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On the frequency selection mechanism of the
low-Re flow around rectangular cylinders
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In the flow past elongated rectangular cylinders at moderate Reynolds numbers,
vortices shedding from the leading- and trailing-edge corners are frequency locked by
the impinging leading-edge vortex instability. The present work investigates how the
chord-based Strouhal number varies with the aspect ratio of the cylinder at a Reynolds
number (based on the cylinder thickness and the free-stream velocity) of Re = 400,
i.e. when locking is strong. Several two-dimensional, nonlinear simulations are run for
rectangular and D-shaped cylinders, with the aspect ratio ranging from 1 to 11, and
a global linear stability analysis of the flow is performed. The shedding frequency
observed in the nonlinear simulations is predicted fairly well by the eigenfrequency of
the leading eigenmode. The inspection of the structural sensitivity confirms the central
role of the trailing-edge vortex shedding in the frequency locking, as already assumed
by other authors. Surprisingly, however, the stepwise increase of the Strouhal number
with the aspect ratio reported by several previous works is not fully reproduced. Indeed,
with increasing aspect ratio, two distinct flow behaviours are observed, associated with
two flow configurations where the interaction between the leading- and trailing-edge
vortices is different. These two configurations are fully characterised, and the mechanism
of selection of the flow configuration is discussed. Lastly, for aspect ratios close to
the jump between two consecutive shedding modes, the Strouhal number is found to
present hysteresis, implying the existence of multiple stable configurations. Continuing
the lower shedding-mode branch by increasing the aspect ratio, we found that the periodic
configuration loses stability via a Neimark–Sacker bifurcation leading to different Arnold
tongues. This hysteresis can explain, at least partially, the significant scatter of existing
experimental and numerical data.
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1. Introduction

Cylinders with rectangular or nearly rectangular cross-section are found in several
engineering applications such as buildings, bridges and pylons (Tamura, Miyagi &
Kitagishi 1998). When placed in a uniform flow, bodies with short streamwise dimension,
such as square cylinders or normal flat plates (Robichaux, Balachandar & Vanka 1999;
Blackburn & Lopez 2003; Choi & Yang 2014), produce a pair of shear layers, one for each
side, which separate from the leading edge and roll up behind the cylinder to produce a von
Kármán vortex street. For more elongated bodies, however, the flow is more complicated
since shear layers separate from both the leading edge (LE) and the trailing edge (TE).
For aspect ratios A ≡ L/D > 3 (where L and D are the streamwise and cross-stream
dimensions of the cylinder, respectively) after the LE separation the flow reattaches over
the lateral side of the cylinder, before separating again at the TE. At large enough Reynolds
number, vortex shedding occurs from both the LE and TE corners. When the Reynolds
number Re – defined with the unperturbed velocity U∞ and the cylinder thickness D –
is approximately 300, the vortex shedding from LE and TE locks to the same frequency,
and the Strouhal number St ≡ fL/U∞, which is a dimensionless measure of the shedding
frequency f , increases in a stepwise manner withA. This is observed for several numerical
and experimental studies for Re up to 2000: see for instance Okajima (1982), Nakamura,
Ohya & Tsuruta (1991), Ozono et al. (1992), Mills et al. (1995) and Tan, Thompson &
Hourigan (1998).

Nakamura & Nakashima (1986) were first to invoke the impinging-shear-layer instability
to explain the frequency locking and the stepwise variation of the Strouhal number with
Re. They also conjectured that, unlike for short blunt bodies or for bluff bodies without
LE vortex shedding, this instability is a one-side phenomenon, and does not depend on
the interaction between the shear layers separating from opposite sides. Indeed, for a
rectangular cylinder withA = 5, the instability mechanism and the shedding frequency
were found to be unaffected by a splitter plate placed at the TE. Later, Naudascher &
Rockwell (1994) coined the name impinging-LE-vortex (ILEV) instability to stress that,
for long enough bodies, the vortices shed by the LE shear layer – and not the shear layer
itself as predicted instead by the impinging-shear-layer instability – interact with the TE
corners. Mills et al. (1995) described the phenomenon within the more general framework
of instability of impinging vorticity, in the form of both shear layer and discrete vortices.
The ILEV instability is a resonant oscillation of the fluid. A periodic vortex shedding
occurs from the LE shear layer. When a vortex passes over the TE, a pressure pulse is
generated that travels upstream to trigger the shedding of a new LE vortex from the LE
shear layer and, at the same time, a new TE vortex is shed in the wake. This process
implies a link between the shedding frequency and the cylinder chord. The total number
n of LE vortices present on the side of the cylinder is an integer that varies with A:
when the aspect ratio is very small, n = 0; but when A ≈ 3, n = 1. By increasing A
further, the number of vortices that can be accommodated along the cylinder side grows
in a quantised manner, leading to the stepwise variation of the shedding frequency, i.e.
St ≈ Uc · n, where Uc ≈ 0.55U∞ denotes the mean convection velocity of a LE vortex,
found to be approximately constant (Nakamura et al. 1991; Mills, Sheridan & Hourigan
2002; Tan, Thompson & Hourigan 2004).

To explain the stepwise dependence of St onA, Hourigan et al. (1993) later followed
by many others (Hourigan, Thompson & Tan 2001; Mills et al. 2002; Mills, Sheridan
& Hourigan 2003; Tan et al. 2004) investigated the role of the TE vortices in the ILEV
instability. Hourigan et al. (2001) suggested that the preferred shedding frequency is that
of the TE vortex shedding, similar to the case of a cylinder with an elliptical LE, where
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the LE vortex shedding is absent. The strongest locking and the largest base suction
(indicating strong TE shedding) correspond to this shedding frequency. However, when
increasingA within the same shedding mode, shedding at the preferred frequency is no
longer possible because of interference from the LE vortices and the flow selects a nearby
frequency. For theseA the shedding from the TE and the locking mechanism weaken as
the fluctuations of the base pressure over successive shedding period increase and the base
suction decreases. OnceA is increased such that the phasing of the LE vortices becomes
correct again, the shedding frequency undergoes a step change to the next shedding mode,
and the preferred frequency is selected again. This picture was subsequently confirmed
by the experimental study of Mills et al. (2002) and by the numerical study of Tan et al.
(2004). By forcing the flow with small transverse oscillations, they were able to lock the
flow over a wide range of frequencies. However, a maximum base suction was observed
for a forcing frequency corresponding to the natural TE shedding, thus confirming the
centrality of the TE vortices in the feedback mechanism also for the unforced case. They
also confirmed that, in each step of the St–A diagram, the base suction decreases with
increasing A, as the shed TE vortex becomes weaker owing to the different phase at
which the LE vortex reaches the TE.

The present work refines the above description. We consider both rectangular and
D-shaped cylinders, with 1 ≤A ≤ 11 at Re = 400, and carry out two-dimensional
simulations as well as global linear stability analyses of the mean flow. It is found that,
at least for the present value of the Reynolds number, the stepwise dependence of St on
the aspect ratio does not always apply. Indeed, two different flow configurations can be
established, depending on whether or not the preferred frequency is permitted. The two
configurations are characterised in terms of the interaction of the LE and TE vortices.
Moreover, the mechanism for the selection of the flow configuration, and therefore of the
shedding frequency, is investigated. Finally, a still unreported hysteresis is discovered in
correspondence of the frequency jump.

