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SUMMARY
In this paper, Clifford Algebra is used to model and facilitate
solving the inverse kinematic problem for robots with only
two consecutive parallel axes. It is shown that when a solution
exists, it is usually the case that one of the angles of rotation
can be arbitrarily chosen from a union of intervals. The
remaining angles are then uniquely determined. Of course,
there are cases when no solution exists, such as when the
object is out of reach. But typically, when solutions exist,
there are infinitely many sets of solutions.

KEYWORDS: Clifford Algebra; Inverse kinematic problem;
6R serial robot.

1. Background

1.1. Introduction
The inverse kinematic problem of 6R robots has been a
subject of study for several decades. Different approaches
have been adopted to solve this problem, which was found
to be difficult to solve whether geometrically, algebraically,
or numerically.

The common geometrical approach was to divide the robot
into two systems and to solve each system independent of
the other. Algebraically, the problem can be represented by a
six-degree polynomial that is quite impossible to solve, and
numerically this problem would require thousands of lines
code to replicate the problem and its solution.

Pieper1 found that for three intersecting pairs of axes there
are four different configurations leading to the same position
and orientation. He also found that for two intersecting
pairs there are eight different configurations and for one
intersecting pair there are 16 different configurations. Later,
Selig2,3 used Pieper’s theorem along with the Clifford
Algebra Cl(0,3,1) to formulate a solution for the inverse
kinematic problem.

Bayro-Corrochano et al.4−6 worked on the inverse
kinematic problem, they formulated a solution for the inverse
kinematic problem using G(3,0,1). Bayro-Corrochano et al.
also used the conformal geometric algebra G(4,1), which
makes use of points, lines, planes, and spheres to compute
inverse and differential kinematics.4

Later, Sariyildiz and Temeltas7 and Payandeh and
Goldenberg8 used quaternions to represent the screw motion
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of the robot joints to solve the problem. Vasilyev and
Lyashin9 proposed an analytical solution for the problem,
and in their paper they used matrices, a method that has
been historically studied and is known to be quite complex.
Another analytical solution was also proposed by Pfurner
and Husty.10 Numerical solutions were studied by various
researchers.11,12

In this paper, we present a new simple method to solve the
inverse kinematic problem of 6R serial manipulators. This
method uses Clifford Algebra to represent the robot joints2 in
simple equations. These equations are solved together using
algebraic operations such as conjugation to relate five of
the six unknown angles in terms of one angle that can be
arbitrarily chosen.

An important advantage of this method is that all possible
solutions can be found by arbitrarily choosing an angle
from union of intervals, and then the remaining angles are
determined uniquely.

1.2. Clifford Algebra
One type of Clifford Algebra is the Cl(0,3,1) which is
an associative algebra of dimension 16 with four anti-
commutative generators e1, e2, e3, and e, the first three square
to –1 and the fourth to 0. For more on the properties of this
algebra, see Ref. [2].

This algebra was used to model points, line, planes, and
the group of rigid body motions as follows and as described
in ref. [2]. Points are represented by grade three elements

p = e1 e2 e3 + x e2 e3 e − y e1 e3 e + ze1 e2 e, (1.1)

where x, y, z are the coordinates of the position vector of the
point.

Lines are represented by grade two elements,

l = vx e2 e3 − vy e1 e3 + vz e1 e2 + uxe1 e

+ uy e2 e + uz e3 e, (1.2)

where v = (vx , vy , vz) is a unit vector in the direction of the
line and u = (ux , uy , uz) is the moment vector defined as
the cross product of v and a point on the line. So (v, u) are
the Plücker coordinates of l.

Planes are represented by grade one elements,

π = nxe1 + nye2 + nze3 + de, (1.3)
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where n = (nx , ny , nz) is a choice of unit normal vector to
the plane, and d is the distance to the origin.

