
“S0269964809000266jra” — 2009/5/28 — 12:51 — page 433 — #1

�

�

�

�

Probability in the Engineering and Informational Sciences, 23, 2009, 433–447. Printed in the U.S.A.
doi:10.1017/S0269964809000266

DECOMPOSITION PROPERTY FOR
MARKOV-MODULATED QUEUES WITH

APPLICATIONS TO WARRANTY
MANAGEMENT

NAN LIU AND VIDYADHAR G. KULKARNI

Department of Statistics and Operations Research
University of North Carolina

Chapel Hill, NC 27599
E-mail: nliu@email.unc.edu; vkulkarn@email.unc.edu

In this article we study Markov-modulated queues with and without jumps. These
queuing models arise naturally in production-inventory systems with and without
an external supplier. We show an interesting decomposition property that relates
the equilibrium state distributions in these two systems and present an integrated
warranty-inventory management model as an application.

1. INTRODUCTION

Queues in a stochastic environment have been extensively studied over decades.
Previous articles on this topic (e.g., Eisen and Tainiter [3], Mitrany and Avi-Itzhak [9],
Neuts [10],Yechiali and Naor [17] andYechiali [16]) are dedicated to deriving equilib-
rium conditions, queue lengths, waiting times, and other system performance measures
in steady state. These types of models arise in applications where queues exhibit fluc-
tuations in their arrival and/or service processes (e.g., traffic queues, service operations
by different agents, queues subject to server breakdowns, etc.; see, e.g., Neuts [10]
and Mitrany and Avi-Itzhak [9]). In this article we study a single-server queue in a
stochastic environment in which random batch arrivals (“jumps”) occur as soon as the
server becomes free; thus, the server is always kept busy. To our best knowledge, no
literature has considered such models thus far. Our motivation for studying these queu-
ing models is to provide theoretical insights to the relationships between this model
(models with jumps) and the original model (models without jumps). Furthermore,
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queues and production–inventory systems are closely related to each other: customer
arrivals and service completions in queues correspond to productions and demands
in the production-inventory systems, respectively. In our queuing model, the “jump”
behavior is the result of the order placement in inventory setups. Recently, the idea
of “stochastic environment” has been viewed as a very useful tool in the inventory
management area to model demand fluctuations (see, e.g., Song and Zipkin [14]).
Thus, our theoretical results on queues in a stochastic environment can enhance the
understanding of inventory systems in a stochastic environment and be helpful for
analyzing such inventory control problems.

For the ease of discussion, we use the terminology of inventory to describe
our models. We study a production-inventory system where the production and
demand are modulated by an external environment process, which is modeled as
a continuous time Markov chain (CTMC) with a finite state space. We model the
production and demand processes as Poisson processes whose rates are determined
by the current state of the environment process. We consider two cases. The first one
corresponds to a lost-sale inventory system without an external supplier, for which
the inventory level remains zero if its current level is zero until the next produc-
tion occurs. All of the demands during this interval are lost. This case is actually
a Markov-modulated M/M/1 queuing model as studied in Yechiali [16]. The sec-
ond case corresponds to an inventory system with an external supplier, for which
the inventory is replenished to a random level immediately after a demand occurs
when the inventory level is zero. This system behaves as an inventory system under
continuous review where no backlogging is allowed, lead times are zero, an order
is placed when the inventory level is zero and a demand occurs, and the order size
is random.

We study the limiting distributions of the inventory level for both of the models
and show an interesting relationship between them, which is similar to the decompo-
sition results in queues with server vacations (see, e.g., Fuhrmann and Cooper [4] and
Shanthikumar [13]). Our result is also a generalization of Lemma 6.3.1 in Zipkin [18,
p. 201]: that the inventory position is a uniform random variable in limit if one
manages the inventory system in a Markovian demand environment using an (r, q)

policy.
Using the theoretical results, we study an interesting warranty–inventory man-