2. The numerical approach

We consider rectangular and D-shaped cylinders, of height D and length L, with a
reference system such that the LE is at x = 0 and the sharp TE corners are located at
(x, y) = (L,±D/2); x and y (U and V) denote the streamwise and cross-stream directions
(velocity components). The cylinder is immersed in a uniform flow U∞ aligned with the
streamwise axis.

The Reynolds number Re ≡ U∞D/ν is based on U∞, D and the kinematic viscosity ν
of the fluid. Following Hourigan et al. (2001) and Tan et al. (2004), this work considers
the classic value Re = 400. This value is a good compromise: it is low enough for the flow
to exhibit a strong frequency locking while remaining fully two-dimensional, but at the
same time high enough for the strong vortical structures from both the LE and the TE to
develop.

Two-dimensional numerical simulations have been performed by integrating in time the
incompressible Navier–Stokes equations. No-slip boundary conditions have been applied
at the cylinder surface. A homogeneous Neumann condition has been applied at the
outflow boundary and a constant free-stream velocity U∞ has been imposed in the far
field. For temporal integration, we used an explicit third-order, low-storage Runge–Kutta
scheme, combined with an implicit second-order Crank–Nicolson scheme (Rai & Moin
1991). The spatial discretisation is based on a finite-element formulation, using quadratic
elements for the velocity vector and linear elements for pressure to satisfy the LBB
condition (Brezzi 1974; Brezzi & Fortin 1991). The numerical method is implemented
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using the non-commercial software FreeFem++ (Hecht 2012). A computational mesh with
top/bottom symmetry is used for all the configurations, to avoid introducing asymmetries
in the flow. The size and spatial distribution of the triangles have been chosen to properly
refine the mesh around the body and in the wake. The BoostConv algorithm (Citro et al.
2017) has been used to accelerate the convergence of the simulations to the periodic limit
cycle; this ensures that both the periodicity and the spatio-temporal symmetry of the flow

U(x, y, t) = U(x,−y, t + T/2),

V(x, y, t) = −V(x,−y, t + T/2),

}
(2.1)

where T indicates the shedding period, are satisfied up to a threshold of 10−12. The initial
condition is (U,V) = (1, 0) everywhere for all the simulations. When the limit cycle is
reached, the shedding period is evaluated as the time separating two consecutive zero
points in the time history of the lift coefficient C� with ∂C�/∂t > 0. For the simulations
that do not converge to a periodic solution, the main flow frequencies are instead extracted
by looking at localised peaks in the frequency spectrum of the time history of C�.

The computational domain for the bodies with A ≤ 5 extends for −25D ≤ x ≤ 50D
in the streamwise direction and for −20D ≤ y ≤ 20D in the cross-stream direction,
corresponding to a size (Lx, Ly) = (75D, 40D). For longer bodies the computational
domain it is enlarged up to (Lx, Ly) = (100D, 60D) extending from −25D ≤ x ≤ 75D and
−30D ≤ y ≤ 30D. The number of triangles changes withA and ranges from a minimum
of 6 × 104 to a maximum of 9 × 104, depending on the size of the computational domain.
We have successfully verified the discretisation choices by running additional simulations
forA = 3, 5, 7 on a larger domain and using a finer mesh (see Appendix A).

The global stability analysis of the flow averaged over one period (Barkley 2006; Sipp &
Lebedev 2007) and of the steady base flow is carried out by solving the eigenvalue problem
stemming from the Navier–Stokes equations linearised with respect to the mean/base flow.
The solution of this problem is obtained using the Arnoldi iterative algorithm implemented
in the ARPACK package (Lehoucq, Sorensen & Yang 1998). When only one eigenvalue is
required, a simple shift-invert method (Saad 2011) is used.

3. Results

3.1. Dependence of the Strouhal number on the aspect ratio
Figure 1 shows the computed dependence of the Strouhal number on the aspect ratioA
of the body, for both rectangular and D-shaped cylinders. For D-shaped cylinders, only
the TE shedding takes place, since there is no separation at the LE. As expected (Ryan,
Thompson & Hourigan 2005), the shedding frequency is nearly constant with only a small
decrease withA, associated with the slightly increasing thickness of the boundary layer
at the TE. Therefore, St increases almost linearly withA (red squares in figure 1) because
of the length L in its definition, starting from St ≈ 0.607 for A = 3 to St ≈ 1.685 for
A = 10. Similar values have been obtained for cylinders with elliptical LEs by Hourigan
et al. (2001), confirming that the flow unsteadiness is dictated by the TE only.

The picture changes for rectangular cylinders. The green diamonds in figure 1 show
that St is indeed nearly constant in some intervals ofA, and that a stepwise increase of
St takes place at the end of such intervals. This has already been reported in a number of
studies (e.g. Nakamura et al. 1991; Ozono et al. 1992; Tan et al. 1998; Mills et al. 2003); in
Appendix B the present results are compared with data from previously published works.
As expected, on the three horizontal branches we have St ≈ 0.55n, corresponding to the
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Figure 1. Dependence of the Strouhal number St on the aspect ratioA at Re = 400. Green diamonds and
red squares denote rectangular cylinders and D-shaped cylinders, respectively. The inset shows a zoom for
4.85 ≤A ≤ 5.75.

ILEV shedding modes for n = 1, 2 and 3. The three branches are observed in the intervals
3 ≤A ≤ 4.75, 6 ≤A ≤ 8.25 and 10 ≤A ≤ 11, respectively. WhenA < 3, the body
is too short for the shed vortex to reattach, and St grows linearly. Increasing A up to
the end of each shedding mode, the locking becomes weaker (Hourigan et al. 2001).
This is confirmed by the case at A = 8.25, where the simulation does not converge to
a perfectly periodic solution even after 900 time units; however, an inspection of the
frequency spectrum (not shown) reveals that the main frequency is associated with the
n = 2 ILEV shedding mode and it is approximately two orders of magnitude larger than
other localised peaks.

This is not the complete picture, however. Two further oblique branches are found
for 4.85 ≤A ≤ 6 and 8.5 ≤A ≤ 10. On the oblique branches St increases more than
linearly with A (see the inset in figure 1) and almost overlaps with the curve of the
D-shaped cylinders. Our interpretation of this result is presented later, but the main points
are anticipated here, for the convenience of the reader: for each shedding mode, the
preferred TE frequency (Hourigan et al. 2001) is permitted by the phasing of the LE vortex
shedding not only for a single value ofA, but for a range. At the lowestA of a certain
shedding mode, the phasing of the LE vortices allows the flow to select the preferred
frequency matching the TE vortex shedding. Thus, with increasingA, St increases, up to
the point where the preferred shedding frequency is no longer allowed, and the flow locks
to a nearby frequency corresponding to the passing frequency of the LE vortices over the
TE, with a weaker TE shedding. This causes St to remain constant until the preferred
frequency is again allowed, and the flow jumps to the next shedding mode.

We observe, in passing, that the two oblique curves associated with the D-shaped and
rectangular cylinders do not overlap perfectly. This is because for the rectangular cylinders
the LE vortices passing over the TE modify the boundary layer thickness at the TE
separation point, which has a role in the selection of the TE shedding frequency (Roshko
1954).

