
Robotica: (2020) volume 38, pp. 1450–1462. C© Cambridge University Press 2019
doi:10.1017/S0263574719001565

Combination of Recurrent Neural
Network and Deep Learning for Robot
Navigation Task in Off-Road
Environment
Farinaz Alamiyan-Harandi†, Vali Derhami†∗ and
Fatemeh Jamshidi‡
†Computer Engineering Department, Faculty of Engineering, Yazd University, Yazd, Iran
E-mail: f.alamiyan@yazd.ac.ir
‡Department of Electrical Engineering, Faculty of Engineering, Fasa University, Fasa, Iran
E-mail: jamshidi@fasau.ac.ir

(Accepted October 9, 2019. First published online: November 4, 2019)

SUMMARY
This paper tackles the challenge of the necessity of using the sequence of past environment states as
the controller’s inputs in a vision-based robot navigation task. In this task, a robot has to follow a
given trajectory without falling in pits and missing its balance in uneven terrain, when the only sen-
sory input is the raw image captured by a camera. The robot should distinguish big pits from small
holes to decide between avoiding and passing over. In non-Markov processes such as the abovemen-
tioned task, the decision is done using past sensory data to ensure admissible performance. Applying
images as sensory inputs naturally causes the curse of dimensionality difficulty. On the other hand,
using sequences of past images intensifies this difficulty. In this paper, a new framework called recur-
rent deep learning (RDL) with combination of deep learning (DL) and recurrent neural network is
proposed to cope with the above challenge. At first, the proper features are extracted from the raw
image using DL. Then, these represented features plus some expert-defined features are used as the
inputs of a fully connected recurrent network (as target network) to generate command control of
the robot. To evaluate the proposed RDL framework, some experiments are established on WEBOTS
and MATLAB co-simulation platform. The simulation results demonstrate the proposed framework
outperforms the conventional controller based on DL for the navigation task in the uneven terrains.

KEYWORDS: Robot navigation; Supervised deep learning; Recurrent network; Depth data;
Uneven terrain.

1. Introduction
The problem of autonomous navigation is a challenging task for wheeled robots especially in an off-
road environment with uneven terrain. Colliding to various obstacles and the risk of falling in existed
pits and holes make this task more complicated.

Perception, planner, and motion control are conventional processes usually applied in robot
navigation.1, 2 The most related researches have represented the robot environment as a grid map
to determine the traversability of the outdoor terrains. These maps are created using some devices
such as laser scanner, stereo camera, and Kinect camera. They can be a binary representation of the
terrain as an obstacle occupancy grid,3, 4 a continuous value representation of the probability distri-
bution for occupancy of each grid cell by an obstacle,5 or a non-binary mathematical function of the

∗ Corresponding author. E-mail: vderhami@yazd.ac.ir

https://doi.org/10.1017/S0263574719001565 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001565
https://orcid.org/0000-0003-4691-0643
mailto:f.alamiyan@yazd.ac.ir
mailto:jamshidi@fasau.ac.ir
mailto:vderhami@yazd.ac.ir
https://doi.org/10.1017/S0263574719001565

Combination of recurrent neural network and deep learning 1451

slope and roughness of the terrain for each cell of the map.6 This traversability map has just been
used in the path planning process to prepare suitable information which helps the robot besides the
output data of positioning systems like GPS to find the robot location and measure the distance the
robot moved. This map has not interfered in the robot controller directly.

Creating control architectures based on visual inputs has been recently considered in autonomous
navigation tasks. Some vision sensors like Kinect camera simply provide low-cost information such
as Red Green Blue (RGB) images and depth measurements about the robot environment. Using depth
data as sensory inputs in comparison with RGB images makes the controller more robust against
environment variations such as lighting changes and texture variety.7, 8

Vision sensors prepare the high-dimensional outputs (RGB images and depth data). Using these
data directly as controller inputs, the structure of the controller becomes complicated. It makes adjust-
ing the controller parameters more time-consuming and difficult, too. So, it is more rational to reduce
the input size by extracting proper features from these data and the controller architecture utilizes
them. Some researchers have applied image preprocessing methods, for example, using a CCD color
camera, to control the position of a goal-seeking robot,9 estimating the 3D trajectory in unknown
outdoor environments by a trinocular stereo camera,10 applying both laser range finder and stereo
vision to detect trajectory and designing the steering control law based on the kinematic equations of
motion,2, 11 utilizing a stereo and mono vision to create a reinforcement learning (RL) approach for
a wall follower robot to learn reactive behaviors.12

Preprocessing techniques require complex mathematical computation. They also need expert
knowledge about models of the operating environment to extract proper control features. Applying
these methods, some effective features may not be detected. So, end to end approaches, recently deep
learning (DL) structures, have been considered.

