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MAHLER’S AND KOKSMA’S CLASSIFICATIONS IN FIELDS
OF POWER SERIES

JASON BELL and YANN BUGEAUD

Abstract. Let q a prime power and Fq the finite field of q elements. We study

the analogues of Mahler’s and Koksma’s classifications of complex numbers

for power series in Fq((T
−1)). Among other results, we establish that both

classifications coincide, thereby answering a question of Ooto.

§1. Introduction

Mahler [16], in 1932, and Koksma [15], in 1939, introduced two related measures for the

quality of approximation of a complex number ξ by algebraic numbers. For any integer

n≥ 1, we denote by wn(ξ) the supremum of the real numbers w for which

0< |P (ξ)|<H(P )−w

has infinitely many solutions in integer polynomials P (X) of degree at most n. Here, H(P )

stands for the näıve height of the polynomial P (X), that is, the maximum of the absolute

values of its coefficients. Furthermore, we set

w(ξ) = limsup
n→∞

wn(ξ)

n
,

and, according to Mahler [16], we say that ξ is

an A-number, if w(ξ) = 0;

an S-number, if 0<w(ξ)<∞;

a T -number, if w(ξ) =∞ and wn(ξ)<∞, for any integer n≥ 1;

a U -number, if w(ξ) =∞ and wn(ξ) =∞, for some integer n≥ 1.

The set of complex A-numbers is the set of complex algebraic numbers. In the sense of

the Lebesgue measure, almost all numbers are S -numbers. Liouville numbers (which, by

definition, are the real numbers ξ such that w1(ξ) is infinite) are examples of U -numbers,

while the existence of T -numbers remained an open problem during nearly 40 years, until

it was confirmed by Schmidt [22], [23].

Following Koksma [15], for any integer n≥ 1, we denote by w∗
n(ξ) the supremum of the

real numbers w∗ for which

0< |ξ−α|<H(α)−w∗−1

has infinitely many solutions in complex algebraic numbers α of degree at most n. Here,

H(α) stands for the näıve height of α, that is, the näıve height of its minimal defining

polynomial over the integers. Koksma [15] defined A∗-, S∗-, T ∗-, and U∗-numbers as above,
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using w∗
n in place of wn. Namely, setting

w∗(ξ) = limsup
n→∞

w∗
n(ξ)

n
,

we say that ξ is

an A∗-number, if w∗(ξ) = 0;

an S∗-number, if 0<w∗(ξ)<∞;

a T ∗-number, if w∗(ξ) =∞ and w∗
n(ξ)<∞, for any integer n≥ 1;

a U∗-number, if w∗(ξ) =∞ and w∗
n(ξ) =∞, for some integer n≥ 1.

Koksma proved that this classification of numbers is equivalent to the Mahler one, in the

sense that the classes A, S, T, U coincide with the classes A∗, S∗, T ∗, U∗, respectively. For

more information on the functions wn and w∗
n, the reader is directed to [5], [7].

Likewise, we can divide the sets of real numbers and p-adic numbers in classes A, S, T, U

and A∗, S∗, T ∗, U∗. However, there is a subtle difference with the case of complex numbers,

since the field R of real numbers and the field Qp of p-adic numbers are not algebraically

closed. This means that, in the definition of the exponent w∗
n(ξ) for a real (resp., p-adic)

number ξ, we have to decide whether the algebraic approximants α are to be taken in C

(resp., in an algebraic closure of Qp) or in R (resp., in Qp). Fortunately, in both cases, it

makes no difference, as shown in [4], [5]. For instance, it has been proved that, if there is α

of degree n in an algebraic closure of Qp satisfying |ξ−α|<H(α)−1−w∗
, then there exists α′

in Qp, algebraic of degree at most n, such that H(α′)≤ cH(α) and |ξ−α′| ≤ cH(α′)−1−w∗
,

where c depends only on ξ and on n.

The analogous question has not yet been clarified for Diophantine approximation in the

field Fq((T
−1)) of power series over the finite field Fq. Different authors have different

practices, some of them define w∗
n by restricting to algebraic elements in Fq((T

−1)), while

some others allow algebraic elements to lie in an algebraic closure of Fq((T
−1)). One of the

aims of the present paper is precisely to clarify this point.

Our framework is the following. Let p be a prime number and q = pf an integer power

of p. Any nonzero element ξ in Fq((T
−1)) can be written

ξ =
+∞∑
n=N

anT
−n,

where N is in Z, aN �= 0, and an is in Fq for n ≥ N . We define a valuation ν and an

absolute value | · | on Fq((T
−1)) by setting ν(ξ) =N , |ξ| := q−N , and ν(0) =+∞, |0| := 0. In

particular, if R(T ) is a nonzero polynomial in Fq[T ], then we have |R|= qdeg(R). The field

Fq((T
−1)) is the completion with respect to ν of the quotient field Fq(T ) of the polynomial

ring Fq[T ]. It is not algebraically closed. Following [26], we denote by C∞ the completion

of its algebraic closure. To describe precisely, the set of algebraic elements in C∞ is rather

complicated. Indeed, Abhyankar [1] pointed out that it contains the element

T−1/p+T−1/p2

+T−1/p3

+ · · · ,

which is a root of the polynomial TXp−TX−1. Kedlaya [13], [14] constructed an algebraic

closure of K((T−1)) for any field K of positive characteristic in terms of certain generalized

power series.