The oblique branches in figure 1 have not been observed to date. However, literature
data present a large scatter forA close to the jumps from a shedding mode to the next one
(see for example figure 4 of Tan et al. (1998), with data collected from several works, and
figure 17 in Appendix B). Moreover, several authors have found more than one frequency
at the A corresponding to the end of each shedding mode, similar to our results for
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A = 8.25. Nakamura et al. (1991) show two frequencies for A = 8 and A = 11.
Hourigan et al. (2001) find three frequencies in the base pressure forA = 11 (see their
figure 5): one corresponding to the n = 3 shedding mode, one to a frequency between
n = 2 and n = 3 and one originated by the nonlinear interaction of these two modes.
Ozono et al. (1992), using two-dimensional simulations, at Re = 1000 observe two modes
forA = 8, one corresponding to the n = 2 shedding mode and the other one between the
n = 2 and n = 3 modes. Several works have discussed the possible reasons for such scatter.
For example, Mills et al. (2003) mention that the higher blockage in experiments might
alter the convection velocity of the LE vortices and therefore their phasing, leading to a
change of theA at which the preferred frequency is permitted again. In the remainder of
this paper, we propose another possible reason for the observed scatter, namely a hysteresis
in the jump from one shedding mode to the next, which permits the existence of both
modes within a limited range ofA.

3.2. Flow configurations
The horizontal and oblique branches on the St–A diagram correspond to two different
flow configurations, which are now described. First, the number of shed vortices present
over the cylinder lateral side is studied as a function of A, by performing a global
stability analysis of the mean flow averaged over one shedding period; the focus is on the
leading eigenmode, which is representative of the unsteady phenomena of the flow. This
approach has been often used successfully (see for example Pier (2002) and Barkley (2006)
for cylinder flow, Gudmundsson & Colonius (2011) and Oberleithner, Rukes & Soria
(2014) for transitional and turbulent jets) and critical assessments provide the theoretical
conditions for the use of a stability analysis around the mean flow (Sipp & Lebedev 2007;
Turton, Tuckerman & Barkley 2015; Beneddine et al. 2016).

Figure 2 plots the mean flow, averaged over one shedding period, for a D-shaped cylinder
withA = 6 and for rectangular cylinders withA = 4, 5, 7. The plots are representative
of the first two horizontal branches and of the first oblique one in the St–A diagram. The
mean vorticity is antisymmetric with respect to the centreline, as expected. In all cases, two
shear layers with vorticity of opposite signs start from the front stagnation point. At this
low Re, the flow around the D-shaped cylinder remains attached up to the sharp TE, where
it separates to create a symmetric recirculation bubble in the wake. For the rectangular
cylinders, the flow separates at the sharp LE corners and subsequently reattaches over the
cylinder side, eventually separating again at the TE. This produces one additional area of
recirculation, near the lateral side of the cylinder. Table 1 reports the lengths of the two
recirculating regions for these four cylinders, whereas figure 3 shows their dependence on
A in the range of aspect ratios considered in this work.

Interestingly, for the rectangular cylinders the lengths �s and �w of the side and the wake
recirculation regions change with A in a way that depends on the flow configuration,
indicating that these configurations differ in terms of both LE and TE vortex shedding.
Specifically, �s increases almost linearly with A for the flow configuration associated
with the horizontal branches (see the blue, orange and yellow diamonds in figure 3a), with
a slope that decreases as n increases. In contrast, for the flow configuration associated
with the oblique branches, the change of �s is much smaller; it shows a non-monotonic
dependence on A, decreasing up to a minimum for A ≈ 5.5 and A ≈ 9 and then
increasing again (see the green and grey diamonds). In terms of �w, the D-shaped and
rectangular cylinders have a completely different dependence onA (see figure 3b). For
the D-shaped cylinders, �w increases monotonically with A and seemingly reaches an
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Figure 2. Streamlines and vorticity colour map of the mean flow averaged over one shedding period.
(a) D-shaped cylinder withA = 6. (b–d) Rectangular cylinders withA = 4, 5, 7.
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Figure 3. Dependence of the length (a) �s and (b) �w of the recirculation regions onA for D-shaped (red
squares) and rectangular (diamonds) cylinders. Blue, green, orange, grey and yellow colours refer to different
branches in the St–A diagram.

asymptotic value for large aspect ratios. For the rectangular cylinders, instead, �w increases
withA for the flow configuration corresponding to the horizontal branches, whereas it
decreases for the flow configuration corresponding to the oblique branches.

The frequency of the leading eigenmode f = ω/2π – where ω is the imaginary part
of the unstable eigenvalue – predicts well the Strouhal number observed in the nonlinear
simulations, as shown in table 1. However, unlike the case of the circular cylinder which is
marginally stable (Barkley 2006), the present mean flow yields σ > 0 and is thus linearly
unstable. According to Sipp & Lebedev (2007), this may be due to the strong resonance
occurring with the harmonics of the global mode, although it should be noted that their
analysis is meant for cases just above the bifurcation. Figure 4 characterises the leading
eigenmode for the four cylinders considered; figure 4(a,c,e,g) shows the real part of the
cross-stream velocity component of the leading eigenmode, whereas figure 4(b,d, f,h) plots
the structural sensitivity, as introduced by Giannetti & Luchini (2007).

The leading eigenmode of the D-shaped cylinder is visible only after the TE, and
highlights the classic vortex shedding. For the rectangular cylinders, the eigenmode
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A �w �s σ Stl Stnl

DC 6 1.098 — 0.003199 1.0947 1.0677
RC 4 0.669 3.483 0.047121 0.5404 0.5424
RC 5 0.866 4.277 0.009390 0.9471 0.9473
RC 7 0.547 5.003 0.030789 1.0882 1.0732

Table 1. Details of the global stability analysis around the mean flow for the D-shaped cylinder (DC) with
A = 6 and the rectangular cylinders (RC) with A = 4, 5, 7. Lengths �w and �s are the lengths of the
recirculating bubbles in the wake and over the side, respectively; σ is the real part of the unstable eigenvalue;
and Stl and Stnl are the Strouhal numbers obtained by the linear stability analysis and by the nonlinear
simulation.
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Figure 4. (a,c,e,g) Real part of the cross-stream velocity component of the unstable mode. (b,d, f,h) Colour
map of the structural sensitivity. (a,b) D-shaped cylinder withA = 6; (c–h) rectangular cylinders withA =
4, 5, 7.

is already observed over the lateral sides, indicating the presence of the LE vortices.
Depending on A, the number of vortices n changes: n = 1 for A = 4 and n = 2 for
A = 5, 7. The sensitivity identifies the region of the flow where structural modifications
of the stability problem produce the strongest drift of the leading eigenvalue: the so-called
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wavemaker region. The largest values of the sensitivity occur near the cylinders, as the
product of the adjoint and direct modes is small in the remaining part of the domain. For
the D-shape cylinder, as expected, non-zero values are seen only in the wake behind the
TE, with the maximum found over the streamline delimiting the mean recirculating region.
The core of the instability responsible for the TE vortex shedding is located downstream
from the TE. For the rectangular cylinders, instead, non-zero values are also observed
along the lateral sides, near the edge of the side recirculation. The largest sensitivities,
though, still occur in the wake. Therefore the wavemaker region for rectangular cylinders
extends up to the LE. This is in agreement with the picture of LE vortices interacting
with the TE vortices, and confirms the centrality of TE vortex shedding in the frequency
selection mechanism (Hourigan et al. 2001; Mills et al. 2002; Tan et al. 2004). Moreover,
the sensitivity over the cylinder side for A = 7 is less than that for A = 5. This is
consistent with the feedback instability-triggering mechanism becoming weaker whenA
approaches the end of the shedding mode.

