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Whey protein hydrolysates were generated at different total solids (TS) levels (50–300 g/l) using
the commercially available proteolytic preparation DebitraseTM HYW20, while enzyme to
substrate ratio, pH and temperature were maintained constant. Hydrolysis proceeded at a faster
rate at lower TS reaching a degree of hydrolysis (DH) of 16.6% at 300 g TS/l, compared with a
DH of 22.7% at 50 g TS/l after 6 h hydrolysis. The slower breakdown of intact whey proteins at
high TS was quantified by gel-permeation HPLC. Reversed-phase (RP) HPLC of hydrolysate
samples of equivalent DH (y15%) generated at different TS levels indicated that certain hydro-
phobic peptide peaks were present at higher levels in hydrolysates generated at low TS. Sensory
evaluation showed that hydrolysates with equivalent DH values were significantly (P<0.0005)
less bitter when generated at 300 g TS/l (mean bitterness score=25.4%) than hydrolysates
generated at 50 g TS/l (mean bitterness score=39.9%). A specific hydrophobic peptide peak pres-
ent at higher concentrations in hydrolysates generated at low TS was isolated and identified as
b-lactoglobulin f(43–57), a fragment having the physical and chemical characteristics of a bitter
peptide.
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Whey proteins are an important protein source having
a wide range of applications due to their excellent func-
tional properties. Whey protein concentrate (WPC) has
been used as a functional ingredient in meat products due
to its gelation and emulsification properties (El-Magoli et al.
1996; Yetim et al. 2001). WPC can be used in the nitrogen
fortification of fruit juices and other beverages due to the
good solubility of whey proteins at acid pH (Cayot &
Lorient, 1997). Whey proteins are also used to enhance
the foaming properties of confectionery products (De Wit,
1989). Whey proteins have a high nutritional value as
they contain a relatively high proportion of branched chain
and essential amino acids (Ha & Zemel, 2003).

Enzymatic hydrolysis has been extensively used to modify
the functional properties of food proteins (Doucet et al.
2001; Flanagan & FitzGerald, 2002; Molina Ortiz &
Wagner, 2002). Perhaps the most dramatic improvement
of functionality as a result of partial hydrolysis is the in-
crease in solubility (Panyam & Kilara, 1996). Perea et al.
(1993) and Mutilangi et al. (1996) showed that proteolysis
of whey proteins with various enzyme preparations

increased solubility over a wide pH range. Hydrolysis of
WPC with papain was found to improve emulsification
properties where degree of hydrolysis (DH) values of 2.8
and 3.0% were optimal for improvement of emulsion
activity index and emulsion capacity, respectively (Lieske
& Konrad, 1996).

Hydrolysis of WPC with Alcalase 0.6 L was shown to
increase foam capacity but decrease foam stability in the
DH range 0–10%. However, foam capacity was reduced
and foam stability was increased at DH values greater than
10% (Perea et al. 1993). Ju et al. (1995) found that the
heat-induced gelation ability and gel strength of whey pro-
tein isolate (WPI) could be either increased or decreased
by hydrolysis, depending on the enzyme, pH of gelation
and DH.

The proteins in whey are reported to have a wide range
of biological and physiological functions including im-
munomodulating (Mercier et al. 2003) and anti-cancer
activities (McIntosh et al. 1998). Enzymatic hydrolysis
of whey proteins has been shown to liberate biologically
active peptides (Mullally et al. 1997; Mercier et al. 2003)
and reduce allergenicity (Asselin et al. 1988; Ena et al.
1995). The physiological function of food proteins can
also be enhanced by enzymatic hydrolysis. The negative*For correspondence; e-mail : dick.fitzgerald@ul.ie
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osmotic effects associated with a high intake of free amino
acids makes protein hydrolysates a more suitable nutrient
for patients with impaired luminal hydrolysis and other
disorders of digestion and amino acid absorption. Small
peptides are absorbed more rapidly from the small intes-
tine than free amino acids (Webb, 1990), making protein
hydrolysates an ideal supplement in sports nutrition.