There should be no confusion between the variable T and the notion of T -number.
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The height H(P ) of a polynomial P (X) over Fq[T ] is the maximum of the absolute

values of its coefficients. A power series in C∞ is called algebraic if it is a root of a nonzero

polynomial with coefficients in Fq[T ]. Its height is then the height of its minimal defining

polynomial over Fq[T ]. We define the exponents of approximation wn and w∗
n as follows.

Definition 1.1. Let ξ be in Fq((T
−1)). Let n ≥ 1 be an integer. We denote by wn(ξ)

the supremum of the real numbers w for which

0< |P (ξ)|<H(P )−w

has infinitely many solutions in polynomials P (X) over Fq[T ] of degree at most n. We

denote by w∗
n(ξ) the supremum of the real numbers w∗ for which

0< |ξ−α|<H(α)−w∗−1

has infinitely many solutions in algebraic power series α in Fq((T
−1)) of degree at most n.

An important point in the definition of w∗
n is that we require that the approximants α

lie in Fq((T
−1)). In the existing literature, it is not always clearly specified whether the

algebraic approximants are taken in C∞ or in Fq((T
−1)). To take this into account, we

introduce the following exponents of approximation, where we use the superscript @ to

refer to the field C∞.

Definition 1.2. Let ξ be in Fq((T
−1)). Let n≥ 1 be an integer. We denote by w@

n (ξ)

the supremum of the real numbers w@ for which

0< |ξ−α|<H(α)−w@−1

has infinitely many solutions in algebraic power series α in C∞ of degree at most n.

Clearly, we have w@
n (ξ)≥ w∗

n(ξ) for every n≥ 1 and every ξ in Fq((T
−1)). The first aim

of this paper is to establish that the functions w∗
n and w@

n coincide.

Theorem 1.3. For any ξ in Fq((T
−1)) and any integer n≥ 1, we have

w∗
n(ξ) = w@

n (ξ).

Theorem 1.3 is not surprising, since it seems to be very unlikely that a power series

in Fq((T
−1)) could be better approximated by algebraic power series in C∞ \Fq((T

−1))

than by algebraic power series in Fq((T
−1)). Difficulties arise because of the existence of

polynomials over Fq[T ] which are not separable and of the lack of a Rolle lemma, which

is a key ingredient for the proof of the analogous result for the classifications of real and

p-adic numbers.

Exactly as Mahler and Koksma did, we divide the set of power series in Fq((T
−1)) in

classes A, S, T, U, A∗, S∗, T ∗, and U∗, by using the exponents of approximation wn and

w∗
n. It is convenient to keep the same terminology and to use S -numbers, and so forth,

although we are concerned with power series and not with numbers. This has been done by

Bundschuh [8], who gave some explicit examples of U -numbers. Ooto [19, p. 145] observed

that, by the currently known results (with w@
n used instead of w∗

n in the definitions of the

classes), the sets of A-numbers and of A∗-numbers coincide, as do the sets of U -numbers

and of U∗-numbers. Furthermore, an S -number is an S∗-number, while a T ∗-number is a

T -number. However, it is not known whether the sets of S -numbers (resp., T -numbers) and
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of S∗-numbers (resp., T ∗-numbers) coincide. The second aim of this paper is to establish

that these sets coincide, thereby answering [19, Problem 5.9].

Theorem 1.4. In the field Fq((T
−1)), the classes A, S, T, U coincide with the classes

A∗, S∗, T ∗, U∗, respectively.

In 2019, Ooto [21] proved the existence of T ∗-numbers and, consequently, that of

T -numbers. His proof is fundamentally different from that of the existence of real T -

numbers by Schmidt [22], [23], whose complicated construction rests on a result of Wirsing

[29] (alternatively, one can use a consequence of Schmidt’s subspace theorem) on the

approximation to real algebraic numbers by algebraic numbers of lower degree. In the power

series setting, no analogue of Schmidt’s subspace theorem, or even to Roth’s theorem, holds:

Liouville’s result is best possible, as was shown by Mahler [18].

Theorem 1.4 is an immediate consequence of the following statement.

Theorem 1.5. Let ξ be in Fq((T
−1)) and n be a positive integer. Then, we have

wn(ξ)−n+1≤ w∗
n(ξ)≤ wn(ξ).

Theorem 1.5 answers [19, Problem 5.8] and improves [19, Proposition 5.6], which asserts

that, for any positive integer n and any ξ in Fq((T
−1)), we have

wn(ξ)

pk
−n+

2

pk
−1≤ w@

n (ξ)≤ wn(ξ),

where k is the integer defined by pk ≤ n < pk+1.

Our next result is, in part, a metric statement. It provides a power series analogue to

classical statements already established in the real and in the p-adic settings. Throughout

this paper, almost all always refer to the Haar measure on Fq((T
−1)).

Theorem 1.6. For any positive integer n and any ξ in Fq((T
−1)) not algebraic of

degree ≤ n, the equality w∗
n(ξ) = n holds as soon as wn(ξ) = n. Almost all power series ξ in

Fq((T
−1)) satisfy w∗

n(ξ) = n for every n≥ 1.

The first assertion of Theorem 1.6 was stated without proof, and with w@
n in place of

w∗
n, at the end of [12]. It follows immediately from Theorem 1.5 combined with (2.1) below,

which implies that w∗
n(ξ) ≥ n holds as soon as we have wn(ξ) = n. By a metric result of

Sprindžuk [24], stating that almost all power series ξ in Fq((T
−1)) satisfy wn(ξ) = n for

every n≥ 1, this gives the second assertion.