Some examples of using end to end techniques are as follows: DL has been applied to design
a self-supervised learning (SL) process for a long-range vision to classify complex terrain far from
the outdoor-navigator robot and to predict its traversability.13 A deep convolutional network has been
trained using the end to end idea to describe an obstacle avoidance system for off-road mobile robots.
This system has mapped raw input images to steering angles in a supervised manner. This structure
has too many parameters which are trained simultaneously using massive amounts of training data.14

The main advantage of these approaches is training the whole process from data and eliminating
hand-crafted heuristics to design and select features. In this way, an objective function is globally
optimized automatically using raw data. These approaches make systems robust against the unpre-
dictable variations of the input space. They may potentially detect other useful cues which may
not be considered in expert methods.14 Deep architectures describe various variations behind data
and directly represent the data inside the structure of a controller. They introduce some represented
features and make feature extraction easier.15

Some significant researches have utilized deep neural network (DNN) as a data representation
structure and have combined it with other learning techniques in order to solve their problems.
For example, merging DNN with RL algorithms in the following works which create a function
approximator using DNN and estimate state-action value function to learn their policy: neural fitted
Q-iteration, a memory-based method which reuses state transition experiences,16 deep Q-network
(DQN) which combines Q-learning with convolutional neural network (CNN) and updates the
parameters of state-action value function using periodically updated targets,17 deep deterministic
policy gradient which is an off-policy actor-critic algorithm and uses soft target updates to make the
learning process stable,18 asynchronous advantage actor-critic algorithm which uses parallel threads
of same training process in order to share some needed parameters between actor learners and to
stabilize them,19 and an actor-critic RL algorithm with continuous actions from a stochastic control
policy which uses deep auto encoders to prepare the proper features for controlling industrial laser
welding processes.20

The above mentioned literature worked on learning policies directly on visual inputs (raw images).
They had DNNs with plenty of adjustable parameters and needed to store and reuse all state transition
experiences. Training large neural networks by RL makes the learning time-consuming. They are still
trying to make their methods data-efficient to be applied successfully with large neural networks.

Vision sensors have a limited field of vision and cannot cover area around the robot completely.
If only the current sensory data are used to define the environment states, this limitation will lose the
well-known Markov property of memorylessness. Mounting several devices on the robot can extend
the field of vision but increases weight, costs, and raw data preprocessing time.21 It also intensifies

https://doi.org/10.1017/S0263574719001565 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001565

1452 Combination of recurrent neural network and deep learning

the curse of dimensionality problem of image inputs and results in a complex controller structure. So,
it is better to keep some of the previous environment states and robot actions as short-term memory.
It compensates the relatively small field of vision while determining the next command of the robot
controller.

The memory-exploitation capability of a recurrent neural network (RNN) can be used to represent
the environment states in the most compacted input data supporting the Markov property. RNNs
create some internal states with dynamic temporal characteristics using directed cyclic connections
between their neurons. They form an internal memory which is suitable for processing arbitrary
input data sequences. RNNs have been utilized in speech and handwriting recognition, program code
generation, etc.22

RNNs can be used as a controller in robotic researches, too. A two-link planar robot manipulator
has been controlled using a control system consisted of an RNN controller, fast-load adaptation,
and robust PID controller.23, 24 This RNN has modeled the relation between inputs and outputs in
given dynamic systems. It has two kinds of feedback connections. Some are the hidden feedbacks of
the Elman network and some are from the output layer to the context layer. The simulation results
have demonstrated this RNN can control the trajectory of the planar robot arm better than classical
feed-forward and diagonal RNNs.

Two series RNNs have been used for the robot navigation task in an unknown flat environment.25

One of them has solved the localization problem and another has been considered for path planning.
The robot was equipped with three infrared sensors to detect obstacles. The kinematics of the plat-
form has been considered to develop the motion of the robot. In localization problem solving, the
current robot position in a determined Cartesian system coordinates and the robot steering command
have been fed to an RNN and the net output has provided the next robot position. The current position
of the robot and the position of target besides a defined function of existed obstacles have been used
to find the robot steering command in path planning RNN.

In the abovementioned robotic researches, the input size of the RNN structure was small. Use of
the RNN architecture purely is not suitable when network inputs are images considering the huge
number of weights which should be trained. Deep recurrent Q-network (DRQN)26 is a modified
version of DQN. This architecture has added recurrency to a DQN framework. It has replaced the
first fully connected layer with a recurrent long short-term memory (LSTM) to handle the noisy and
partial observability characteristic of the environments in some Atari games. The parameters of the
convolutional and recurrent layers of this network are learned simultaneously from scratch. DRQN
gives solutions to problems with continues and high-dimensional state spaces, but they are applied to
low-dimensional discrete action spaces. The discretization of action space makes DRQN applicable
to continuous spaces, but it encounters the curse of dimensionality and may lose essential information
of action space structure.18

To cover the robot working place comprehensively by exploiting the previous state features
and robot actions, and to moderate the process of training plenty of network weights, the SDL
framework27, 28 has been proposed which has combined SL, DL, and RL.

An end to end object tracking approach29 has been represented by combining the DL technique
with an RNN. The RNN has exploited the sequence models and a mapping from sensory data to
object tracks has been learned. The used network has been composed of input-preprocessing layers
(the Encoder), the hidden state propagation section (the Belief tracker), and the final layers (the
Decoder). The Encoder analyzes the data captured by a planar laser scanner to detect visible objects.
The results of the Belief tracker have been fed to the Decoder to compute a probabilistic occupancy
grid related to the corresponding pixels to find non-visible objects in the current view.