3.3. Interaction between LE and TE shedding
We now move on to describe changes in the interaction between LE and TE vortices when
A is varied. To this aim, we first consider the D-shaped cylinder with A = 6, which
lacks LE shedding, and compare it with rectangular cylinders withA = 4 andA = 5,
which are representative of the horizontal and oblique branches, respectively, in the St–A
diagram.

3.3.1. The D-shaped cylinder withA = 6
Figure 5 plots the streamlines and vorticity ωz colour maps for six phases along one
half of the shedding period: t/T = 0, 0.08, 0.16, 0.24, 0.32 and 0.41 with the 0 phase
corresponding to C� = 0 and ∂C�/∂t > 0. The phases have been chosen to properly
highlight the dynamics of the TE vortex shedding. Only half a period is considered,
owing to the spatio-temporal symmetry of the flow. The stagnation points are marked
with symbols. Yellow diamonds are used for the elliptical stagnation points corresponding
to a local maximum or minimum of the stream function ψ , defined as ∇2ψ = −ωz; green
diamonds refer to hyperbolic stagnation points corresponding to saddle points of ψ .

At t/T = 0 (figure 5a), a vortex with positive (red) vorticity has just been shed in
the wake from the bottom side of the cylinder. A small recirculating region of negative
vorticity, instead, starts developing from the top TE corner, where vorticity accumulates
before being shed in the wake. Then at t/T = 0.08 the recirculating region widens,
and when it reaches a critical size extending over the complete base of the cylinder (at
t/T = 0.24) the new TE vortex is shed in the wake. The TE vortex is shed concurrently
with the appearance of a stagnation point in the hyperbolic region of the flow, a region
with ∂u/∂x∂v/∂y − ∂u/∂y∂v/∂x < 0, just after the lower TE corner; this is a necessary
condition for the occurrence of the vortex shedding (Boghosian & Cassel 2016).

3.3.2. The rectangular cylinder withA = 4
The rectangular cylinder with A = 4 is representative of cases where the preferred
TE shedding frequency is not permitted. Hence, the description of its flow features
is valid for all the A associated with the horizontal branches in the St–A diagram.
Six snapshots are plotted in figure 6, corresponding to the six temporal instants t/T =
0.4, 0.48, 0.56, 0.64, 0.72 and 0.8. They have been chosen to properly highlight the
shedding dynamics when the LE vortex reaches the TE corners (see figure 6a).
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Figure 5. Instantaneous flow around the D-shaped cylinder with A = 6, represented with streamlines and
vorticity colour maps. The periodic flow has period T = 5.6196. (a–f ) Six temporal instants at t/T =
0, 0.08, 0.16, 0.24, 0.32 and 0.40 are represented, respectively. Yellow diamonds indicate elliptical stagnation
points, whereas green diamonds indicate the hyperbolic stagnation points.
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Figure 6. As for figure 5, but for a rectangular cylinder withA = 4, for which T = 7.0662. (a–f ) The six
temporal instants are t/T = 0.4, 0.48, 0.56, 0.64, 0.72 and 0.8.

At t/T = 0.4, on the top cylinder side, a vortex with negative vorticity has just been
shed in the wake, and a LE vortex has been advected until the TE. At t/T = 0.48 this
vortex passes the TE and effectively merges with the previous TE vortex. Concurrently,
a recirculating region with positive vorticity starts developing from the bottom TE corner
at t/T = 0.56. As for the D-shaped cylinder, this recirculating region widens at t/T =
0.64, until it extends almost over the whole cylinder base. Finally, once the LE vortex
has completely passed the top TE corner at t/T = 0.72, a hyperbolic stagnation point is
generated just after the top TE corner, and the new TE vortex with positive vorticity is
shed in the wake.

Hence, in this flow configuration, a new TE vortex of positive (negative) vorticity from
the bottom (top) cylinder surface is shed concurrently with the passage of a LE vortex
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Figure 7. As for figure 5 but for a rectangular cylinder withA = 5, for which T = 5.0668. (a–f ) The six
temporal instants are t/T = 0, 0.08, 0.16, 0.24, 0.32 and 0.40.

of negative (positive) vorticity over the top (bottom) TE corner. Therefore, the TE vortex
shedding and the complete passage of a LE vortex over the same side TE corner take place
at opposite phases. This type of vortex interaction indicates that, in this flow configuration,
the (dimensional) shedding frequency fLE is selected by the frequency of the LE vortices
passing over the TE corner, i.e.

fLE = nUc

L
, (3.1)

as demonstrated by the fact that St does not depend on the cylinder length. Moreover, the
TE vortex shedding is out of phase with respect to the case of the D-shaped cylinder.

3.3.3. The rectangular cylinder withA = 5
The rectangular cylinder withA = 5 is representative of cases where the preferred TE
shedding frequency is permitted. Hence, the description of its flow features is valid for
all theA associated with the oblique branches in the St–A diagram. Six snapshots are
plotted in figure 7, corresponding to the same phases considered in § 3.3.1 when describing
the D-shaped cylinder. As in the case with A = 4, these phases have been chosen to
properly highlight how a LE vortex interacts with the TE vortex shedding when it reaches
the TE corner (see figure 7a).

At t/T = 0, a TE vortex with positive vorticity has just been shed from the bottom side
of the cylinder, and a LE vortex with negative vorticity is reaching the top TE corner. After
the LE vortex has reached the TE corner at t/T = 0.08, a recirculating region of negative
vorticity starts to develop from the top TE corner at t/T = 0.16, similar to that observed
for the D-shaped cylinder in the same phase. In the next phases, the LE vortex shrinks,
whereas the recirculating region widens, revealing that the former is amalgamated into
the latter. Then, when the TE recirculating region reaches its critical size at t/T = 0.32,
the newly generated TE vortex with negative vorticity is shed in the wake, simultaneously
with the occurrence of a hyperbolic stagnation point just after the bottom TE corner (see
figure 7e,e). Overall, the TE vortex shedding forA = 5 is very similar to the case of the
D-shaped cylinder. This observation further shows that, for this flow configuration, the
overall shedding process is dominated by the TE vortex shedding. Indeed, in this case the
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LE vortices do not alter the TE vortex shedding: when they reach the TE corner, they
simply merge with the newly developing recirculating region at the base of the cylinder
before the new TE vortex is shed. Therefore, the LE vortex reaches the TE in phase
with the formation of the new TE vortex. Note that this is similar to what Mills et al.
(2003) observed for A = 6 at slightly higher Re = 490 via particle image velocimetry
visualisations: indeed,A = 6 is still in the oblique branch.

A closing observation is that the phase at which the LE vortex reaches the TE corner
largely differs in the horizontal and oblique branches of the St–A diagram. Indeed, for
A = 4 this occurs when a TE vortex starts being generated from the TE corner on the
opposite side, whereas forA = 5 this occurs when the TE vortex starts being generated
from the TE corner on the same side.

