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Spanwise-localized solutions of
planar shear flows
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We present several new spanwise-localized equilibrium and travelling-wave solutions
of plane Couette and channel flows. The solutions exhibit concentrated regions
of vorticity that are centred over low-speed streaks and flanked on either side by
high-speed streaks. For several travelling-wave solutions of channel flow, the vortex
structures are concentrated near the walls and form particularly isolated and elemental
versions of coherent structures in the near-wall region of shear flows. One travelling
wave appears to be the invariant solution corresponding to a near-wall coherent
structure educed from simulation data by Jeong et al. (J. Fluid Mech., vol. 332, 1997,
pp. 185–214) and analysed in terms of transient growth modes of streaky flow by
Schoppa & Hussain (J. Fluid Mech., vol. 453, 2002, pp. 57–108). The solutions are
constructed by a variety of methods: application of windowing functions to previously
known spatially periodic solutions, continuation from plane Couette to channel flow
conditions, and from initial guesses obtained from turbulent simulation data. We
show how the symmetries of localized solutions derive from the symmetries of their
periodic counterparts, analyse the exponential decay of their tails, examine the scale
separation and scaling of their streamwise Fourier modes, and show that they develop
critical layers for large Reynolds numbers.
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1. Introduction
Over the last twenty years the computation of invariant solutions of the Navier–

Stokes equations, or ‘exact coherent structures’, has opened a new approach to
understanding the dynamics of moderate-Reynolds-number unsteady flows, an
approach which promises to provide a long-hoped-for bridge between dynamical
systems theory and turbulence. Unlike previous derivations of low-order dynamical
models of unsteady flows (Lorenz 1963; Aubry et al. 1988; Holmes, Lumley &
Berkooz 1996), the invariant-solutions approach forgoes low-d projections and
simplified models and instead takes a well-resolved direct numerical simulation
as a quantitatively accurate finite-dimensional approximation of the Navier–Stokes
equations. The well-resolved simulation is then treated as a very high-dimensional
dynamical system. The first step in analysis of a dynamical system is the computation
of its invariant solutions: its equilibria, homo- and heteroclinic orbits, and periodic
orbits. In the invariant-solutions view of turbulence, equilibrium solutions correspond
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26 J. F. Gibson and E. Brand

to steady states of the fluid flow, periodic orbits correspond to states of the fluid
velocity field that repeat themselves exactly after a finite time, and homo- and
heteroclinic orbits correspond to dynamic transitions between equilibria or periodic
orbits. For flows with homogeneous spatial directions, such as pipes and channels,
continuous symmetries in the equations of motion allow relative invariant solutions,
e.g. travelling waves (relative equilibria) and relative periodic orbits.

The simplest invariant solutions of fluids are the classical, closed-form steady states
of the Navier–Stokes equations, for example, the parabolic laminar flow profile of
pressure-driven channel and pipe flow, or the linear laminar solution of plane Couette
flow. Solutions such as these have special cancellations which make it possible
to represent the exact solution of the nonlinear system with a finite set of simple
functions. For example, for the laminar solution of channel flow, the nonlinear term
vanishes and the solution can be represented exactly as a second-order polynomial in
the wall-normal variable. However, if we consider the problem from the perspective
of faithful, very high-dimensional finite discretizations, invariant solutions are the
solutions of nonlinear algebraic or differential equations in 104 or more free variables.
Only a few very special solutions (the classical ones) will involve few enough modes
to be expressible in closed form, and most will involve nonlinear coupling between
large numbers of non-zero variables. Compared to the classical closed-form solutions,
these computed invariant solutions are typically unstable, fully three-dimensional,
fully nonlinear, distant from the smooth laminar flow solutions, and involve most if
not all of the available modes of the numerical representation. Determination and
specification of such solutions is necessarily numerical.