Chen [10] established that, for any n ≥ 1 and any real number w ≥ n, the set of power

series ξ in Fq((T
−1)) such that wn(ξ) = w (resp., w@

n (ξ) = w) has Hausdorff dimension

(n+1)/(w+1). In view of Theorem 1.3, her result also holds for w∗
n in place of w@

n .

As observed by Ooto [19, Lemma 5.5], it follows quite easily from the theory of continued

fractions that w1(ξ) =w1(ξ
p) for every ξ in Fq((T

−1)). This invariance property extends to

the exponents wn.

Theorem 1.7. Let ξ be in Fq((T
−1)) and n be a positive integer. Then, we have

wn(ξ) = wn(ξ
p).

Theorem 1.7 is one of the assertions of Theorem 2.2.
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It follows from Liouville’s inequality (see, e.g., [19, Theorem 5.2]) that, for any n≥ 1 and

any algebraic power series ξ in Fq((T
−1)) of degree d, we have

w∗
n(ξ)≤ wn(ξ)≤ d−1.

Mahler’s example [18] of the root T−1+T−p+T−p2

+ · · · of Xp−X+T−1 shows that there

are algebraic power series ξ in Fp((T
−1)) of degree p with w1(ξ) = p−1. For further results

on Diophantine exponents of approximation of algebraic power series, the reader is directed

to [9], [11], [25], [27] and the references given therein.

The present paper is organized as follows. Further exponents of approximation are defined

in Section 2, and (in)equalities between them are stated. Auxiliary results are gathered in

Section 3, while the next two sections are devoted to proofs. Several open questions are

listed in Section 6.

Throughout this paper, the notation �, � means that there is an implicit, absolute,

positive constant.

§2. Uniform exponents and two inequalities between exponents

A difficulty occurring in the proof of the metric statement of Sprindžuk mentioned in the

previous section is caused by the fact that the polynomials which are very small at a given

power series could be inseparable. Or, said differently, by the possible existence of power

series ξ for which wn(ξ) exceeds w
sep
n (ξ), where wsep

n is defined exactly as wn, but with the

extra requirement that the polynomials P (X) have to be separable. The next result shows

that such power series do not exist. Before stating it, we define several exponents of uniform

approximation.

Definition 2.1. Let ξ be in Fq((T
−1)). Let n ≥ 1 be an integer. We denote by ŵn(ξ)

(resp., ŵsep
n (ξ)) the supremum of the real numbers ŵ for which there exists an integer H0

such that, for every H >H0, there exists a polynomial P (X) (resp., a separable polynomial

P (X)) over Fq[T ] of degree at most n and height at most H such that

0< |P (ξ)|<H−ŵ.

We denote by ŵ∗
n(ξ) the supremum of the real numbers ŵ∗ for which there exists an integer

H0 such that, for every H > H0, there exists an algebraic power series α in Fq((T
−1)) of

degree at most n and height at most H such that

0< |ξ−α|<H(α)−1H−ŵ∗
.

We denote by ŵ@
n (ξ) the supremum of the real numbers ŵ@ for which there exists an integer

H0 such that, for every H >H0, there exists an algebraic power series α in C∞ of degree

at most n and height at most H such that

0< |ξ−α|<H(α)−1H−ŵ@

.

For any power series ξ and any n≥ 1, we have clearly

ŵsep
n (ξ)≤ ŵn(ξ) and ŵ∗

n(ξ)≤ ŵ@
n (ξ).

The first of these is an equality.
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Theorem 2.2. Let ξ be in Fq((T
−1)) and n a positive integer. Then, we have

wn(ξ) = wsep
n (ξ), ŵn(ξ) = ŵsep

n (ξ),

and

wn(ξ) = wn(ξ
p), ŵn(ξ) = ŵn(ξ

p).

To prove Theorem 1.6, we establish the following inequalities.

Theorem 2.3. Let n≥ 1 be an integer. The lower bounds

w∗
n(ξ)≥ ŵ@

n (ξ)≥
wn(ξ)

wn(ξ)−n+1
(2.1)

and

w∗
n(ξ)≥

ŵn(ξ)

ŵn(ξ)−n+1

hold for any power series ξ which is not algebraic of degree ≤ n.

For completeness, we define two exponents of simultaneous approximation and establish

that they are invariant under the map ξ �→ ξp.

Below, the fractional part ‖ · ‖ is defined by

∥∥∥∥
+∞∑
n=N

anT
−n

∥∥∥∥=

∣∣∣∣
+∞∑
n=1

anT
−n

∣∣∣∣,

for every power series ξ =
∑+∞

n=N anT
−n in Fq((T

−1)).

Definition 2.4. Let ξ be in Fq((T
−1)). Let n ≥ 1 be an integer. We denote by λn(ξ)

the supremum of the real numbers λ for which

0<max{‖R(T )ξ‖, . . . ,‖R(T )ξn‖}< q−λdeg(R)

has infinitely many solutions in polynomials R(T ) in Fq[T ]. We denote by λ̂n(ξ) the

supremum of the real numbers λ̂ for which there exists an integer d0 such that, for every

d > d0, there exists a polynomial R(T ) in Fq[T ] of degree at most d such that

0<max{‖R(T )ξ‖, . . . ,‖R(T )ξn‖}< q−
̂λd.

Since Fq is a finite field, requiring infinitely many solutions in polynomials R(T ) in Fq[T ]

is equivalent to requiring solutions in polynomials R(T ) in Fq[T ] of arbitrarily large degree.