3.4. On the origin of the LE vortex shedding
A global stability analysis is performed to investigate the origin of the vortex shedding
from the shear layer separating at the LE corners. The symmetric steady flow around
the rectangular cylinder with A = 5 at Re = 400 is considered, but the conclusions
drawn below are valid for the whole range of considered A. The steady base flow is
obtained by solving the two-dimensional version of the Navier–Stokes equations using the
Newton algorithm. Only the upper half of the domain used for the unsteady simulations is
considered here, and symmetry boundary conditions are imposed on the y = 0 axis, i.e.

∂U
∂y
(x, 0) = 0, V(x, 0) = 0. (3.2)

At this Reynolds number, the steady base flow, shown in figure 8(a), presents a large
recirculating region extending up to x = 35.2, delimited by a shear layer of negative
vorticity which separates at the LE corner. The Reynolds number considered in this
study is definitely above the onset of the primary instability, which consists of a Hopf
bifurcation leading to the periodic vortex shedding from the TE, and has been determined
by Chiarini, Quadrio & Auteri (2021) to be Rec,1 ≈ 100. However, this does not affect
the present analysis, as we are only interested in whether the shear layer separating from
the LE is absolutely unstable. Thus, we exclude from the global stability analysis the
interaction between this shear layer and the vortex shedding from the TE, by considering
the symmetric modes only. Additionally, the cross-talk between the pressure perturbation
due to a vortex passing the TE corner and the shear layer on the opposite side is also
excluded. Indeed, the goal is to ascertain whether or not the formation of the vortices on
the rectangle side results from a one-side global instability.

The outcome of the analysis is that no symmetric unstable modes are detected; at
least at this Reynolds number, the shear layer separating from the LE is not absolutely
unstable to one-side two-dimensional perturbations. The same result has been obtained by
repeating the same global stability analysis, but considering the mean flow averaged over
one shedding period.

An alternative approach to isolating the LE shear layer from the interaction with the TE
vortices is considering a semi-infinite flat plate with a sharp LE, i.e. a rectangular cylinder
of infinite length. Figure 8(b) shows the steady base flow at Re = 400. Again, a shear layer
of negative vorticity separates from the top LE corner and a recirculation region develops
over the lateral side of the plate, extending up to x ≈ 15.34, (as in Thompson 2012). In this
case the global stability analysis reveals that this base flow is absolutely unstable to neither
symmetric nor antisymmetric modes. This agrees with the observation by Chaurasia &
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Figure 8. Steady symmetric flow at Re = 400 for a rectangular cylinder withA = 5 (a) and a sharp LE
indefinite flat plate (b). Streamlines are shown superimposed on the vorticity contour map.

Thompson (2011) and Thompson (2012) that in this flow configuration the onset of the
shear layer flapping is due to a convective instability.

Therefore, this analysis shows that at the low-Re regime considered in the present work,
the onset of the vortex shedding from the shear layer separating at the LE corners is not due
to an absolute instability. Most probably, instead, the shear layer is convectively unstable –
as for the flat plate – and amplifies perturbations in a range of frequencies while they
are convected downstream. The difference between rectangular cylinders and flat plates
is that the perturbations amplified by the shear layer are generated by the pressure pulse
originated by the interaction of the LE vortices with the TE (Hourigan et al. 2001), creating
a self-sustained mechanism which is absent in the flow past a flat plate (Chaurasia &
Thompson 2011; Thompson 2012). We conclude that LE vortex shedding is not a one-sided
global instability.

3.5. Temporal evolution of LE vortices
The discussion above implies qualitative and quantitative differences in the temporal
evolution of the LE vortices, leading to a different evolution of both the elliptical and the
hyperbolic stagnation points (compare figures 6 and 7), and changes to the successive two-
and three-dimensional instabilities of the flow and to the transition to turbulence (Bayly,
Orszag & Herbert 1988). Figure 9 shows the temporal evolution of the streamwise position
of the elliptical stagnation points on the top side of the cylinder during one shedding
period, for several values of A. These points identify the centre of elliptically shaped
streamlines and approximately indicate the centre of rotation of the LE vortices. The figure
employs red squares to indicate LE vortices which are still attached to the shear layer,
whereas white squares indicate shed vortices; blue diamonds denote the distance between
two successive elliptic stagnation points when the associated LE vortices are both attached.
In these phases of the shedding the two attached LE vortices are separated by a hyperbolic
stagnation point, which disappears when the downstream one detaches after being shed
(see figures 6 and 7).
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Figure 9. Temporal evolution of the elliptical stagnation points on the top side of the cylinders during one
shedding period. The x position of the stagnation points is drawn with a square, red when they are attached and
white when they are shed. Blue diamonds denote the distance between two successive LE vortices when they
are both attached.

The configuration with one vortex on the cylinder side, i.e. n = 1, is considered first. It is
observed forA = 4 andA = 4.75, which are representative of the first horizontal branch.
As expected, in both cases the LE vortices show the same temporal evolution. At t/T = 0
an elliptical stagnation point is observed at x ≈ 1, indicating that a new LE vortex is being
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generated; this is visible in the bottom side of figure 6(b). After remaining approximately
at the same position for approximately 0.2T , the stagnation point moves downstream,
indicating that the LE vortex is widening. Approximately 1.2T after it has been generated,
the LE vortex is shed from the shear layer, and then it takes 0.35T for it to reach the TE;
see the bottom side of figure 6(c) and the top side of figure 6(b). Overall, in this flow
configuration, it takes approximately 1.55T for a LE vortex to reach the TE corner after
being generated and thus to be shed in the wake. Since the LE vortex needs more than one
period to grow up to the point where it can be shed from the shear layer, it closely interacts
with the LE vortex generated in the next period. This interaction is highlighted in figures 6
and 9 by the presence of a hyperbolic stagnation point that separates the two recirculating
regions before the older vortex is shed. For this flow configuration, the interaction between
two successive vortices lasts 0.2T , as shown by the blue diamonds in figure 9.

The next flow configuration considered, with n = 2, shows a change in the LE vortex
dynamics. We start with values ofA corresponding to points on the horizontal branch; see
for exampleA = 7 andA = 8 in figure 9(g,h). Even in this case, the temporal evolution
of the LE vortices does not change withA, as the flow is strongly locked and governed by
the LE vortex passage frequency. In this flow configuration, the LE vortex is first generated
at later phases compared with the above case, i.e. t/T ≈ 0.2; the time required for the
vortex to be shed and then to reach the TE corner increases to 1.5T and 0.9T , respectively.
Overall, the LE vortex needs 2.4T to reach and cross the TE corner. The duration of the
interaction between two successively generated vortices increases up to approximately one
half of the shedding period, as shown by the hyperbolic stagnation point which is detected
for 0.2 ≤ t/T ≤ 0.7.