The practical feasibility of finding such high-dimensional nonlinear solutions of
the Navier–Stokes equations was first demonstrated by Nagata (1990), who computed
an unstable three-dimensional nonlinear equilibrium solution of plane Couette flow
at a Reynolds number above the onset of turbulence, using a 589-dimensional
discretization. The same equilibrium solution was found independently and analysed
in greater precision and detail by Clever & Busse (1992) and Waleffe (1998, 2003).
A large number of equilibria and travelling waves of plane Couette and pipe flow
have since been found (Nagata 1997; Schmiegel 1999; Faisst & Eckhardt 2003;
Wedin & Kerswell 2004; Gibson, Halcrow & Cvitanović 2009), a few of channel
flow (Itano & Toh 2001; Waleffe 2001), and in other flows such as square duct
flow (Wedin, Bottaro & Nagata 2009; Okino et al. 2010; Uhlmann, Kawahara &
Pinelli 2010). Periodic orbits have been calculated for plane Couette flow (Kawahara
& Kida 2001; Viswanath 2007; Cvitanović & Gibson 2010; Willis, Cvitanović &
Avila 2013) pipe flow (Duguet, Pringle & Kerswell 2008), and two-dimensional
Kolmogorov turbulence (Chandler & Kerswell 2013), and hetero- and homoclinic
connections for plane Couette flow (Gibson, Halcrow & Cvitanović 2008; Halcrow
et al. 2009; van Veen & Kawahara 2011). Improved numerical methods and more
powerful computers now allow the computation of solutions with as many as 106 free
variables. High-resolution calculations have shown that discretization errors converge
toward zero as resolution is increased, demonstrating that the numerical solutions are
precise approximations of true solutions of the continuous Navier–Stokes equations,
rather than artifacts of discretization. High-resolution calculations have also allowed
accurate computation of solutions with fine spatial structure, such as periodic orbits
that exhibit turbulent ‘bursting’ phases (Viswanath 2007; Cvitanović & Gibson 2010).

Just as in low-dimensional dynamical systems theory, the importance of these
invariant solutions stems from the organization they impose on the state-space
dynamics. In particular, dynamics in the neighbourhood of (relative) equilibria
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Spanwise-localized solutions of planar shear flows 27

and periodic orbits is governed to leading order by the linearization about these
solutions, and the eigenvalues of the linearized dynamics reveal the local character
of the state-space flow and the dimensionality of each solution’s unstable manifold.
For shear flows at moderate Reynolds numbers and in closed or small periodic
domains, most known invariant solutions have a positive but remarkably small
number of unstable eigenvalues, and correspondingly low-dimensional unstable
manifolds. For example, the equilibrium solution of plane Couette flow developed by
Nagata, Busse, Clever, and Waleffe (hereafter termed the NBCW equilibrium) has a
single unstable eigenvalue (Wang, Gibson & Waleffe 2007), and the periodic orbit
solutions of Viswanath (2007) have between one and 11 unstable eigenvalues. This
low dimensionality of instability is a crucially important result. It suggests, as long
suspected, that moderate-Reynolds-number flows are inherently low-dimensional, at
least for small confined domains. It further suggests that the temporal dynamics of
such flows results from a relatively low-dimensional, chaotic but deterministic walk
between the flow’s unstable invariant solutions, along the low-dimensional network of
their unstable manifolds (Gibson et al. 2008). Moreover, the coherent structures often
observed in such flows can be understood as resulting from close passes to these
unstable invariant solutions, on which the Navier–Stokes equations balance exactly.
Waleffe’s term ‘exact coherent structures’ expresses this idea well (Waleffe 2001),
and from here on we use that term and ‘invariant solutions’ interchangeably. Indeed,
a key feature of the NBCW invariant solution is that it captures structure commonly
observed in shear flows in the form of wavy rolls that support alternating streaks
of high and low streamwise velocity (see § 2.2 for further discussion). We refer the
reader to the Kawahara, Uhlmann & van Veen (2012) review article for an excellent
overview of research in this area.

Most of the development of the invariant-solutions approach has been done in the
context of minimal flow units (Jiménez & Moin 1991; Hamilton, Kim & Waleffe
1995); that is, small, periodic domains just large enough to sustain turbulent flow or
contain a single coherent structure. For example, most of the above-cited work on
plane Couette flow is for doubly-periodic boxes with stream- and spanwise periodic
lengths just a few multiples of the wall separation; in pipe flow solutions are typically
computed with periodic boundary conditions in the axial direction, with periodic
length between one and five pipe diameters. Minimal flow units are a reasonable
simplifying assumption in the study of exact coherent structures, since they reproduce
key features and statistics of moderate-Reynolds-number turbulence on extended
domains with fewer degrees of freedom. Invariant solutions, particularly periodic
orbits, have been shown to quite accurately capture the spatial structures and temporal
dynamics of minimal flow units. On the other hand, there are differences between
minimal and extended turbulence, and invariant solutions computed in minimal flow
units will be necessarily biased towards the former. For example, the Jiménez et al.
(2005) comparison of the solutions of minimal flows to extended turbulence found
rough agreement in the length scales of the solutions with comparable length scales
in extended turbulence, but that velocity fluctuations of the Kawahara & Kida (2001)
unstable periodic orbits in minimal flows were substantially smaller than those
observed locally in extended flows, and that while minimal flows at low Reynolds
number visited these solutions at least occasionally, such visitations were rare for
turbulence in extended domains.