Proposition 2.5. Let ξ be in Fq((T
−1)) and n a positive integer. Then, we have

λn(ξ) = λn(ξ
p), λ̂n(ξ) = λ̂n(ξ

p).

§3. Auxiliary results

Lemma 3.1 (Krasner’s lemma). Let K be a complete, algebraically closed field equipped

with a non-archimedean absolute value | · |. Let α be an algebraic element of K of degree d

at least equal to 2 and separable. Let α= α1,α2, . . . ,αd be the conjugates of α. For any β in

K satisfying

|α−β|< |αj −β|, 2≤ j ≤ d,

we have K(β)⊂K(α).
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Proof. See, for example, [3, Section 3.4.2].

Lemma 3.2. Let P (X) be a polynomial in C∞[X] of degree n ≥ 1 and with leading

coefficient an. Let β1, . . . ,βn be its roots in C∞. Then, for any ρ > 0 and any ξ in C∞, we

have
n∏

i=1

max{|ξ−βi|,ρ}�� H(P )

|an|

and
n∏

i=1

min{|ξ−βi|,ρ}�� |P (ξ)|
H(P )

.

Proof. See [13].

Lemma 3.3. Let P (X) = cm(T )Xm+ · · ·+ c1(T )X+ c0(T ) be a polynomial in Fq[T ][X]

of positive degree. Let α1, . . . ,αm be its roots in C∞. Let ξ be in Fq((T
−1)). Then, for any

nonempty subset S of {1, . . . ,m}, we have

|cm(T )
∏
i∈S

(ξ−αi)| ≤ (max(1, |ξ|))mH(P ).

Proof. We may assume without loss of generality that α1, . . . ,αs are the zeros of P (X)

with |αi| ≥ 1 and that |αj |< 1 for j > s. Let S0 be the set of i in S with |αi|> |ξ|. Then,

|cm(T )
∏
i∈S

(ξ−αi)| ≤ |cm(T )|
∏
i∈S0

|αi||ξ||S|−|S0| ≤ (max(1, |ξ|))m|cm(T )α1 · · ·αs|.

Now, by construction, |α1 · · ·αs|> |αi1 · · ·αis | whenever i1 < i2 < · · ·< is and is �= s. Thus,

|cm(T )α1 · · ·αs|=
∣∣∣∣cm(T )

∑
i1<···<is

αi1 · · ·αis

∣∣∣∣= |cm−s(T )|,

and so the result follows.

§4. Proof of Theorem 2.2

We establish, in this order, that the exponents wn and wsep
n coincide, that wn and ŵn

are invariant under the map ξ �→ ξp, and, finally, that the exponents ŵn and ŵsep
n coincide.

A common key tool for the proofs given in this section is the notion of Cartier operator.

For a positive integer j, let Λ0, . . .Λpj−1 : Fq((T
−1))→ Fq((T

−1)) be the operators uniquely

defined by

G(T−1) =

pj−1∑
i=0

T iΛi(G(T−1))p
j

,

for G(T−1) in Fq((T
−1)). Observe that Λi(A+Bpj

C) = Λi(A) +BΛi(C) for A,B,C in

Fq((T
−1)). Note also that, for i= 0, . . . ,pj −1, we have

Λi(T
−pj+i) = T−1, Λi(T

pj+i) = T.

• Proof of the equality ŵn = ŵsep
n . The following lemma implies that the exponents wn

and wsep
n coincide. �
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Lemma 4.1. Let n be a positive integer and ξ in Fq((T
−1)). Let w ≥ 1 be a real number

and P (X) be in Fq[T ][X] inseparable, of degree n, and such that 0 < |P (ξ)| ≤ H(P )−w.

Then, there exists a separable polynomial Q(X) in Fq[T ][X] of degree at most n/p satisfying

|Q(ξ)|< |P (ξ)|1/n and 0< |Q(ξ)| ≤H(Q)−w.

Proof. We start with a polynomial P (X) in Fq[T ][X] of degree at most n with

0< |P (ξ)|=H(P )−w.

Write P (X) =
∑n

i=0Qi(T )X
i. Let d denote the greatest common divisor of all i such that

Qi is nonzero. Let j be the nonnegative integer such that pj divides d but pj+1 does not.

If j = 0, then P (X) is separable, so we have j ≥ 1. Thus, we may write

P (X) =
∑

i≤n/pj

Qpji(T )X
pji.

Then,

P (ξ) =
∑

i≤n/pj

Qpji(T )ξ
pji,

so, for 0≤ s < pj , we have

Λs(P (ξ)) =
∑

i≤n/pj

Λs(Qpji(T ))ξ
i.

Set n′ = �n/pj. Notice that

Gs(X) :=
∑
i≤n′

Λs(Qpji(T ))X
i

is of degree at most n′ and Gs(ξ) = Λs(P (ξ)). Thus,

P (ξ) =

pj−1∑
s=0

T sGs(ξ)
pj

.

Since the ν(T s) are pairwise distinct mod pj for s = 0, . . . ,pj − 1, we see that the

ν(T sGs(ξ)
pj

) are pairwise distinct as s ranges from 0 to pj −1. Let

v = min
0≤s≤pj−1

{−s+pjν(Gs(ξ))}.

Then, ν(Gi(ξ)) ≥ v/pj for i = 0, . . . ,pj − 1, and there exists one s such that ν(Gs(ξ)) =

v/pj +s/pj . For this particular s, we must have

0< |Gs(ξ)|= q−v/pj−s/pj ≤ q−v/pj

= |P (ξ)|1/pj

.