Rigid body motions are represented by even grade
elements,

g = a + 1

2
t a e, (1.4)

where a is the Clifford Algebra element representing the
rotation part of the motion. In fact

a = cos
θ

2
+ sin

θ

2
l, (1.5)

where l is the Clifford Algebra element representing the axis
of rotation, and θ is the angle of rotation. Finally, t is the
Clifford Algebra element representing the translation part of
the motion as follows:

t = txe1 + tye2 + tze3, (1.6)

where (tx , ty , tz) is the translation vector.
One of the algebraic operations used in this paper is

conjugation, which is a linear mapping from the algebra
to itself. The conjugate of a generator is its negative. The
conjugate of a product of generators is the product of the
conjugates of the generators in reverse order. All these
elements, p, l, π , g, and a, belong to the group of elements
of Cl(0,3,1) satisfying xx

∗ = 1. If x is p, l, or π , then gxg
∗

is
the image of x under the rigid body motion g.

1.3. Inverse kinematic problem
A 6R robot consists of six joints whose axes are represented
by the Clifford Algebra element li of the form (1.2) with
Plücker coordinates (vi , ui).

The six equations representing the six joints of the robot
form what is called the home position of the joints. It is only
necessary to consider the home (initial) and final positions
of the joints.

In simple terms, the inverse kinematic problem is about
finding all possible sets of the six joint angles in order to
obtain a specified gripper location and orientation. This is an
important problem in robotics, since whenever we specify
the motion of the robot’s gripper, we need to know the
corresponding joint motions. Mathematically, we proceed
as follows: Solving this equation is to find the set of θs for a
given g, where g is the Clifford Algebra element representing
the rigid body motion that would take the gripper from its
home position to the desired final position. The inverse
kinematic problem is then to solve for θ i the following
equation:

g = a1 a2 a3 a4 a5 a6, (1.7)

where ai = cos θi

2 + sin θi

2 li is the Clifford Algebra element
representing rotation through an angle θ i about the axis li .
Trying to solve Eq. (1.7) by expanding both sides will yield
a polynomial of degree six in the variables sin θi

2 and cos θi

2 ,
which is difficult to solve. The inverse kinematic problem
of a 6R robot has been previously solved under certain

restrictions such as three consecutive joints being parallel13

or intersecting in a point.1

Another method for solving the inverse kinematic problem
for a 6R robot consists of dividing the joints into two groups
and solving each group independently as done in ref. [14].
This method cannot be generalized for all 6R robots. It
worked for the well-known robot PUMA because of the
nature of its design; its first three joints almost form a planar
manipulator and the last three form a 3R wrist, both of these
cases are easy to solve.

2. Main Result
We will demonstrate that for a 6R serial robot and for a
wide variety of final gripper positions given by g there exist
infinite sets of solutions for a robot with two consecutive
parallel joints.

2.1. The algorithm
All algebraic operations used in this section can be found
in refs. [2, 3]. We solve the case of a 6R robot with
two consecutive parallel joint axes starting from Eq. (1.7).
Suppose l2 is parallel to l3 and let π be the plane perpendicular
to both of them passing through the origin.

Using conjugation, we can rewrite Eq. (1.7) as

a∗
1 g a∗

6 a∗
5 a∗

4 = a2 a3. (2.1)

Since π is perpendicular to l2 and l3, we obtain

a2 a3 π a∗
3 a∗

2 = π = a∗
1 g a∗

6 a∗
5 a∗

4 π a4 a5 a6 g∗ a1. (2.2)

Working on right-hand side of Eq. (2.2) we find

g∗ a1 π a∗
1 g = a∗

6 a∗
5 a∗

4 π a4 a5 a6 = a∗
6 π5a6, (2.3)

where here and below π5 = a∗
5 π4 a5 and π4 = a∗

4 π a4.

Now π5 meets l6 at the point given by a scalar multiple of
l6 � π5. The product x�y is called the exterior product or the
Grassman product; it is a linear and associative product. On
generators, it is given by ei�ej = 1

2 (eiej − ej ei). For more
on the expansion of this exterior product, see ref. [2]. Hence,

a∗
5 π4 a5l

∗
6 + l6a

∗
5 π∗

4 a5

= g∗ a1 π a∗
1 g l∗6 + l6g

∗a1 π∗ a∗
1 g. (2.4)

Equating left-hand side and right-hand side of this equation,
we obtain cos θ4 and sin θ5 each as functions of θ1, then using
Eq. (2.3), we can find sin θ6 as a function of θ4, θ5, and θ1,

where θ4 and θ5 are now known.
Expanding Eq. (2.1) produces eight equations, six of which

are redundant. The remaining two equations give θ2 in terms
of θ1 and consequently θ3 in terms of θ1.
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Fig. 1. 6R robot represented by a system of equations.