In this paper, a new memory-exploitation framework is proposed to create robot controllers. A set
of represented features obtained by DL as well as expert-defined features are fed to a recurrent net-
work to combine memory-based information of features with current inputs. Then, a robot controller
is created for tasks with complex environments. The results are demonstrated that the previously vis-
ited features improve the control commands to be more effective and provide a Markov representation
of environment states.

The main contributions of this paper are as follows: (1) introducing represented and task-based
expert features to define the environment states (generating features from depth images captured
by a camera mounted on the robot in order to represent the environment states, determining two
groups of task-based expert features considering the navigation task to improve this representation),
(2) combining deep auto-encoders and RNN to propose a new structure called recurrent deep learning

https://doi.org/10.1017/S0263574719001565 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001565

Combination of recurrent neural network and deep learning 1453

Fig. 1. The schema of the basic SDL approach (solid and dash lines in neural networks show the fixed and
under-trained weights, respectively).

(RDL) which introduces a memory-exploitation controller for problems with continuous state and
action spaces, the proposed framework includes two separate phases: the features are generated using
a separate learning phase and then these features are used as the input of the controller part which is
tuned with SL based on the control task. Generating the represented features does not need control
data, so it can be obtained easily. This means the robot can move in the environment randomly and
robot movements do not have any limitation, (3) applying the proposed controller for a difficult robot
navigation task in uneven terrain with plenty of various holes and pits when the only sensory input
is the raw depth image captured by a camera which is the least facility, while in the same literatures
more than one sensor are applied. This advantage results in decreasing the equipment cost. The robot
should distinguish big pits from small holes to decide between avoiding and passing over which is
not considered in similar research.

The rest of this paper is organized as follows. In Section 2, the principles of deep-architecture con-
trollers is explained. The proposed approach is given in Section 3. Section 4 includes the experiments
and comparison results. Finally, concluding remarks are given in Section 5.

2. Designing Controllers Using Deep Feature Representation Learning
Data representation is a prominent issue of machine learning algorithms because the performance
of these methods depends on the represented data called features. Feature engineering is an effort
in achieving suitable representations using human ingenuity and prior knowledge. It includes the
design of various data transformations and preprocessing techniques. Since this way of engineering
is laborious and needs human interference, it is desired to enhance learning algorithms such that they
can learn to identify and distinguish the underlying explanatory factors behind the observed low-level
sensory data.15, 30

A good representation can be useful as an input of a supervised robot controller, the problem
considered in this paper. DL is one of the solutions to learning representations. DL techniques learn
a hierarchical representation of data. They compose of multiple nonlinear transformations created
through the multi-layer architecture neural networks and can represent data in a more abstract and
general representation using supervised and unsupervised learning algorithms.15

There are various types of DNNs such as auto-encoder networks, CNNs, RNNs, and recursive neu-
ral networks. Considering the structure of input spaces in different problems, the combination of these
networks can be used, too.22, 31 More layers in these networks, more complicated the optimization
problem. Hence, layer-wise training algorithms can be used to train these networks.32–34

The SDL framework27, 28 illustrated in Fig. 1 has an appropriate structure to be expanded and
to be used to adjust the robot controller. So, the proposed idea is developed based on this schema.

https://doi.org/10.1017/S0263574719001565 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001565

1454 Combination of recurrent neural network and deep learning

Fig. 2. The structure of RDL controller.

This framework integrated a data representation architecture into a command generator to create an
effective robot controller. First, a DNN as a data representation structure is trained to convert raw
sensory data to compact informative features in order to represent the environment state.

Various kinds of DL techniques like auto encoders are applicable in this phase. Here, a deep feed-
forward neural network named deep auto-encoder is used as a function approximator to generate
represented features. This architecture has a symmetric layer organization. The encoding half of the
network includes hidden layers with a decreasing number of neurons from the input layer to the
middle compressed representation layer. The second set of hidden layers makes up the decoding
half and its belonged layers increase the number of neurons consecutively. The output layer tries to
recover input data from the compressed meaningful representation using the same number of neurons
that exist in the input layer.20 Since these outputs are used as an activation degree of features, neurons
of the middle layer have a transfer function with a positive output range.28 This network is trained by
SL and error back-propagation rule and the adjusted weights of its encoding half are frozen after the
train.

The linear weighted combination of represented features is used as a command generator to create
a robot controller. The output of this controller is a real continuous value. Linear least square errors
method is applied to compute the weights of the linear composition of represented features and some
expert-defined features as the basis functions using training data.

3. The Proposed RDL Framework
In order to create the controller architecture using the proposed framework, the phases shown in
Fig. 2 are followed. Training a DNN as explained in Section 2 prepares the represented features.

