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Abstract

We report numerical results of the linear growth of the Richtmyer-Meshkov instability (RMI) in compressible fluids and in
the presence of a magnetic field. These results are obtained with the Lagrangian code LPC-MHD in which media are
supposed to be compressible ideal gases. We first applied a magnetic field perpendicular to the wave vector and
perpendicular to the shock wave propagation and observed no changes on the perturbation growth velocity compared
to the case without magnetic field. We also considered the configuration where the magnetic field is parallel to the
wave vector. We observed the stabilization of the instability with oscillations of the perturbations amplitude. Numerical
results are compared to impulsive acceleration model of the RMI in the presence of a transverse magnetic field, in the
non-compressible limit. A good agreement is obtained between numerical results and model for both the amplitude and
the frequency of oscillations. Compressibility seems to have negligible effects.
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1. INTRODUCTION

The Richtmyer-Meshkov (Richtmyer, 1960; Meshkov, 1969)
instability (RMI) occurs when a shock wave hits an initially
perturbed density discontinuity.
Richtmyer (1960) showed, by numerically solving the for-

mulated compressible problem, that the interface perturbations
velocity increases and finally approaches an asymptotic value.
In order to easily evaluate the growth velocity of the interface
perturbations he also proposed the so called impulsive model.
The latter is derived from the equation of the Rayleigh-Taylor
instability perturbations evolution in which the usual accelera-
tion is replaced with a velocity impulse Δuδ(t) imparted to the
perturbed interface and supposed to account for the shock
crossing. The solution obtained for the amplitude growth vel-
ocity da/dt reads as:

da

dt
= a0ATkΔu, (1)

where a0= a(0) stands for the perturbations amplitude at t=
0, AT for the Atwood number and k for the wave number of
the perturbation. To fit his numerical results, he proposed to
associate a0 and AT to the values just after the shock has

passed the interface: aR= a(0+) and AT
+. This Richtmyer’s

prescription was experimentally tested by Meshkov (1969)
by exploring the behavior of shocked perturbed interfaces.
He found only a qualitative agreement with Richtmyer’s pre-
scription, namely a rough linear behavior with an increase of
the growth velocity with the density ratio. In the case of a
heavy fluid accelerated in a light one, Meyer and Blewett
(1972) prescribed to consider the average value of post and
pre-shocked amplitudes a0:

aMB = 1
2

a(0+)+ a(0−)
( )

. (2)

Improvements were then made until the end of the century in
particular with works from Fraley (1986), Yang et al. (1994),
Mikaelian (1994), Velikovich and Philips (1996), and Wou-
chuk and Nishihara (1996), who step by step managed to de-
velop the analytical linear theory. Zhang and Sohn (1996)
even explored the formalism valid also for the nonlinear
regime.

The reason for this real interest in the magnetized RMI de-
velopment is that it can occur in astrophysics (Liberatore
et al., 2009), e.g., supernova (Fryxell et al., 1991; Chevalier
and Blondin, 1995; Jun et al., 1995), and in inertial confine-
ment fusion (Canaud and Temporal, 2010; Giorla et al.,
2006) as shock waves trough the interfaces between the
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different media that compose the target (Canaud et al.,
2007a). Usually in inertial confinement fusion, only conver-
gent aspect (Breil et al., 2005; Fincke et al., 2005; Gupta
et al., 2007) are considered without dealing with magnetic
aspects. Moreover, fluids that come into play are likely to
be ionized and then can experience the effects of a magnetic
field (Liberatore et al., 2009; Canaud et al., 2007b). Recent
structures on inertial confinement fusion pellet implosions
protonography (Rygg et al., 2008) revealed deviations of
protons that could be caused by the presence of strong mag-
netic field. It is also known that self generated magnetic
fields are present and they can modify the hydrodynamics.
The RMI in the presence of a magnetic field is an interesting
new problem addressed by Samtaney (2003), Wheatley et al.
(2005), and more recently Qiu et al. (2008) and Cao et al.
(2008). Samtaney numerically pioneered the configuration
where the magnetic field is parallel to the shock wave propa-
gation and found an inhibition of the RMI since the vorticity
is transported away. Wheatley et al., 2005 also studied this
configuration in the case of two ideal incompressible fluids
impulsively accelerated. The configuration where a trans-
verse magnetic field is applied was studied by Qiu et al.
(2008) and Cao et al. (2008) in the framework of incompres-
sible media through analytical development of a magnetized
impulsive model. They also find an inhibition of the RMI’s
growth with oscillations of the perturbations amplitudes.
We address here a numerical study of the problem when a

