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Abstract. For non-invertible dynamical systems, we investigate how ‘non-invertible’
a system is and how the ‘non-invertibility’ contributes to the entropy from different
viewpoints. For a continuous map on a compact metric space, we propose a notion of
pointwise metric preimage entropy for invariant measures. For systems with uniform
separation of preimages, we establish a variational principle between this version of
pointwise metric preimage entropy and pointwise topological entropies introduced by
Hurley [On topological entropy of maps. Ergod. Th. & Dynam. Sys. 15 (1995), 557–
568], which answers a question considered by Cheng and Newhouse [Pre-image entropy.
Ergod. Th. & Dynam. Sys. 25 (2005), 1091–1113]. Under the same condition, the notion
coincides with folding entropy introduced by Ruelle [Positivity of entropy production
in nonequilibrium statistical mechanics. J. Stat. Phys. 85(1–2) (1996), 1–23]. For a
C1-partially hyperbolic (non-invertible and non-degenerate) endomorphism on a closed
manifold, we introduce notions of stable topological and metric entropies, and establish a
variational principle relating them. For C2 systems, the stable metric entropy is expressed
in terms of folding entropy (namely, pointwise metric preimage entropy) and negative
Lyapunov exponents. Preimage entropy could be regarded as a special type of stable
entropy when each stable manifold consists of a single point. Moreover, we also consider
the upper semi-continuity for both of pointwise metric preimage entropy and stable entropy
and give a version of the Shannon–McMillan–Breiman theorem for them.
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1. Introduction
Unlike the invertible dynamical systems, entropies, including topological entropy and
measure-theoretic entropy, are more delicate for non-invertible dynamical systems. Let
(X, d) be a compact metric space, f a continuous map on X and µ an f -invariant
Borel probability measure. It is well known that when f is a homeomorphism we have
htop( f )= htop( f −1) and hµ( f )= hµ( f −1). These equalities tell us that the structures
of forward orbits and backward orbits have equal complexity from both topological and
measure-theoretic points of view. However, when f is non-invertible, things become
subtler and more complicated. Since the preimage of a given point is usually not single
and even uncountable, the structure of the ‘inverse orbits’ of f is more complex. In
recent years, to give quantitative estimates of how ‘non-invertible’ a system is, a number
of different entropy-like invariants, including ‘preimage entropy’ and ‘folding entropy’,
based on the preimage structure have been formulated and investigated.

Preimage entropies were introduced and studied in the 1990s by Langevin and Przytycki
[7], Hurley [6], and Nitecki and Przytycki [13], in various forms from the topological point
of view. Among these entropy-like invariants, there are two pointwise quantities,

hm( f ) := lim
ε→0

lim sup
n→∞

1
n

log sup
x∈X

s(n, ε, f −n x),

h p( f ) := sup
x∈X

lim
ε→0

lim sup
n→∞

1
n

log s(n, ε, f −n x), (1)

where s(n, ε, f −n x) is the largest cardinality of any (n, ε)-separated subset of f −n x .
Clearly, h p( f )≤ hm( f )≤ htop( f ). There are examples for which either of these
inequalities is strict, and there are also many cases when the three invariants agree (see
[1, 4, 14]). One can see that all these earlier works only considered the topological version
of preimage entropies. A natural question is: can one introduce the counterpart of hm( f ) or
h p( f ) from the measure-theoretic point of view, and obtain a variational principle relating
them as has been done for the classical entropy? In [2], Cheng and Newhouse considered
this topic and introduced another version of preimage entropies, hpre( f ) and hpre,µ( f ),
in which hpre( f ) is between hm( f ) and htop( f ), and obtained a variational principle.
However, it is still unknown whether there is a variational principle for hm( f ) or h p( f )
(see [2, p. 1093]). In this paper, we introduce a new version of pointwise metric preimage
entropy,

hm,µ( f ) := sup
α

lim sup
n→∞

1
n

Hµ(αn−1
0 | f −nB),

where the supremum is taken over all finite measurable partitions and B is the Borel
σ -algebra. Then we establish a variational principle relating hm,µ( f ) and hm( f )
(respectively, h p( f )) for f with uniform separation of preimages (Theorem B), which
gives a positive answer to the above question. Moreover, we obtain the upper semi-
continuity of hm,µ( f ) and give a version of the Shannon–McMillan–Breiman theorem
for it.

Folding entropy was introduced by Ruelle [17] for C1 maps to study the positivity of
entropy production in non-equilibrium statistical mechanics. Now let X = M be a closed
Riemannian manifold and f a differentiable self-map on M . The folding entropy of an
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f -invariant measure µ is defined as

Fµ( f ) := Hµ(ε| f −1ε),

where ε is the partition of M into points. Liu [11] established a type of Ruelle inequality
involving metric entropy, folding entropy and negative Lyapunov exponents for C1+α

maps with polynomial growth near degenerate points. Recently, Liao and Wang [10]
established the inequality for any C1+α maps. For non-degenerate C2 maps, Liu [12]
established the Pesin entropy formula; and then Shu [18] obtained a type of Ledrappier–
Young formula [8, 9] expressing metric entropy in terms of folding entropy, negative
Lyapunov exponents and transversal Hausdorff dimensions along a hierarchy of stable
manifolds. More precisely, assume that f is C2 and non-degenerate, and µ is an ergodic
measure with Lyapunov exponents λ1 < λ2 < · · ·< λs < 0≤ λs+1 < · · · . Then

hµ( f )= Hµ(ξ | f −1ξ)= Fµ( f )−
s∑

i=1

λiγi , (2)

where ξ is a decreasing measurable partition subordinate to the stable lamination W s of
f , and γi (1≤ i ≤ s) are the transversal Hausdorff dimensions of µ along a hierarchy of
stable laminations W i (1≤ i ≤ s). Formula (2) tells us that the ‘folding’ contributes to the
entropy.

Now there are two versions of measure-theoretic entropy-like invariants which describe
the ‘non-invertibility’ of a system: folding entropy Fµ( f ) and pointwise metric preimage
entropy hm,µ( f ). A natural question arises: is there a connection between them? In
this paper, we show that they coincide with each other for continuous maps with uniform
separation of preimages (Theorem A), particularly for non-degenerate C1 endomorphisms.

The pointwise preimage entropies hm( f ) and h p( f ) are the quantities which measure
the growth rate of the number of preimages of a single point, and they are automatically
zero for homeomorphisms. In [4], Fiebig, Fiebig and Nitecki introduced another quantity
which describes the dispersion of preimages of ‘local stable sets’, and this quantity may
be non-zero and even equal to the topological entropy for some homeomorphisms. To be
precise, let f be a continuous map on X , given ε > 0 and x ∈ X . Then the ε-stable set of
x under f is

S( f, x, ε)= {y ∈ X : d( f n x, f n y)≤ ε ∀n = 0, 1, 2, . . .}.

The quantity in [4] is supx∈M hs( f, x, ε) in which

hs( f, x, ε) := lim
δ→0

lim sup
n→∞

1
n

log s(n, δ, S( f, x, ε)).

It is shown in [4, Theorem 4.1] that supx∈M hs( f, x, ε)= htop( f ) for all ε > 0 whenever
X is a compact metric space of finite covering dimension. Via this quantity, Fiebig et al
showed that when f is forward expansive, h p( f )= hm( f )= htop( f ).

Returning to differentiable dynamical systems, let X = M be a closed Riemannian
manifold and f a C1 partially hyperbolic endomorphism. Since in this case stable
manifolds exist for any x ∈ M and they inherit the Riemannian structure from M , we can
replace ‘local stable sets’ by ‘local stable manifolds’ in the above quantity in [4]. Note that
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stable manifolds are contained (usually properly) in stable sets. In this paper, we propose
a notion of stable entropy for f , which is analogous to the notion of unstable entropy
introduced by Hu, Hua and Wu [5] for C1 partially hyperbolic diffeomorphisms. To be
precise, we define the stable metric entropy of f with respect to an invariant measure µ as

hs
µ( f ) := sup

α,η
lim sup

n→∞

1
n

Hµ(αn−1
0 | f −nη),

where α and η range over all finite partitions of M with small enough diameter and certain
measurable partitions subordinate to the W s-foliation, respectively. Actually, we will show
that hs

µ( f ) is independent of the choice of α and η and coincides with the partial entropy
along stable foliation hµ( f, ξ) studied by Shu [18] (Theorem C). Further, we obtain the
upper semi-continuity of hs

µ( f ) and give a version of the Shannon–McMillan–Breiman
theorem for it. We also define two types of stable topological entropy of f on M :

hs
p,top( f ) := lim

δ→0
sup
x∈M

lim
ε→0

lim sup
n→∞

1
n

log s(n, ε, f −nW s(x, δ))

and
hs

m,top( f ) := lim
δ→0

lim
ε→0

lim sup
n→∞

sup
x∈M

1
n

log s(n, ε, f −nW s(x, δ)),

where W s(x, δ) is the local stable manifold of x of radius δ. Then we establish a variational
principle relating stable metric entropy and stable topological entropy (Theorem D). In
fact, one can interpret preimage entropy as a special type of stable entropy in the scenario
that each stable manifold consists of a single point, that is, f has trivial stable directions
(but possibly large center directions). On the other hand, since topological entropy can be
expressed as the entropy along preimages of stable sets as discussed above, we can say
that the stable entropy lies between the preimage entropy and the topological entropy for
C1 partially hyperbolic endomorphisms.

Finally, combining the above properties about preimage entropy, folding entropy and
stable entropy, we can get more information on how ‘non-invertible’ a system is and how
the ‘non-invertibility’ contributes to the entropy, from different viewpoints. Moreover,
we can observe the relation among topological entropy htop( f ) and pointwise topological
preimage entropies hm( f ) and h p( f ) for a non-degenerate C2 endomorphism f . Indeed,
when all Lyapunov exponents of f are non-negative, h p( f )= hm( f )= htop( f ). By the
upper semi-continuity of hm,µ( f ), there exists an ergodic measure of maximal preimage
entropy. If such a measure has a negative Lyapunov exponent with positive transversal
dimension, then we can conclude h p( f )= hm( f ) < htop( f ) (Corollary D.1).

1.1. Statement of main results. We always assume that (X, d) is a compact metric
space, f is a continuous self-map on X and B is the Borel σ -algebra. Let M f (X) and
Me

f (X) respectively denote the set of all f -invariant and ergodic probability measures on
X . Let M(X) denote the set of all probability measures on X .

In [6], Hurley introduced two pointwise preimage entropies hm( f ) and h p( f ) as in (1)
to measure the non-invertibility of systems. It is clear that h p( f )≤ hm( f ). In [2], Cheng
and Newhouse defined the metric preimage entropy hpre,µ( f ) for an invariant measure
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µ ∈M f (X) by
hpre,µ( f )= sup

α
hpre,µ( f, α),

where α ranges over all finite partitions of X and

hpre,µ( f, α)= hµ( f, α|B−) := lim sup
n→∞

1
n

Hµ(αn−1
0 |B−),

in which αn−1
0 =

∨n−1
i=0 f −iα, Hµ(·|·) is the standard conditional entropy and B− is the

infinite past σ -algebra
⋂

n≥0 f −nB related to B. See §2.1 for more details on conditional
entropy. Cheng and Newhouse also define the topological preimage entropy as

hpre( f )= lim
ε→0

lim sup
n→∞

1
n

log sup
x∈X,k≥n

s(n, ε, f −k x).