Assume that each captured depth image is summarized to a grid map with p blocks. So, there are
p neurons in the input and output layers of state representation structure. Consider that there are qi

neurons in the ith encoding hidden layer and each neuron has an activation function fi :R→R, for
example, the sigmoid function and x ∈R

p is a vector from the input layer. The feature value at the
jth neuron in the first and ith hidden layers are then computed as:

h1,j(x) = f1
(
wT

1,jx + b1,j
)

(1)

and

hi,j(hi−1) = fi
(
wT

i,jhi−1 + bi,j
)

(2)

https://doi.org/10.1017/S0263574719001565 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001565

Combination of recurrent neural network and deep learning 1455

where w1,j ∈R
p and wi,j ∈R

qi denote the weights associated with the jth neuron of the first and the
ith encoding hidden layer, b1,j ∈R and bi,j ∈R are their corresponding biases, respectively, and hi−1

is the representation vector generated by the (i − 1)th encoding hidden layer.
The last hidden representation generated by the middle hidden layer, hmid, will serve as an input

for the first decoding layer. The output value at the jth neuron in the kth decoding hidden layer and
the output layer (as the final layer) are computed as:

yk,j(yk−1) = f
′
k

(
w

′T
k,jyk−1 + b

′
k,j

)
(3)

and

yfinal,j
(
yfinal−1

) = f
′
final

(
w

′T
final,jyfinal−1 + b

′
final,j

)
(4)

where w
′
k,j ∈R

qk and w
′
final,j ∈R

p denote the weights associated with the jth neuron of the kth

decoding hidden layer and the output layer, b
′
k,j ∈R and b

′
final,j ∈R are their corresponding biases,

respectively. yk−1 is the output vector generated by the (k − 1)th decoding hidden layer.
The error between the original input vector x and the final reconstruction y can be considered as

a measure for the quality of the representation structure and serves as a loss function for the back-
propagation algorithm.35 Here, for real-valued inputs, images, the mean squared error (MSE) is the
most common choice resulting in the final cost function:

C(W, B) = 1/2n
∑

x

‖x − y‖2
(5)

where W and B denote the collection of all weights and all the biases in the network, respectively.
n is the total number of training samples. y is the vector of outputs from the network when x is the
input. Here the desired output is x, too. The sum is over all training inputs, x. Note that the output y
depends on all entries of x, W, and B, but to keep the notation simple, it does not explicitly indicate
this dependence. The notation ‖a‖ just denotes the usual length function for the vector a.22

Some expert features are defined and added to the represented features, hmid being generated for
each input data after training the representation network and freezing the encoding weights, in order
to improve the performance of the controller. Here, two groups of these specific features are intro-
duced considering the navigation task: (1) directed features associated with wall following mission
including the positions of guideline in RGB images as a grid map, and (2) features related to the
obstacle avoidance task such as the previous applied steering angle and sum of previous steering
angles which can manage in a first in first out queue. All the abovementioned features create the
vector v with qv elements which is used as the input of the command generator structure.

The previous condition of the environment and behavioral history of the controller can modify the
next command chosen by the robot controller, too. This memory-based information can distinguish
situations, especially in an obstacle avoidance task. So, to exploit them and complete the represen-
tation of the environment states, all the abovementioned features are fed to a recurrent hidden layer
with qv neurons. This layer is followed by a linear neuron in the output layer and creates the com-
mand generator of the robot controller. Defining a recurrence relation over time steps in RNN can
deal with sequences of variable length. This relation is typically shown in the following formula:

sk
j = frecurent

(
sk−1 × wrecj + v × wvj + bj

)
(6)

where sk
j is the state of jth neuron in the recurrent hidden layer at time k. v is an exogenous input at

time k prepared by the features representation structure and expert knowledge. sk−1 is the vector of
all neuron states in the recurrent hidden layer at time (k − 1), wrecj ∈R

qv and wvj ∈R
qv denote the

weights associated with the jth neuron of the recurrent hidden layer, and bj ∈R is their corresponding
bias.

The parameters of these added layers are adjusted in the same way as the basic controller using
SL, back-propagation rule, and training data. It is evaluated by the MSE cost function as follows:

C(W, B) = 1/2n
∑

v

‖Odesired − O‖2
(7)

https://doi.org/10.1017/S0263574719001565 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001565

1456 Combination of recurrent neural network and deep learning

Fig. 3. The Train and Test environments.

Fig. 4. Some sample closer views of uneven terrains in experiments.

where O is the vector of controller outputs and Odesired is the vector of all supervised commands in
collected training data. The sum is over all represented training inputs, v.

RDL framework can be summarized as follows:

1. Collect training data, a data set including perception-action pairs.
2. Train the deep feature representation structure using the cost function in Eq. (5) for perception

elements of pairs belongs to the training data set.
3. Reuse encoding half of the data representation structure with the frozen weights to generate the

represented feature vector hmid for each input of the controller using Eqs. (1) and (2).
4. Add expert features and create v vector for each represented feature vector hmid.
5. Create the command generator structure by adding a recurrent hidden layer and a linear output

layer.
6. Train the recurrent structure using the cost function in Eq. (7) for perception-action pairs belongs

to the training data set.