agement problem. Warranty models have been studied to a great extent in the past and
related literature is scattered across many journals from different disciplines. Blischke
and Murthy [1] provided a detailed review. The inventory problem we consider here
is of great significance in industries, especially in those that sell durable products with
warranties on them (e.g., vehicle batteries, electric appliances, computer components,
etc.). In our basic warranty–inventory model, we assume that the demand only arises
from replacement requests due to failed products within their warranty periods. Thus,
the products with unexpired warranties serve as the external environment process.
We also study several extensions to this basic model. In particular, we consider the
extension where the demand comes from both new sales and replacement requests
and we also relax the Markovian assumption.
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Our research is closely related to inventory control problems and fluid processes
in a stochastic environment. Song and Zipkin [14] considered the inventory control
problem under Markov-modulated Poisson demands and derived the structure of the
optimal ordering policy to be an environment-dependent one. A recent article by
Schwarz, Sauer, Daduna, Kulik, and Szekli [12] studied an inventory control problem
for which the demand is modulated by an M/M/1 queue. In the case of a continuous
fluid model, Browne and Zipkin [2] studied a model with continuous demand driven
by a Markov process. Fluid versions of these models are studied in Kulkarni, Tzenova,
and Adan [7], Kulkarni and Yan [8], and Yan and Kulkarni [15]. The closest work to
our analysis is [8], in which the authors considered a continuous fluid-flow system
with jumps at the boundary. However, as far as we know, no literature thus far has
shown the stochastic decomposition property in the systems we study here.

The remainder of the article is organized as follows. In Section 2 we introduce
some preliminary results for the system without an external supplier. In Section 3
we study the system with an external supplier and show the stochastic decomposition
property. We present the warranty-inventory management model in Section 4. Finally,
we mention some possible future research directions in Section 5.

2. PRELIMINARIES:THE MODEL WITHOUT JUMPS

In this section we present some preliminary results on a Markov-modulated M/M/1
queuing model. The purpose of this section is to introduce the notation and recapitulate
the main results in Yechiali [16] for ready reference in the rest of the article. Consider
a production-inventory system in a stochastic environment and without an external
supplier. We call this the model without jumps. Let Y(t) be the state of the environment
at time t. We assume that {Y(t), t ≥ 0} is an irreducible CTMC with a finite state space
� = {1, 2, . . . , n} and its generator matrix is Q = [qi,j]. Let PP(γ ) represent a Poisson
process with rate parameter γ . During the time intervals when Y(t) = i, the demands
arise according to PP(λi) and the production occurs according to PP(μi). The demand
process is independent of the production process. Let π = [πi] denote the limiting
distribution of the process {Y(t), t ≥ 0)} [i.e., limt→∞ Pr(Y(t) = i) = πi]. It is clear
that π is the unique solution to the following system:

πQ = �0, πe = 1,

where �0 is a row vector with all 0s and e is a column vector with all 1s.
Let X(t) be the inventory level at time t. Since there is no external supplier,

unsatisfied demands are lost, so {X(t), t ≥ 0} has the state space S = {0, 1, 2, . . .}. It
is easy to see that {(X(t), Y(t)), t ≥ 0} is a bivariate CTMC on the state space S × �.
We assume that it is irreducible. Let ri = λi − μi be the net demand rate at state i,
∀i, and r = [ri] be a 1 × m row vector. Let d = πrT denote the expected net demand
rate in steady state. It is well known that the system is stable if and only if the average
demand rate is strictly larger than the average production rate in equilibrium state
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(see, e.g., Yechiali [16]); that is,

d = πrT > 0. (2.1)

Assume that stability condition (2.1) holds. Let

pi,j = lim
t→∞ Pr((X(t), Y(t)) = (i, j)), (i, j) ∈ S × �.

Define the partial generating functions

ψ j(z) =
∑

i

zipi,j

and let

ψ(z) = [ψ1(z), ψ2(z), . . . , ψn(z)].
Define

p0 = [p0,1, p0,2, . . . , p0,n]
and let

�(λ) = diag(λ1, λ2, . . . , λn)

represent a diagonal matrix whose (i, i)th entry is λi. Denote that

ν = p0�(λ)

and

U(z) = �(μ + λ) − z�(μ) − 1

z
�(λ). (2.2)

It is shown in Yechiali [16] that

ψ(z) = z − 1

z
ν[U(z) − Q]−1. (2.3)

We refer the reader to Yechiali [16] for numerical methods to compute ν.