The main disadvantage of using protein hydrolysates as
food ingredients is the appearance of a bitter taste as the
hydrolysis reaction proceeds. Intact food proteins do not
contribute significantly to flavour; their molecular size
alone suggests that interaction with taste receptors is unlikely
(Pawlett & Bruce, 1996). However small hydrophobic
peptides released during enzymatic hydrolysis have been
shown to be responsible for the bitter taste of protein
hydrolysates (Matoba & Hata, 1972; Ney, 1979). Ney
(1971) devised a quantitative method to predict peptide
bitterness using data reported by Tanford (1962) to calcu-
late an average hydrophobicity value for peptides, which
was then used to predict if a peptide would taste bitter.
According to Ney (1971), peptides with a molecular mass
less than 6000 Da having an average hydrophobicity value
greater than 1400 cal mol–1 would have a bitter taste.

Many factors such as enzyme to substrate ratio, substrate
concentration, pH and temperature are known to affect the
rate of enzyme-catalysed reactions (Castro et al. 1996;
Margot et al. 1997; Camacho et al. 1998; Marquez &
Vazquez, 1999). However, little information is available
on the effect of total solids concentration on the rate of
food protein hydrolysis or the properties of the resultant
hydrolysates. The objective of this study was to determine
the effect of total solids concentration on the hydrolysis of
WPC with the commercially available proteolytic prep-
aration DebitraseTM HYW20 when pH, temperature and
enzyme to substrate ratio were maintained constant. This
study focuses on the effect of total solids concentration on
the physicochemical properties of the resultant hydro-
lysates and not on the kinetics of the enzyme-catalysed
reaction.

Materials and Methods

Materials

Whey protein concentrate (WPC 75; 739.6 g protein/kg)
was purchased from a commercial supplier. Acetic acid,
Coomassie brilliant blue R-250, triflouroacetic acid (TFA),
HPLC grade acetonitrile, L-leucine and ethanol were
obtained from BDH (Poole, Dorset, UK). Sodium dodecyl
sulphate, HPLC grade methanol, HPLC grade water, picryl-
sulphonic acid (TNBS), L-tyrosine hydrochloride, low mol-
ecular mass electrophoresis markers, electrophoresis grade
glycine, trizma base, glycerol, ammonium persulphate,
NkNk-methylene-bis-acrylamide, acrylamide, tris-HCl,
b-mercaptoethanol, bromophenol blue, thyroglobulin,
isoamyl alcohol, N,N,NkNk tetramethylethylenediamine
(TEMED) and caffeine were from Sigma Chemical Co.

(Poole, Dorset, UK). PuradiscTM 25 AS disposable syringe
filters (0.2 mm) were from Whatman (Maidestone, UK).
Supor1 hydrophilic membrane filters (47 mm, 0.2 mm)
were from Pall Corporation (Ann Arbor, Michigan, MA).
DebitraseTM HYW20 was kindly supplied by Rhodia Ltd.
(Cheshire, UK). All other reagents were of analytical grade,
unless otherwise stated.

Enzymatic hydrolysis of WPC

Hydrolysis experiments were carried out in a 500 ml
sealed reaction vessel (Metrohm, Herisau, Switzerland).
Aqueous solutions of WPC 75 were allowed to hydrate for
one hour at room temperature with gentle mixing. The
protein solution was then equilibrated at 50 8C and the pH
adjusted to 7.0 with 2.0 M-NaOH before addition of the
enzyme. DebitraseTM HYW20 was added at an enzyme:
substrate (E : S) ratio of 10 g enzyme powder/kg protein). The
solution was mixed with an over-head stirrer (Heidolph
Instruments, Schwabach, Germany) and the pH was main-
tained constant throughout hydrolysis using a pH stat (718
Stat Titrino, Metrohm, Herisau, Switzerland). Hydrolysate
samples were taken at various time intervals and heated
at 90 8C for 20 min to inactivate enzyme activity. Samples
were stored at –20 8C until required for analysis. Each
hydrolysis experiment was performed twice. The average
standard deviation between hydrolysis experiments at a
particular TS level was less than 0.5% of a DH unit.

Quantification of degree of hydrolysis using TNBS

Degree of hydrolysis (DH, %) of WPC hydrolysates was
quantified using the TNBS method of Adler-Nissen (1979),
as recently described (Spellman et al. 2003).

SDS-PAGE of protein hydrolysates

SDS-PAGE was performed in vertical-slab gels using a
Protean II system (Biorad Laboratories, California, US), as
described by Laemmli (1970). A stacking gel concentration
of 40 g acrylamide/l and a separating gel concentration of
120 g/l were used. Hydrolysate samples were applied at a
protein equivalent of 40 mg protein per lane. A current of
10 mA per gel was applied until the dye front had migrated
past the stacking gel after which the current was increased
to 20 mA per gel until the dye front reached the end of the
separating gel. After electrophoresis, the gels were stained
with 2 g coomassie brilliant blue R-250/l (in a 10 : 40 : 50
solution of acetic acid : methanol : water) and de-stained
with a 10 : 40 : 50 solution of acetic acid : methanol : water.