4. Experimental Results
To evaluate the proposed approach, a robot navigation task in an off-road environment with uneven
terrain was considered. The mobile robot and the experimental environments were established on the
WEBOTS simulator and the robot controller was implemented in MATLAB software. The control
task was performed in the simulation environment. The performance of Pioneer3−AT1 which is a
four-wheeled mobile robot was evaluated in the experiments. For achieving depth images, a Kinect
camera was used. This is the only vision system which the robot was equipped with. Kinect has
a depth image resolution of 320 × 240 pixels with a field of view of 58.5◦ × 46.6◦ resulting in an
average of about 5 × 5 pixels per degree.

To create an uneven terrain in simulated environments, various real depth images with admissible
roughness were considered. They were combined with some manually built hills and holes to form
an elevation map. The generated terrains for Train and Test environments are displayed in Fig. 3.
Train environment was used to gather training data and Test environment was used to compare the
performance of the proposed controller. Some closer views of uneven terrain used in experiments are
shown in Fig. 4, too.

1For more information, please visit http://robosklep.com/en/wheeled-robots/154-pioneer-3-at.html.

https://doi.org/10.1017/S0263574719001565 Published online by Cambridge University Press

http://robosklep.com/en/wheeled-robots/154-pioneer-3-at.html
https://doi.org/10.1017/S0263574719001565

Combination of recurrent neural network and deep learning 1457

Fig. 5. A sample of RGB grid map where the positions of guideline are determined in the lowest and middle
rows.

Here, the navigation task is defined as the following mission; a robot tries to reach and follows a
given trajectory (wall) while it prevents falling in the existed holes and pits and keeps its balance in
uneven terrain. The robot has to always be on the left side of the trajectory (wall). It has to preserve
the desired distance from the trajectory while avoiding crossing the trajectory line (to collide with
the wall). The admissible distance from the trajectory line is limited to a boundary. The depth image
captured by Kinect was converted to a rectangular grid of 40 × 40 pixels blocks. They were inputs
of the controller. The mean and variance of depth values of all pixels in each block were computed
and used to describe that block. These two-dimensional data were ordered in a linear arrangement
of rows (a row vector with 96 elements) and were used as the input of DNN to create represented
features.

The captured RGB images were used to define expert features. Each image was converted to a
grid map with 6 × 8 blocks. Each block contained 40 pixels of the image in each dimension. The
positions of guideline (which exists near the wall) in the lowest and middle rows of this map were
determined by utilizing its color. A sample of this operation is shown in Fig. 5. The previous applied
steering angle and the sum of the last five steering angles were joined to the above features, too.

Collecting the training data is a common unavoidable task in most of machine learning methods
specially supervised vision-based techniques and it is time-consuming.36 The proposed framework
includes two separate learning phases. The first learning phase generates the features. These features
are used as the input of the controller part tuned with the second SL phase based on the control
task. Generating the features does not need the control data. To gather data for this phase, the robot
can move in the environment randomly without considering the determined task missions, so the
data can be obtained easily. This is an improvement in manually data collection challenge. In the
proposed framework, the command generator part has fewer adjustable parameters, and therefore
its tuning needs less training samples. In the experiments, the robot was moved manually in Train
environment multiple times using a joystick and the training data were automatically generated dur-
ing the interaction between the robot and its simulated environment. The controllers were tuned
using this set of input–output pairs. The data set includes about 5640 samples where the sample
capturing rate is 2.5 images per second. The first elements of sample pairs, encoded depth maps,
were duplicated and used as the input–output pairs to train the representation network for gener-
ating the represented features. Then the pairs of the encoded depth map and its associated control
commands were utilized as the input and output of the controller to adjust the command generator
of controllers. The control command is a value belongs to {−20, 0, +30} and indicates changes in
the direction of robot orientation (turn right, go straight ahead, and turn left). The negative value
makes the robot to turn right and the positive one causes a left turn in the robot movement. The
greater positive value keeps the robot away from the holes and pits more quickly, while the lower
negative value returns the robot to the suitable path slowly and avoids it falling in the holes and
pits.

A DNN with nine hidden layers was used in the image feature representation task. The number
of neurons in each hidden layer is chosen using expert knowledge as 80, 60, 50, 30, 20, 30, 50, 60,

https://doi.org/10.1017/S0263574719001565 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001565

1458 Combination of recurrent neural network and deep learning

Fig. 6. CNN-LSTM structure with pixel input.37

Fig. 7. MLP-LSTM structure with encoded depth image.

and 80, respectively. This network has 96 inputs and 96 outputs. The train operation starts using
randomly initialized weights.

The first adjusted half of this feed-forward network was used as a function approximator to con-
struct the basic controller. This network has five layers with 80, 60, 50, 30, and 20 hidden neurons
with fixed weights and tan-sigmoid and log-sigmoid transfer functions in the first 4 hidden layers
and the last hidden layer, respectively. A linear output unit forms the output layer of the basic con-
troller and produces a continuous real value output. Adjusting the weights of the linear combination
of features in the output layer is a single-pass operation. The outputs of data representation structure
plus expert-defined features were fed to a recurrent layer with 24 hidden neurons with log-sigmoid
transfer functions to append feature histories. This layer is followed by a linear output unit in the
output layer and the command generator is formed to work as the proposed controller. Adjusting the
weights of this network is done using SL and back-propagation rule.