3. THE MODEL WITH JUMPS

3.1. The Model and Stability Conditions

In this section, we consider the production-inventory system of the previous section
but with an external supplier who can satisfy orders instantaneously. We call it the
model with jumps. To distinguish it from the model without jumps, let X ′(t) and Y ′(t)
denote the inventory level and the state of the environment at time t, respectively.
When the inventory level is zero and a demand occurs, we place an order from the
external supplier and the order arrives instantaneously. Suppose that the ith order has
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a size of Ji, and Ji’s are a sequence of i.i.d. (independent and identically distributed)
discrete random variables with support Z

+ = {1, 2, 3, . . . }. We use J to denote the
size of a generic order; thus, the inventory level becomes J − 1 right after an order
arrives. As we can see, this corresponds to an inventory model under a base-stock
policy with random order sizes and with no backlogging and no lead times. Note that
the random order sizes include the more common case of constant deterministic order
sizes. Random order sizes arise as a model of the situation when the actual amount
received from the supplier is a random variable depending on the amount ordered.
This may be due to damages in transportation.

It is clear that {(X ′(t), Y ′(t)), t ≥ 0} is also a bivariate CTMC on the state space
S × �. We assume that it is irreducible. Lemma 3.1 states the stability condition for
the {(X ′(t), Y ′(t)), t ≥ 0} process.

Lemma 3.1: The {(X ′(t), Y ′(t)), t ≥ 0} process is stable if

πrT > 0,

Pr(J ≤ M) = 1 for some M < ∞. (3.1)

Proof: Let S0 = 0 and Sk represent the kth jump of the X ′(t) process from 0 to
Jk − 1 [i.e., X(S−

k ) = 0 and X(S+
k ) = Jk − 1]. Let Zk = {X ′(S+

k ), Y ′(S+
k )}. It is easy

to see that {(Zk , Sk), k ≥ 0} is a Markov renewal sequence and {(X ′(t), Y ′(t)), t ≥ 0}
is the corresponding Markov regenerative process (MRGP) (see, e.g., Kulkarni [6]).
From the theory of MRGP, the limiting distribution of {(X ′(t), Y ′(t)), t ≥ 0} exists if
E(Sk) < ∞. By the stability condition (2.1) as discussed in Section 2, we know that
E(Sk) < ∞ if πrT > 0 and Pr[J ≤ M] = 1. This proves the lemma. �

3.2. Stochastic Decomposition Property

Let X ′ d= limt→∞ X ′(t) and X
d= limt→∞ X(t), where

d= represents the equality
in distribution. Theorem 3.1 gives the main result of this article—the stochastic
decomposition property that relates the distributions of X ′ and X.

Theorem 3.1: Assume that the stability conditions (3.1) hold; then

X ′ d= X0 + X ,

where X0 and X are independent, and the probability mass function of X0 is given by

Pr(X0 = i) = Pr(J > i)

E(J)
, i ∈ Z

+ ∪ {0}.

Proof: Let αi = Pr(J = i), i ∈ Z
+, and p′

i,j = limt→∞ Pr[(X ′(t), Y ′(t)) = (i, j)],
(i, j) ∈ S × �. We have the following balance equations corresponding to the system
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with an external supplier:( ∑
k �=j

qj,k + μj + λj

)
p′

0,j =
∑
k �=j

p′
0,kqk,j + α1λjp

′
0,j + λjp

′
1,j, ∀j, (3.2)

( ∑
k �=j

qj,k + μj + λj

)
p′

i,j =
∑
k �=j

p′
i,kqk,j + α(i+1)λjp

′
0,j + μjp

′
i−1,j + λjp

′
i+1,j,

∀i ≥ 1, ∀j. (3.3)

Let the partial generating functions φj(z), |z| ≤ 1, j = 1, 2, . . . , n, be defined by

φj(z) =
∑

i

zip′
i,j.