The n = 2 configuration also includes aspect ratios where the flow belongs to the
oblique branch. Typical values are A = 5 and A = 5.5. For these values of A, the
LE vortices evolve differently, as the overall shedding process is governed by the TE
vortex shedding, which also depends onA. ForA = 4.8 the new LE vortex is generated
at t/T ≈ 0.3 and needs approximately two shedding periods to enter the wake region;
after 1.75T it is shed from the shear layer and then it takes 0.3T to reach the TE. This
increases the time window for the interaction of two consecutive LE vortices up to 0.75T .
However, when increasing the aspect ratio further to A = 6, the scenario changes and
slowly approaches that already observed for A = 7 and A = 8. The phase at which
the LE vortex is generated decreases, with a minimum forA = 5 at t/T ≈ 0.16, before
increasing again. The overall time required by the vortices to reach the TE corner increases,
and the hyperbolic stagnation point is present for only 0.5T .

3.6. Discussion
This section describes the kinematic reason why the preferred TE frequency is admissible
only for the rectangular cylinders withA on the oblique branches in the St–A diagram.
Figure 10 compares, for the range 2 ≤A ≤ 11, the actual shedding period T , as measured
by the numerical simulations, with the period TLE = L/(nUc) corresponding to the LE
vortex passage frequency in the lock-in regime and with the preferred TE shedding period
TTE. The mean convection velocity of the LE vortices is considered constant and equal to
Uc = 0.55U∞, as reported by many authors (e.g. Nakamura et al. 1991; Mills et al. 2002;
Tan et al. 2004).

Figure 10 shows the simple evidence that, at eachA, the flow selects the configuration
with the largest shedding period, i.e.

T = max (TLE, TTE) . (3.3)
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Figure 10. Dependence onA of the shedding period in the configuration where the preferred frequency
cannot be selected (TLE = L/nUc), the preferred TE period itself (TTE) and the actual period (T).
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Figure 11. Sketch of the interaction between the LE and TE vortices. (a) Flow configuration with TTE > TLE .
(b) Flow configuration with TTE < TLE . Here L− denotes LE vortices with negative vorticity; T− denotes TE
vortices with negative vorticity; T+ denotes TE vortices with positive vorticity.

Hence, the preferred shedding period TTE is admissible only when TTE > TLE. This is
easily understood considering the case atA = 5 described above. We have shown that, in
this flow configuration, the LE vortices merge with the recirculating region accumulated
in the cylinder base before the new TE vortex is shed in the wake. This is possible only
when the time TLE needed by a new LE vortex to reach the TE corner is less than the
undisturbed TE shedding period. In this case the passage of the LE vortex is in phase
with the generation of the new TE vortex, as sketched in figure 11(a). Moreover, the
difference TTE − TLE may be thought of as an estimate of the time needed by the LE
vortex to merge with the new TE vortex before shedding. Indeed, such time difference
decreases asA increases and becomes zero for the value ofAwhich separates the oblique
and horizontal branches. In contrast, in the opposite case when TTE < TLE, the preferred
shedding period TTE is not admissible as the merging between the LE and TE vortices
cannot take place, since the time needed for a new LE vortex to reach the TE corner is
longer than the TE shedding period. In this case, the two phenomena are out of phase,
and the flow configuration described forA = 4 is established; now the passage of the LE
vortex over the TE corner is in phase with the generation of a new TE vortex from the
opposite side of the cylinder. This is sketched in figure 11(b).

4. Hysteresis

The step change of the number n of vortices present over the side of the cylinder at a given
time is responsible for the discontinuous dependence of the Strouhal number onA. In the
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Figure 12. Evidence of hysteresis in the St–A curve. The green and yellow diamonds denote the n = 1
configuration before and after the Neimark–Sacker bifurcation (bif), respectively; red diamonds denote the
n = 2 configuration. Dashed lines delimit the range ofA for which both configurations are stable.

range of aspect ratios considered in this work, the jump from n = 1 to n = 2 is observed
for A ≥ 4.85 or immediately below it, whereas the next jump to n = 3 takes place for
A > 8.25. However, we report for the first time the existence of hysteresis: two stable flow
configurations coexist within a subrange ofA. As mentioned above, we believe this to be
one of the possible explanations for the scatter of the available experimental and numerical
data whenA is close to the jump values, and in particular for the multiple frequencies
observed by several authors in certainA ranges (Stokes & Welsh 1986; Nakamura et al.
1991; Ozono et al. 1992; Hourigan et al. 2001).

We discuss here the first jump from n = 1 to n = 2, but a similar picture applies also for
the jump from n = 2 to n = 3. Hysteresis is studied via an additional set of simulations,
where the aspect ratio is varied by small increments/decrements within the range of
interest, i.e. 4.5 ≤A ≤ 5.5. Simulations are thus carried out twice and sequentially; the
initial condition for each case is obtained by interpolating the velocity field from the
previous simulation on the current grid. The results of the two sets of simulations in
terms of St are plotted in figure 12. They reveal that two stable configurations exist in
the range 4.85 ≤A ≤ 5.3125: one corresponding to the n = 2 oblique branch and one to
the continuation of the n = 1 horizontal branch. In contrast, forA > 5.3125 (A < 4.85),
only the n = 2 (n = 1) configuration is stable: even with an initial condition corresponding
to the n = 1 (n = 2) shedding mode, the simulations converge to the periodic flow
configuration with frequency corresponding to the first oblique branch (first horizontal
branch).

Let us consider now the continuation of the n = 1 horizontal branch. For 4.85 ≤
A ≤ 5, the new simulations converge to a periodic solution with a single oscillation
frequency corresponding to the n = 1 shedding mode. For larger A, instead, the limit
cycle loses stability through a Neimark–Sacker bifurcation (Kuznetsov 2004); for such
A, an invariant torus bifurcates from the limit cycle. This bifurcation is visualised in
figure 12 by the yellow diamonds. For this range of A, the flow is no longer locked to
a single frequency, but vortices are shed from the LE with a non-dimensional frequency
StLE = 1/TLE (the central row of yellow diamonds) and from the TE with StTE = 1/TTE
(top row of yellow diamonds). However, different stable ( p, q) cycles on the bifurcated
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Figure 13. Lock-in phenomenon in the Neimark–Sacker bifurcation on the n = 1 horizontal branch.
Dependence of the Arnold tongue constants (a) p and (b) q on the aspect ratioA.

torus are observed, with p and q depending on A, corresponding to different Arnold
tongues (Kuznetsov 2004). This means that the two frequencies StLE and StTE lock,
originating long-period cycles with period Tlp = qTLE = pTTE (bottom row of yellow
diamonds in figure 12); such ( p, q) cycles can be visualised as periodic orbits on the
bifurcated torus that make q revolutions along the parallel and p revolutions along the
meridian. For differentA, the TE shedding frequency StTE slightly changes, and the flow
locks to different long-period ( p, q) cycles; see figure 13 where the values of p and q for
the different A are shown. Three different Arnold tongues are detected, with ( p, q) =
(9, 17) for A = 5.0625, ( p, q) = (8, 15) for 5.125 ≤A ≤ 5.1875 and ( p, q) = (7, 13)
for 5.25 ≤A ≤ 5.3125. With increasingA, the TE vortex shedding frequency decreases
and the flow locks to periodic orbits with lower p and q.

