ‘true spectrum’ at the 95 % confidence level. The frequency resolution is
0.01 Hz for x < 18 m, and for x = 18, 19, 20 and 21 m, the frequency resolution is 0.0105, 0.012,
0.013 and 0.0142Hz, respectively. Note that the breaking region of this case is from x = 13 m
to x = 18 m. The vertical solid lines in each graph identify the local critical frequencies based
on the linear dispersion relation. The vertical dashed solid lines in each graph identify the
local critical frequencies based on the third-order Stokes dispersion relation.

relatively large frequency downshift (as will be discussed later). The amplitude spectra
of surface elevations at select locations are shown in figure 13. The evolution of the
wave spectra also indicates an instability involving a continuous frequency band rather
than several distinct frequencies. The lower sideband energy grew with increasing
distance, while the higher sideband energy exhibited little change. Eventually, the ef-
fective frequency downshift occurred following initial breaking (x = 14 m). In addition,
figure 13 also shows that the blocking criterion predicted by the third-order Stokes
dispersion relation is reasonable, indicating that amplitude dispersion has a significant
effect. Based on the third-order Stokes dispersion relation, the primary waves for this
case are not totally blocked, which is consistent with the experimental results.

The evolution of the instantaneous peak frequencies is shown in figure 14, and the
mean values of the instantaneous peak frequencies for each measurement location are
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Figure 14. The evolution of the instantaneous peak frequency for case 3. This case has the
largest initial steepness, as can be seen in table 1. The dotted line represents the initial peak
wave frequency sent to the wavemaker. Instantaneous peak frequency was obtained by the
Morlet-wavelet transform. The corresponding wave elevations are also shown for comparison.
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Figure 15. The mean values of instantaneous peak frequencies (open circles) for case 3,
which were non-dimensionalized by the result measured at x = 6 m along the flume. The
non-dimensionalized fp (filled circles) obtained by FFT are also presented for comparison.

shown in figure 15. The mean values of instantaneous peak frequencies agree well with
the results obtained by FFT. At the closest measurement location (x = 6 m), slight
frequency modulation was observed. During some time spans, the local frequency is
lower than the frequency, f0, sent to the wavemaker, and for some time spans, the local
frequency is higher than f0. As distance increased, the frequency modulation increased
with the amplitude modulation. Both local peak-frequency downshift and upshift were
detected. At x = 13 m, the variations of instantaneous peak frequency over time are
relatively large. Note that the frequency modulation of case 1 at this location is
small (see figure 9), suggesting that wave modulation is closely related to the initial
wave steepness, consistent with the results for quiescent water. As waves approached
x = 14 m, the local peak frequency was usually lower than f0, corresponding to an
effective frequency downshift, as detected by the spectral analysis. The wave groups
exhibited an asymmetric form with steeper forward faces and more gently sloping
rear faces, caused by an asymmetric growth of sideband frequencies (Melville 1982).
It is noted that abrupt changes in local peak frequency were smaller than those
cases with smaller initial steepness. Moreover, no abrupt frequency jumps from a
lower frequency to a higher frequency (much higher than f0) were detected. This
is very different from the non-breaking case presented. The primary reason for this
phenomenon is that wave-breaking accelerated the process of the effective frequency
downshift. As breaking occurred, waves at higher frequency lose energy, and also
some energy was blocked by the opposing current, hence, the effective frequency
downshift occurred more rapidly. Energetic waves with lower frequency are more
stable than waves with higher frequency. As waves enter the region x > 15 m, no
abrupt change of frequency was observed, and the wave peak frequency gradually
reduced. The detrended phases of the measured elevations show that there were no
phase jumps larger than 2π; see figure 16. The largest local abrupt phase jump of
this experiment was approximately 4.4 rad, which occurred at about 57 s for x = 13 m
(figure 16).

