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Abstract

In this note we use some q-congruences proved by the method of ‘creative microscoping’ to prove two
conjectures on supercongruences involving central binomial coefficients. In particular, we confirm the
m = 5 case of Conjecture 1.1 of Guo [‘Some generalizations of a supercongruence of Van Hamme’,
Integral Transforms Spec. Funct. 28 (2017), 888–899].

2010 Mathematics subject classification: primary 11A07; secondary 11B65.

Keywords and phrases: q-congruences, supercongruences, cyclotomic polynomial.

1. Introduction

Let p be an odd prime. A p-adic congruence is called a supercongruence if it holds
modulo pr for some r > 2. In 1997, Van Hamme [13] observed 13 supercongruences on
truncated forms of Ramanujan’s and Ramanujan-like formulas for 1/π. In particular,
the following supercongruence of Van Hamme [13, (B.2)],

(p−1)/2∑
k=0

4k + 1
(−64)k

(
2k
k

)3

≡ p(−1)(p−1)/2 (mod p3), (1.1)

was first confirmed by Mortenson [9]. Zudilin [14] reproved (1.1) using the WZ (Wilf–
Zeilberger) method. Sun [11] utilised the WZ method again and some properties of the
Euler numbers to give a refinement of (1.1) modulo p4. Swisher [12, (B.3)] proposed
an interesting conjecture on a generalisation of (1.1).

Motivated by Zudilin’s work [14], the second author [2] investigated other
generalisations of (1.1) and also made some related conjectures. For example, the
m = 5 case of [2, Conjecture 1.1] can be stated as follows: for any odd prime p and
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positive integer r,

(pr−1)/2∑
k=0

(4k + 1)5

(−64)k

(
2k
k

)3

≡ 41pr(−1)(p−1)r/2 (mod pr+2), (1.2)

pr−1∑
k=0

(4k + 1)5

(−64)k

(
2k
k

)3

≡ 41pr(−1)(p−1)r/2 (mod pr+2). (1.3)

It is clear that the supercongruences (1.2) and (1.3) are equivalent to each other
when r = 1, since

(
2k
k

)
≡ 0 (mod p) for (p + 1)/2 6 k 6 p − 1. The second author [2]

proved that (1.2) is true modulo p3 for r = 1 and primes p satisfying some congruence
conditions. Liu [8] gave a proof of (1.2) for the complete r = 1 case. Hou et al. [7]
proved [2, Conjecture 1.1] for r = 1. However, the supercongruences (1.2) and (1.3)
are still open for r > 1.

Recently, the second author and Liu [4] proposed the following companion
conjecture (the m = 5 case of [4, Conjecture 5.1]): for any odd prime p and positive
integer r,

(pr+1)/2∑
k=0

(4k − 1)5

(−64)k(2k − 1)3

(
2k
k

)3

≡ −23pr(−1)(p−1)r/2 (mod pr+2), (1.4)

pr−1∑
k=0

(4k − 1)5

(−64)k(2k − 1)3

(
2k
k

)3

≡ −23pr(−1)(p−1)r/2 (mod pr+2). (1.5)

The aim of this note is to prove the following theorem.

Theorem 1.1. The supercongruences (1.2)–(1.5) are true.

We shall prove the theorem by using some q-congruences established by the second
author in [3]. Before giving the proof, we recall some standard q-notation: (a; q)n =

(1 − a)(1 − aq) · · · (1 − aqn−1) is the q-shifted factorial; [n] = [n]q = (1 − qn)/(1 − q) is
the q-integer and Φn(q) denotes the nth cyclotomic polynomial in q,

Φn(q) =
∏

16k6n
gcd(n,k)=1

(q − ζk),

where ζ stands for an nth primitive root of unity. During the past few years, many
authors have proved different q-analogues of supercongruences (see, for example,
[1, 3, 5, 6, 10]). This note indicates that q-congruences can do even more than we
could ever have expected.

2. Proof of the theorem

Proofs of (1.2) and (1.3). Recently, the second author [3, Theorem 1.2] utilised the
method of ‘creative microscoping’ introduced in [6] to establish the following
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q-congruences: for odd n > 1, modulo [n]q2Φn(q2)2,
(n−1)/2∑

k=0

(−1)k[4k + 1]q2 [4k + 1]2 (q2; q4)3
k

(q4; q4)3
k

q2k2−4k ≡ [n]q2 (−1)(n+1)/2q(n−1)2/2 2q + 1
q2 ,

(2.1)

n−1∑
k=0

(−1)k[4k + 1]q2 [4k + 1]2 (q2; q4)3
k

(q4; q4)3
k

q2k2−4k ≡ [n]q2 (−1)(n+1)/2q(n−1)2/2 2q + 1
q2 ,

(2.2)

which are q-analogues of the m = 3 case of [2, Conjecture 1.1]:
(pr−1)/2∑

k=0

(4k + 1)3

(−64)k

(
2k
k

)3

≡ −3pr(−1)(p−1)r/2 (mod pr+2), (2.3)

pr−1∑
k=0

(4k + 1)3

(−64)k

(
2k
k

)3

≡ −3pr(−1)(p−1)r/2 (mod pr+2). (2.4)