Reversed-phase HPLC of whey protein hydrolysates

Analytical reversed-phase (RP-)HPLC was carried out on
whey protein hydrolysate samples using a Waters HPLC
system, comprising a Model 1525 binary pump, a Model
717 Plus autosampler and a Model 2487 dual l absorbance
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detector interfaced with a BreezeTM data-handling package
(Waters, Milford, MA, USA). The column used was a
Phenomenex Jupiter (C18, 250r4.6 mm ID, 5 mm particle
size, 300 Å pore size) separating column (Phenomenex,
Cheshire, UK) with a Security GuardTM system containing
a C18 (ODS) wide pore cartridge (4r3 mm ID, Pheno-
menex, Cheshire, UK). The column was equilibrated with
solvent A (0.1% TFA) at a flow rate of 1.0 ml min–1 and
peptides were eluted with an increasing gradient of solvent
B (0.1% TFA, 80% acetonitrile). Detector response was
monitored at 214 nm. Hydrolysate samples were diluted
to 7.5 g protein equivalent/l in distilled H2O, filtered
through 0.2 mm syringe filters and 20 ml was applied to the
column.

Semi-preparative RP-HPLC was performed using the
same HPLC system fitted with a Phenomenex Jupiter col-
umn (C18, 250r15 mm ID, 10 mm particle size, 300 Å
pore size) with a Security GuardTM system containing a
C18 (ODS) wide pore cartridge (10r10 mm ID) (Pheno-
menex, Cheshire, UK). The column was equilibrated with
solvent A (0.1% TFA) at a flow rate of 10.0 ml min–1 and
peptides were eluted with an increasing gradient of solvent
B (0.1% TFA, 80% acetonitrile). Detector response was
monitored at 214 nm. Hydrolysate samples were diluted
to 22.0 g protein equivalent/l in distilled H2O, filtered
through 0.2 mm syringe filters and 500 ml applied to the
column. Fractions collected by semi-preparative RP-HPLC
were evaporated using a centrifugal evaporator ( Jouan RC
10.22, Jouan Inc., Winchester, Virginia, USA) connected
to a refrigerated solvent trap (Jouan RCT 90) and a Javac
model DD40 vacuum pump (Javac Pty. Ltd., Victoria,
Australia). Samples were dried at temperature setting
three using pulsed ventilation-evaporation until all liquid
had been evaporated.

Gel permeation HPLC of whey protein hydrolysates

Gel permeation HPLC (GP-HPLC) was performed using the
Waters HPLC system previously described. Hydrolysate
samples were diluted to 7.5 g protein equivalent/l in H2O,
filtered through 0.2 mm syringe filters and 20 ml applied to
a TSK G2000 SW separating column (600r7.5 mm ID)
connected to a TSKGEL SW guard column (75r7.5 mm
ID) (Smyth & FitzGerald, 1997). Separation was by iso-
cratic elution with a mobile phase of 0.1% TFA in 30%
acetonitrile, at a flow rate of 1.0 ml min– 1. Detector re-
sponse was monitored at 214 nm. A calibration curve was
prepared from the average retention times of standard
proteins and peptides (Smyth & FitzGerald, 1998). The
void volume (Vo) was estimated with thyroglobulin
(600 000 Da) and the total column volume (Vt) was esti-
mated with L-tyrosine.HCl (218 Da).

Peptide sequencing

Dried samples from semi-preparative RP-HPLC were dis-
solved in 50% acetonitrile, containing 0.1% formic acid.

Samples were loaded into thin walled glass nano-vials,
mounted on a nano-spray device and sprayed under at-
mospheric pressure into a Waters Micromass QTOF-2
mass spectrometer (Waters, Milford, MA, USA). Data corre-
sponding to intact peptide masses was collected. Selected
peptides were further fragmented in a collision cell and
daughter ion spectra were interpreted using MassLynx soft-
ware incorporating BioLynx packages to assist in sequence
interpretation (Waters Micromass).