This is also visualised in figure 14 that plots the time history of the lift coefficient C� for
A = 4.85, 5.0626, 5.125, 5.25, for the n = 1 and n = 2 configurations. For A = 4.85
(figure 14a,b), C� is a periodic signal with a single oscillation frequency, and its period
is TLE for the n = 1 state and TTE for the n = 2 state. As A increases and the n = 1
state bifurcates, the corresponding C� signal highlights the three different Arnold tongues
(see figure 14c,e,g). The C� signal shows that the bifurcated state is dominated by the
intermediate frequency between those visualised in figure 12. Note that, with increasing
A, the number of local peaks of C� over one Tlp period – associated with the number
of LE vortices shed by the LE shear layer in the same period – decreases, consistently
with the decrease of p over the three detected Arnold tongues. A final comment regards
the n = 2 state, dominated by the TE vortex shedding. Besides the change in the flow
periodicity already discussed, the increase of A leads to a larger excursion of the C�
(see figure 14b,d, f ,h). Indeed, the peak of the lift coefficient C�,p increases withA from
C�,p ≈ 0.4 forA = 4.85 to C�,p ≈ 0.92 forA = 6.

Figure 15 compares two instantaneous snapshots forA = 5, corresponding to the n = 1
and n = 2 configurations. The first configuration closely recalls that observed forA = 4,
with the TE vortex on the top side starting to develop as a LE vortex passes the bottom TE
corner. In the configuration with n = 2, the spacing between the wake vortices is almost
halved; this confirms the nearly doubled shedding frequency of this solution.

Figure 16 shows the streamlines and the vorticity colour map for A = 5.25 in the
n = 1 bifurcated state. Six phases are considered within one of the seven LE shedding
periods contained in the period Tlp. This figure should be compared with figure 6 to
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Figure 14. Time history of the lift coefficients for 4.85 ≤A ≤ 5.25 in the different states. Aspect ratioA =
(a,b) 4.85, (c,d) 5.0625, (e, f ) 5.125 and (g,h) 5.25. (a,c,e,g) The n = 1 (bifurcated) state and (b,d, f,h) the
n = 2 state. The time history of C� is plotted over one Tlp period for the n = 1 bifurcated state and over one
TTE period for the other cases.
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Figure 15. Snapshots of the flow around the rectangular cylinder withA = 5, with the streamlines and

vorticity colour maps, for (a) n = 1 and (b) n = 2.

qualitatively appreciate the changes in the interaction of the LE and TE vortices for the
n = 1 configuration before and after the Neimark–Sacker bifurcation. Note that, for a
complete characterisation of the bifurcated state, one should consider the overall Tlp for
the three different Arnold tongues detected, but this is omitted here for conciseness. In the
selected LE shedding period, two TE vortices are shed by the top side of the cylinder, at
t/TLE = 0.27 (figure 16b) and t/TLE = 0.79 (figure 16f ). This agrees with the fact that,
after the bifurcation, LE and TE shedding are not locked, and shows that the TE vortices
are shed at a higher frequency that corresponds to the one for the D-shaped cylinder with
the same A (or for the same rectangular cylinder in the n = 2 configuration); see the
yellow diamonds at the top of figure 12. Moreover, during each LE shedding period, a pair
of TE and LE vortices, shed on the opposite sides of the cylinder, interact just downstream
of the TE to generate a pair of counter-rotating vortices before being eventually shed in the
wake. Clearly, the dynamics of such counter-rotating vortices changes over successive LE
shedding periods, as they interact at different phases of their shedding process.

Other studies of the flow past bluff bodies have shown that the blockage of the
computational domain may affect the hysteresis. For example, Prasanth & Mittal (2008)
studying the vortex-induced vibrations of a circular cylinder at low Reynolds numbers
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Figure 16. As for figure 5, but for a rectangular cylinder withA = 5.25, in the bifurcated state obtained in
the continuation of the n = 1 horizontal branch. (a–f ) The six temporal instants span one LE vortex shedding
period; they are t/TLE = 0.14, 0.27, 0.4, 0.53, 0.66 and 0.79.

observed hysteresis for a blockage ratio higher than 2.5 %, but detected an intermittent
switching between the two detected modes for smaller blockage. We have investigated
the effect of the blockage ratio on the present hysteresis phenomenon by performing
further simulations forA = 4.85 andA = 5.125, alternately decreasing the vertical size
of the computational domain to Ly = 20D and increasing it to Ly = 80D. Therefore a
total of three different values of the blockage ratio, i.e. 5 %, 2.5 % and 1.25 %, have been
considered. These simulations have shown that hysteresis does not depend significantly
on the blockage ratio, since the same scenario described above has been detected for both
A = 4.85 and A = 5.125. How the hysteretic range of A changes with blockage has
been investigated too. All the simulations for 4.75 ≤A ≤ 5.375 have been repeated using
the largest computational domain with Ly = 80, continuing both the n = 1 and the n = 2
branches. Again, no differences have been observed with respect to the results obtained
with the intermediate vertical size Ly = 40.

The existence of multiple stable solutions, when A is close to the jump from one
shedding mode to the next, may contribute to explain some apparently contradictory results
in the literature. For example, atA = 5, some works report the n = 1 configuration (e.g.
Hourigan et al. 2001), whereas others the n = 2 configuration (e.g. Stokes & Welsh 1986).
When A = 8 and Re = 1000, Ozono et al. (1992) numerically observed that the flow
pattern corresponds to the n = 2 shedding mode at the earlier stage of the simulation, but
approaches the n = 3 shedding mode once the simulation was further advanced (see their
figure 8 and figure 17 in Appendix B). Moreover, they found two frequencies in the time
history of the lift coefficient, one associated with the horizontal branch with n = 2 and one
that has a frequency between that of the horizontal branches with n = 2 and n = 3. Indeed,
this seems to indicate the existence of an n = 2 solution where the preferred frequency is
not permitted, accompanied by an n = 3 solution where, instead, it is permitted.

Finally, the existence of these multiple solutions for a certain range ofA may explain
the results of Tan et al. (2004). They numerically simulated the flow around rectangular
cylinders for 6 ≤A ≤ 16 at Re = 400 under transverse periodic forcing. They found that
the flow locks at a different range of forcing frequencies depending onA, and that the
maximum base suction occurs for a forcing frequency matching the ILEV instability
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frequency, i.e. fLE. However, for some A, they observed two local maxima of the base
suction for two different forcing frequencies, with the second one being between two
consecutive horizontal branches of the St–A diagram (see figure 5 of their paper). We
conjecture, again, that this happens because two stable configurations exist for thoseA
associated with two consecutive shedding modes.

5. Conclusions

The flow past elongated rectangular cylinders with aspect ratio A > 3 at moderate
Reynolds numbers features vortex shedding from both the LE and TE corners (Nakamura
et al. 1991). Because of the interaction between the ILEV instability and the TE vortex
shedding, shedding at LE and TE are interlocked, and the flow is periodic (Hourigan et al.
2001). Several works have provided evidence that this leads to a stepwise dependence of
the chord-based Strouhal number St onA; each step corresponds to a different shedding
mode, associated with a different number of vortices simultaneously present over the
cylinder side.

This work has described a refined interpretation of the flow dynamics, starting from
the discovery that the St–A diagram is stair-like and more complicated than previously
known. Indeed, in some ranges of A, the curve has a qualitatively different shape,
following an oblique branch instead of a horizontal one. Moreover, hysteresis has been
observed for the first time near step changes of St.