3. Application

3.1. General setup of home configuration (initial position)
In this section, a system of equations representing initial
position of the 6R robot joints using Clifford Algebra and
the solution of this system are shown.

3.1.1. Numerical experiment. For a 6R robot we represent
the home configuration by l1,. . ., l6 as in the following

generic case,

l1 = e1 e2

l2 = e3 e1

l3 = e3 e1 − L2 e1 e

l4 = e1 e2 + d3 e1 e

l5 = e3 e1 − L e1 e

l6 = e1 e2 + d5 e1 e

(3.1)

where L = L2 + L3, L2 and L3 are link lengths, and d3 and d5

are joint offsets.
This system of equations can be represented by Fig. 1.
Using these equations and the previously mentioned

algorithm, for an arbitrarily chosen θ1 from a union of
intervals, the solution of this system is obtained; solution is
given in Table I. We start by substituting ai = cos θi

2 + sin θi

2 li
and the set of Eq. (3.1) in Eq. (2.4). Left-hand side of the
equation will include two unknowns, θ4 and θ5, and right-
hand side includes θ1. By equating left-hand side and right-
hand side of Eq. (2.4) we obtain cos θ4 in terms of θ1 as given
in Eq. (3.2) and sin θ5 in terms of sin θ4 (Eq. 3.3), which is
known once θ1 is chosen.

Next we use Eq. (2.3) where now θ1, θ4, and θ5 are known,
the only unknown would be θ6; equating left-hand side and
right-hand side of Eq. (2.3), we obtain sin θ6 in terms of θ1,

θ4, and θ5 as given by Eq. (3.4).
Having θ1, θ4, θ5, and θ6 known, we substitute in Eq. (2.1)

where we equate right-hand side and left-hand side producing
eight equations, six of which are redundant. Using one of the
remaining two equations, we obtain θ2 as given by Eq. (3.5)
and using the second equation we obtain θ3 as given by Eq.
(3.6).

Equations (3.2)–(3.6) consist of long terms that are fully
expanded and shown by sets of Eqs. (3.7)–(3.8),

where

� = cos θ1

(
2vxvy sin2 α

2
+ vz sin α

)

+ sin θ1

(
− cos2 α

2
+ (−v2

x + v2
y + v2

z

)
sin2 α

2

)
,

Table I. System of equations representing the solution.

Angle Solution

cos θ4
1

(d5 − d3)
(�d5 − � + �L − d3) d3 �= d5 (3.2)

sin θ5
�

sin θ4
(3.3)

sin θ6

− cos θ5 sin θ4� −
√

cos2
θ5

sin2
θ4

�2 − (
cos2

θ4
+ cos2

θ5
sin2

θ4

) (
�2 − cos2

θ4

)
(
cos2

θ4
+ cos2

θ5
sin2

θ4

) (3.4)

tan
θ2

2

cos
θ1

2
KG + sin

θ1

2
MG

cos
θ1

2
IG + sin

θ1

2
JG

(3.5)

θ3 2 cos−1

[
cos

θ1

2
EG + sin

θ1

2
FG

]
− θ2 (3.6)

https://doi.org/10.1017/S0263574712000380 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574712000380


420 Exact Solution of Inverse Kinematic Problem

Table II. Existing solutions for various design parameters and transformation angles.

Case d3 d5 L2 L3 α (degrees) tx ty tz vx vy vz Range of θ1 (in degrees)