Then a variational principle is obtained as follows [2, Theorem 2.5]:

hpre( f )= sup
µ∈M f (X)

hpre,µ( f ).

However, the variational principle for hm( f ) or h p( f ) is still unknown (see [2]). We
introduce a new notion of pointwise metric preimage entropy of an invariant measure as
follows.

Definition 1.1. The pointwise metric preimage entropy of f with respect to µ ∈M f (X)
and a measurable partition α of X is defined as

hm,µ( f, α) := lim sup
n→∞

1
n

Hµ(αn−1
0 | f −nB).

Then the pointwise metric preimage entropy of f with respect to µ is defined as

hm,µ( f ) := sup
α

hm,µ( f, α),

where α ranges over all finite partitions of X .

It is easy to see that hm,µ( f ) is an invariant of measure-theoretic conjugacy. That is, if
( f, X, B, µ) and (g, Y, B̃, ν) are measure-preserving transformations, and π : X→ Y is
a bimeasurable bijection (mod 0) such that gπ = π f , then hm,µ( f )= hm,ν(g).

Remark 1.2. As B− ⊂ f −nB for any n ∈ N, hm,µ( f, α)≤ hpre,µ( f, α) and hence
hm,µ( f )≤ hpre,µ( f ) for any µ ∈M f (X). It is interesting to know when they coincide.

For any µ ∈M(X), we always consider the µ-completion of B, which is also denoted
by B for simplicity. For two measurable partitions α and β of X , we write α ≤ β or β ≥ α
if β is a refinement of α. Let ε denote the partition of X into points. Then ε is a measurable
partition which generates B. In the following, we do not distinguish ε and B in the notation
of conditional entropy. The following concept of folding entropy was introduced by Ruelle
[17].

Definition 1.3. The folding entropy of f with respect to µ is defined as

Fµ( f ) := Hµ(ε| f −1ε)= Hµ(B| f −1B).

https://doi.org/10.1017/etds.2019.114 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.114


1222 W. Wu and Y. Zhu

Definition 1.4. f is said to have uniform separation of preimages if for some ε0 > 0,
d(x, y)≤ ε0 and f x = f y implies x = y. Then ε0 is said to be an exponent of separation
for f .

THEOREM A. For any continuous map f : X→ X, we have

hm,µ( f )≤ Fµ( f ).

If we assume further that f has uniform separation of preimages, then

hm,µ( f )= Fµ( f ).

COROLLARY A.1. If f : X→ X has uniform separation of preimages with exponent
ε0 > 0, then for any finite Borel partition α of X with diam(α) < ε0, we have

hm,µ( f, α)= hm,µ( f )= Fµ( f ).

THEOREM B. (Variational principle) Let f : X→ X be a continuous map. Then

hm( f )≥ sup
µ∈M f (X)

hm,µ( f ).

In particular, if f has uniform separation of preimages, then

h p( f )= hm( f )= sup
µ∈M f (X)

hm,µ( f ).

Moreover, M f (X) can be replaced by Me
f (X) in the above inequality/equality.

Remark 1.5. In [4], it is shown that h p( f )= hm( f ) if f is forward expansive. Theorem
B generalizes this result for f with uniform separation of preimages.

Remark 1.6. For f with uniform separation of preimages, we can show that the function
µ 7→ hm,µ( f ) is upper semi-continuous (Proposition 2.13). As a consequence, there exists
a measure ν of maximal preimage entropy, that is, hm,ν( f )= hm( f ). A version of the
Shannon–McMillan–Breiman theorem can also be established (Theorem 2.14).

We now consider a C1 endomorphism f : M→ M , where M is a C∞ closed
Riemannian manifold. In this paper, we focus on the case where f is non-degenerate,
that is, det Dx f 6= 0 for any x ∈ M . Then f has uniform separation of preimages (see
Lemma 2.6). To give the definition of partially hyperbolic endomorphisms, we recall the
inverse limit space as follows.

Let MZ be the infinite product space of M endowed with the product topology and
the metric d̃(x̃, ỹ)=

∑
∞

n=−∞ 2−|n|d(xn, yn) for x̃ = {xn}
∞
n=−∞ and ỹ = {yn}

∞
n=−∞. The

inverse limit space, denoted by M f , is a subspace of the product space MZ such that
f xn = xn+1, n ∈ Z, for any x̃ = {xn}

+∞

n=−∞ ∈ M f . It is clear that M f is a closed subset of
MZ. Let 5 : M f

→ M be the projection such that for x̃ = {xn}
+∞

n=−∞, 5(x̃)= x0. Let τ
be the left shift map on M f .

Consider the pullback bundle E =5∗T M . The tangent map D f on T M induces a
fiber-preserving map on E with respect to the left shift map τ , defined by 5∗ ◦ D f ◦5∗
and also denoted by D f .
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Definition 1.7. A non-degenerate C1 endomorphism f : M→ M is said to be partially
hyperbolic, if there exists a non-trivial continuous splitting E = E s

⊕ Ec
⊕ Eu of the

pullback bundle E into stable, center, and unstable distributions on M f such that:
(i) the splitting is D f -invariant, that is, Dx̃ f (Eσ (x̃))= Eσ (τ (x̃)) (σ = c, s, u) for any

x̃ ∈ M f ;
(ii) all unit vectors vσ ∈ Eσ (x̃) (σ = c, s, u) with x̃ ∈ M f satisfy

‖Dx̃ f vs
‖< ‖Dx̃ f vc

‖< ‖Dx̃ f vu
‖;

(iii) ‖Dx̃ f |Es (x̃)‖< 1 and ‖Dx̃ f |Eu(x̃)‖> 1 for any x̃ ∈ M f .

From (iii) in the definition, we know that the unstable distribution Eu may depend on
the past. However, this cannot happen for the stable distribution, that is, E s(x̃) depends
only on x0. Both stable and unstable distributions E s and Eu are uniquely integrable to the
stable and unstable foliations W̃ s and W̃ u , with T W̃ s

= E s and T W̃ u
= Eu , respectively

(see [15, p. 30]). W̃ s only depends on the future, and there exists a stable foliation W s on
M with W s

=5W̃ s . In contrast, generally there is no unstable foliation on M . We mainly
work on the stable foliation W s . Let ds be the metric induced by the Riemannian structure
on any stable manifold, and W s(x, δ) denote the open ball in W s(x) of radius δ > 0 with
respect to ds .

We study partial entropy caused by the stable direction for a C1 partially hyperbolic
endomorphism, which is a natural generalization of results by Ledrappier and Young [8, 9]
for the diffeomorphism case. We first recall the partial entropy following Liu [12] and Shu
[18]. The definition involves a type of deceasing partitions subordinate to stable manifolds,
which we describe as follows.

PROPOSITION 1.8. [18, Proposition 2.6] Given µ ∈M f (M), there exists a measurable
partition ξ of M which has the following properties:
(i) ξ is decreasing, that is, f −1ξ ≤ ξ ;
(ii)

∨
∞

n=0 τ
n(5−1ξ)= ε, where ε is the partition of M f into single points;

(iii) ξ is subordinate to the W s-foliation of f with respect to a measure µ, that is, for
µ-almost every x ∈ M, ξ(x) contains an open neighborhood of x in W s(x).

We denote by Qs
=Qs(µ) the set of all decreasing measurable partitions subordinate

to the W s-foliation as in Proposition 1.8. Define hµ( f, ξ) := Hµ(ξ | f −1ξ), which is
independent of the choice of ξ as long as ξ ∈Qs .

Assume that an ergodic measure µ has negative Lyapunov exponents λ1 < λ2 < · · ·<

λs < 0 in the stable direction. By Shu [18], if f is C2, then

hµ( f )= hµ( f, ξ)= Fµ( f )−
s∑

i=1

λiγi ,

where γi is the transversal Hausdorff dimension of µ on i th Pesin stable manifold W i (x)
(1≤ i ≤ s).

In the following, we construct a new type of measurable partition subordinate to the W s-
foliation. Fix ε0 > 0 small enough and let α be a finite partition of M with diam(α)� ε0.
Denote

η(x)= α(x) ∩W s(x, ε0), for all x ∈ M,
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where α(x) is the element of α containing x . Then η = {η(x) : x ∈ M} is a measurable
partition of M . By continuity of the W s-foliation, if µ(∂α)= 0, η is a measurable partition
subordinate to the W s-foliation, where ∂α =

⋃
A∈α ∂A and, for B ⊂ M , ∂B means the

boundary of B. Let P denote the set of all finite partitions with small enough diameter and
Ps denote the set of measurable partitions of M subordinate to the W s-foliation which are
induced by finite partitions in P .

Definition 1.9. The conditional entropy of f for a finite measurable partition α of M with
respect to η ∈ Ps is defined as

hµ( f, α|η)= lim sup
n→∞

1
n

Hµ(αn−1
0 | f −nη).

The conditional entropy of f with respect to η is defined as

hµ( f |η)= sup
α∈P

hµ( f, α|η),

and the stable metric entropy of f is defined as

hs
µ( f )= sup

η∈Ps
hµ( f |η).

THEOREM C. Let f be a C1 non-degenerate partially hyperbolic endomorphism and µ
an ergodic measure of f . Then for any ξ ∈Qs , η ∈ Ps and α ∈ P ,

hµ( f, ξ)= hµ( f, α|η).

We may interpret Theorem C as a generalization of Theorem A in the following sense.
If each stable manifold consists of a single point, hµ( f, ξ) can be regarded as the folding
entropy, while hµ( f, α|η) corresponds to the pointwise preimage entropy.

Two corollaries can be obtained directly as follows.

COROLLARY C.1. We have hs
µ( f )≤ hµ( f ). Moreover, if f is C2, then hµ( f )= hs

µ( f )−∑
λc

i<0 λ
c
i γ

c
i . In particular, if there is no negative Lyapunov exponent in the center

direction at µ-a.e. x ∈ M, then hs
µ( f )= hµ( f ).

COROLLARY C.2. Suppose that µ ∈Me
f (M) is ergodic. Then for any α ∈ P and η ∈ Ps ,

we have

hs
µ( f )= hµ( f, α|η)= lim

n→∞

1
n

Hµ(αn−1
0 | f −nη).

We now give the definition of stable topological entropy for endomorphisms. Let
W s(x, δ) be the open ball inside W s(x) centered at x of radius δ > 0 with respect to the
metric ds .

Definition 1.10. We define two types of stable topological entropy of f on M . The first is
defined as

hs
p,top( f ) := lim

δ→0
sup
x∈M

hs
top( f, W s(x, δ)),

where
hs

top( f, W s(x, δ)) := lim
ε→0

lim sup
n→∞

1
n

log s(n, ε, f −nW s(x, δ)).

The second is defined as

hs
m,top( f ) := lim

δ→0
lim
ε→0

lim sup
n→∞

sup
x∈M

1
n

log s(n, ε, f −nW s(x, δ)).
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THEOREM D. Let f : M→ M be a C1 non-degenerate partially hyperbolic
endomorphism. Then

hs
p,top( f )= hs

m,top( f )= sup{hs
µ( f ) : µ ∈M f (M)}.

Moreover,
hs

p,top( f )= hs
m,top( f )= sup{hs

ν( f ) : ν ∈Me
f (M)}.

COROLLARY D.1. Assume that f : M→ M is a C2 non-degenerate endomorphism.
(1) If all Lyapunov exponents of f are non-negative, then h p( f )= hm( f )= htop( f ).
(2) Suppose that for an ergodic measure of maximal preimage entropy there exists a

negative Lyapunov exponent with positive transversal dimension. Then h p( f )=
hm( f ) < htop( f ).