In addition, by construction, if B(T ) is a polynomial of degree �, then Λs(B) has degree at

most �/pj , and so H(Gs)≤H(P )1/p
j

. Thus,

0< |Gs(ξ)|= |P (ξ)|1/pj ≤H(P )−w/pj ≤H(Gs)
−w.

If Gs(X) is inseparable, then one repeats the argument to obtain a nonzero polynomial of

lesser degree small at ξ. After at most logpn steps, we will get a separable polynomial. This

proves the lemma.

https://doi.org/10.1017/nmj.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2021.5


MAHLER’S AND KOKSMA’S CLASSIFICATIONS IN FIELDS OF POWER SERIES 363

• Proof that wn is invariant under the map ξ �→ ξp. Let ξ and n be as in the theorem. Let

P (X) be a polynomial of degree at most n in Fq[T ][X], and define w by |P (ξ)|=H(P )−w.

Write

P (X) = an(T )X
n+ · · ·+a1(T )X+a0(T )

and

Q(X) = an(T
p)Xn+ · · ·+a1(T

p)X+a0(T
p).

Then, we have P (ξ)p =Q(ξp), H(Q) =H(P )p, and

|Q(ξp)|=H(P )−pw =H(Q)−w.

This shows that wn(ξ
p)≥ wn(ξ).

The reverse inequality is more difficult and rests on Lemma 4.1. Let P (X) be a polynomial

of degree at most n in Fq[T ][X], which does not vanish at ξp, and define w by |P (ξp)| =
H(P )−w. Write

P (X) = an(T )X
n+ · · ·+a1(T )X+a0(T )

and

Q(X) = an(T )X
pn+ · · ·+a1(T )X

p+a0(T ).

Then, we have P (ξp) = Q(ξ) and |Q(ξ)| = H(Q)−w. Obviously, the polynomial Q(X) is

not separable and of degree at most pn. It follows from Lemma 4.1 that there exists a

polynomial R(X), of degree at most n, such that |R(ξ)| ≤H(P )−w and

|R(ξ)| ≤H(R)−w.

Consequently, if, for some w, there are polynomials P (X) of degree at most n and with

arbitrarily large height such that |P (ξp)| ≤H(P )−w, then there are polynomials R(X) of

degree at most n and with arbitrarily large height such that |R(ξ)| ≤H(R)−w. This shows

that wn(ξ)≥ wn(ξ
p) and completes the proof of the theorem. �

In the next proofs, we make use of the following convention. Given a nonzero polynomial

P (X) = a0+a1X+ · · ·+amXm in Fq[T ][X] and i= 0, . . . ,p−1, we let Λi(P )(X) denote the

polynomial

m∑
j=0

Λi(aj)X
j .

• Proof that ŵn is invariant under the map ξ �→ ξp. Let ε > 0. By assumption, for any

sufficiently large H, there is some polynomial P (X) = a0+a1X+ · · ·+amXm of degree m

at most n and height at most H1/p such that

0< |P (ξ)|<H−ŵn(ξ)/p+ε/p.

Set Q(X) = ap0+ap1X+ · · ·+apmXm. Then, Q(X) has degree at most n and height at most

H, and, by construction, it satisfies

0< |Q(ξp)|<H−ŵn(ξ)+ε.
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It follows that ŵn(ξ
p)≥ ŵn(ξ)−ε for every ε > 0, and so we get the inequality

ŵn(ξ
p)≥ ŵn(ξ).

We now show the reverse inequality. By assumption, for any sufficiently large H, there

is some polynomial Q(X) = a0+a1X + · · ·+amXm of degree m at most n and height at

most Hp such that

0< |Q(ξp)|< (Hp)−ŵn(ξ
p)+ε.

Then, for each i in {0, . . . ,p−1}, we define

Qi(X) =
m∑
j=0

Λi(aj)X
j .

By construction, we have H(Qi) ≤ H for i = 0, . . . ,p− 1. In addition, we have Qi(ξ) =

Λi(Q)(ξ), for i = 0, . . . ,p− 1, and so Q(ξp) =
∑p−1

j=0 T
jQi(ξ)

p. Since the valuations are

distinct, we have

|Qi(ξ)|<H−ŵn(ξ
p)+ε,

for i=0, . . . ,p−1. Since Q(X) is nonzero, there is some k in {0, . . . ,p−1} such that Qk(ξ) �=
0, and we see

0< |Qk(ξ)|<H−ŵn(ξ
p)+ε.

It follows that ŵn(ξ)≥ ŵn(ξ
p), giving us the reverse inequality. �

The next lemma is used in the proof that the uniform exponents ŵn and ŵsep
n coincide.

We let logp denote the logarithm in base p.

Lemma 4.2. Let ξ ∈ Fq((T
−1)) and let P (X) = c0+ c1X + · · ·+ cnX

n ∈ Fq[T ][X] be a

nonconstant polynomial, that is, a product of irreducible inseparable polynomials such that

P (ξ) is nonzero. Then, there exist an integer r with 0≤ r≤ logp(n) and a polynomial P0(X)

such that the following hold:

(1) P0(X) has a nontrivial separable factor.

(2) prdeg(P0)≤ deg(P ).

(3) 0< |P0(ξ)|p
r

< qp
r−1|P (ξ)|.

(4) H(P0)
pr ≤H(P ).