Sensory evaluation of whey protein hydrolysates

Hydrolysate samples, at a protein equivalent of 22.0 g/l,
were randomly presented in quadruplicate to a 10-member
sensory panel, which had been trained to detect and
quantify bitterness using caffeine. Panellists were trained
to assign bitterness scores to unknown solutions based on
a 0–100% scale, where a 100% bitter solution was taken
to have a bitterness value equivalent to 1 g caffeine/l. Non-
sparkling mineral water was used as the 0% bitterness
standard.

At each sitting, panellists were firstly presented with
solutions of 0.00, 0.25, 0.50, 0.75 and 1.00 g caffeine/l,
which had been labelled as 0, 25, 50, 75 and 100% bitter.
Panellists then assigned bitterness scores to the test
hydrolysates on the basis of the caffeine standards they
had tasted. Between samples, panellists were asked to
eat a piece of un-salted cracker and rinse their mouths
thoroughly with non-sparkling mineral water.

Apparent viscosity

Apparent viscosity (gapp) was measured using a Brookfield
programmable DV-II+ viscometer (Brookfield Engineering
Laboratories, Middleboro, MA, USA) fitted with an ultra-
low (UL) adaptor. The UL adaptor was connected to a
Brookfield circulating water bath (model TC-500) by an
ULA-40Y water jacket. Apparent viscosity values were
measured at 25 8C, pH 7.0 at various shear rates.

Statistical analysis

One-way analysis of variance (ANOVA) and independent-
samples t-tests were performed on sensory data comparing
samples generated at the different total solids levels using
SPSS, version 11.0.

Results and Discussion

DH values obtained were significantly different (P<0.0005)
for WPC hydrolysates generated at different TS levels, with
a lower DH being achieved as the TS was increased (Fig. 1).
After 6 h hydrolysis at 300 g TS /l a DH value 16.6% was
achieved compared with a DH value of 22.7% after 6 h
hydrolysis at 50 g TS/l. Therefore, the rate and extent of
proteolysis was slower at higher TS levels. A possible
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explanation may be that a 300 g TS/l solution of WPC was
found to have gapp of 57.60 mPa (shear rate=9.78 s–1)
compared with gapp of 1.50 mPa (shear rate=85.6 s– 1) for
a 50 g TS/l solution. It was not possible to compare gapp

values at equivalent shear rates due to the large difference
in viscosity between the low TS and high TS solutions.
Increasing solution viscosity is known to affect the reaction
rates of several enzymes including carboxypeptidase A
(Gavish & Werber, 1979), subtilisin (Ng & Rosenberg,
1991) and an H+-ATPase from Kluyveromyces lactis
(Uribe & Sampdero, 2003). DebitraseTM HYW20 is a blend
of microbial proteinase and exopeptidase activities
(Rhodia Inc. Technical Bulletin: TB DEB 99-11.0).

Molecular mass distribution profiles, obtained by GP-
HPLC, also showed a slower rate of proteolysis at higher
TS (Fig. 2). After 6 h hydrolysis at 300 g TS/l and 50 g TS/l,
21.8% and 10.8% of the peptide material in the sample
was >10 kDa, respectively (Fig. 2a). Consequently, there
was a much faster increase in the percentage of low mol-
ecular mass peptide material (<0.5 kDa) in hydrolysates
generated at low TS (Fig. 2b). After 6 h hydrolysis at
50 g TS/l, 47.9% of peptide material was <0.5 kDa com-
pared with 36.1% at 300 g TS/l. The faster breakdown
of the main whey proteins (b-lactoglogulin (b-lg) and a-
lactalbumin) at low TS was also observed by SDS-PAGE
(results not shown).

The results presented in Figs. 1 and 2 show that for the
hydrolysis of WPC 75 with DebitraseTM HYW20, the re-
action proceeded at a much slower rate at higher total
solids concentrations, when all other factors were main-
tained constant. Therefore, longer incubation times would
be required to reach a particular DH at higher TS levels.
For example, a DH of 15% would be achieved after 1.5 h
hydrolysis at 50 g TS/l but it would take 4 h to achieve the
same DH at 300 g TS/l.