Define

φ(z) = [φ1(z), φ2(z), . . . , φn(z)] and ω = p′
0�(λ).

Let

φJ(z) = E(zJ)

be the generating function of J . Through some elementary but tedious algebra, we
obtain the following matrix representation from the system (3.2) and (3.3):

φ(z) = φJ(z) − 1

z
ω[U(z) − Q]−1, (3.4)

where U(z) is defined in (2.2). Now, rewrite (3.4) into the following form:

φ(z) = 1

E(J)

φJ(z) − 1

z − 1
E(J)

z − 1

z
ω[U(z) − Q]−1.

Notice that φ(z) is a valid generating function of a random vector. Let X0 be a random
variable with probability mass function given by

Pr(X0 = i) = Pr(J > i)

E(J)
, i ∈ Z

+ ∪ {0}.
It can be shown that the generating function of X0 is

E(zX0) = 1

E(J)

φJ(z) − 1

z − 1
.

Thus,

E(J)
z − 1

z
ω[U(z) − Q]−1

must constitute a valid generating function of a random vector. Recall the form of
(2.3). Since ν is the unique vector that makes ψ(z) of (2.3) a valid generating function
of a random vector, we must have ν = E(J)ω. Hence, the result follows. �

A sample path argument similar to that in Kulkarni and Yan [8] can also be used
to prove this theorem.
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3.3. Special Cases

Theorem 3.1 implies that in steady state, the inventory level in the model with jumps
is the sum of two independent random variables: one only depends on the distribution
of random jump size J and the other is the equilibrium inventory level in the model
without jumps. Consider the following two cases, which are of special interest in the
inventory control context.

Case 1: If J is deterministic [i.e., Pr(J = q) = 1 for some q ∈ Z
+], then it is easy

to verify that X0 is a discrete uniform random variable on {0, 1, . . . , q − 1}.

Case 2: Suppose that there is no production (i.e., μi = 0, ∀i and λi > 0 for at least
one i); then the system without an external supplier (as discussed in Section 2) is
stable but reducible and p0,j = πj, ∀j, and pi,j = 0, ∀i ≥ 1, ∀j. It is easy to show that
Theorem 3.1 still holds for this special case. Notice that, in this situation, X = 0

with probability 1 so X ′ d= X0. Since X0 depends only on J and is independent in the
{Y ′(t), t ≥ 0} process, the limiting distribution of inventory level is also independent
in the external environment process. This is a very useful result, and it simplifies
the analysis of an inventory system in which the demand process is modulated by a
CTMC.

3.4. Extensions

The stochastic decomposition property shown in Theorem 3.1 also holds in the
following extensions.

3.4.1. Backlogging. We had assumed no backlogging so far. Thus, an order
is placed with an external supplier when the inventory level is zero and a demand
occurs. We can extend this to a general inventory system with backlogging where
the reorder point is r < 0 rather than −1. To prove that the stochastic decomposition
property still holds in this situation, one only needs to study X ′′(t) = r + 1 + X ′(t).
Notice that the {X ′′(t), t ≥ 0} process has the state space {0, 1, 2, . . . } and behaves as
if the inventory level process in a system without backlogging.

It is worth pointing out that Theorem 3.1 is a generalization of the well-known
results stated in Zipkin [18, Lemma 6.3.1, p. 201]: If one manages an inventory system
with positive lead times in a Markovian demand environment using an (r, q) policy,
then the inventory position is uniformly distributed on {r + 1, r + 2, . . . , r + q} in the
limiting state. To see this, notice that J is deterministic and there is no production in
the model of Zipkin [18, p. 201].