Proof. Suppose that this is not the case. Then, there must be some smallest n for which

it is not true. Then, since P (X) is a product of irreducible inseparable polynomials, n= pm

for some m. Then, P (X) =Q(Xp) for some polynomial Q of degree m. Observe that

P (ξ) =

p−1∑
j=0

T j(Λj(Q)(ξ))p.

For j = 0, . . . ,p−1 such that Λj(Q)(ξ) is nonzero, write

Λj(Q)(ξ) = cjT
−aj + larger powers of T−1,

with cj �= 0. Then, we have

T j(Λj(Q)(ξ))p = cpjT
−paj+j +larger powers of T−1.
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Now, there must be some unique j0 such that paj0 − j0 is minimal among all paj − j (and

it must be finite), thus

|P (ξ)|= q−(paj0−j0).

Then, the polynomial A(X) := Λj0(Q) has the property that

|A(ξ)|= q−aj0 .

To summarize, we have:

(a) pdeg(A)≤ deg(P ).

(b) 0< |A(ξ)|p ≤ |P (ξ)|.
(c) H(A)p ≤H(P ).

By construction, deg(A) < n, and so, by minimality, there is some r ≤ logp(m) and a

polynomial Q(X) such that:

(d) prdeg(Q)≤ deg(A).

(e) 0< |Q(ξ)|pr ≤ |A(ξ)|.
(f) H(Q)p

r ≤H(A).

(g) Q has a nontrivial separable factor.

Then, by construction, pr+1deg Q ≤ deg(P ), 0 < |Q(ξ)|pr+1

< qp
r+1−1|P (ξ)|, and

H(Q)p
r+1 ≤H(P ). Furthermore, r+1 ≤ 1+ logp(m) ≤ logp(n), and so we get the desired

result.

• Proof of the equality ŵn = ŵsep
n . It is clear that ŵn(ξ) ≥ ŵsep

n (ξ). We now show the

reverse inequality. Let ε > 0. Then, there is some H0 such that, for every H >H0, there is

a polynomial P (X) of degree at most n and height at most H such that

0< |P (ξ)|<H−ŵn(ξ)+ε.

We take the infimum over all d≤ n for which there is some positive constant C such that,

for every H > H0, there is a polynomial A(X)B(X) with A(X) separable and B(X) a

polynomial of degree at most d, that is, a product of irreducible inseparable polynomials

with

0< |A(ξ)B(ξ)|<C ·H−ŵn(ξ)+ε.

Then, by assumption, d must be positive, and since the polynomial B(X) is a product of

inseparable irreducible polynomials, we see that p divides d.

Let H >H0. Then, there is a fixed constant C > 0 that does not depend on H such that

there are polynomials A(X) and B(X) with A separable and B a polynomial of degree at

most d, that is, a product of irreducible separable polynomials with

0< |A(ξ)B(ξ)|<C ·H−ŵn(ξ)+ε.

Then, by Lemma 4.2, there is some r ≤ logp(n) and a polynomial B0(X) with a nontrivial

separable factor such that deg(B) = prdeg(B0) and

0< |B0(ξ)| ≤ |B(ξ)|
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and H(Bpr

0 )<H(B). Thus, the polynomial

A(X)B0(X)p
r

has degree at most n and height at most H and

0< |A(ξ)B0(ξ)
pr |<Cqp

r−1H−ŵn(ξ)+ε.

By assumption, we can write B0(X) = C(X)D(X) with C(X) nonconstant and separable

and D(X) a product of irreducible inseparable polynomials. Then, we have

deg(D(X)p
r

)≤ deg(B)−pr < d.

But this contradicts the minimality of d, and so we see that d must be zero, and so we get

ŵsep
n (ξ)≥ ŵn(ξ)−ε. Since ε > 0 is arbitrary, we get the desired result. �

Proof of Proposition 2.5. Observe that, for j ≥ 1, the equality (R(T )ξj)p = R(T p)ξpj

immediately yields λn(ξ
p)≥ λn(ξ) and λ̂n(ξ

p)≥ λ̂n(ξ), for n≥ 1.

Take λ with 0 < λ < λn(ξ
p). Then, there is an infinite set S of polynomials R(T ) such

that

0<max{‖R(T )ξp‖, . . . ,‖R(T )ξpn‖}< q−λdeg(R).

By replacing S with a well-chosen infinite subset, we may assume that there is a fixed j in

{0,1, . . . ,p−1} such that the degree of every polynomial in S is congruent to j modulo p.

Then, for R(T ) in S and i in {1, . . . ,n}, we apply the j th Cartier operator Λj to R(T )ξpi,

and we have ‖Λj(R(T ))ξi‖< q−λdeg(R)/p. We let Q(T ) = Λj(R(T )). Then, the degree of Q

is (deg(R)− j)/p, and so we see

‖Q(T )ξi‖< q−λ(pdeg(Q)+j)/p ≤ q−λdeg(Q),

for i= 1, . . . ,n. Since the degrees of the elements of Λj(S) are arbitrarily large, we deduce

that λn(ξ)≥ λ. Consequently, we have established that λn(ξ)≥ λn(ξ
p).

Take λ̂ with 0 < λ̂ < λ̂n(ξ
p). For any sufficiently large integer d, there is a polynomial

R(T ) of degree at most pd such that

0<max{‖R(T )ξp‖, . . . ,‖R(T )ξpn‖}< q−
̂λpd.