Letting q 7→ q−1 in (2.1) and noticing that Φn(q−1) = Φn(q)q−ϕ(n) for n > 1, where
ϕ(n) is Euler’s totient function,

(n−1)/2∑
k=0

(−1)k[4k + 1]q2 [4k + 1]2 (q2; q4)3
k

(q4; q4)3
k

q−2k2−6k

≡ [n]q2 (−1)(n+1)/2q3−(n−1)2/2−2n(2 + q) (mod [n]q2Φn(q2)2). (2.5)

Subtracting (2.1) from (2.5) and then dividing both sides by 1 − q,
(n−1)/2∑

k=0

(−1)k[4k + 1]q2 [4k + 1]2 (q2; q4)3
k

(q4; q4)3
k

[4k2 + 2k]q−2k2−6k

≡ [n]q2 (−1)(n+1)/2q3−(n−1)2/2−2n 2 + q − (2q + 1)qn2−4

1 − q
(mod [n]q2Φn(q2)2). (2.6)

It is easy to see that, for k > 0 and any prime power pr,

lim
q→1

(q2; q4)k

(q4; q4)k
=

1
4k

(
2k
k

)
,

lim
q→1

2 + q − (2q + 1)qn2−4

1 − q
= 3n2 − 11

and Φpr (1) = p. Thus, taking n = pr and q→ 1 in (2.6),

(pr−1)/2∑
k=0

(4k + 1)3

(−64)k

(
2k
k

)3

(4k2 + 2k) ≡ 11pr(−1)(p−1)r/2 (mod pr+2). (2.7)
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Since (4k + 1)2 = 4(4k2 + 2k) + 1, combining (2.3) and (2.7), we are led to (1.2).
Similarly, applying (2.2) and (2.4), we can prove (1.3). �

Proofs of (1.4) and (1.5). The second author [3] also proved the following q-
congruences: for odd n > 1, modulo [n]q2Φn(q2)2,

M∑
k=0

(−1)k[4k − 1]q2 [4k − 1]2 (q−2; q4)3
k

(q4; q4)3
k

q2k2
≡ [n]q2 (−1)(n−1)/2q(n−1)2/2 2 + q

q3 , (2.8)

where M = (n + 1)/2 or n − 1. Letting q 7→ q−1 in (2.8) and multiplying both sides by
q−8,

M∑
k=0

(−1)k[4k − 1]q2 [4k − 1]2 (q−2; q4)3
k

(q4; q4)3
k

q2k−2k2

≡ [n]q2 (−1)(n−1)/2q−4−2n−(n−1)2/2(2q + 1) (mod [n]q2Φn(q2)2). (2.9)

Subtracting (2.8) from (2.9) and dividing both sides by 1 − q,

M∑
k=0

(−1)k[4k − 1]q2 [4k − 1]2 (q−2; q4)3
k

(q4; q4)3
k

[4k2 − 2k]q2k−2k2

≡ [n]q2 (−1)(n−1)/2q−4−2n−(n−1)2/2 2q + 1 − (2 + q)qn2+2

1 − q
(mod [n]q2Φn(q2)2).

(2.10)

Letting n = pr and q→ 1 in (2.8) and (2.10) and noticing that

lim
q→1

(q−2; q4)k

(q4; q4)k
=

−1
4k(2k − 1)

(
2k
k

)
,

lim
q→1

2q + 1 − (2 + q)qp2r+2

1 − q
= 3p2r + 5

yields

N∑
k=0

(4k − 1)3

(−64)k(2k − 1)3

(
2k
k

)3

≡ −3pr(−1)(p−1)r/2 (mod pr+2), (2.11)

N∑
k=0

(4k − 1)3

(−64)k(2k − 1)3

(
2k
k

)3

(4k2 − 2k) ≡ −5pr(−1)(p−1)r/2 (mod pr+2), (2.12)

where N = (pr + 1)/2 or pr − 1. Since (4k − 1)2 = 4(4k2 − 2k) + 1, combining (2.11)
and (2.12), we immediately obtain (1.4) and (1.5). �
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