Minimal flow units also rule out consideration of structure at large length
scales, which is known to play an important role in transition. For example, in
moderate-Reynolds-number pipe flow, turbulence first appears in streamwise-localized
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28 J. F. Gibson and E. Brand

transient puffs (Hof et al. 2006) and proliferates to sustained turbulence when the
spreading of the puffs outpaces their decay (Avila et al. 2011). Similarly, in spatially
extended plane Couette flow at moderate Reynolds numbers, localized perturbations
trigger turbulent spots that then invade the surrounding laminar flow (Lundbladh &
Johansson 1991; Daviaud, Hegseth & Berge 1992; Tillmark & Alfredsson 1992),
sometimes exhibiting long-wavelength patterns of turbulent stripes (Barkley &
Tuckerman 2005).

The assumption of minimal flow units also complicates coordination of theory
and experiment, since small periodic cells are not experimentally realizable. Close
passes to unstable travelling waves with axial periodicity have been detected in
experimental pipe flows (Hof et al. 2004; de Lozar et al. 2012), but the effort to
match experiment and theory would be greatly aided if invariant solutions could be
computed for boundary conditions that can be achieved in experiment, for example,
as localized perturbations within otherwise laminar flow. More broadly, it seems
to us that a fundamental motivation for research in coherent structures is the idea
that certain localized flow configurations undergo relatively autonomous evolution,
for example, that a packet of hairpin vortices undergoes a pattern of evolution
determined largely by the packet’s internal organization and comparatively weakly
influenced by the surrounding flow. This view is implicit in studies that compute
coherent structures through conditional averages (Adrian 2007 and references therein),
since finite correlation lengths then naturally produce localized structures, and it
is consistent with the Robinson (1991) definition of a coherent structure as ‘a
three-dimensional region of the flow over which at least one fundamental variable . . .
exhibits significant correlation with itself over a range of space and/or time that is
significantly larger than the smallest local scales of the flow’. Thus we are motivated
to find spatially localized Navier–Stokes solutions for several reasons: to demonstrate
that invariant solutions are not computational artifacts that occur only for idealized
conditions of minimal flow units, to facilitate actuation and detection of invariant
solutions in experiment, and to provide a basis for addressing both large-length-scale
structure and localized coherent structure in extended flows.

Several papers have made valuable contributions in the computation of spatially
localized solutions of canonical shear flows. The first instance of localization
was found in the spanwise direction alone, in the Schneider, Marinc & Eckhardt
(2010b) computation of spanwise-localized equilibrium and travelling waves of
the Navier–Stokes equations, via an ‘edge-tracking’ algorithm for plane Couette
flow in a streamwise-periodic but spanwise-extended domain. These solutions are
spanwise-localized forms of the spatially-periodic NBCW solution which exhibit
exponential decay towards laminar flow in the spanwise coordinate. Schneider,
Gibson & Burke (2010a) demonstrated a number of interesting connections between
the localized solutions of Schneider et al. (2010b) and localized solutions of the
Swift–Hohenberg equation. Both systems exhibit homoclinic snaking, a process by
which localized solutions grow additional structure at their fronts via a sequence of
saddle–node bifurcations in a continuation parameter (see § 4.2 for further discussion).
This is an intriguing connection, as Swift–Hohenberg is a key model equation in
the theory of pattern formation (Hoyle 2006), for which localization is comparatively
well-understood (Burke & Knobloch 2007). More recently, Avila et al. (2013) found a
streamwise-localized travelling wave of pipe flow that closely resembles the transient
turbulent puffs of Hof et al. (2006). Since the remaining (azimuthal) homogeneous
direction in pipe flow is naturally periodic, the streamwise-localized Avila et al. (2013)
solution is experimentally realizable in a way that the singly-localized solutions of
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Spanwise-localized solutions of planar shear flows 29

plane Couette flow are not. The solution of Avila et al. (2013) is strong evidence
that localized puffs and spots are in fact intimately connected to localized invariant
solutions.