Let j be in {0,1, . . . ,p−1} such that the degree of R(T ) is congruent to j modulo p. Apply

the j th Cartier operator to R(T )ξpi, and let Q(T ) = Λj(R(T )). Then, the degree of Q is at

most equal to d, and so we see

‖Q(T )ξi‖< q−
̂λpd/p ≤ q−

̂λd,

for i= 1, . . . ,n. This shows that λ̂n(ξ)≥ λ̂. Thus, we obtain λ̂n(ξ)≥ λ̂n(ξ
p).

§5. Proofs of Theorems 1.3, 1.5, 1.7, and 2.3

By adapting the proof of Wirsing [28] to the power series setting, Guntermann [13, Satz

1] established that, for every n ≥ 1 and every ξ in Fq((T
−1)) not algebraic of degree ≤ n,

we have

w@
n (ξ)≥

n+1

2
.

https://doi.org/10.1017/nmj.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2021.5


MAHLER’S AND KOKSMA’S CLASSIFICATIONS IN FIELDS OF POWER SERIES 367

Actually, it is easily seen that instead of starting her proof with polynomials given by

Mahler’s analogue [17], [24] of Minkowski’s theorem, she could have, like Wirsing, started

with polynomials P [X] satisfying

0< |P (ξ)|<H(P )−wn(ξ)+ε,

where ε is an arbitrarily small positive real number. By doing this, one gets the stronger

assertion

w@
n (ξ)≥

wn(ξ)+1

2
, (5.1)

which is crucial for proving Theorem 1.3. Note that Guntermann [13] did not obtain any

lower bound for w∗
n(ξ), except when n= 2.

Proof of Theorem 1.3. Set w = wn(ξ), w@ = w@
n (ξ), and w∗ = w∗

n(ξ). Suppose that

w@ > w∗ and pick ε in (0,1/3) such that w@ > w∗+2ε. Then, there are infinitely many α

in C∞ algebraic of degree at most n such that

|ξ−α|<H(α)−1−w@+ε.

Let Pα(X) denote the minimal polynomial of α over Fq[T ]. Then, H(Pα) =H(α). We let

α= α1, . . . ,αm denote the roots of Pα(X) (with multiplicities), where m= deg(Pα)≤ n. We

may assume that |ξ−α1| ≤ · · · ≤ |ξ−αm|. Let r be the largest integer such that

|ξ−α1|= · · ·= |ξ−αr|.

If r = 1 for infinitely many α as above, then Pα(X) is separable over Fq(T ), and we

conclude from Krasner’s Lemma 3.1 that α1 lies in Fq((T
−1)). For H(α) large enough, we

then get

H(α)−1−w∗
n−ε < |ξ−α|<H(α)−1−w@+ε,

thus w@ ≤ w∗+2ε, a contradiction.

Thus, we have r≥ 2. Observe that |Pα(ξ)|>H(α)−w−ε if H(Pα) is large enough. On the

other hand, with cα(T ) being the leading coefficient of Pα(X), we get

|Pα(ξ)|=
∣∣∣∣cα(T )(ξ−α1) · · ·(ξ−αr)

m∏
i=r+1

(ξ−αi)

∣∣∣∣

= |ξ−α|r ·
∣∣∣∣cα(T )

m∏
i=r+1

(ξ−αi)

∣∣∣∣
< (max{1, |ξ|})n ·H(α)1−r(1+w@−ε),

where the last step follows from Lemma 3.3.

By (5.1), we have w@ ≥ (w+1)/2, thus we get

H(α)−w−ε � |Pα(ξ)| �H(α)1−r(1+w@−ε) �H(α)1−r(1+(w+1)/2)+rε.

This then gives

w+ε≥−1+ r+
r(w+1)

2
− rε,
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and since r ≥ 2, we deduce

w+ε≥−1+w+1+ r− rε,

which is absurd. Since ε can be taken arbitrarily small, we deduce that w@
n (ξ)≤ w∗

n(ξ). As

the reverse inequality immediately follows from the definitions of w@
n and w∗

n, the proof is

complete.

We are ready to complete the proof of Theorem 1.5.

Proof of Theorem 1.5. Let ξ be in Fq((T
−1)) and n be a positive integer. The inequality

w∗
n(ξ)≤wn(ξ) is clear. Let ε be a positive real number. By Lemma 4.1, there exist separable

polynomials P (X) in Fq[T ][X] of arbitrarily large height such that

0< |P (ξ)|<H(P )−wn(ξ)+ε.

Then, the (classical) argument given at the beginning of the proof of [19, Lemma 5.4] yields

the existence of a root α of P (X) such that

0< |ξ−α| ≤ |P (ξ)|H(P )n−2.

Thus, we get the inequality

w@
n (ξ)≥ wn(ξ)−n+1,

and we conclude by applying Theorem 1.3 which asserts that w@
n (ξ) = w∗

n(ξ).

Proof of Theorem 2.3. We obtain (2.1) by taking Wirsing’s argumentation [28]. Let

n≥ 2 be an integer, and let ξ be a power series which is either transcendental, or algebraic

of degree > n. Let ε > 0, and set w = wn(ξ)(1+ ε)2. Let i1, . . . , in be distinct integers in

{0, . . . ,n} such that ν(ξ) �= ij for j = 1, . . . ,n. By Mahler’s analogue [17], [24] of Minkowski’s

theorem, there exist a constant c and, for any positive real number H, a nonzero polynomial

P (X) of degree at most n such that

|P (ξ)| ≤H−w, |P (T i1)|, . . . , |P (T in−1)| ≤H, and |P (T in)| ≤ cHw−n+1.