According to review paper37 and lots of its referred references, a typical network architecture
(named CNN-LSTM) used in DL for control tasks with pixel input is as follows: The input (a prepro-
cessed screen image or several stacked or concatenated images) is followed by some convolutional
layers without pooling, and a few fully connected layers. After the fully connected layers, there is
a recurrent layer, such as LSTM or gated recurrent unit. In the output layer, each combination of
actions in the task has one unit. When the input consists of some features instead of pixels, the CNN
layers are replaced by MLP structure. In this paper, the input of the controllers included some statis-
tical depth information as a grid map and it was needed to apply some changes in implementation of
the network structure of these works. So, to compare the RDL with CNN-LSTM structure shown in
Fig. 6, the final implementation was modified to one illustrated in Fig. 7 named MLP-LSTM and it
was thoroughly learned using SL.

The result of network training is affected by the initial weights and biases of hidden units, the
uncertainty of the environment, and the inconsistency of training data.36 So, the testing phase was
run several times and the evaluation of the experiments was evaluated by the average of evaluation
criteria over five independent runs. The average of testing time steps over these runs is around 1800.

The performance of controllers is compared to each other considering some defined failures as
follows:

1. “No Visible Trajectory” failure occurs when the robot cannot capture the guideline in camera color
images. This failure can happen as a normal event in strongly convex routes and spiral paths. Since
losing the trajectory is also possible, this situation should be distinguished in experiments. It is
supposed that the robot can capture the trajectory line in convex paths after at most 110 successive
“No Visible Trajectory” failures. Exceeding this threshold means the robot loses the trajectory.
The appropriate amount of this threshold helps the robot to return to the suitable situation before

https://doi.org/10.1017/S0263574719001565 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001565

Combination of recurrent neural network and deep learning 1459

Table I. Comparison results in the experiments.

Test environment

Controllers

Basic SDL RDL MLP-LSTM37

Number of failures as evaluation criteria (24 features) (24 features) —

Falling and losing balance 13 1.6 15.4
Too near to wall 13 10.6 73.2

The bold values demonstrate the performance of the proposed RDL controller in comparison with the basic
SDL controller and MLP-LSTM controller considering the given criteria. They show lower failures.

losing the path completely. In this way, the robot controller needs less supervisor interference.
This threshold is obtained by trial and error according to path curves in environments and the
maximum value of angles the supervisor applied to the robot for passing these curves when the
training data is gathered.

2. “Falling and losing balance” failure is detected via an inertial unit mounted on the robot.
3. “Too Near to Wall” failure shows the situations when the robot moves besides the wall and crosses

over the guideline and a collision is possible.
4. “Too Far from Wall” failure includes the situations when the distance from the wall is greater than

the desired threshold and a path loss is possible. It should be noted that this failure can happen
when the direction of the robot is not parallel to the curvature of the wall, too.

Here, the performance of the proposed RDL controller is compared with the basic SDL controller
and MLP-LSTM controller considering the abovementioned criteria. The statistical results of this
comparison are illustrated in Table I. This table shows the performance improvement by apply-
ing the proposed RDL. The number of Falling and losing balanceİ and Too Near to Wallİ failures
decreases about 87.7% and 18.5%, respectively, in comparison with the basic SDL controller for
Test environment. The number of these failures decreases about 89.6% and 85.5% in comparison
with MLP-LSTM controller, respectively.

Since “Too Far from Wall” failure sometimes is due to the existence of holes and pits, the number
of this failure for RDL controllers is greater than the basic SDL and the qualitative comparison of
them is needed to evaluate them. Figure 8 displays the samples of trajectories which are passed by the
robot using evaluated controllers in Test environment.2 As this figure shows, the performance of RDL
in following the given trajectory curves is the best. RDL never misses the wall and it avoids holes
and pits more precisely because it utilizes the histories of features and previous steering commands
which represent previous environment states. As it is visible in the trajectory figures of the basic SDL
and MLP-LSTM controller (position determined by a blue rectangle), they missed the wall when they
confronted a strongly convex path. RDL is also able to distinguish the smaller holes from bigger pits
to cross over them without going far from the wall to avoid failures.

The reasons of the pre-mentioned improvement are as follows. The proposed framework includes
two separate learning phases. It uses DL in the first phase to cover the input space thoroughly. The
recurrent layer is applied to append memory-dependent features in the next phase in order to com-
pensate non-Markov property of the environment, supervisor errors, and data inconsistency. The
command generator part has fewer adjustable parameters. So it is tuned in shorter learning time and
needs less training samples.

Making the block size of maps smaller (e.g., 20 × 20 pixels), the approach is able to encode the
environment states in depth images more accurately and the robot can preserve its distance to guide
line more precisely.