1 1 7 4.5 4.5 31–114 0.15 0.15 0.1 0.4 0.3 0.86603 (0–360)
2 1 7 4.5 4.5 120 0.15 0.15 0.1 0.4 0.3 0.86603 (0–54) U (100–360)
3 1 7 4.5 4.5 150 0.15 0.15 0.1 0.4 0.3 0.86603 (0–31) U (134–237) U (297–360)
4 1 4 4.5 4.5 34–66 0.15 0.15 0.1 0.4 0.3 0.86603 (0–360)
5 1 4 4.5 4.5 30 0.15 0.15 0.1 0.4 0.3 0.86603 (0–149) U (203–360)
6 1 4 4.5 4.5 120 0.15 0.15 0.1 0.4 0.3 0.86603 (0–12) U (150–217) U (308–360)
7 1 4 4.5 4.5 30 1 1 1 0.4 0.3 0.86603 (0–107) U (214–360)
8 1 4 4.5 4.5 100 1 1 1 0.4 0.3 0.86603 (0–22) U (154–229) U (307–360)
9 1 4 4.5 4.5 80 1 1 1 0.4 0.3 0.86603 (0–36) U (150–360)

10 1 4 4.5 4.5 150 1 1 1 0.4 0.3 0.86603 (0–21) U (173–217) U (338–360)
11 2 3 4.5 4.5 100 1 1 1 0.4 0.3 0.86603 (192–213) U (326–348)
12 2 3 4.5 4.5 150 1 1 1 0.4 0.3 0.86603 (0–3) U (199–213) U (349–360)
13 1 4 2 4 80 1 1 1 0.4 0.3 0.86603 (0–86) U (121–360)
14 1 4 2 4 100 1 1 1 0.4 0.3 0.86603 (0–43) U (138–360)
15 1 4 2 4 150 1 1 1 0.4 0.3 0.86603 (0–22) U (151–228) U (321–360)
16 1 4 2 4 45–92 0.15 0.15 0.1 0.4 0.3 0.86603 (0–360)
17 1 4 2 4 100 0.15 0.15 0.1 0.4 0.3 0.86603 (0–43) U (106–360)
18 1 4 2 4 150 0.15 0.15 0.1 0.4 0.3 0.86603 (0–15) U (150–229) U (307–360)

� = cos θ1

(
cos2 α

2
− (

v2
x − v2

y + v2
z

)
sin2 α

2

)

+ sin θ1

(
−2vxvy sin2 α

2
+ vz sin α

)
,

� = cos θ1

(
2vyvz sin2 α

2
− vx sin α

)

+ sin θ1

(
−2vxvz sin2 α

2
− vy sin α

)
,

� = −2 cos θ1

(
B cos

α

2
+ sin

α

2

(−Cvx + Dvy + Avz

))

+ 2 sin θ1

(
A cos

α

2
+ sin

α

2

(
Dvx + Cvy − Bvz

))

(3.7)

A = 1

2

(
tx cos

α

2
+ sin

α

2

(
tyvz − tzvy

))
,

B = 1

2

(
ty cos

α

2
+ sin

α

2
(tzvx − txvz)

)
,

C = 1

2

(
tz cos

α

2
+ sin

α

2

(
txvy − tyvx

))
,

D = 1

2
sin

α

2
(txvx + tyvy + tzvz).

(3.8)

and

EG = cos
α

2
cos

θ5

2
cos

(
θ4 + θ6

2

)

+ sin
α

2

[
cos

θ5

2
sin

(
θ4 + θ6

2

)
vz

− sin
θ5

2
sin

(
θ4 − θ6

2

)
vx

+ sin
θ5

2
cos

(
θ4 − θ6

2

)
vy

]
,

FG = − cos
α

2
cos

θ5

2
sin

(
θ4 + θ6

2

)

+ sin
α

2

[
cos

θ5

2
cos

(
θ4 + θ6

2

)
vz

− sin
θ5

2
sin

(
θ4 − θ6

2

)
vy

− sin
θ5

2
cos

(
θ4 − θ6

2

)
vx

]
,

GG = cos
α

2
sin

θ5

2
sin

(
θ4 − θ6

2

)

+ sin
α

2

[
cos

θ5

2
cos

(
θ4 + θ6

2

)
vx

− cos
θ5

2
sin

(
θ4 + θ6

2

)
vy

+ sin
θ5

2
cos

(
θ4 − θ6

2

)
vz

]
,

HG = − cos
α

2
sin

θ5

2
cos

(
θ4 − θ6

2

)

+ sin
α

2

[
cos

θ5

2
cos

(
θ4 + θ6

2

)
vy

+ cos
θ5

2
sin

(
θ4 + θ6

2

)
vx

+ sin
θ5

2
sin

(
θ4 − θ6

2

)
vz

]
,

IG = cos
α

2
XG + sin

α

2

[−YGvz + ZGvy − WGvx

]