The definitions of wn(ξ) and w show that H(P )�H1+ε. It follows from Lemma 3.2 that

P (X) has some root in a small neighborhood of each of the points ξ, T i1 , . . . ,T in−1 . Denoting

by α the closest root to ξ, we get

|ξ−α| �� |P (ξ)|
H(P )

�H(P )−1 (Hw−n+1)−w/(w−n+1)

and

H(P )�Hw−n+1.

Since all of this holds for any sufficiently large H, we deduce that ŵ@
n (ξ) ≥ w/(w−n+1).

Selecting now ε arbitrarily close to 0, we obtain the first assertion.

Now, we establish the second assertion. Since ŵn(ξ) ≥ n, there is nothing to prove if

w∗
n(ξ) ≥ n. Otherwise, let A > 2 be a real number with w∗

n(ξ) < A−1 < n. Thus, we have

|ξ−α| ≥H(α)−A for all algebraic power series α of degree ≤ n and sufficiently large height.

We make use of an idea of Bernik and Tishchenko (see also [5, Section 3.4]). Let ε > 0 be

given. We may assume that |ξ| ≤ 1. Again, by Mahler’s analogue [17], [24] of Minkowski’s
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theorem, there exist a constant c and, for any positive real number H, a nonzero polynomial

P (X) = anX
n+ · · ·+a1X+a0 of degree at most n such that

|a1| ≤H1+ε, |a2|, . . . , |an| ≤H,and |P (ξ)| ≤ cH−n−ε.

If P (X) is a product of irreducible inseparable factors, then a1 = 0 and H(P )�H. Assume

now that P (X) has a separable factor. Let α in C∞ be the closest root of P (X) to ξ. If

|a1|>H, then we deduce from |nanξn−1+ · · ·+2a2ξ| ≤H that |P ′(ξ)|= |a1|�H(P ). Thus,

we get

|P (ξ)| ≥ |ξ−α| · |P ′(ξ)| �H(α)1−A

and

|P (ξ)| ≤H(P )−(n+ε)/(1+ε),

which also holds if a1 = 0. Consequently, if A−1≤ (n+ε)/(1+ε), that is, if

ε <
n+1−A

A−2
,

then we get a contradiction if H is large enough. We conclude that, for any ε < (n+1−
A)/(A− 2) and any sufficiently large H, there exists a polynomial P (X) of height ≤ H

and degree ≤ n satisfying |P (ξ)| ≤H−n−ε. Consequently, we have ŵn(ξ)≥ n+ ε, and thus

ŵn(ξ) ≥ n+ (n+1−A)/(A− 2). We obtain the desired inequality by letting A tend to

1+w∗
n(ξ).

§6. Further problems

Despite some effort, we did not succeed to solve the following problem.

Problem 6.1. Let n be a positive integer and ξ in Fq((T
−1)). Prove that

ŵ∗
n(ξ) = ŵ@

n (ξ) = ŵ∗
n(ξ

p), w∗
n(ξ) = w∗

n(ξ
p).

For n≥ 2, Ooto [19] proved the existence of ξ in Fq((T
−1)) for which w∗

n(ξ)<wn(ξ). His

strategy, inspired by [6], was to use continued fractions to construct power series ξ with

w∗
2(ξ) < w2(ξ) and w∗

2(ξ) sufficiently large to ensure that, for small (in terms of w∗
2(ξ))

values of n, we have

w∗
2(ξ) = w∗

3(ξ) = · · ·= w∗
n(ξ), w2(ξ) = w3(ξ) = · · ·= wn(ξ).

Very recently, Ayadi and Ooto [2] answered a question of Ooto [20, Problem 2.2] by proving,

for given n≥ 2 and q ≥ 4, the existence of algebraic power series ξ in Fq((T
−1)) for which

w∗
n(ξ)<wn(ξ).

Problem 6.2. Do there exist power series ξ in Fq((T
−1)) such that

w∗
n(ξ)<wn(ξ), for infinitely many n?

The formulation of the next problem is close to that of [20, Problem 2.4].

Problem 6.3. Let ξ be an algebraic power series in Fq((T
−1)) and n a positive integer.

Is w1(ξ) always rational? Are wn(ξ),w
∗
n(ξ), and λn(ξ) always algebraic numbers?

No results are known on uniform exponents of algebraic power series in Fq((T
−1)).
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Problem 6.4. Let ξ be an algebraic power series in Fq((T
−1)) and n a positive integer.

Do we have

ŵn(ξ) = ŵ∗
n(ξ) = n?

In the real case, there are many of relations between the six exponents wn, w
∗
n, λn, ŵn,

ŵ∗
n, λ̂n (see, e.g., the survey [7]). We believe that most of the proofs can be adapted to the

power series setting.
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irrationalité, SMF Journ. Annu. 2012, Soc. Math.France, Montrouge, 2012, 21–48.
[27] D. S. Thakur, Higher Diophantine approximation exponents and continued fraction symmetries for

function fields II, Proc. Amer. Math. Soc. 141 (2013), 2603–2608.
[28] E. Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math. 206

(1961), 67–77.
[29] E. Wirsing, “On approximations of algebraic numbers by algebraic numbers of bounded degree” in 1969

Number Theory Institute (Proceedings of Symposia in Pure Mathematics, Vol. 20, State University of
New York, Stony Brook, NY, 1969), Amer. Math. Soc., Providence, RI, 1971, 213–247.

Jason Bell

Department of Pure Mathematics

University of Waterloo

Waterloo, ON N2L 3G1

Canada
jpbell@uwaterloo.ca

Yann Bugeaud
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