3.4.2. Interacting environment process. Suppose that the occurrence of
a demand (or a production) triggers an instantaneous probabilistic change in the state
of the external environment process as follows. Let {Y(t), t ≥ 0} be the external
environment process. Let U0 = 0 and Uk be the kth demand or production event.
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Assume that over (Uk , Uk+1), the {Y(t), t ∈ (Uk , Uk+1)} process behaves as an irre-
ducible CTMC with generator matrix Q = [qi,j]. Furthermore, when a demand (or a
production) occurs at time Uk , the state of {Y(t), t ≥ 0} changes instantaneously with
transition probabilities given by

ai,j = Pr(Y(U+
k ) = j|Y(U−

k ) = i the kth event is a demand,

bi,j = Pr(Y(U+
k ) = j|Y(U−

k ) = i the kth event is a production.

Let A = [ai,j] and B = [bi,j] be n × n matrixes. Notice that the A and B matrixes do
not depend on the inventory level itself. It is not difficult to see that {Y(t), t ≥ 0} is a
CTMC with the state space � = {1, 2, . . . , n} and its generator matrix is given by

QY = Q − �(μ + λ) + �(μ)B + �(λ)A.

Note that, in general, QY �= Q unless A = B = I , where I is an identity matrix. Since
Q is the generator matrix of an irreducible CTMC, so is QY . Now it is straightforward
to verify that Theorem 3.1 holds with with U(z) in (2.2) replaced by

U(z) = �(μ + λ) − z�(μ)B − 1

z
�(λ)A.

3.4.3. Compound Poisson production process. Suppose that the pro-
duction process is a compound Poisson process with rate (vector) μ and the ith
production generates Di items, where the Di’s are a sequence of i.i.d. positive integer-
valued random variables. We use D to represent the number of items generated
in a generic production batch. One can show that the decomposition property still
holds by using arguments similar to those in Sections 2 and 3.2 with U(z) in (2.2)
replaced by

U(z) = �(μ + λ) − E(zD)�(μ) − 1

z
�(λ).

However, if the demand process is assumed to be a compound Poisson process, the
decomposition property breaks down due to the boundary effect.

3.4.4. Semi-Markov environment process. It is clear that if the sojourn
time of Y(t) in an arbitrary state i is a phase-type random variable, the external
environment process can still be modeled as a CTMC (but with more states) and, thus,
Theorem 3.1 holds as well. Since the set of phase-type distributions is dense in the
set of all distributions with support in [0, +∞) (see Neuts [11] for further details),
the stochastic decomposition property holds even if {Y(t), t ≥ 0} is a semi-Markov
process rather than a CTMC.
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4. APPLICATIONSTO WARRANTY-INVENTORY MANAGEMENT

In this section we apply the results obtained above to an integrated warranty-inventory
management model under continuous review. In our model, we assume that each
product is sold with a warranty. If a product fails within its warranty period, it gets a
free replacement from the inventory. Thus, the demands come from two sources: (1)
external demands from new sales and (2) replacement demands from failed products
within their warranty periods. We study two types of warranties, namely renewing
and nonrenewing (see Blischke and Murthy [1]). Under a renewing warranty, each
replaced product has the same warranty period as a brand new product; under a
nonrenewing warranty, the replacement gets the residual warranty period. To start
with, we concentrate on the case in which new sales are handled by a separate source
and the inventory is maintained only to to cover the demands arising from product
replacement requests. We subsequently present several extensions to this basic model.

4.1. The Basic Model

In this subsection we consider the inventory system that is dedicated to replacement
demands. We will study the inventory system facing demands from both new sales
and product replacements in Section 4.2. Suppose that the sales process follows a
PP(θ) and each sale is satisfied by an external supplier. The inventory is maintained
to service demands arising from the failure of the sold items during their warranty
periods. Product lifetimes are i.i.d phase-type random variables with m phases and
parameters (α, T), denoted as PH(α, T). Here, the notation of a phase-type random
variable follows Kulkarni [6, p. 299]: α is a 1 × m row vector representing a probability
mass function and T is an m × m matrix that is a submatrix of a generator matrix of
an irreducible CTMC. If L is a PH(α, T) random variable, its cumulative distribution
function is given by

Pr(L ≤ x) = 1 − α exp(Tx)e, x ≥ 0.