2. Pointwise preimage entropy
2.1. Preliminaries on conditional entropy. Recall that for a measurable partition P
of a measure space (X,A) and a finite Borel measure µ on X , the canonical system of
conditional measures for µ and P is a family of probability measures {µP

x : x ∈ X} with
µP

x (P(x))= 1 for µ-a.e. x , such that for every measurable set B ⊂ X , x 7→ µP
x (B) is

B(P)-measurable and

µ(B)=
∫

X
µP

x (B) dµ(x),

where B(P) is the sub-σ -algebra of elements of A which are unions of elements of P .
See, for example, [16] for reference.

THEOREM 2.1. (Rokhlin, cf. [16]) If P is a measurable partition, then there exists a
system of conditional measures relative to P . It is essentially unique in the sense that two
such systems coincide in a set of full µ-measure.

Assume that (X, d) is a compact metric space and f : X→ X is a continuous map. The
information function of a measurable partition α of X is defined as

Iµ(α)(x)=−log µ(α(x)).

The conditional information function of α with respect to a measurable partition η of X is
defined as

Iµ(α|η)(x)=−log µηx (α(x)).

Then the entropy Hµ(α) and the conditional entropy Hµ(α|η) are defined as

Hµ(α)=
∫

X
Iµ(α)(x) dµ(x) and Hµ(α|η)=

∫
X

Iµ(α|η)(x) dµ(x),

respectively.
The following facts about conditional entropy are important in our computation in the

sequel. For the proof, see [16] or [5]. Assume that f : X→ X is a homeomorphism in the
remainder of this subsection.

LEMMA 2.2. Let µ ∈M(X) and α, β, γ be measurable partitions of X with Hµ(α|γ ),
Hµ(β|γ ) <∞.
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(i) If α ≤ β, then Iµ(α|γ )(x)≤ Iµ(β|γ )(x) and Hµ(α|γ )≤ Hµ(β|γ ).
(ii) Iµ(α ∨ β|γ )(x)= Iµ(α|γ )(x)+ Iµ(β|α ∨ γ )(x) and Hµ(α ∨ β|γ )= Hµ(α|γ )+

Hµ(β|α ∨ γ ).
(iii) Hµ(α ∨ β|γ )≤ Hµ(α|γ )+ Hµ(β|γ ).
(iv) If β ≤ γ , then Hµ(α|β)≥ Hµ(α|γ ).

LEMMA 2.3. Let µ ∈M f (X), and α, β, γ be measurable partitions of X with Hµ(α|γ ),
Hµ(β|γ ) <∞. Then we have
(i) Iµ(βn−1

0 |γ )(x)= Iµ(β|γ )(x)+
∑n−1

i=1 Iµ(β| f i (β i−1
0 ∨ γ ))( f i (x)), hence

Hµ(βn−1
0 |γ )= Hµ(β|γ )+

n−1∑
i=1

Hµ(β| f i (β i−1
0 ∨ γ ));

(ii) Iµ(αn−1
0 |γ )(x)= Iµ(α| f n−1γ )( f n−1(x))+

∑n−2
i=0 Iµ(α|αn−1−i

1 ∨ f iγ )( f i (x)),
hence

Hµ(αn−1
0 |γ )= Hµ(α| f n−1γ )+

n−2∑
i=0

Hµ(α|αn−1−i
1 ∨ f iγ ).

LEMMA 2.4. Let α be a measurable partition of X and {ζn} be a sequence of increasing
measurable partitions of X with ζn ↗ ζ . If Hµ(α|ζ1) <∞, then for ϕn(x)= Iµ(α|ζn)(x),
ϕ∗ := supn ϕn ∈ L1(µ).

LEMMA 2.5. Let α be a finite Borel partition of X and {ζn} be a sequence of increasing
measurable partitions of X with ζn ↗ ζ . Then:
(i) limn→∞ Iµ(α|ζn)(x)= Iµ(α|ζ )(x) for µ-a.e. x ∈ X; and
(ii) limn→∞ Hµ(α|ζn)= Hµ(α|ζ ).

2.2. Connection to folding entropy. Recall that f : X→ X is said to have uniform
separation of preimages if for some ε0 > 0, d(x, y)≤ ε0, and f x = f y implies x = y.
Denote the cardinality of a set A by #A. The following lemma gives some examples and
basic properties of such systems, whose proof is immediate from the very definition and
omitted here.

LEMMA 2.6.
(1) Assume that f is forward expansive, namely, for some δ0 > 0, d( f n x, f n y)≤ δ0 for

any n ∈ N implies x = y. Then f has uniform separation of preimages.
(2) If f : M→ M is a C1 non-degenerate endomorphism, or, more generally, if f :

M→ M is a local homeomorphism, then f has uniform separation of preimages.
(3) If f has uniform separation of preimages with exponent ε0 > 0, then f −n x is (n, ε)-

separated for any x ∈ X, n ∈ N and 0< ε < ε0.
(4) If f has uniform separation of preimages, then x 7→ # f −n x is upper semi-

continuous, that is, if xi → x as i→∞, then

lim sup
i→∞

# f −n xi ≤ # f −n x .

The following lemma is crucial. Recall that ε is the partition of X into points.
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LEMMA 2.7. Assume that f : X→ X has uniform separation of preimages with exponent
ε0 > 0. Then for any finite Borel partition α of X with diam(α) < ε0, we have

αn−1
0 ∨ f −nε = ε

for any n ∈ N.

Proof. It is clear that αn−1
0 ∨ f −nε ≤ ε for any n ∈ N. It is sufficient to prove the other

direction.
Let y ∈ (αn−1

0 ∨ f −nε)(x). Then f i y ∈ α( f i x) for any 0≤ i ≤ n − 1. As diam(α)
< ε0, we know that d( f i y, f i x) < ε0 for any 0≤ i ≤ n − 1. On the other hand, y ∈
( f −nε)(x), that is, f n y = f n x . This, together with d( f n−1 y, f n−1x) < ε0, implies
f n−1 y = f n−1x , since f has the uniform separation of preimages. By induction, we have
y = x . Thus ε ≤ αn−1

0 ∨ f −nε, and the lemma follows. �

Proof of Theorem A. It is clear that ε > f −1ε > f −2ε > · · · . By invariance of µ, we
have

Hµ(ε| f −1ε)= Hµ( f −1ε| f −2ε)= Hµ( f −2ε| f −3ε)= · · · .

It follows that
Fµ( f )= Hµ(ε| f −1ε)=

1
n

Hµ(ε| f −nε).

Since αn−1
0 ≤ ε, we have

hm,µ( f, α)= lim sup
n→∞

1
n

Hµ(αn−1
0 | f −nε)≤ lim sup

n→∞

1
n

Hµ(ε| f −nε)= Fµ( f ).

So
hm,µ( f )= sup

α
hm,µ( f, α)≤ Fµ( f ).

Now assume that f has uniform separation of preimages with exponent ε0. Then for
any finite partition α with diam(α) < ε0, αn−1

0 ∨ f −nε = ε by Lemma 2.7. Hence

Hµ(αn−1
0 | f −nε)= Hµ(αn−1

0 ∨ f −nε| f −nε)= Hµ(ε| f −nε)= nFµ( f ).

Therefore
hm,µ( f, α)= lim sup

n→∞

1
n

Hµ(αn−1
0 | f −nε)= Fµ( f ). (3)

This completes the proof of Theorem A. �

Proof of Corollary A.1. The corollary follows from (3) in the proof of Theorem A. �

2.3. Basic properties. In this subsection we collect some properties of pointwise metric
preimage entropy. Some of these will be used in the proof of Theorem B.

2.3.1. Power rule and product rule.

LEMMA 2.8. Assume that f : X→ X has uniform separation of preimages with exponent
ε0 > 0, α is a finite partition of X with diam(α) < ε0, and µ ∈M f (X). Then an :=

Hµ(αn−1
0 | f −nB) is a subadditive sequence, that is, am+n ≤ am + an for any m, n ≥ 1.
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Proof. By Lemma 2.7, f −mαn−1
0 ∨ f −(m+n)B = f −mB for any m, n ≥ 1. Then we have

am+n = Hµ(αm+n−1
0 | f −(m+n)B)

= Hµ( f −mαn−1
0 | f −(m+n)B)+ Hµ(αm−1

0 | f −mαn−1
0 ∨ f −(m+n)B)

= Hµ(αn−1
0 | f −nB)+ Hµ(αm−1

0 | f −mB)
= an + am,

which proves the lemma. �

The following is a standard consequence of the subadditivity of an .

COROLLARY 2.9. Assume that f : X→ X has uniform separation of preimages with
exponent ε0 > 0, α is a finite partition of X with diam(α) < ε0, and µ ∈M f (X). Then

hm,µ( f, α)= lim
n→∞

1
n

Hµ(αn−1
0 | f −nB)= inf

n≥1

1
n

Hµ(αn−1
0 | f −nB).

PROPOSITION 2.10. (Power rule) Assume that f : X→ X has uniform separation of
preimages and µ ∈M f (X). Then

hm,µ( f l)= lhm,µ( f )

for any l ∈ N.

Proof. Let α be a finite partition of X with diam(α) < ε0, where ε0 is an exponent of
separation for f . Then

Hµ

(n−1∨
i=0

f −ilαl−1
0 | f

−nlB
)
= Hµ(αnl−1

0 | f −nlB).

Dividing by n and taking the limit n→∞, by Corollary 2.9 we get

hm,µ( f l , αl−1
0 )= lhm,µ( f, α).

By Corollary A.1, we have hm,µ( f l)= lhm,µ( f ). �

PROPOSITION 2.11. (Product rule) Let ( f, X, B, µ) and (g, Y, B̃, ν) be two measure-
preserving and continuous maps with uniform separation of preimages. Then

hm,µ×ν( f × g)= hm,µ( f )+ hm,ν(g).

Proof. Note that for any finite partitions α, γ of X and α̃, γ̃ of Y , we have

Hµ×ν(α × α̃|γ × γ̃ )= Hµ×ν((α × α̃) ∨ (γ × γ̃ ))− Hµ×ν(γ × γ̃ )

= Hµ(α|γ )+ Hν(α̃|γ̃ ).

Now choose two increasing sequences of finite Borel partitions γ1 ≤ γ2 ≤ · · · of X and
γ̃1 ≤ γ̃2 ≤ · · · of Y with diameters tending to zero for which B = B(

∨
∞

j=1 γ j ) and B̃ =
B(
∨
∞

j=1 γ̃ j ). Then we have, for any n ∈ N,

Hµ×ν((α × α̃)n−1
0 |( f × g)−n(γ j × γ̃ j ))= Hµ(αn−1

0 | f −nγ j )+ Hν(α̃n−1
0 |g−n γ̃ j ).
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By Lemma 2.5(ii), taking the limit as j→∞ gives

Hµ×ν((α × α̃)n−1
0 |( f × g)−n(B × B̃))= Hµ(αn−1

0 | f −nB)+ Hν(α̃n−1
0 |g−nB̃).

Dividing by n and taking the limit as n→∞, we have

hm,µ×ν( f × g, α × α̃)= hm,µ( f, α)+ hm,ν(g, α̃).