5. Conclusion and Future Works
In this paper, DL and RNN were combined to form a new framework called RDL. This framework
was applied to control a mobile robot in an off-road navigation task. The robots controller received

2You can view a movie of the robot performance when it used RDL architecture to complete its missions during one
of these trajectories in Test environment at https://pws.yazd.ac.ir/lcir/?attachment_id=3390.

https://doi.org/10.1017/S0263574719001565 Published online by Cambridge University Press

https://pws.yazd.ac.ir/lcir/?attachment_id=3390
https://doi.org/10.1017/S0263574719001565

1460 Combination of recurrent neural network and deep learning

Fig. 8. The samples of trajectories which are passed by the robot using evaluated controllers in Test environment.
(a) Basic SDL controller, (b) RDL controller, and (c) MLP-LSTM controller.37

depth image data as the input and computed the steering angle as the output. Using DL, the compact
descriptive features were extracted from high-dimensional raw images. These features and some
expert-defined features were considered as the input of an RNN structure. The adjustable weights of
RNN were tuned by supervisory data.

To assess RDL, it was applied to a vision-based robot navigation task. In this task, wall following,
obstacle avoiding, and keeping balance should be simultaneously considered in uneven terrain with
various holes and pits. Simulation results demonstrated that the proposed framework significantly
reduces the number of failures especially Falling and losing balance.

It is concluded that the presented idea based on DL decreases the dimension of states and over-
comes the curse of dimensionality. Applying the suggested memory-based RNN architecture in RDL,
it is not essential to include the sequence of past states in the controllers input. Hence, RDL is suit-
able for non-Markov environments. As another advantage, RDL has a few adjustable parameters and
low training computational cost.

As future works, RDL can be applied to various control tasks and complicated environments with
continuous state and action spaces. Moreover, other learning algorithms can be employed to tune
RNNs parameters more precisely.

Supplementary Material
To view supplementary material for this article, please visit https://doi.org/10.1017/
S0263574719001565.

https://doi.org/10.1017/S0263574719001565 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001565
https://doi.org/10.1017/S0263574719001565
https://doi.org/10.1017/S0263574719001565

Combination of recurrent neural network and deep learning 1461

References
1. G. Antonelli, S. Chiaverini and G. Fusco, “A fuzzy-logic-based approach for mobile robot path tracking,”

IEEE Trans. Fuzzy Syst. 15(2), 211–221 (2007).
2. Y. Yang, M. Fu, H. Zhu, G. Xiong and S. Changsheng, “Control Methods of Mobile Robot Rough-Terrain

Trajectory Tracking,” 8th IEEE International Conference on Control and Automation (ICRA), Anchorage,
Alaska (2010) pp. 731–738.

3. R. Hadsell, P. Sermanet, J. Ben, A. Erkan, J. Han, B. Flepp, U. Muller and Y. LeCun, “Online Learning
for Offroad Robots: Using Spatial Label Propagation to Learn Long-Range Traversability,” Proceedings of
Robotics: Science and Systems (RSS) (2007) p. 32.

4. S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny,
G. Hoffmann and K. Lau, “Stanley: The robot that won the DARPA Grand Challenge,” J. Field Rob. 23(9),
661–692 (2006).

5. K. Konolige, M. Agrawal, R. Bolles, C. Cowan, M. Fischler and B. Gerkey, “Outdoor Mapping
and Navigation Using Stereo Vision,” In: Experimental Robotics (Springer, Berlin, Heidelberg, 2008)
pp. 179–190.

6. C. Castejón, B. Boada, D. Blanco and L. Moreno, “Traversable region modeling for outdoor navigation,”
J. Intell. Rob. Syst. 43(2–4), 175–216 (2005).

7. D. Hanafi, Y. M. Abueejela and M. F. Zakaria, “Wall follower autonomous robot development applying
fuzzy incremental controller,” Intell. Control Autom. 4(1), 18 (2013).

8. C. Ye, N. H. Yung and D. Wang, “A fuzzy controller with supervised learning assisted reinforcement
learning algorithm for obstacle avoidance,” IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 33(1), 17–27
(2003).

9. F. A. Jafar, N. A. Zakaria and K. Yokota, “Visual features based motion controller for mobile robot
navigation,” Int. J. Simul. Syst. Sci. Technol. 15(1), 7–14 (2014).

10. P. Saeedi, P. D. Lawrence and D. G. Lowe, “Vision-based 3-D trajectory tracking for unknown environ-
ments,” IEEE Trans. Rob. 22(1), 119–136 (2006).

11. G. M. Hoffmann, C. J. Tomlin, M. Montemerlo and S. Thrun, “Autonomous Automobile Trajectory
Tracking for Off-Road Driving: Controller Design, Experimental Validation and Racing,” American
Control Conference, New York City, USA (2007) pp. 2296–2301.

12. P. Quintìa, J. E. Domenech, C. V. Regueiro, C. Gamallo and R. Iglesias, “Learning a Wall Following
Behaviour in Mobile Robotics Using Stereo and Mono Vision,” IX Workshop en Agentes Fìsicos, Vigo,
Espana (2008).