Deguchi, Hall & Walton (2013) generated localized forms of the EQ7/HVS
solution of plane Couette flow (Gibson et al. 2009; Itano & Generalis 2009) via
computations on a reduced system obtained from asymptotic analysis in the limit
of high Reynolds number Re and small streamwise wavenumber α ∼ 1/Re. In
particular they find that EQ7/HVS localizes in the spanwise direction as the spanwise
wavenumber γ decreases. This spanwise-localized solution appears to correspond to
the spanwise-localized EQ7-1 solution computed for the full Navier–Stokes equations
at finite Reynolds number in § 2.5 of this paper, and we have verified that the periodic
EQ7/HVS solution localizes in the spanwise direction at moderate Reynolds numbers
(Re = 400) under continuation to small γ . The evidence for streamwise localization
for small α in Deguchi et al. (2013) seems less convincing. Our numerical simulations
at finite but large Re in the appropriate range of α replicated the velocity fields of
Deguchi et al. (2013), but, consistent with their figure 14(a), displayed only small
variations in amplitude over the streamwise coordinate, as opposed to convergence
towards laminar flow.

Some time-varying fluid states with both spanwise and streamwise localization
have been found. Schneider et al. (2010b) found a chaotically wandering state
of plane Couette flow with exponential localization in both span- and streamwise
directions. A similar time-varying doubly-localized state was found by Duguet,
Schlatter & Henningson (2009), with several quasi-steady minima. Cherubini et al.
(2011) computed a slowly-developing edge state of streamwise-developing Blasius
flow that is localized in the wall-normal and streamwise directions and periodic in the
spanwise. Visualizations of this edge state in Q-criterion isosurfaces are very similar
to those of hairpin vortices in Adrian (2007). It should be noted that each of these
doubly-localized, time-varying edge states undergoes an irregular and non-repeating
evolution in time. These states are thus not invariant solutions of the given flows, but
they do suggest the existence of doubly-localized solutions nearby.

The specific results and organization of this paper are as follows. In § 2 we
construct several spanwise-localized solutions of plane Couette flow by a windowing
and refinement method that, unlike edge-tracking, puts no restrictions on the number
of the solution’s unstable eigenmodes. We show how the symmetries of localized
solutions result from the symmetries and phase of the underlying periodic solution.
In § 3, to further develop the invariant-solutions approach in experimentally accessible
flow conditions, we construct localized travelling-wave solutions of channel flow,
by windowing and refining periodic solutions obtained by continuation from plane
Couette conditions and by searching among turbulent simulation data. In doing so we
find particularly intriguing travelling-wave solutions of channel flow whose vorticity is
concentrated in the near-wall region, in spanwise and wall-normal localized structures
that closely resemble structures educed from numerical simulation data by Jeong
et al. (1997) analysed in terms of transient growth modes of streaky flow by Schoppa
& Hussain (2002). In § 4 we analyse the tails of the localized solutions and show
that they decay exponentially to laminar flow at the rate determined solely by the
streamwise wavenumber of the solution, with far-field structure that is independent
of the details of the core region. We examine scale separation and scaling in the
streamwise Fourier harmonics and development of critical layers at large Reynolds
numbers.
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2. Equilibrium solutions of plane Couette flow
2.1. Governing equations and numerical methods

Plane Couette flow consists of an incompressible fluid confined between two parallel
rigid plates moving in-plane at a constant relative velocity. The x = (x, y, z)
coordinates are aligned with the streamwise, wall-normal and spanwise directions,
where streamwise is defined as the direction of relative wall motion. We assume
a computational flow domain Ω = [−Lx/2, Lx/2] × [−h, h] × [−Lz/2, Lz/2] with
periodic boundary conditions in x and z and no-slip conditions at the walls y = ±h.
We restrict our attention to streamwise-periodic velocity fields and Lx chosen to
match the streamwise wavelength. In the spanwise direction, we choose Lz either
to match the spanwise wavelength of a spanwise-periodic field, or to a large value
that approximates a spanwise-infinite domain. We decompose the total velocity and
pressure fields into sums of a laminar base flow and a deviation from laminar:
utot(x, t) = u(x, t) + U(y) ex and ptot = p(x, t) + x dP/dx, where dP/dx is a fixed
constant specifying an imposed mean pressure gradient. For plane Couette flow we
will consider only the case dP/dx= 0, for which the laminar solution is U(y)= Ūy/h,
where Ū is half the relative wall speed. After non-dimensionalization by Ū, h, and
the kinematic viscosity ν, the Navier–Stokes equations for plane Couette flow can be
written