shock wave hits a density discontinuity in the presence of a
transverse magnetic field. We do so with the Lagrangian
code LPC-MHD (Temporal et al., 2006; Jaouen, 2007; Lib-
eratore et al., 2009) that contrary to previous work solves the
compressible flow and compare our numerical calculations to
Qiu’s analytical work in the incompressible regime.
The Section 2 is devoted to the position of the problem.

Section 3 focuses on the case of the B-field perpendicular
to the direction of shock wave propagation and to the wave
vector while Section 4 considers the case of the B-field
aligned with the wave vector.

2. POSITION OF THE PROBLEM

We consider two materials separated by a perturbed interface.
Both of them are considered to be ideal gases characterized
by the ratio of specific heat γl and γr, the pressure pl and
pr, their density ρl and ρr, and the magnetic field in each
medium �Bl and �Br, where the subscripts l and r stands,
respectively, for left and right. The perturbations wave
vector is �k = k�ex.
A plane step incident shock wave (IS) travels from the left

to the right. As the shock wave strikes the contact discontinu-
ity (CD), a perturbed shock wave is transmitted (TS) while
another wave is reflected (RW). This wave can be of two
kinds: either a shock wave or a rarefaction wave. This de-
pends on the material impedance and on the shock strength
(Yang et al., 1994).

The problem then may be sketched as in Figure 1. We
consider the linear regime of RMI where perturbed quantities
are solutions of linearized ideal MHD equations. Perfect
equation of state is considered here. Considering the z
direction to be perpendicular to the plane containing vector
�k, we assume all perturbed quantities to have the form

δf(x, y, z; t) = δf̃(z; t)ei�k.�r, where �r is perpendicular to �ez.
The linearization of ideal MHD equations (mass, momen-
tum, energy, and magnetic flux conservation equations)
then leads, in the framework attached to the contact dis-
continuity, to the following equation on the velocity pertur-
bation δ�u:

∂2τδ�u− ∇̃(∇̃.δ�u) = α2 �b × ∇̃ × (∇̃ × (�b × δ�u))
( )( )

, (3)

where �b is the unit vector along the magnetic field, α2= vA
2/cs

2

is the squared ratio between Alfvén velocity vA = ��������
B2/μ0ρ

√
and sound velocity cs =

������
γp/ρ

√
in each medium. We set

τ= kcst, ∇= k∇̃, and ∇̃ = i�ex + �ez∂ξ, with ξ= kz.
We address the problem numerically using our Lagrangian

code LPC-MHD that solves simultaneously the one-
dimensional basic flow and three-dimensional perturbed
equations in the ideal magnetohydrodynamics assumption.
The new method used in this code derives Lagrangian pertur-
bation equations, based on a canonical form of systems of
conservation laws with zero entropy flux. A very high-order
Godunov-type scheme adapted to ideal magnetohydrody-
namics is derived to solve this new general problem. The per-
fect gas equation of states is used with an adabiatic exponent
of 5/3. The simulation box (cf Fig. 1) is bounded by a wall
on the left and a flux boundary condition on the right. In
order to stay in the post-shock fluid reference frame, all the
fluids on both sides of the interface are initialized with a
fluid velocity oriented from the right to the left. The velocity

Fig. 1. Sketch of magnetic Richtmyer-Meshkov instability. B-field and �k are
always in the plan of the shock front, perpendicular to the direction of
propagation.
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is chosen in order to generate, at the left wall (which acts as a
piston), a strong shock at high Mach number (M> 100) with
a compression ratio of 4. Numerical convergence studies
allow to define the minimum number of mesh per wave-
length greater than 100.