The number of waves, n, decreased from 101 at x = 6 m to 86 at x = 18 m, exhibiting
a wave-fusion process. As the formed wave groups were more regular than the case
with small initial steepness, it is easy to identify the wave-fusion process at adjacent
locations. Figures 17 and 18, respectively, show the process of n to n − 1 wave
fusion (also called ‘crest pairing’ by Ramamonjiarisoa & Mollo-Christensen 1979).
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Figure 16. The detrended phase function of the surface elevations measured at four
different locations for case 3.

The corresponding local frequency of the region of wave fusion is the smallest (see
figure 14). From these wave records, it is also noted that the wave-fusion process
tends to appear near a region of low wave energy, which is consistent with previous
observations (Melville 1982; Huang et al. 1996; Tulin & Waseda 1999).

5. Concluding remarks
The evolution of wave modulation in a spatially varying opposing current was

studied in a physical wave–current flume. Regular waves with different initial
steepness (0.05 <s < 0.19) were considered, including non-breaking and breaking
cases. Sideband frequencies arose ubiquitously from the background noise of the
flume. As waves evolved, both amplitude and frequency modulations increased over
short distances, suggesting that an opposing current can accelerate the evolution
to instability. A peak-frequency downshift phenomenon was identified in both non-
breaking and breaking experiments. Due to the presence of an opposing current, which
can block the carrier waves, the peak-frequency downshift was observed even in waves
with small initial steepness (smaller than 0.10), which is consistent with the results
of Chawla & Kirby (2002). It must be mentioned that, in the present facility, wave
modulation and peak-frequency downshift were not observed in experiments with
larger steepness in both quiescent water and in the presence of a weaker opposing
current. The ultimate peak-frequency downshift increased with an increase in the
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Figure 17. The decrease in the number of waves (12 waves being transformed into 11 waves)
before the effective peak-frequency downshift occurred for case 3. The lower and upper panels
are time-shifted. The arrow identifies when the number of waves decreased.
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Figure 18. The decrease in the number of waves (13 waves being transformed into 12 waves)
after the effective frequency downshift occurred for case 3. The lower and upper panels were
time-shifted. The arrow identifies when the number of waves decreased.
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initial steepness. The evolution of the spectrum of waves showed that the wavetrain
is unstable to a band of frequencies rather than a few discrete frequencies, which is
consistent with the results of Melville (1982), who conducted experiments without a
spatially varying opposing current.

The frequency modulation of waves was observed through instantaneous peak
frequency content extracted via the continuous wavelet transform. As waves evolved,
the frequency modulated simultaneously with the amplitude. The near-uniform
wavetrain gradually deteriorated into several wave groups with steeper forward
faces and more gently sloping rear faces (due to the asymmetric modulation of
frequency). The instantaneous frequency showed that the peak-frequency downshift
begins locally, and gradually expands, indicating that the peak-frequency downshift
is both local and gradual. However, abrupt changes of local frequency were also
identified, suggesting that the peak-frequency downshift may also exhibit an abrupt
character. The phase function also exhibited local abrupt changes, i.e. local abrupt
jumps, corresponding to the phenomenon of phase reversal. The number of waves,
n, decreased as waves propagated downwave, suggesting that the physical mechanism
of frequency downshift in an opposing current may also be explained by wave fusion
(Huang et al. 1996) or crest pairing (Ramamonjiarisoa & Mollo-Christensen 1979).

An opposing current not only increased the wave steepness and shortened the
energy-transfer time, but it also destroyed the conservation of downwave–wave action,
and then accelerated the process of frequency downshift. As wavetrains propagated in
a spatially increasing opposing current, carrier-frequency waves and upper sideband
waves and then higher harmonics are blocked gradually by the opposing current.
For breaking waves, energy losses occurred at primary waves and some energy was
blocked by the opposing current, so that the effective peak-frequency downshift
occurred earlier than for non-breaking cases.

The authors would like to acknowledge the support of the National Nature Science
Foundation under grants 50679010 and 50921001.
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