Since hm,µ×ν( f × g) can be computed as the supremum over product partitions α × α̃,
the product rule then follows. �

2.3.2. Affinity and upper semi-continuity. Recall that M f (X) and Me
f (X) denote the

set of all f -invariant and ergodic probability measures on X , respectively. Let M(X)
denote the set of all probability measures on X .

Any measurable partition γ generates a sub-σ -algebra B(γ ), that is, B(γ ) is the smallest
sub-σ -algebra that contains the elements in the partition γ . Clearly, if {γ j } is a sequence of
increasing measurable partitions, then {B(γ j )} is a sequence of increasing sub-σ -algebras.

PROPOSITION 2.12. (Affinity) For any finite partition α of X and n ∈ N, the map µ 7→
Hµ(α| f −nB) from M(X) to R+ ∪ {0} is concave. Furthermore, for any continuous map
f : X→ X, the map µ 7→ hm,µ( f ) from M f (X) to R+ ∪ {0} is affine.

Proof. Considerµ1, µ2 ∈M(X) and a convex combinationµ= a1µ1 + a2µ2, where 0≤
a1, a2 ≤ 1 and a1 + a2 = 1. Let α, γ be finite partitions of X . From the concavity of
s 7→ −s log s, we have

a1 Hµ1(α|γ )+ a2 Hµ2(α|γ )≤ Hµ(α|γ )≤ a1 Hµ1(α|γ )+ a2 Hµ2(α|γ )+ log 2. (4)

Choosing an increasing sequence of finite partitions γ1 ≤ γ2 ≤ · · · with diameters tending
to zero for which B = B(

∨
∞

j=1 γ j ), we have by Lemma 2.5(ii), for i = 1, 2,

Hµ(α| f −nB)= lim
j→∞

Hµ(α| f −nγ j ) and Hµi (α| f
−nB)= lim

j→∞
Hµi (α| f

−nγ j ). (5)

Combining (4) and (5), we have

a1 Hµ1(α| f
−nB)+ a2 Hµ2(α| f

−nB)≤ Hµ(α| f −nB)
≤ a1 Hµ1(α| f

−nB)+ a2 Hµ2(α| f
−nB)+ log 2.

This shows that the map µ 7→ Hµ(α| f −nB) from M(X) to R+ ∪ {0} is concave.
Replacing α by αn−1

0 , we get

a1 Hµ1(α
n−1
0 | f −nB)+ a2 Hµ2(α

n−1
0 | f −nB)≤ Hµ(αn−1

0 | f −nB)
≤ a1 Hµ1(α

n−1
0 | f −nB)+ a2 Hµ2(α

n−1
0 | f −nB)+ log 2.

Dividing by n and taking the limit, we have

hm,µ( f, α)= a1hm,µ1( f, α)+ a2hm,µ2( f, α).

Since the finite partition α is arbitrary, the second part of the proposition follows
immediately. �
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PROPOSITION 2.13. (Upper semi-continuity)
(a) Let µ ∈M(X). For any α ∈ P with µ(∂α)= 0 and any n ∈ N, the map µ 7→

Hµ(α| f −nB) from M(X) to R+ ∪ {0} is upper semi-continuous at µ, that is,

lim sup
ν→µ

Hν(α| f −nB)≤ Hµ(α| f −nB).

(b) Assume that f : X→ X has uniform separation of preimages and µ ∈M f (X). The
pointwise preimage entropy map µ 7→ hm,µ( f ) from M f (X) to R+ ∪ {0} is upper
semi-continuous at µ, that is,

lim sup
ν→µ

hm,ν( f )≤ hm,µ( f ).

Proof. (a) Let n ∈ N. Choose an increasing sequence of finite partitions γ1 ≤ γ2 ≤ · · ·

with diameters tending to zero for which B = B(
∨
∞

j=1 γ j ), and moreover, µ(∂γ j )= 0 for
each j . Since µ(∂α)= 0, for any ν ∈M(X), we have

lim
ν→µ

Hν(α| f −nγ j )= Hµ(α| f −nγ j )

for each j . By Lemma 2.5(ii), lim j→∞ Hν(α| f −nγ j )= Hν(α| f −nB). For any ε > 0,
there exists J ∈ N such that

Hµ(α| f −nγJ )≤ Hµ(α| f −nB)+ ε.

We have

lim sup
ν→µ

Hν(α| f −nB)≤ lim sup
ν→µ

Hν(α| f −nγJ )= Hµ(α| f −nγJ )≤ Hµ(α| f −nB)+ ε.

Since ε > 0 is arbitrary, we get the inequality.
(b) Let f have uniform separation of preimages with exponent ε0 > 0. By

Corollary A.1, for any ν ∈M f (X) and any finite Borel partition α of X with diam(α) < ε0

and µ(∂α)= 0, we have hm,ν( f, α)= hm,ν( f ). Then by Corollary 2.9,

hm,ν( f )= lim
n→∞

1
n

Hν(αn−1
0 | f −nB)= inf

n≥1

1
n

Hν(αn−1
0 | f −nB).

Let δ > 0 be arbitrary. We can take N ∈ N large enough such that

1
N

Hµ(αN−1
0 | f −NB)≤ hm,µ( f )+ δ.

Therefore, apply the conclusion in part (a) with n = N and α replaced by αN−1
0 to get

lim sup
ν→µ

hm,ν( f )= lim sup
ν→µ

hm,ν( f, α)

= lim sup
ν→µ

inf
n≥1

1
n

Hµ(αn−1
0 | f −nB)

≤ lim sup
ν→µ

1
N

Hν(αN−1
0 | f −NB)

≤
1
N

Hµ(αN−1
0 | f −NB)≤ hm,µ( f )+ δ.

Since δ > 0 is arbitrary, we get the result. �
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2.4. Shannon–McMillan–Breiman theorem.

THEOREM 2.14. (Shannon–McMillan–Breiman theorem) Assume that f : X→ X has
uniform separation of preimages with exponent ε0 > 0, µ ∈M f (X). Then

hm,µ( f )=
∫

X
lim

n→∞

1
n

Iµ(αn−1
0 | f −nB)(x)dµ(x),

for any finite partition α with diam(α) < ε0. Furthermore, for µ ∈Me
f (X),

hm,µ( f )= lim
n→∞

1
n

Iµ(αn−1
0 | f −nB)(x), µ-a.e. x,

for any finite partition α with diam(α) < ε0.

Proof. Let α be a finite partition of X with diam(α) < ε0. By Corollary A.1, hm,µ( f )=
hm,µ( f, α). Let ϕn−1 = Iµ(α|αn−1

1 ∨ f −nB) for n > 0, and ϕ0 = Iµ(α| f −1B). By
Lemma 2.7,

αn−1
1 ∨ f −nB = f −1(αn−2

0 ∨ f −(n−1)B)= f −1ε,

and hence ϕk = ϕ0 = Iµ(α| f −1B) for any 0< k ≤ n − 1. Note also that

Hµ(α| f −1B)= Hµ(α ∨ f −1B| f −1B)= Hµ(B| f −1B)= Fµ( f )= hm,µ( f )

by Theorem A. Thus∫
ϕ0 dµ=

∫
Iµ(α| f −1B) dµ= Hµ(α| f −1B)= hm,µ( f ).

Observe that

Iµ(αn−1
0 | f −nB)= Iµ(αn−1

1 | f −nB)+ Iµ(α|αn−1
1 ∨ f −nB)

= Iµ(αn−2
0 | f −n−1B) ◦ f + Iµ(α|αn−1

1 ∨ f −nB)

=

n−1∑
k=0

ϕn−k−1 ◦ f k
=

n−1∑
k=0

ϕ0 ◦ f k .

Therefore, the Birkhoff ergodic theorem yields the results. �

Remark 2.15. We do not know whether there is a Shannon–McMillan–Breiman theorem
without the ‘uniform separation of preimages’ condition.

2.5. Proof of Theorem B: the variational principle. In this section we will give a
variational principle for pointwise preimage entropies hm,µ( f ) and hm( f ). In the proof,
we use the standard and elegant strategy of [19], borrow some ideas from [2], and
essentially use the assumption of the uniform separation of preimages of the map. We
always assume that (X, d) is a compact metric space and f is a continuous map on X .
First, we restate and prove the first part of Theorem B.

PROPOSITION 2.16. Let f : X→ X be a continuous map. Then

hm,µ( f )≤ hm( f )

for all µ ∈M f (X).
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Proof. Let µ ∈M f (X). Let α = {A1, A2, . . . , As} be any finite partition of X and
choose ρ > 0 such that ρ < (1/(s log s)). Since µ is regular, there exist compact sets
B j ⊂ A j , 1≤ j ≤ s, with µ(A j \ B j ) < ρ. Put B0 = X \

⋃s
j=1 B j . Note that µ(B0) <

sρ. So, for the compact partition β = {B0, B1, . . . , Bs}, we have

Hµ(α|β)≤ µ(B0) log s < 1.

Therefore,

Hµ(αn−1
0 | f −nB)≤ Hµ(βn−1

0 | f −nB)+ Hµ(αn−1
0 |βn−1

0 ∨ f −nB)
= Hµ(βn−1

0 | f −nB)+ Hµ(αn−1
0 |βn−1

0 )

≤ Hµ(βn−1
0 | f −nB)+

n−1∑
i=0

Hµ◦ f −i (α|β)

< Hµ(βn−1
0 | f −nB)+ n.

Dividing by n and taking n→∞ gives

hm,µ( f, α)≤ hm,µ( f, β)+ 1.

Thus, using a standard technique, it suffices to prove, for any compact partition β, that

hm,µ( f, β)≤ hm( f )+ log 2. (6)

Indeed, once this is done, it follows that

hm,µ( f )≤ hm( f )+ log 2+ 1

for any f and µ ∈M f (X). It therefore holds for f q(q ∈ N). By [13, Theorem 5.1], there
is a power rule for hm( f ), that is, hm( f q)= qhm( f ), and hence by Proposition 2.10, we
have

qhm,µ( f )= hm,µ( f q)≤ hm( f q)+ log 2+ 1≤ qhm( f )+ log 2+ 1.

Dividing by q and taking q→∞ yields

hm,µ( f )≤ hm( f ).

For (6), it suffices to show that there is an ε > 0 such that for any n ∈ N,

Hµ(βn−1
0 | f −nB)≤ n log 2+ log sup

x∈X
s(n, ε, f −n x). (7)

In fact, following the arguments in step 1 of the proof of [2, Theorem 2.5] (see equation
(25) there), one can get (7) immediately. For completeness, we give an outline of the proof
as follows.

Let ε > 0 be such that any 4ε-ball meets at most two elements of β. Choose an
increasing sequence of finite partitions γ1 ≤ γ2 ≤ · · · with diameters tending to zero for
which B = B

(∨
∞

j=1 γ j

)
. Then by Lemma 2.5(ii),

Hµ(βn−1
0 | f −nB)= lim

j→∞
Hµ(βn−1

0 | f −nγ j ).
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So it suffices to show that for sufficiently large j ,

Hµ(βn−1
0 | f −nγ j )≤ n log 2+ log sup

x∈X
s(n, ε, f −n x). (8)

Using the fact that the decomposition { f −n x : x ∈ f n X} is upper semi-continuous and
arguing as in [2], we can choose j big enough such that for any C ∈ f −nγ j the inequality

#(βn−1
0 |C )≤ sup

x∈X
s(n, ε, f −n x) · 2n

holds, where βn−1
0 |C := {B ∩ C : B ∈ βn−1

0 }. Therefore (8) is satisfied. �

The following proposition is based on Theorem 2.14, which holds for maps with
uniform separation of preimages.