3. THE CASE OF TRANSVERSE MAGNETIC FIELD
�B ⊥ �k

We first address the case where the magnetic field is trans-
verse to the shock wave propagation and to the �k vector. In
this configuration, the magnetic source term in Eq. (3)
vanishes since �b . ∇̃ = �b . �k = 0. Eq. (3) reduces to the fol-
lowing simple form:

∂2τ′δ�u− ∇̃(∇̃ . δ�u) = 0, (4)

which leads to:

∂2τ′ ∂2τ′ + 1− ∂2ξ
[ ]

δũi = 0, (5)

with i∈ {x, z}, τ′ = τ
��������
1+ α2

√
, and

∂2τδũy = 0. (6)

Notice that magnetic field actually still hides in α. In
Figure 2, we represent the time evolution of the amplitude
of the interface perturbations, obtained with LPC-MHD,
without and with a magnetic field in this configuration.
The amplitude is normalized to its initial value a0 (with
a0/k<<1). It emphasizes that the time evolution of the per-
turbations amplitude is the same as in a non-magnetized
medium. Only the shock wave moves faster in the presence
of a magnetic field leading to an earlier start in those cases.
In Figure 2, we have considered that the shock breaks

through from a light medium into a heavy one. However,

the behavior of the instability stays identical in the reverse
case (from a heavy medium to a light one).

4. THE CASE OF TRANSVERSE MAGNETIC FIELD
�B ∥ �k

We now focus on the configuration where the magnetic
field is parallel to �k (�b = �ex). In this case, �b remains on the
right-hand side of Eq. (3) but since (�b . ∇̃)δ�u = iδ�u, it simpli-
fies to:

∂2τ′δ�u− ∇̃(∇̃ . δ�u)

= −α2

1+ α2
δ�u+ i �b(∇̃ . δ�u)+ i∇̃(�b . δ�u)

[ ]( )
.

(7)

The right-hand side of Eq. (7) is a stabilizing term. Eq. (7)
reduces to the following order differential equation set:

∂2τ′ ∂2τ′ + 1− ∂2ξ
( )

+ α2

1+ α2
1− ∂2ξ

( )[ ]
δũi = 0, (8)

with i∈ {x, z}, and

∂2τδũy = 0. (9)

We report in Figure 3 the perturbations evolution obtained
with LPC-MHD in this configuration. Here, the magnetic
field clearly limits the development of the RMI since it
makes the amplitude of the interface perturbations to oscillate
in time and not to grow linearly anymore as it does in the
classical RMI (without any magnetic field).

It can also be seen in Figure 3 that the higher the amplitude
of the magnetic field, the smaller the oscillation period and
amplitude are. This holds in both cases: when the shock
wave intercepts a heavy-to-light density discontinuity or a
light-to-heavy one.

This confirms the features from the magnetic impulsive
model developed by Qiu et al. (2008) who find the following

Fig. 2. Behavior of the amplitude of the interface perturbations for different
values of the magnetic field (dashed lines) in the configuration where only by
≠ 0 and without magnetic field (solid line).