Hydrolysate samples with equivalent DH values (y15%)
were analysed by analytical RP-HPLC to determine if the
same peptide profiles were generated at high and low TS.
It was observed that although there were some similarities
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Fig. 1. Degree of hydrolysis (DH, %) values obtained using the
trinitrobenzene sulphonic acid method during the hydrolysis
of whey protein concentrate with DebitraseTM HYW20 at 50
(X), 100 (%), 150 (m), 200 (r), 250 (1) and 300 (&) g/l total
solids (pH 7.0, 50 8C, E : S=10 g/kg).
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Fig. 2. Percentage of peptide material (a) greater than
10 kDa and (b) less than 0.5 kDa in DebitraseTM HYW20
hydrolysates of whey protein concentrate generated at 50 (X),
100 (%), 150 (m), 200 (r), 250 (1) and 300 g/l (&) total
solids (pH 7.0, 50 8C, E : S=10 g/kg). Values shown represent
areas within a defined molecular mass range, expressed
as a percentage of the total area of the chromatogram at
214 nm.
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Fig. 3. Summary of the isolation of the hydrophobic peptide P1
by reversed-phase (RP) HPLC. Fig. 3(a) analytical RP-HPLC of a
15% DH hydrolysate generated at 50 g/l total solids (pH 7.0,
50 8C, E : S=10 g/kg). Fig. 3(b) semi-preparative RP-HPLC of the
same sample. Fig. 3(c) analytical RP-HPLC of the isolated
peptide fraction.
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in the peptide profiles of 15% DH hydrolysates generated
at the six different total solids levels, there were also some
distinct differences. For example, the peptide peak la-
belled P1 in Fig. 3a (retention time (Rt) y40 min, y40%
solvent B) was present in much higher concentrations in
the 50 g TS/l hydrolysate than in the 300 g TS/l hydro-
lysate. Furthermore, the concentration of this peak in-
creased as the TS concentration decreased over the range
of TS values studied.

The peptide peak P1 was the most prominent hydro-
phobic peak in the RP-HPLC chromatographs. Given the
relationship between bitter taste in protein hydrolysates
and the presence of hydrophobic peptides, the 15% DH
hydrolysates generated at different TS levels were pres-
ented to a sensory panel trained to quantify bitterness. An
inverse linear relationship was observed between hydro-
lysate bitterness and the TS level at which the hydrolysate
was generated (Fig. 4). An independent samples t-test
confirmed that the 300 g TS/l hydrolysate (mean bitterness
score=25.4%) was significantly (P<0.0005) less bitter than
the 50 g TS/l hydrolysate (mean bitterness score=39.9%)
while analysis of variance (ANOVA) showed a significant
difference (P=0.003) between the bitterness of the 15% DH
hydrolysates across the range of total solids concentrations
studied.

Semi-preparative RP-HPLC was used to isolate the pep-
tide present in P1 from a 15% DH hydrolysate generated
at 50 g TS/l (Fig. 3). Fragmentation data from electrospray
ionisation MS/MS analysis indicated that the fraction con-
tained a peptide with a molecular mass of 1681.9 Da
having an amino acid sequence corresponding to residues
43 to 57 of bovine b-lg. An average hydrophobicity (Q)
value of 1466 cal mol–1 for the isolated peptide was cal-
culated using the hydrophobicity values for the individual
amino acid side chains (Tanford, 1962). According to the
‘Q-rule’ devised by Ney (1971), this peptide should dis-
play a bitter taste as it had an average hydrophobicity
greater than 1400 cal mol–1 and a molecular mass less
than 6000 Da. The peptide sequence (VEELKPTPEGDLEIL)
also contains two proline residues in central positions. This

is reported to increase peptide bitterness due to the con-
formational alteration of the peptide caused by the imino
ring of proline (Ishibashi et al. 1988). Intense bitterness is
associated with the presence of at least two hydrophobic
residues at the C-terminus and the presence of leucine in a
peptide, particularly at the C-terminus, increases peptide
bitterness (Shinoda et al. 1985; Ishibashi et al. 1987).
Fragment b-lg f(43–57) has two hydrophobic residues at
the C-terminus (isoleucine and leucine) with leucine as the
C-terminal amino acid residue.

The mean bitterness scores of the 15% DH hydrolysates
generated at various total solids concentrations were plot-
ted as a function of the peak area of P1 from RP-HPLC of
the hydrolysate samples (Fig. 5). A linear relationship (R2=
0.987) existed between the area of the peak designated P1
and the bitterness of hydrolysates generated at various TS
levels. Therefore, these results indicate that the increased
bitterness of DebitraseTM HYW20 hydrolysates of WPC
generated at low TS may, in part, be due to higher con-
centrations of b-lg f(43–57) present in these samples.

The authors would like to thank Dr Kevin Bailey, School of
Biomedical Sciences, University of Nottingham for electrospray
MS/MS analysis. The authors would also like to thank the mem-
bers of the sensory evaluation panel from the Life Sciences
Department, University of Limerick.
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