Warranty periods of each item are i.i.d. PH(β, W) with n phases. The sales process,
product lifetimes, and warranty periods are mutually independent. Each product that
fails during its warranty is replaced instantaneously with a new one from the inventory.
We study the renewing and nonrenewing warranties separately. We assume that an
order of size q is placed from an external source when the inventory is zero and
a demand occurs. The order is delivered instantaneously. Thus, each failed item is
replaced instantaneously.

Let Yij(t) be the number of products with lifetime in phase i and warranty period
in phase j at time t and let Y(t) = [Yij(t)] be the m × n matrix. One can easily see
that {Y(t), t ≥ 0} is a CTMC. This inventory model is a special case of the model
with jumps as discussed in Section 3 with {Y(t), t ≥ 0} serving the role of the external
environment process. In particular, the production rate here is zero for all states of
Y(t) (see Case 2 in Section 3.3). Let X(t) represent the inventory level at time t and

https://doi.org/10.1017/S0269964809000266 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809000266


“S0269964809000266jra” — 2009/5/28 — 12:51 — page 442 — #10

�

�

�

�

442 N. Liu and V. G. Kulkarni

(X, Y)
d= limt→∞(X(t), Y(t)). By Theorem 3.1, we know that X and Y are independent

and X is a discrete uniform random variable on {0, 1, . . . , q − 1}.
We also study the limiting distribution of Y(t) and use it to derive formulas

for computing the expected net demand rate in steady state, which is an impor-
tant measure in evaluating the system performance and optimizing the control
policy, as will be discussed at the end of Section 4. The next lemma gives the
limiting distribution of Y(t). Let P(γ ) represent a Poisson random variable with
mean γ . Define μij = −Tii − Wjj, ∀i, j, and let T 0 = −Te be the m × 1 column
vector whose ith entry is T 0

i . We distinguish two cases: renewing and nonrenewing
warranties.

Lemma 4.1: For a renewing warranty, Y has the following properties:

1. Yij is independent of Yst if (i, j) �= (s, t).

2. Yij
d= P(aij/μij), where the {aij} solve the following linear system:

aij = αiβjθ +
∑
k �=j

wkj

μik
aik +

∑
k �=i

tki

μkj
akj +

∑
x,y

T 0
x

μxy
αiβjaxy, ∀i, j. (4.1)

For a nonrenewing warranty, Y has the following properties:

1. Yij is independent of Yst if (i, j) �= (s, t).

2. Yij
d= P(aij/μij), where the {aij} solve the following linear system:

aij = αiβjθ +
∑
k �=j

wkj

μik
aik +

∑
k �=i

tki

μkj
akj +

∑
k

T 0
k

μkj
αiakj, ∀i, j. (4.2)

Proof: We prove the results for the renewing warranty case; the nonrenewing war-
ranty case follows similarly. For the renewing case, it is not difficult to see that the
process {Y(t) = [Yij(t)], t ≥ 0} behaves as a Jackson network with m × n stations
and infinite servers at each station. In terms of Jackson network settings, Yij(t) rep-
resents the queue length of station (i, j) at time t. The service rate of a server at
station (i, j) is μij. The external arrival rate to station (i, j) is αiβjθ . When a cus-
tomer completes service at station (i, j), he joins the queue at station (i, k) with
probability wjk/μij + (T 0

i /μij)αiβk , joins the queue at station (k, j) with probabil-
ity tik/μij + (T 0

i /μij)αkβj, joins the queue at station (x, y), where x �= i and y �= j
with probability (T 0

i /μij)αxβy, and departs the system with probability W0
j /μij,

where W0
j is the jth entry of the n × 1 column vector W0 = −We. So aij repre-

sents the total arrival rate to station (i, j). Then the results directly follow from
the limiting distribution of a Jackson network. See Kulkarni [6, Thm. 7.5] for more
details. �
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Notice that T 0
i is the failure rate of a product with lifetime in phase i; thus at

time t, the demand rate in state Y(t) can be computed as

μY(t) =
∑

i,j

Yij(t)T
0
i , ∀t.