Fig. 3. Time evolution of the normalized amplitude of the interface pertur-
bations when �b ∥ �k for different values of the magnetic field.
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expression for the evolution of the perturbations amplitude
a(t):

a(t)
a(0)

= cosh (ωt)+ k2n+ kATΔu

ω
sinh (ωt)

( )
e−k2nt , (10)

where ω is the frequency defined by ω = k
������������
k2n2 − v∗2A

√
,

v∗A =
��������������������������
B2
l + B2

r

( )
/ μ0(ρl + ρr)
( )√

is the modified Alfvén vel-
ocity, AT= (ρr− ρl)/(ρr+ ρl) is the Atwood number, n is
the cinematic viscosity, and Δu is the velocity jump under-
went by the interface while impulsively accelerated as
already mentioned.
As we deal with non-viscous fluids in our numerical cal-

culations (n= 0), the amplitude oscillates with the following
expression:

a(t)
a(0)

= am cos (|ω|t), (11)

with

am =
�����������������
1+ A2

TΔu
2/v∗2A

√
, (12)

and the frequency

ω = ikv∗A. (13)

In order to check the validity of Eq. (13), we perform a sys-
tematic variation of the B-field with LPC-MHD. The ampli-
tude obtained numerically is Fourier transformed in time in
order to estimate the frequency of oscillation. Numerical
and analytical results are compared in Figure 4.
In the case of a heavy to light fluid transition as well as for

a light to heavy transition, we find a good agreement between
Eq. (13) and LPC-MHD results as showed in Figure 4. The
higher the magnetic field, the higher the frequency is.
Comparison of amplitudes of oscillation a(t), between

numerical results and model, requires the definition of a(0)

in the model (cf Eq. (10) or Eq. (11)). Indeed, contrary to
numerical calculations, the impulsive model does not ob-
viously take into account the compression of interface pertur-
bation amplitude since no shock wave crosses it. Usually, in
the impulsive model, one assumes that for t= 0−, just before
t= 0, both media are in a post-shock state. At t= 0, the per-
turbed interface seeding perturbations is impulsively acceler-
ated. Thus, the estimate of a(0) is missing. To correct this
lack, we evaluate it following pioneering approaches existing
in the literature. For instance, in the case of light-to-heavy in-
terface, Richtmyer (1960), first, proposed to consider the
numerical post-shock amplitude a(0+), just after the shock
crosses the interface. On the other hand, for the case of
heavy-to-light interface, the Meyer and Blewett prescription
(cf Eq. (2)) is much more appropriate. This is summarized as:

a(0) =
aR = aLPC(0+), for light-to-heavy

interface,

aMB = 1
2
(aLPC(0+)

+aLPC(0−)),

for heavy-to-light
interface.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(14)

am is estimated using one-dimensional post-shock hydrodyn-
amic quantities given by numerical calculations.
Considering that aLPC(t)= am

LPCcos(ωt), am (from Qiu’s
model) is directly compared to am

LPC/a(0), a(0) following
previous considerations (cf Eq. (14)).
A qualitatively good agreement is found. The amplitude

decreases as the amplitude of the magnetic field does.

5. CONCLUSIONS

In this work, we address by numerical calculation the growth
of the compressible Richtmyer-Meshkov instability in pres-
ence of a transverse magnetic field by the mean of the
LPC-MHD code. We show that the magnetic field has no
effect on the RMI growth, when it is perpendicular to the

Fig. 4. Comparison between Qiu’s analytical expression of ω (plain and
dashed lines) given by Eq. (13) and our numerical calculations (points)
for a light to heavy transition.

Fig. 5. Comparisons of the amplitude in the case of the reflexion of a shock
wave (circles for numerical results and dashed lines for Qiu’s model) and
when a rarefaction wave is reflected with the Meyer-Blewett prescription
to evaluate the a(0). Squares stand for LPC-MHD calculations while solid
line represents Qiu’s analytical model.
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shock propagation and to the wave vector. On the contrary,
the magnetic field is aligned with the wave vector, the RMI
is suppressed and the perturbation at the interface oscillates
in time. The amplitude and frequency of oscillations are com-
pared to pioneering works of Qiu, et al. (2008) that devel-
oped an impulsive accelerated RMI model in the
incompressible limit. A good agreement is obtained between
the model and our calculations. We show also that the Meyer-
Blewett prescription and the Richtmyer prescription are well
suited to reproduce the numerical results, in the case of
heavy-to-light and light-to-heavy transition respectively.
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