PROPOSITION 2.17. Let f : X→ X be a continuous map with uniform separation of
preimages. Then

hm,µ( f )≤ h p( f )

for all µ ∈M f (X).

Proof. We only need to prove the proposition for ergodic measure ν ∈Me
f (X). Indeed,

let µ=
∫
Me

f (X)
ν dθ(ν) be the unique ergodic decomposition where θ is a probability

measure on the Borel subsets of M f (X) and θ(Me
f (X))= 1. Since µ 7→ hm,µ( f ) is

affine and upper semi-continuous by Propositions 2.12 and 2.13, we have

hm,µ( f )=
∫
Me

f (X)
hm,ν( f ) dθ(ν) (9)

by a classical result in convex analysis (cf. [3, Fact A.2.10 on p. 356]).
Let µ ∈Me

f (X) and α = {A1, A2, . . . , As} be a finite measurable partition of X such
that diam(α) < ε0/100, µ(∂α)= 0 and s ≤ C(ε0) for some constant C(ε0) > 0. Let
ρ > 0 be arbitrarily small. Since µ(∂α)= 0, we can take ε > 0 small enough such that
µ(Uε(∂α)) < ρ/(100s), where Uε(∂α) := {y ∈ X : d(y, ∂α) < ε} is the ε-neighborhood
of ∂α. Then there exist compact sets K j ⊂ A j , 1≤ j ≤ s, such that µ(A j \ K j ) < ρ/s
and K j ∩Uε(∂A j )= ∅. Put K0 = X \

⋃s
j=1 K j . Note that µ(K0) < ρ. Then we obtain a

compact partition β = {K0, K1, . . . , Ks} of X . By shrinking ε if necessary, we can ensure
that d(Ki , K j ) > 4ε for any 1≤ i, j ≤ s, i 6= j . Finally, define γ = α ∨ β.

Denote h = hm,µ( f ). Let B be the set of all x ∈ X satisfying
(1) h = limn→∞ (1/n)Iµ(αn−1

0 | f −nB)(x);
(2) limn→∞ (1/n)

∑n−1
i=0 χK0( f i x)= µ(K0) < ρ;

(3) µ
f −nB
x (B)= 1.

By Theorem 2.14, the Birkhoff ergodic theorem and Rokhlin disintegration, µ(B)= 1.
Let BN ⊂ B be a set such that for any x ∈ BN and n ≥ N ,

µ
f −nB
x (αn−1

0 (x))≤ exp(−n(h − ρ)) (10)
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and
n−1∑
i=0

χK0( f i x) < nρ. (11)

Then B =
⋃
∞

N=1 BN . Choose N large enough such that µ(BN ) > 1− ρ.

Since µ(BN )=
∫

X µ
f −nB
x (BN ) dµ(x), one can find x ∈ BN such that µ f −nB

x (BN ) >

1− ρ. Consider a maximal (n, ε)-separated set S of BN ∩ f −nz where z = f n x ; then
#S ≤ s(n, ε, f −nz). For every zk ∈ S ⊂ BN , the Bowen ball B(zk, n, ε) intersects at most
(1+ C(ε0))

nρ
· 2n elements of γ n−1

0 , by (11) and the construction of γ . Thus

1− ρ <µ f −nB
x (BN )≤ µ

f −nB
x

(⋃
zk∈S

B(zk, n, ε)
)

≤ (1+ C(ε0))
nρ
· 2n
· s(n, ε, f −nz) · exp(−n(h − ρ))

where in the last equality we used (10) and the fact γ n−1
0 (y)⊂ αn−1

0 (y), y ∈ BN ∩ f −nz.
It follows that h − ρ ≤ ρ log(1+ C(ε0))+ log 2+ h p( f ). Letting ρ→ 0, we have

h ≤ log 2+ h p( f ). (12)

Since f can be replaced by f q , q ∈ N, in (12), the proposition follows immediately from
standard arguments as before. �

Proof of Theorem B. We now prove the second part of the theorem. Assume that f : X
→ X has uniform separation of preimages with exponent ε0 > 0. By Proposition 2.16, it
is enough to show that

sup
µ∈M f (X)

hm,µ( f )≥ hm( f ).

Given 0< ε < ε0, we will find an f -invariant measure µ such that

hm,µ( f )≥ hm( f, ε), (13)

where hm( f, ε) := lim supn→∞ (1/n) log supx∈X s(n, ε, f −n x).
For each positive integer n, choose xn ∈ X and an (n, ε)-separated set En in f −n xn

such that #En = s(n, ε, f −n xn) and there exists a subsequence nk→∞ satisfying

hm( f, ε)= lim
k→∞

1
nk

log #Enk .

Now define probability measures νn on X as

νn :=
1

#En

∑
x∈En

δx ,

where δx is the point mass at the point x . Let

µn :=
1
n

n−1∑
l=0

f l
∗νn .

Then there exists a subsequence of {nk}, which is also denoted by {nk} for notational
convenience, such that limk→∞ µnk = µ. Clearly µ ∈M f (X).
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Next, choose a partition α of X with diam(α) < ε and such that µ(∂A)= 0 for every
A ∈ α. In the following, we will show that, for every positive integer q ,

hm,µ( f, αq−1
0 )≥ q lim

k→∞

1
nk

log #Enk . (14)

Indeed, dividing by q and taking q→∞ yields (13).

CLAIM. For the above α and q, we have

1
n

n−1∑
l=0

Hνn◦ f −l (α
q−1
0 | f −qB)≤ Hµn (α

q−1
0 | f −qB) (15)

and

lim sup
k→∞

Hµnk
(α

q−1
0 | f −qB)≤ Hµ(α

q−1
0 | f −qB). (16)

Proof of (14), assuming the claim. Note that νn is supported on f −n xn ; the canonical
system of conditional measures induced by νn with respect to f −nB reduces to a single
measure on the set f −n xn , which we may identify with νn . Hence for any finite partition
γ , we have

Hνn (γ | f
−nB)= Hνn (γ | f −n xn ).

Since each element of αn−1
0 has at most one point of En , we have

Hνn (α
n−1
0 | f −n xn )= log #En = log s(n, ε, f −n xn).

Consider positive integers q, n with n > q and let a( j) denote the integer part of
(n − j)/q for 0≤ j ≤ q − 1. Then clearly,

αn−1
0 =

a( j)−1∨
r=0

f −(rq+ j)α
q−1
0 ∨

∨
t∈S j

f −tα,

where S j = {0, 1, . . . , j − 1} ∪ { j + qa( j), . . . , n − 1}. Then #S j ≤ 2q . We also
denote

ρ( j) := n − j − qa( j).

For any 0≤ r ≤ a( j)− 2,

f −n+ j+rqB ∨ αn− j−rq−1
q = f −q( f −n+ j+rq+qB ∨ αn− j−rq−q−1

0 )= f −qB

by Lemma 2.7. Then we have

Hνn

(
f −( j+rq)α

q−1
0 | f −nB ∨ αn−1

n−ρ( j) ∨

a( j)−1∨
s=r+1

f −( j+sq)α
q−1
0

)

= H f j+rq
∗ νn

(
α

q−1
0 | f −n+ j+rqB ∨ αn− j−rq−1

(a( j)−r)q ∨

a( j)−1−r∨
s′=1

f −s′qα
q−1
0

)
= H f j+rq

∗ νn
(α

q−1
0 | f −n+ j+rqB ∨ αn− j−rq−1

q )

= H f j+rq
∗ νn

(α
q−1
0 | f −qB). (17)
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Similarly, as f −(q+ρ( j))B ∨ αq+ρ( j)−1
q = f −qB by Lemma 2.7, we have

Hνn ( f −( j+(a( j)−1)q)α
q−1
0 | f −nB ∨ αn−1

n−ρ( j))

= H f j+(a( j)−1)q
∗ νn

(α
q−1
0 | f −(q+ρ( j))B ∨ αq+ρ( j)−1

q )

= H f j+(a( j)−1)q
∗ νn

(α
q−1
0 | f −qB). (18)

Hence, combining (17) and (18), we have

log s(n, ε, f −n xn)

= Hνn (α
n−1
0 | f −nB)

≤ Hνn

(∨
t∈S j

f −tα| f −nB
)
+ Hνn ( f −( j+(a( j)−1)q)α

q−1
0 | f −nB ∨ αn−1

n−ρ( j))

+

a( j)−2∑
r=0

Hνn

(
f −( j+rq)α

q−1
0 | f −nB ∨ αn−1

n−ρ( j) ∨

a( j)−1∨
s=r+1

f −( j+sq)α
q−1
0

)

≤ 2q log #α +
a( j)−1∑

r=0

H f j+rq
∗ νn

(α
q−1
0 | f −qB). (19)

Sum this inequality over j from 0 to q − 1 to get

q log s(n, ε, f −n xn)≤ 2q2 log #α +
q−1∑
j=0

a( j)−1∑
r=0

H f j+rq
∗ νn

(α
q−1
0 | f −qB)

≤ 2q2 log #α + nHµn (α
q−1
0 | f −qB)) (by (15)).

Dividing by nq, we get

1
n

log s(n, ε, f −n xn)≤
2q2

n
log #α +

1
q

Hµn (α
q−1
0 | f −qB).

Hence

hm( f, ε)= lim sup
k→∞

1
nk

log s(nk, ε, f −nk xnk )

≤
1
q

lim sup
k→∞

Hµnk
(α

q−1
0 | f −qB)

≤
1
q

Hµ(α
q−1
0 | f −qB) (by (16))

which proves (14). Letting q→∞, we get

hm( f, ε)≤ hm,µ( f, α)≤ hm,µ( f ).

This proves (13).

Proof of the claim. The claim essentially follows from the first parts of Propositions 2.12
and 2.13, respectively; we sketch the proof for completeness. Firstly, from concavity of
s 7→ −s log s, we have

1
n

n−1∑
l=0

Hνn◦ f −l (α
q−1
0 | f −qγ )≤ Hµn (α

q−1
0 | f −qγ ) (20)
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for any finite partition γ of X . Then choose an increasing sequence of finite partitions γ1 ≤

γ2 ≤ · · · with diameters tending to zero for which B = B(
∨
∞

j=1 γ j ). Then by Lemma 2.5,

Hµn (β
n−1
0 | f −nB)= lim

j→∞
Hµn (β

n−1
0 | f −nγ j ) (21)

for each n, and

1
n

n−1∑
l=0

Hνn◦ f −l (α
q−1
0 | f −nB)= lim

j→∞

1
n

n−1∑
l=0

Hνn◦ f −l (α
q−1
0 | f −nγ j ). (22)

Combining (20), (21) and (22) and letting j→∞ yields (15).
Moreover, we can take the partitions {γ j } satisfying Lemma 2.5 and µ(∂γ j )= 0 for

each j , and hence

lim
n→∞

Hµn (α
q−1
0 | f −qγ j )= Hµ(α

q−1
0 | f −qγ j )

for each j . Similarly to the proof of (a) in Proposition 2.13, (replace ν, α, γ j there by
µn, α

q−1
0 , f −qγ j , respectively), we get inequality (16).

This completes the proof of the claim and the second part of Theorem B. For the
‘moreover’ part of the theorem, we only need to show that if f has uniform separation
of preimages, then

hm( f )≤ sup
ν∈Me

f (X)
hm,ν( f ).