Note that aij/μij is the long-run average number of products with lifetime in phase i
and warranty period in phase j. Recall that d denotes the expected net demand rate in
steady state; thus, it can be computed as

d =
∑
i,j,k

k Pr(Yij = k)T 0
i =

∑
i,j

aij

μij
T 0

i . (4.3)

One may observe from (4.1) and (4.2) that aij is directly proportional to the sales rate
θ , and so should be d. Lemma 4.2 clarifies this point and provides an alternative way
to compute d.

Lemma 4.2: For a renewing warranty, let {fij} solve the following linear system:

fij = T 0
i

μij
+

∑
j �=k

wjk

μij
fik +

∑
i �=k

tik
μij

fkj + T 0
i

μij

∑
x,y

αxβyfxy ∀i, j. (4.4)

For a nonrenewing warranty, let {fij} solve the following linear system:

fij = T 0
i

μij
+

∑
j �=k

wjk

μij
fik +

∑
i �=k

tik
μij

fkj + T 0
i

μij

∑
k

αkfkj ∀i, j.

In both cases, the expected demand rate is given by

d = θ
∑

i,j

αiβjfij. (4.5)

Proof: Use ⊗ to represent the Kronecker product operator. Define ai =
[ai1, ai2, . . . , ain] and fi = [ fi1, fi2, . . . , fin] for i = 1, 2, . . . , m. Let a = [a1, a2, . . . , am]T ,
f = [ f1, f2, . . . , fm]T , u = θαT ⊗ βT , and v = [v1, v2, . . . , vm×n]T , where v(i−1)n+j =
T 0

i /μij. Note that a, f , u, and v are all collum vectors with dimension m × n. For the
renewing warranty case, we can write systems (4.1) and (4.4) into matrix form as
follows:

Ga = u,

Hf = v,

where G is the coefficient matrix of a in system (4.1) and H is the coefficient matrix
of f in system (4.4). It is tedious but straightforward to verify that GT = H; hence,
uT f = aT GT f = aT H f = aT v. This proves the results for the renewing warranty case.
Similarly, we can prove the nonrenewing warranty case. �
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Notice that fij has a physical interpretation: It represents the expected replace-
ments for a new product starting with lifetime in phase i and warranty period in phase
j before its warranty expires. Thus,

∑
i,j αiβjfij is the expected replacements for a

new product during its warranty period. In the long run, sales per unit of time is θ

and each product requires
∑

i,j αiβjfij replacements on average. So, on average, we
require d = θ

∑
i,j αiβjfij replacements per unit of time. This is the intuition behind

Lemma 4.2.

4.2. Extensions

In this subsection we discuss some extensions to the warranty-inventory model
discussed in Section 4.1.

4.2.1. General sales process. Instead of assuming that the sales process
follows a PP(θ), we generalize it to be a renewal process with interarrival time dis-
tributed as a phase-type random variable, say PH(γ , D) with l phases. Let S(t) denote
the current phase of an interarrival time during the sales process, Y(t) be defined in
the same way as in Section 4.1, and Z(t) = (S(t), Y(t)), t ≥ 0. One can easily see that
this inventory model is also a special case of the model with jumps as discussed in
Section 3, where {Z(t), t ≥ 0} is a CTMC and serves the role of the external environ-

ment. Let X(t) represent the inventory level at time t and (X, Z)
d= limt→∞(X(t), Z(t)).

By Theorem 3.1 we immediately acknowledge that X and Z are independent and X is
a discrete uniform random variable on {0, 1, . . . , q − 1}.

However, it does not seem to be an easy task to analyze the {Z(t), t ≥ 0} process
as we do in Lemma 4.1 to obtain an explicit solution for the steady-state distribution.
Instead, similar to Lemma 4.2, Lemma 4.3 gives a method to compute the expected
net demand rate in steady state without analyzing the {Z(t), t ≥ 0} process explicitly.
Let τs = −γ D−1e be the mean intersale time and let θs = 1/τs.