The study is based on an extensive numerical study, where the two-dimensional
incompressible Navier–Stokes equations are solved for the flow past rectangular cylinders
at Re = 400 with aspect ratio in the range 1 ≤A ≤ 11. Furthermore, a global stability
analysis of the mean flow averaged over one shedding period has been performed. The
eigenfrequencies of the leading eigenmodes have been found to predict very well the
Strouhal number for all the A considered. The visualisation of the spatial structure of
the eigenmode is effective for clearly identifying the number of vortices simultaneously
present over the cylinder side as A varies. The analysis of the structural sensitivity
confirms that the TE vortex shedding has a central role in the feedback loop which locks
the flow at everyA, and it also shows that the shear layers produced by the LE separation
are active in the instability.

We have been able to establish that, depending on the value of A, two distinct flow
configurations may take place, one of them corresponding to horizontal branches in the
St–A diagram, the other one to oblique branches. By way of a detailed study of the
velocity and vorticity fields of the two configurations, it is found that the interaction
between the LE and TE vortices changes on the two branches. The shedding frequency
on the oblique branch matches that of the flow past D-shaped cylinders with the sameA,
revealing that in this case the flow frequency is selected by the TE vortex shedding. In
this configuration, the LE vortex reaches the TE corner in phase with the development of
a new TE vortex on the same side. In contrast, on the horizontal branch, the TE shedding
frequency is not permitted by the relative phase of the LE vortices, which cross the TE
corners out of phase with the shedding of the same-side TE vortex, but induce the shedding
of the opposite-side TE vortex. Therefore, in this case, the flow frequency locks to the
frequency of the LE vortices passing over the TE corners. Overall, at eachA, the flow
selects the configuration where the shedding period is largest, confirming that the flow
frequency matches the natural TE shedding frequency only when this is permitted by the
vortex phasing.

Finally, we have brought to light a hysteresis in the flow near the jump from one shedding
mode to the next. For values of A close to the jump, the two flow configurations are
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Lx Ly

A = 3 A = 5 A = 7 A = 3 A = 5 A = 7

M0 75 75 100 40 40 60
M1 100 100 125 80 80 80
M2 75 75 100 40 40 60

Table 2. Domain size for the grids employed in the grid-independence study.

both stable, and can indeed be separately observed. This may explain, at least partially,
the scatter of several available literature data regarding the shedding frequency when
A is close to the jump, where sometimes more than one frequency is reported in the
velocity spectra (e.g. Tan et al. 1998). We have also shown that, by increasing A in
the continuation of the n = 1 horizontal branch, the periodic configuration loses stability
through a Neimark–Sacker bifurcation, leading to new stable configurations for which the
TE and LE vortex shedding are not locked to a single frequency. Different Arnold tongues
are observed, meaning that the TE and LE shedding processes lock to different long-period
configurations depending onA.

The (possibly simultaneous) existence of different configurations for the flow past
rectangular cylinders is relevant for both practical and theoretical reasons. Obviously,
different flow configurations and prevailing shedding modes lead to different time-varying
distributions of the mechanical loads over the cylinder, which need to be properly
accounted for in applications. But these results are also important to better understand
the physics of this flow and, in particular, the process that leads to the flow breakdown.
Indeed, the different interactions between the LE and TE vortices may lead to different
successive two-dimensional and three-dimensional instabilities, and to a different path
for the transition to turbulence. Work is underway to connect the present results to
three-dimensional instability, transition and turbulence.

Declaration of interests. The authors report no conflict of interest.
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Appendix A. Sensitivity of the results to domain size and resolution

In this appendix, the independence of the results from the domain size and grid resolution
is addressed. Six further simulations have been performed for A = 3, 5 and 7 at Re =
400, increasing the domain extent and grid resolution. In the M1 mesh, the size of the
domain has been increased in both the streamwise and cross-stream directions, while the
same grid resolution has been adopted. The cross-stream extent of the domain has been
increased from Ly = 40 to Ly = 80 for A = 3 and 5 and from Ly = 60 to Ly = 80 for
AR = 7, while the streamwise extent has been enlarged from Lx = 75 and Lx = 100 to
Lx = 100 and Lx = 125, forA = 3, 5 andA = 7, respectively. In the M2 mesh, the size
of the domain is the same as for M0, but a finer grid resolution is used. The number of
triangular elements is increased by approximately 60 %, mainly increasing the resolution
near the cylinder and in the wake region. The dimension of the domain used for the
different grids is reported in table 2.
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A = 3 A = 5 A = 7

Cd,m Cd,p C�,p T Cd,m Cd,p C�,p T Cd,m Cd,p C�,p T

M0 0.629 0.663 0.748 5.587 0.491 0.516 0.505 5.278 0.578 0.640 0.845 6.522
M1 0.626 0.657 0.743 5.628 0.488 0.512 0.496 5.304 0.580 0.635 0.854 6.542
M2 0.624 0.662 0.742 5.590 0.490 0.514 0.497 5.289 0.580 0.638 0.843 6.514

Table 3. Variation of the drag and lift coefficients (Cd and C�) and of the shedding period T forA = 3, 5 and
7 at Re = 400 on three different meshes. Mesh M0 indicates the mesh used for the computations in this work;
M1 indicates a mesh with larger cross-stream and streamwise dimensions with the same grid resolution; and
M2 indicates a mesh with the same domain size as M1 but with finer grid resolution. Subscript ‘m’ indicates
the mean value, while subscript ‘p’ indicates the peak value.
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Figure 17. Dependence of the Strouhal number St on the aspect ratioA. Comparison of the present results
with previously published results. Present numerical data are at Re = 400 (the n = 1 bifurcated state is not
reported for clarity). Experimental data from Nakamura et al. (1991) are at Re = 1000. Numerical data from
Ozono et al. (1992) are at Re = 1000. Numerical data from Tan et al. (1998) are at Re = 400. Experimental
data from Mills et al. (2003) are at Re = 490.

As reported in table 3, the simulations with a larger computational domain predict a
shedding period within 0.74 %, 0.49 % and 0.30 % of the values predicted with the smaller
domain for A = 3, 5 and 7, respectively. The mean and peak drag coefficients vary by
0.44 % and 0.97 % forA = 3, by 0.69 % and 0.72 % forA = 5 and by 0.27 % and 0.82 %
forA = 7. The peak lift coefficient, instead, varies by 0.68 %, 1.8 % and 1.08 % forA =
3, 5 and 7. The simulations with increased grid resolution, instead, predict a shedding
period within 0.06 %, 0.21 % and 0.13 % for the three values ofA, while the mean and
peak drag coefficients and the peak lift coefficient vary by 0.80 %, 0.24 % and 0.82 % for
A = 3, by 0.28 %, 0.34 % and 1.7 % forA = 5 and by 0.39 %, 0.42 % and 0.26 % for
A = 7.

Appendix B. Quantitative comparison with previous data

Figure 17 shows a quantitative comparison of the present data with those taken from
previously published works. Both numerical and experimental data are presented in the
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comparison, as well as different Reynolds numbers. For the present results, the n = 1
bifurcated state is not reported for clarity. All the considered works neatly detect the
stepwise increase of St with A, but for each state there is a scatter of the data roughly
of the order of ±10 %. The scatter is probably not only caused by the different Reynolds
numbers but also due to the difference in the set-up of both experiments and numerical
simulations. In any case, figure 17 shows that the results of the present work are well
within the range of the available data.
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