Let ρ > 0 be sufficiently small. Then there exists an invariant measure µ such that
hm,µ( f ) > hm( f )− ρ/2. By (9), there exists an ergodic measure ν such that

hm,ν( f ) > hm,µ( f )− ρ/2> hm( f )− ρ.

Since ρ is arbitrary, we have hm( f )≤ sup{hm,ν( f ) : ν ∈Me
f (M)}. This completes the

proof of Theorem B. �

3. Stable entropy
3.1. Equivalence of two definitions of stable metric entropy. In this subsection we give
the proof of Theorem C, namely, that the two definitions of stable metric entropy are
equivalent when µ is ergodic. The proof involves the relationship between two types
of measurable partitions, η and ξ , where η, constructed in §1, is a measurable partition
subordinate to the W s-foliation induced by a finite measurable partition, while ξ is a
decreasing measurable partition subordinate to the W s-foliation as in Proposition 1.8.

Recall that5 : M f
→ M is the natural projection map. We denote by a tilde the objects

in M f pulled back from M by 5, namely, µ̃= µ ◦5, ξ̃ =5−1ξ , η̃ =5−1η, α̃ =5−1α,
etc. Then

hµ( f, α|η)= lim sup
n→∞

1
n

Hµ̃(α̃
n−1
0 |τ−n η̃)

and
Hµ(ξ | f −1ξ)= Hµ̃(ξ̃ |τ−1ξ̃ ).

LEMMA 3.1. For any α, β ∈ P and η ∈ Ps ,

lim
n→∞

1
n

Hµ(α̃n−1
0 |β̃n−1

0 ∨ τ−n η̃)= 0.
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Proof. Applying Lemma 2.3(ii) with γ = β̃n−1
0 ∨ τ−n η̃, we have

Hµ̃(α̃
n−1
0 |β̃n−1

0 ∨ τ−n η̃)

≤ Hµ̃(α̃|β̃0
−(n−1) ∨ τ

−1η̃)+

n−2∑
i=0

Hµ̃(α̃|α̃
n−1−i
1 ∨ β̃n−i−1

−i ∨ τ−n+i η̃).

Since β̃n−i−1
0 ∨ τ−n+i η̃ ≥ β̃s , where βs

∈ Ps is induced by β ∈ P and diam(β̃0
−i ∨ β̃

s)

→ 0 as i→∞, we know that the term in the summation above tends to 0 as i→∞. Thus
the lemma follows. �

PROPOSITION 3.2. hµ( f, α|η) is independent of η ∈ Ps and α ∈ P .

Proof. First, let us show that for η1, η2 ∈ Ps , we have hµ( f, α|η1)= hµ( f, α|η2).
By Lemma 2.2, we have

Hµ̃(α̃
n−1
0 |τ−n η̃1)+ Hµ̃(τ−n η̃2|α̃

n−1
0 ∨ τ−n η̃1)

= Hµ̃(α̃
n−1
0 |τ−n η̃2 ∨ τ

−n η̃1)+ Hµ̃(τ−n η̃2|τ
−n η̃1). (23)

Similarly,

Hµ̃(α̃
n−1
0 |τ−n η̃2)+ Hµ̃(τ−n η̃1|α̃

n−1
0 ∨ τ−n η̃2)

= Hµ̃(α̃
n−1
0 |τ−n η̃1 ∨ τ

−n η̃2)+ Hµ̃(τ−n η̃1|τ
−n η̃2). (24)

By the construction of η1 and η2, we know that there are two finite partitions α1, α2 ∈

P such that η j (x)= α j (x) ∩W s(x, ε0), j = 1, 2, for all x ∈ M . Let N1 and N2 be the
cardinality of α1 and α2, respectively. For any z ∈ M , η1(z) intersects at most N2 elements
of α2, hence intersects at most N2 elements of η2. Thus, we have

lim
n→∞

1
n

Hµ̃(τ−n η̃2|α̃
n−1
0 ∨ τ−n η̃1)≤ lim

n→∞

1
n

Hµ̃(τ−n η̃2|τ
−n η̃1)

= lim
n→∞

1
n

Hµ̃(η̃2|η̃1)= lim
n→∞

1
n

Hµ(η2|η1)≤ lim
n→∞

1
n

log N2 = 0.

Similarly, we have

Hµ̃(τ−n η̃1|α̃
n−1
0 ∨ τ−n η̃2)≤ lim

n→∞

1
n

Hµ̃(τ−n η̃1|τ
−n η̃2)≤ lim

n→∞

1
n

log N1 = 0.

Hence by (23) and (24), we get

lim sup
n→∞

1
n

Hµ̃(α̃
n−1
0 |τ−n η̃1)= lim sup

n→∞

1
n

Hµ̃(α̃
n−1
0 |τ−n η̃2).

Next we show that for any β, γ ∈ P ,

lim sup
n→∞

1
n

Hµ̃(β̃
n−1
0 |τ−n η̃)= lim sup

n→∞

1
n

Hµ̃(γ̃
n−1
0 |τ−n η̃).

Again, by Lemma 2.2, we have

Hµ̃(β̃
n−1
0 |τ−n η̃)≤ Hµ̃(γ̃

n−1
0 |τ−n η̃)+ Hµ̃(β̃

n−1
0 |γ̃ n−1

0 ∨ τ−n η̃). (25)

By Lemma 3.1, we know that

lim
n→∞

1
n

Hµ̃(β̃
n−1
0 |γ̃ n−1

0 ∨ τ−n η̃)= 0. (26)
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By (25) and (26), we have

lim sup
n→∞

1
n

Hµ̃(β̃
n−1
0 |τ−n η̃)≤ lim sup

n→∞

1
n

Hµ̃(γ̃
n−1
0 |τ−n η̃).

Interchanging β and γ , we in fact obtain

lim sup
n→∞

1
n

Hµ̃(β̃
n−1
0 |τ−n η̃)= lim sup

n→∞

1
n

Hµ̃(γ̃
n−1
0 |τ−n η̃).

This proves the proposition. �

We present a construction of the decreasing partition ξ , which will be crucial in
subsequent steps. The reader can refer to [18, §2.4] for more details. Given an ergodic
µ ∈Me

f (M), we can choose x∗ ∈ M and positive constants ε̂, r̂ such that

B := B(x∗, ε̂r̂/2)= {x ∈ M : d(x, x∗) < ε̂r̂/2}

has positive µ measure and the following construction of a partition ξ satisfies
Proposition 1.8.

For each r ∈ [r̂/2, r̂ ], put
Ss,r =

⋃
x∈B

Ss(x, r),

where Ss(x, r)= {y ∈W s
loc(x) : y ∈ B(x∗, r)}. Then we can define a partition ξ̂x∗ of M

such that

(ξ̂x∗)(y)=

{
Ss(x, r), y ∈ Ss(x, r) for some x ∈ B,

M \ Ss,r otherwise.

Next we can choose an appropriate r ∈ [r̂/2, r̂ ] such that

ξ =

∞∨
j=0

f − j ξ̂x∗

is subordinate to the W s-foliation. Thus ξ ∈Qs . The notation ξ̂ k
0 =

∨k
j=0 f − j ξ̂x∗ will be

used in the following steps. For notational convenience, 5−1ξ̂ k
0 is denoted by ξ̂ k

0 if there
is no confusion.

The following lemma concerning ξ̂ k
0 will be useful for the proof of our results.

LEMMA 3.3. Let µ ∈Me
f (M) be an ergodic measure. Suppose η ∈ Ps is subordinate to

the W s-foliation, and ξ̂ k
0 is a partition described as above, where k ∈ N ∪ {∞}. Then for

µ̃-almost every x̃ ∈ M f , there exists N = N (x̃) > 0 such that for any j > N, we have

(ξ̂
k+ j
0 ∨ τ− j η̃)(τ− j x̃)= (ξ̂ k+ j

0 )(τ− j x̃).

Hence, for any partition β of M with Hµ̃(β̃|ξ̂ k
0 ) <∞,

Iµ̃(β̃|ξ̂
k+ j
0 ∨ τ− j η̃)(τ− j x̃)= Iµ̃(β̃|ξ̂

k+ j
0 )(τ− j x̃),

which implies that
lim

j→∞
Hµ̃(β̃|ξ̂

k+ j
0 ∨ τ− j η̃)= Hµ̃(β̃|ξ̃ ).
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In particular, if we take k =∞, then the above two equalities become

Iµ̃(β̃|ξ̃ ∨ τ− j η̃)(τ− j x̃)= Iµ̃(β̃|ξ̃ )(τ− j x̃)

and
lim

j→∞
Hµ̃(β̃|ξ̃ ∨ τ− j η̃)= Hµ̃(β̃|ξ̃ ).

Proof. Since η is subordinate to W s , for µ̃-a.e. x̃ , there exists ρ = ρ(x̃) > 0 such that
Bs(5x̃, ρ)⊂ η(5x̃). Since µ̃ is ergodic, for µ̃-a.e. x̃ ∈ M f , there are infinitely many
n > 0 such that τ−n x̃ ∈5−1Ss,r . Take N = N (x̃) large enough such that

τ−N x̃ ∈5−1Ss,r

and
τ N (ξ̂ (τ−N x̃))⊂5−1 Bs(5x̃, ρ)⊂ η̃(x̃), (27)

where we write ξ̂ :=5−1ξ̂x∗ for short. Then for any j ≥ N , we have by (27) that

ξ̂ k+ j (τ− j x̃)=
(k+ j∨

l=0

τ−l ξ̂

)
(τ− j x̃)⊂ (τ− j+N ξ̂ )(τ− j x̃)⊂ τ− j (η̃(x̃))= (τ− j η̃)(τ− j x̃).

Thus
(ξ̂ k+ j

∨ τ− j η̃)(τ− j x̃)= ξ̂ k+ j (τ− j x̃).

This proves the first statement in the lemma.
Following the proof of Lemma 2.11 in [5], we can prove the remaining results in the

lemma, where Fatou’s lemma and Lemma 2.5 are needed. We omit the details of the
computation here. �

The proof of the following fact is analogous to that in [5], and the reader can refer to
the proof of Lemma 2.10 in [5] for more details.

LEMMA 3.4. Suppose that µ ∈Me
f (M) is an ergodic measure and α ∈ P . Then for any

k ∈ N,
lim

n→∞
Hµ̃(α̃|ξ̂ k

−n)= 0.

Proof. By the Poincaré recurrence theorem, for µ̃-a.e. x̃ ∈ M f , there exist n j →∞

such that τ−n j x̃ ∈5−1Ss,r . Thus diam(5(τ n j ξ̂ )(x̃))→ 0 as j→∞. Hence ξ̂ k
−∞(x̃)=

{5−15x̃}, that is, ξ̂ k
−∞ = ε̃.

Since Hµ̃(α̃|ε̃)= Hµ(α|ε)= 0, applying Lemma 2.5(ii) with ζn = ξ̂
k
−n and ζ = ε̃, we

prove the lemma. �

PROPOSITION 3.5. hµ( f, α|η)≤ hµ( f, ξ) for any η ∈ Ps and ξ ∈Qs .