Lemma 4.3: The expected net demand rate in steady state d can be computed as

d = θs

∑
i,j

αiβjfij.

Proof: Let R(t) represent the total number of replacements up to time t. By the
definition of d, we have

lim
t→∞

R(t)

t
= d.

It remains to show that

lim
t→∞

R(t)

t
= θs

∑
i,j

αiβjfij.

Let N ′(t) represent the total sales up to time t. Denote R′
i as the number of replacements

for the ith sale and T ′
i as the ith intersale time. Let R′(t) = ∑N ′(t)

i=1 R′
i. By definition of
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R(t) and R′(t), we know

lim
t→∞

R(t)

t
= lim

t→∞
R′(t)

t
.

It is not difficult to see that {R′(t), t ≥ 0} is a renewal reward process and, thus,

d = lim
t→∞

R′(t)
t

= E(R′
1)

E(T ′
1)

=
∑

i,j αiβjfij

−γ D−1e
= θs

∑
i,j

αiβjfij.

This proves our results. �

4.2.2. Combined demand. In this subsection we discuss the warranty-
inventory model where the inventory is used to satisfy the demand for new sales
as well the demand from product replacement requests. We call such a system a com-
bined demand system and the systems discussed in Sections 4.1 and 4.2.1 the pure
demand systems. First, notice that the decomposition property still holds for com-
bined demand systems since one can easily model a combined demand system as a
pure demand system with certain changes to the demand rates of some, if not all,
states of the environment process. For example, if the sales process is PP(θ), one
can use a pure demand model where the demand rates of each state is increased by
θ to model a combined demand system. Similar adaptation can be used to model
combined demand systems with general sales processes as discussed in Section 4.2.1.
To compute the expected net demand rate in steady state, one can still use Lemma
4.3. Instead of R′

i units of demands, the ith sale incurs R′
i + 1 units of demands to the

inventory. So, one just need to replace fij by fij + 1 in Lemma 4.3 for the combined
demand model.

4.2.3. Non-Markovian models. Since the set of phase-type distributions
is dense in the set of all distributions with support in [0, +∞), the above discussion
implies that if the sales process is a renewal process, the product lifetime and war-
ranty period follow two independent general distributions over [0, +∞), the stochastic
decomposition property still holds. Although a full analysis of such a general system
is difficult, we can compute the expected net demand rate in steady state dg for a pure
demand model as

dg = θgfg, (4.6)

where θg is the sales rate and fg represents the expected replacements for a newly sold
product within its warranty period. Ja [5] provided methods to compute fg for both
renewing and nonrenewing warranty cases under very general setups. To deal with a
combined demand system, one just needs to replace fg by fg + 1.

Using the analysis of the expected net demand rate in steady state and the decom-
position property, we can show that the optimal order quantity that minimizes the
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long-run average cost of the inventory system is given by the classic EOQ (economic
order quantity) formula

q∗ = √
2Kd/h,

where K is the fixed ordering cost, h is the holding cost of one item for one unit of
time, and d is the expected net demand rate in steady state as explained earlier.

5. CONCLUSION

In this article we consider a single-server queue in a stochastic environment with
random jumps when the server becomes idle. This queuing model can be interpreted
as a production-inventory system with an external supplier, in which the productions
and demands are modulated by an external stochastic process. We study such a system
as well as the same one but without an external supplier, and we show an interest-
ing decomposition relationship between the limiting distributions of the inventory
level in these two systems. We present an integrated warranty-inventory model as an
interesting application and discuss several extensions.

Although the jump size in our model is random, it is independent of the state of
the environment process prior to the jump. It will be interesting to study the problem in
which the jump size depends on the environment process. Another possible extension
to the warranty inventory model will be to consider a positive lead time between the
placement and arrival of an order and/or allow backlogging in the inventory manage-
ment. However, the decomposition property breaks down under these two extensions,
and this makes the problem substantially more difficult.
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