13. R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier, K. Kavukcuoglu, U. Muller and Y. LeCun, “Learning
long-range vision for autonomous off-road driving,” J. Field Rob. 26(2), 120–144 (2009).

14. U. Muller, J. Ben, E. Cosatto, B. Flepp and Y. L. Cun, “Off-Road Obstacle Avoidance Through End-to-End
Learning” In: Advances in Neural Information Processing Systems (Y. Weiss, B. Scholkopf, and J. Platt,
eds.) (MIT Press, Cambridge, MA, 2006) pp. 739–746.

15. Y. Bengio, A. Courville and P. Vincent, “Representation learning: A review and new perspectives,” IEEE
Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013).

16. M. Riedmiller, “Neural Fitted Q Iteration - First Experiences with a Data Efficient Neural Reinforcement
Learning Method,” European Conference on Machine Learning, Porto, Portugal (2005) pp. 317–328.

17. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland and G. Ostrovski, “Human-level control through deep reinforcement learning,” Nature
518(7540), 529–533 (2015).

18. T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez, Y. Tassa, D. Silver and D. P. Wierstra,
“Continuous Control with Deep Reinforcement Learning,” U.S. Patent Application 15/217,758 (2017).

19. V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver and K. Kavukcuoglu,
“Asynchronous Methods for Deep Reinforcement Learning,” International Conference on Machine
Learning, New York City, USA (2016) pp. 1928–1937.

20. J. Günther, P. Pilarski, G. Helfrich, H. Shen and K. Diepold, “Intelligent laser welding through repre-
sentation, prediction, and control learning: An architecture with deep neural networks and reinforcement
learning,” Mechatronics 34, 1–11 (2016).

21. H. Schäfer, M. Proetzsch and K. Berns, “Obstacle Detection in Mobile Outdoor Robots,” Proceedings
of International Conference on Informatics in Control, Automation and Robotics, Angers, France (2007)
pp. 141–148.

22. G. Ian, B. Yoshua and C. Aaron, Deep Learning (MIT Press, Cambridge, MA, 2016).
23. S. Yildirim, “Design of adaptive robot control system using recurrent neural network,” J. Intell. Rob. Syst.

44(3), 247–261 (2005).
24. D. Pham and S. Yildirim, “Design of a neural internal model control system for a robot,” Robotica 18(5),

505–512 (2000).
25. H. Brahmi, B. Ammar and A. M. Alimi, “Intelligent Path Planning Algorithm for Autonomous Robot

Based on Recurrent Neural Networks,” International Conference on Advanced Logistics and Transport
(ICALT), Tunisia (2013) pp. 199–204.

26. M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially observable MDPs,” CoRR,
abs/1507.06527 (2015).

27. F. Alamiyan Harandi and V. Derhami, “Feature extraction from depth data using deep learning for
supervised control of a wheeled robot,” J. Control 11(4), 13–24 (2018).

https://doi.org/10.1017/S0263574719001565 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001565

1462 Combination of recurrent neural network and deep learning

28. F. Alamiyan Harandi, V. Derhami and F. Jamshidib, “A new framework for mobile robot trajectory tracking
using depth data and learning algorithms,” J. Intell. Fuzzy Syst. 34(6), 3969–3982 (2018).

29. P. Ondrúška and I. Posner, “Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks,”
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, USA (2016)
pp. 3361–3367.

30. S. Lange and M. Riedmiller, “Deep Auto-encoder Neural Networks in Reinforcement Learning,”
International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain (2010) pp. 1–8.

31. L. Shao, Z. Cai, L. Liu and K. Lu, “Performance evaluation of deep feature learning for RGB-D
image/video classification,” Inf. Sci. 385, 266–283 (2017).

32. Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach. Learn. 2(1), 1–127 (2009).
33. G. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science

313(5786), 504–507 (2006).
34. J. N. Liu, Y. Hu, J. J. You and P. W. Chan, “Deep Neural Network Based Feature Representation for

Weather Forecasting” Proceedings on the International Conference on Artificial Intelligence (ICAI), Las
Vegas, USA (2014).

35. D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning representations by back-propagating errors,”
Nature 323(6088), 533 (1986).

36. F. Fathinezhad, V. Derhami and M. Rezaeian, “Supervised fuzzy reinforcement learning for robot
navigation,” Appl. Soft Comput. 40, 33–41 (2016).

37. N. Justesen, P. Bontrager, J. Togelius and S. Risi, “Deep learning for video game playing,” IEEE
Transactions on Games, 1–1 (2019). doi: 10.1109/TG.2019.2896986

https://doi.org/10.1017/S0263574719001565 Published online by Cambridge University Press

https://doi.org/10.1109/TG.2019.2896986
https://doi.org/10.1017/S0263574719001565

	Combination of Recurrent Neural Network and Deep Learning for Robot Navigation Task in Off-Road Environment
	Introduction
	Designing Controllers Using Deep Feature Representation Learning
	The Proposed RDL Framework
	Experimental Results
	Conclusion and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