Proof. By Lemma 2.3(ii), with γ = τ−n η̃ and α = ξ̂ k
0 , we have for any η ∈ Ps , n > 0,

1
n

Hµ̃((ξ̂ k
0 )

n−1
0 |τ−n η̃)=

1
n

Hµ̃(ξ̂ k
0 |τ
−1η̃)+

1
n

n−2∑
i=0

Hµ̃(ξ̂ k
0 |ξ̂

n−1−i+k
1 ∨ τ i−n η̃)

=
1
n

Hµ̃(ξ̂ k
0 |τ
−1η̃)+

1
n

n∑
j=2

Hµ̃(ξ̂ k
0 |ξ̂

j−1+k
1 ∨ τ− j η̃). (28)
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By Lemma 3.3, the second term on the right-hand side of (28) converges to Hµ̃(ξ̂ k
0 |τ
−1ξ̃ )

as j→∞. It is clear that each element of f −1η intersects at most l · 2k+1 elements of ξ̂ k
0 ,

where l = # f −1x for any x ∈ M . So we have

Hµ̃(ξ̂ k
0 |τ
−1η̃)≤ log(l · 2k+1),

which implies that

lim
n→∞

1
n

Hµ̃(ξ̂ k
0 |τ
−1η̃)= 0.

Thus we get

lim
n→∞

1
n

Hµ̃((ξ̂ k
0 )

n−1
0 |τ−n η̃)= Hµ̃(ξ̂ k

0 |τ
−1ξ̃ )≤ Hµ̃(ξ̃ |τ−1ξ̃ ). (29)

By Lemma 2.3(ii) with γ = (ξ̂ k
0 )

n−1
0 and the fact that

τ j (ξ̂ k
0 )

n−1
0 = ξ̂

k+n− j−1
− j ,

we know that

Hµ̃(α̃
n−1
0 |(ξ̂ k

0 )
n−1
0 )= Hµ̃(α̃|ξ̂ k

−n+1)+

n−2∑
i=0

Hµ̃(α̃|α̃
n−1−i
1 ∨ ξ̂ k+n−1−i

−i )

≤ Hµ̃(α̃)+
n−2∑
i=0

Hµ̃(α̃|ξ̂ k
−i ).

By Lemma 3.4, we have
lim

i→∞
Hµ̃(α̃|ξ̂ k

−i )= 0.

Then we get

lim
n→∞

1
n

Hµ̃(α̃
n−1
0 |(ξ̂ k

0 )
n−1
0 )= 0. (30)

By Lemma 2.2, we have

Hµ̃(α̃
n−1
0 |τ−n η̃)≤ Hµ̃((ξ̂ k

0 )
n−1
0 |τ−n η̃)+ Hµ̃(α̃

n−1
0 |(ξ̂ k

0 )
n−1
0 ). (31)

Thus by (29), (30) and (31) we have

hµ( f, α|η)= lim sup
n→∞

1
n

Hµ̃(α̃
n−1
0 |τ−n η̃)

≤ Hµ̃(ξ̃ |τ−1ξ̃ )

= hµ( f, ξ)

which finishes the proof of the proposition. �

PROPOSITION 3.6. Suppose µ is an ergodic measure. Then for any η ∈ Ps and ξ ∈Qs ,

hµ( f, ξ)≤ sup
α∈P

hµ( f, α|η).
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Proof. Choose a sequence of finite Borel partitions αn of M such that

B(αn)↗ B(ξ) as n→∞,

which implies
lim

n→∞
Hµ̃(α̃n|τ

−1ξ̃ )= Hµ̃(ξ̃ |τ−1ξ̃ ).

Thus, we have
sup
α≤ξ

Hµ̃(α̃|τ−1ξ̃ )= Hµ̃(ξ̃ |τ−1ξ̃ ).

For any α with α ≤ ξ , we have that for any j > 0, α j−1
1 ≤ ξ

j−1
1 = f −1ξ . Then by

Lemma 2.3(ii), we have

Hµ̃(α̃
n−1
0 |τ−n η̃)= Hµ̃(α̃|τ−1η̃)+

n−2∑
i=0

Hµ̃(α̃|α̃
n−1−i
1 ∨ τ i−n η̃)

= Hµ̃(α̃|τ−1η̃)+

n∑
j=2

Hµ̃(α̃|α̃
j−1
1 ∨ τ− j η̃)

≥ Hµ̃(α̃|τ−1η̃)+

n∑
j=2

Hµ̃(α̃|τ−1ξ̃ ∨ τ− j η̃).

Then by Lemma 3.3, we have

lim
j→∞

Hµ̃(α̃|τ−1ξ̃ ∨ τ− j η̃)= Hµ̃(α̃|τ−1ξ̃ ),

which implies that

lim sup
n→∞

1
n

Hµ̃(α̃
n−1
0 |τ−n η̃)≥ lim inf

n→∞

1
n

Hµ̃(α̃
n−1
0 |τ−n η̃)≥ Hµ̃(α̃|τ−1ξ̃ ).

So we have

sup
α∈P

hµ( f, α|η)≥ sup
α≤ξ

hµ( f, α|η)

= sup
α≤ξ

lim sup
n→∞

1
n

Hµ̃(α̃
n−1
0 |τ−n η̃)

≥ sup
α≤ξ

lim inf
n→∞

1
n

Hµ̃(α̃
n−1
0 |τ−n η̃)

≥ sup
α≤ξ

Hµ̃(α̃|τ−1ξ̃ )

= Hµ̃(ξ̃ |τ−1ξ̃ ). (32)

Namely, hµ( f, ξ)≤ supα∈P hµ( f, α|η). �

Proof of Theorem C. We complete the proof of Theorem C. By Proposition 3.2,
hµ( f, α|η) is independent of α, meaning that

hµ( f, α|η)= sup
β∈P

hµ( f, β|η)

for any α ∈ P . Combining Propositions 3.5 and 3.6, we are done. �
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Proof of Corollary C.1. hs
µ( f )≤ hµ( f ) follows from the definition of stable entropy.

When f is C2, the Ledrappier–Young formula (2) by Shu can be applied. Combining
with Theorem C, we get

hµ( f )= hs
µ( f )−

∑
λc

i<0

λc
i γ

c
i .

If there is no negative Lyapunov exponent in the center direction at µ-a.e. x ∈ M , the sum
above vanishes, and hence hs

µ( f )= hµ( f ). �

Proof of Corollary C.2. The equality hs
µ( f )= hµ( f, α|η) follows from Theorem C. Now

all inequalities in (32) become equalities and ‘sup’ can be dropped, so hµ( f, α|η)=
limn→∞ (1/n)Hµ(αn−1

0 | f −nη). �

3.2. Properties of stable entropy. In this subsection we prepare some lemmas about
the properties of stable metric and topological entropy, which are useful in the proof of
Theorem D.

LEMMA 3.7. Assume that f : M→ M is a C1 non-degenerate partially hyperbolic
endomorphism. Then for any α ∈ P, η ∈ Ps , we have for any n ∈ N,

αn−1
0 ∨ f −nη ≥ αs,

where αs is the partition in Ps induced by α ∈ P .

Proof. Let y ∈ (αn−1
0 ∨ f −nη)(x). Then f i y ∈ α( f i x) for any 0≤ i ≤ n − 1. As

diam(α)� ε0, we know that d( f i y, f i x)� ε0 for any 0≤ i ≤ n − 1. On the other hand,
y ∈ ( f −nη)(x), that is, f n y ∈W s( f n x, ε0). This, together with d( f n−1 y, f n−1x) < ε0,
implies that f n−1 y ∈W s( f n−1x, ε0) ∩ α( f n−1x), since f is non-degenerate and the
expansion of f −1 is bounded. With sufficient repetition of this argument, we have
y ∈W s(x, ε0) ∩ α(x). Thus y ∈ αs(x), and the lemma follows. �

PROPOSITION 3.8. (Power rule) Assume that f : M→ M is a C1 non-degenerate
partially hyperbolic endomorphism, µ ∈M f (M), α ∈ P and η ∈ Ps . Then:
(1) an := Hµ(αn−1

0 | f −nη)+ Hµ(η|αs) is a subadditive sequence, that is, am+n ≤ am +

an for any m, n ≥ 1;
(2)

hµ( f, α|η)= lim
n→∞

1
n

Hµ(αn−1
0 | f −nη)

= inf
n≥1

1
n
(Hµ(αn−1

0 | f −nη)+ Hµ(η|αs));

(3) hs
µ( f l)= lhs

µ( f ) for any l ∈ N.

Proof. The proof is analogous to those of Lemma 2.8 and Proposition 2.10, with minor
modifications. Note that Hµ(η|αs) is finite since Hµ(η|αs)≤ log #ηs̃ , where ηs̃

∈ P
induces η ∈ Ps . Instead of Lemma 2.7, we use Lemma 3.7 to obtain the subadditivity
of an . The power rule uses the first equality in the second item. �
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PROPOSITION 3.9. (Affinity) Assume that f : M→ M is a C1 non-degenerate partially
hyperbolic endomorphism. For any α ∈ P and η ∈ Ps , the map µ 7→ Hµ(α| f −nη) from
M(M) to R+ ∪ {0} is concave. Furthermore, the map µ 7→ hs

µ( f ) from M f (M) to R+ ∪
{0} is affine.

Proof. The proof proceeds along the same lines as the proof of Proposition 2.12. We
only need to use an increasing sequence of finite partitions γ1 ≤ γ2 ≤ · · · to approximate
η ∈ Ps now. �

PROPOSITION 3.10. (Upper semi-continuity) Assume that f : M→ M is a C1 non-
degenerate partially hyperbolic endomorphism.
(1) Let ν ∈M f (M). For any α ∈ P and η ∈ Ps with µ(∂α)= 0 and µ(∂ηs̃)= 0 (ηs̃

is the partition in P inducing η ∈ Ps), the map µ 7→ Hµ(α| f −nη) from M(M) to
R+ ∪ {0} is upper semi-continuous at µ, that is,

lim sup
ν→µ

Hν(α| f −nη)≤ Hµ(α| f −nη).

(2) The stable entropy map µ 7→ hs
µ( f ) from M f (M) to R+ ∪ {0} is upper semi-

continuous at µ, that is,
lim sup
ν→µ

hs
ν( f )≤ hs

µ( f ).

Proof. The proof is analogous to the proof of Proposition 2.13. Indeed, to prove (1), we
only need to use an increasing sequence of finite partitions γ1 ≤ γ2 ≤ · · · to approximate
η ∈ Ps now. For the proof of (2), we need to use (1) and (2) of Proposition 3.8. �

The following result is the Shannon–McMillan–Breiman theorem for stable metric
entropy.

THEOREM 3.11. Let f be a C1 partially hyperbolic endomorphism, and µ an ergodic
measure of f . Then for any α ∈ P, η ∈ Ps and µ-a.e. x ∈ M, we have

hs
µ( f )= lim

n→∞

1
n

Iµ(αn−1
0 | f −nη)(x).

Proof. Let µ ∈Me
f (M) be ergodic. The following lemmas are counterparts of those in

[5], but the proof need modifications. �

LEMMA 3.12. (See [5, Lemma 3.7]) For any η ∈ Ps and ξ ∈Qs , we have for
µ-a.e. x ∈ M,

hµ( f, ξ)= lim
n→∞

1
n

Iµ(ξ | f −nη)(x).