+ A cos
θ5

2
cos

(
θ4 + θ6

2

)
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− B cos
θ5

2
sin

(
θ4 + θ6

2

)

+ C sin
θ5

2
cos

(
θ4 − θ6

2

)

− D sin
θ5

2
sin

(
θ4 − θ6

2

)
,

JG = cos
α

2
YG + sin

α

2

[
XGvz − ZGvx − WGvy

]

+ A cos
θ5

2
sin

(
θ4 + θ6

2

)
+ B cos

θ5

2
cos

(
θ4 + θ6

2

)

+ C sin
θ5

2
sin

(
θ4 − θ6

2

)
+ D sin

θ5

2
cos

(
θ4 − θ6

2

)
,

KG = cos
α

2
ZG + sin

α

2

[−XGvy + YGvx − WGvz

]

− A sin
θ5

2
cos

(
θ4 − θ6

2

)
− B sin

θ5

2
sin

(
θ4 − θ6

2

)

+ C cos
θ5

2
cos

(
θ4 + θ6

2

)
+ D cos

θ5

2
sin

(
θ4 + θ6

2

)
,

MG = cos
α

2
WG + sin

α

2

[
XGvx + YGvy + ZGvz

]

+ A sin
θ5

2
sin

(
θ4 − θ6

2

)
−B sin

θ5

2
cos

(
θ4 − θ6

2

)

− C cos
θ5

2
sin

(
θ4 + θ6

2

)
+ D cos

θ5

2
cos

(
θ4 + θ6

2

)
.

(3.9)

XG = − cos
θ5

2

(
sin

θ4

2
cos

θ6

2
d3 + cos

θ4

2
sin

θ6

2
d5

)

+ sin
θ5

2
cos

(
θ4 − θ6

2

)
L,

YG = − sin
θ6

2
cos

θ5

2
sin

θ4

2
(d5 − d3)

+ sin
θ5

2
sin

(
θ4 − θ6

2

)
L,

ZG = sin
θ5

2

(
− cos

θ6

2
sin

θ4

2
d3 + sin

θ6

2
cos

θ4

2
d5

)
,

WG = − sin
θ6

2
sin

θ5

2
sin

θ4

2
(d5 − d3) . (3.10)

The trigonometric nature of the equations given in Table I
shows that there should be two solutions for each of θ4, θ5, θ6,
and θ3. However, numerical evidence shows that not all 16

possibilities are solutions. Depending on the transformation
angle and design parameters, the results vary from one robot
to the other, but it was not found in any case that there are 16
solutions.

We can find infinite sets of θs representing the solution of
the inverse kinematic problem of a 6R robot. It is found that
there are ranges of values of θ1 for which the remaining θ i

are uniquely determined by θ1 and also there are ranges of
values of θ1 for which there is no solution.

To implement the algorithm we arbitrarily take a range of
trial values for θ1 and for each of them determine whether
the values of θ4, θ5, θ6, θ2 and θ3 can be obtained.

Table II represents some of the numerical solutions for
the robot given by Fig. 1 in Section 3.1.1. It shows that for
various design parameters and transformation angles α, the
values of θ1 where a solution exists is given.

Take an example case 6, for which a solution exists for θ1

varying from 0◦ to 12◦, from 150◦ to 217◦ and from 308◦
to 360◦, while for the remaining values of θ1 there is no
solution. In case 16, for all αs varying from 45◦ to 92◦, there
exists a solution for all values of θ1.

It is shown in Table II that for various design parameters,
a unique solution or no solution was always obtained for a
given θ1. Of course, there are values for those parameters
where no solution exists at all, such as if the length link is
too short or too long, and for the design parameter that is too
small or too big.

4. Summary
This work shows that for an arbitrary choice of one of
the angles of rotation within a union of intervals, there
exists a unique solution for the inverse kinematic problem
for a 6R serial manipulator with two consecutive joint
axes being parallel. Clifford Algebra formed an important
tool in simplifying the representation of the robot’s home
configuration and in solving the system.
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