Proof. With α = ξ̃ , γ = τ−n η̃, we use Lemma 2.3(ii) to get

lim
n→∞

1
n

Iµ̃(ξ̃
n−1
0 |τ−n η̃)(x̃)

= lim
n→∞

1
n

[
Iµ̃(ξ̃ |τ−1η̃)(τ n−1 x̃)+

n−2∑
i=0

Iµ̃(ξ̃ |ξ̃
n−1−i
1 ∨ τ i−n η̃)(τ i (x̃))

]

= lim
n→∞

1
n

[
Iµ̃(ξ̃ |τ−1η̃)(τ n−1 x̃)+

n∑
j=2

Iµ̃(ξ̃ |τ−1ξ̃ ∨ τ− j η̃)(τ n− j (x̃))
]
.

https://doi.org/10.1017/etds.2019.114 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.114


On preimage entropy, folding entropy and stable entropy 1245

By Lemma 3.3, for µ-a.e. x , there exist N > 0 such that for any j > N ,

Iµ̃(ξ̃ |τ−1ξ̃ ∨ τ− j η̃)(τ n− j (x̃))= Iµ̃(ξ̃ |τ−1ξ̃ )(τ n− j (x̃)).

Therefore, the limit is equal to hµ( f, ξ).
By Lemma 3.12, we need compare Iµ(ξn−1

0 | f −nη) and Iµ(αn−1
0 | f −nη). �

LEMMA 3.13. (See [5, Lemma 3.8]) Let α ∈ P , η ∈ Ps, ξ ∈Qs . Then for µ̃-a.e. x̃ , we
have

lim
n→∞

1
n

Iµ̃(ξ̃
n−1
0 |α̃n−1

0 ∨ τ−n η̃)(x̃)= 0= lim
n→∞

1
n

Iµ̃(α̃
n−1
0 |ξ̃n−1

0 ∨ τ−n η̃)(x̃).

Proof. We prove the first equality; the second is analogous. By Lemma 2.3(ii) with
α = ξ̃ , γ = α̃n−1

0 ∨ τ−n η̃,

Iµ̃(ξ̃
n−1
0 |α̃n−1

0 ∨ τ−n η̃)(x̃)

= Iµ̃(ξ̃ |α̃
−(n−1)
−1 ∨ τ−1η̃)(τ n−1(x̃))+

n−2∑
i=0

Iµ̃(ξ̃ |ξ̃
n−1−i
1 ∨ α̃n−1−i

−i ∨ τ i−n η̃)(τ i (x̃))

≤ Iµ̃(ξ̃ |α̃
−(n−1)
−1 ∨ τ−1η̃)(τ n−1(x̃))+

n∑
j=2

Iµ̃(ξ̃ |ξ̃
j−1

1 ∨ α̃
j−1
1 ∨ τ− j η̃)(τ n− j (x̃))

≤ Iµ̃(ξ̃ |α̃
−(n−1)
−1 ∨ τ−1η̃)(τ n−1(x̃))+

n∑
j=2

Iµ̃(ξ̃ |ξ̃
j−1

1 ∨ α̃
j−1
1 )(τ n− j (x̃)), (33)

where in the last inequality we applied Lemma 3.3 with ξ̃ replaced by an even finer
partition.

Take φn(x̃)= Iµ̃(ξ̃ |α̃
n−1
1 ∨ ξ̃n−1

1 )(x̃) for n ≥ 2. Since diam(α̃n−1
1 ∨ ξ̃n−1

1 )(x̃)→ 0 as
n→∞, φn→ 0 as n→∞ almost everywhere.

Also, by Lemma 2.4, φ∗ = supn φn ∈ L1(µ). Hence we can apply [5, Proposition 3.5]
to get that for µ̃-a.e. x̃ ,

lim
n→∞

1
n

[n−2∑
i=0

Iµ̃(ξ̃ |ξ̃
n−1−i
1 ∨ α̃n−1−i

1 )(τ i (x̃))
]
= 0.

By (33), we get the result of the lemma. �

We are now ready to prove the theorem. By Lemma 2.2, we have

Iµ̃(α̃
n−1
0 |τ−n η̃)(x̃)≤ Iµ̃(α̃

n−1
0 ∨ ξ̃n−1

0 |τ−n η̃)(x̃)

= Iµ̃(ξ̃
n−1
0 |τ−n η̃)(x̃)+ Iµ̃(α̃

n−1
0 |ξ̃n−1

0 ∨ τ−n η̃)(x̃).

Then by Lemmas 3.13 and 3.12 and Theorem C, we have

lim sup
n→∞

1
n

Iµ̃(α̃
n−1
0 |τ−n η̃)(x̃)≤ lim sup

n→∞

1
n

Iµ̃(ξ̃
n−1
0 |τ−n η̃)(x̃)

= Hµ(ξ | f −1ξ)= hs
µ( f ). (34)
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Similarly,

Iµ̃(ξ̃
n−1
0 |τ−n η̃)(x̃)≤ Iµ̃(α̃

n−1
0 ∨ ξ̃n−1

0 |τ−n η̃)(x̃)

= Iµ̃(α̃
n−1
0 |τ−n η̃)(x̃)+ Iµ̃(ξ̃

n−1
0 |α̃n−1

0 ∨ τ−n η̃)(x̃).

Again by Lemmas 3.13 and 3.12 and Theorem C, we have

hs
µ( f )= Hµ(ξ | f −1ξ)= lim inf

n→∞

1
n

Iµ̃(ξ̃
n−1
0 |τ−n η̃)(x̃)

≤ lim inf
n→∞

1
n

Iµ̃(α̃
n−1
0 |τ−n η̃)(x̃). (35)

Combining (34) and (35), we compete the proof of the theorem. �

The following lemma on stable topological entropy is important for the proof of
Theorem D.

LEMMA 3.14. For any δ > 0,

hs
p,top( f )= sup

x∈M
hs

top( f, W s(x, δ))

hs
m,top( f )= lim

ε→0
lim sup

n→∞
sup
x∈M

1
n

log s(n, ε, f −nW s(x, δ)).

Proof. We prove the first equality; the second is similar. It is easy to see that
hs

p,top( f )≤ supx∈M hs
top( f, W s(x, δ)) for any δ > 0 since δ 7→ supx∈M hs

top( f, W s(x, δ))
is increasing.

Let us prove the other direction for some fixed δ > 0. For any ρ > 0, let y ∈ M be such
that

sup
x∈M

hs
top( f, W s(x, δ))≤ hs

top( f, W s(y, δ))+
ρ

3
. (36)

We can choose ε0 > 0 such that

hs
top( f, W s(y, δ))= lim

ε→0
lim sup

n→∞

1
n

log s(n, ε, f −nW s(y, δ))

≤ lim sup
n→∞

1
n

log s(n, ε0, f −nW s(y, δ))+
ρ

3
. (37)

Choose δ1 > 0 small enough such that δ1 < δ and

hs
p,top( f )≥ sup

x∈M
hs

top( f, W s(x, δ1))−
ρ

3
. (38)

Then there exist y j ∈W s(y, δ), 1≤ j ≤ N , where N only depends on δ, δ1 and the
Riemannian structure on W s(y, δ), such that

W s(y, δ)⊂
N⋃

j=1

W s(y j , δ1).
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It follows that

lim sup
n→∞

1
n

log s(n, ε0, f −nW s(y, δ))≤ lim sup
n→∞

1
n

log
( N∑

j=1

s(n, ε0, f −nW s(y j , δ1))

)

≤ lim sup
n→∞

1
n

log Ns(n, ε0, f −nW s(yi , δ1))

= lim sup
n→∞

1
n

log s(n, ε0, f −nW s(yi , δ1))

≤ lim
ε→0

lim sup
n→∞

1
n

log s(n, ε, f −nW s(yi , δ1))

= hs
top( f, W s(yi , δ1)) (39)

for some 1≤ i ≤ N . Combining (36)–(39),

sup
x∈M

hs
top( f, W s(x, δ))≤ hs

top( f, W s(y, δ))+
ρ

3

≤ lim sup
n→∞

1
n

log s(n, ε0, f −nW s(y, δ))+
2ρ
3

≤ hs
top( f, W s(yi , δ1))+

2ρ
3

≤ sup
x∈M

hs
top( f, W s(x, δ1))+

2ρ
3

≤ hs
p,top( f )+ ρ.

Since ρ > 0 is arbitrary, we have supx∈M hs
top( f, W u(x, δ))≤ hs

p,top( f ). �

3.3. Variational principle for stable entropy.

Sketch of proof of Theorem D. The proof is analogous to that of Theorem B, with
necessary modifications. We just point out the main difference here.

For the first part showing that hs
µ( f )≤ hs

p,top( f ) for all µ ∈M f (M), we follow the
same lines as Proposition 2.17. The crucial point is that Theorem 3.11 as well as affinity
and upper semi-continuity (Propositions 3.9 and 3.10) hold for stable metric entropy. We
mention that the first part of Lemma 3.14 is also used.

The proof of the second part is more involved. We want to show that for any ρ > 0,
there exists µ ∈M f (M) such that hs

µ( f )≥ hs
m,top( f )− ρ.

Firstly, we should carefully construct η ∈ Ps . Fix some δ > 0 small enough. By
the second part of Lemma 3.14, take ε > 0 small enough, xn ∈ M and Sn an (n, ε)-
separated set of f −nW s(xn, δ) with cardinality s(n, ε, f −nW s(xn, δ)) such that there
exists a subsequence nk→∞ satisfying

hs
m,top( f, ε)= lim

k→∞

1
nk

log #Snk .

Define
νn :=

1
#Sn

∑
y∈Sn

δy
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and

µn :=
1
n

n−1∑
i=0

f iνn .

There exists a subsequence of {nk}, also denoted by nk , such that limk→∞ µnk = µ.
Obviously µ ∈M f (M).

Choose a subsequence of {xnk } converging to some point y0 ∈ M , also denoted by {xnk }

for simplicity. Without loss of generality, assume that xnk ∈ B(y0, δ) for all xnk . As δ is
very small, we can choose a partition β ∈ P such that B(y0, 100δ)⊂ β(y0). Consequently,
W s(xnk , δ)⊂ B(y0, 100δ) ∩W s(xnk , δ)⊂ η(xnk ) for all xnk , where η = βs

∈ Ps . That is,
W s(xnk , δ) is contained in a single element of η for any xnk . Then choose α ∈ P such
that µ(∂α)= 0 and diam(α)� ε. In this way, we have log s(nk, ε, f −nk W s(xnk , δ))=

Hνnk
(α

nk−1
0 | f −nkη).

Secondly, the computation in (17)–(19) should now be modified accordingly for the
conditional entropy Hνn (α

n−1
0 | f −nη). The key is (17). Using Lemma 3.7 instead, we can

obtain similarly

Hνn

(
f −( j+rq)α

q−1
0 | f −nη ∨ αn−1

n−ρ( j) ∨

a( j)−1∨
s=r+1

f −( j+sq)α
q−1
0

)
= H f j+rq

∗ νn
(α

q−1
0 | f −qαs).

The remaining issue is the proof of (15) and (16). But this essentially follows from the
affinity and upper semi-continuity of stable entropy, which are formulated in Propositions
3.9 and 3.10(1). We skip the details of the proof. �

Proof of Corollary D.1. Suppose that all Lyapunov exponents of f are non-negative.
Then for any ergodic measure µ, hm,µ( f )= hµ( f ) by the Ledrappier–Young formula (2)
by Shu and Theorem A. By Theorem B and the variational principle for classical entropy,
we have h p( f )= hm( f )= htop( f ). which proves the first item.

Now suppose that ν is an ergodic measure of maximal preimage entropy, for which
there exists a negative Lyapunov exponent with positive transversal dimension. By (2) and
Theorem A, we know that hm,ν( f ) < hν( f ). Then h p( f )= hm( f )= hm,ν( f ) < hν( f )≤
htop( f ). The proof of the corollary is complete. �
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