∂u
∂t
+U

∂u
∂x
+ v U′ ex + u · ∇u=−∇p+ 1

Re
∇2u, ∇ · u= 0, (2.1)

where Re= Ūh/ν and the velocity components are u(x, t)= [u, v,w](x, y, z, t). In this
decomposition the plane Couette laminar solution is U(y)= y, dP/dx= 0, u= 0, and
p= 0. From here on we refer to u as velocity and utot as total velocity, and we note
that u has zero Dirichlet boundary conditions at the walls.

We express the symmetries of plane Couette and channel flows in terms of
symmetries

σx : [u, v,w](x, y, z)→[−u, v,w](−x, y, z),
σy : [u, v,w](x, y, z)→[u,−v,w](x,−y, z),
σz : [u, v,w](x, y, z)→[u, v,−w](x, y,−z),

τ (1x, 1z) : [u, v,w](x, y, z)→[u, v,w](x+1x, y, z+1z).

 (2.2)

For (`x, `z)-periodic fields we define two discrete, half-box translation operators

τx = τ(`x/2, 0), τz = τ(0, `z/2) (2.3)

and we express products of these symmetries by concatenation of subscripts, e.g.
σxy = σxσy : [u, v, w](x, y, z)→ [−u,−v, w](−x,−y, z) and τxz = τxτz = τ(`x/2, `z/2).
Note that these definitions differ from (3.1), (3.4) and (3.5) of Gibson et al.
(2009), in order to accommodate channel as well as plane Couette conditions
and to treat the exponents on τx and τz more conventionally. We use the standard
group-theory notation 〈. . .〉 to indicate the group generated by a set of group elements;
e.g. 〈σxy, σz〉 = {e, σxy, σz, σxyz} where e is the identity.

The Navier–Stokes equations (2.1) with plane Couette conditions and y-Dirichlet,
x, z-periodic boundary conditions are invariant under any combination of rotation by
π about the z axis, reflection about the z= 0 plane, and finite translations in the x and
z directions. The symmetry group of plane Couette flow is thus 〈σxy, σz, τ (1x, 1z)〉.
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For each subgroup of this group, there is a subspace of velocity fields that is invariant
under the equations of motion. That is, if a velocity field u(x, 0) satisfies u= σu for
each symmetry σ in a given subgroup, u(x, t) will satisfy the same symmetries for all
time. Invariant solutions of the equations of motion naturally lie in these subspaces.
For example, with appropriate choice of the origin, equilibrium solutions of plane
Couette flow typically have either σxyz or both σxy and σz symmetry, since these require
the velocity field to vanish at the origin, and so prevent drifting in x and z.

Equilibrium solutions of plane Couette flow are computed using the Newton–
Krylov-hookstep search algorithm of Viswanath (2007, 2009) to solve the equation
f T(u) − u = 0, where f t : u(0)→ u(t) is the finite-time integration of (2.1) with
appropriate boundary conditions. Time integration is performed with a Fourier–
Chebyshev-tau scheme in primitive variables (Spalart, Moser & Rogers 1991; Canuto
et al. 2006) and third-order semi-implicit backwards differentiation time stepping
(Peyret 2002). Spatial discretization levels are specified by the Nx × Ny × Nz grid
used for collocation calculation of nonlinear terms with 2/3-style dealiasing. We set
spatial discretization levels so that the maximum truncated Fourier and Chebyshev
modes are O(10−6) and O(10−10) respectively. Coarser discretization for the present
problems sometimes produces spurious solutions. Symmetries are enforced through the
search by projecting u→ (u+ σu)/2 for each of the generators σ of the appropriate
symmetry group at the intervals 1T = 1 during time integration. The residual of the
discretized search equation is ‖ f T(u)− u‖/T , using the L2 norm

‖u‖ =
[

1
V

∫
V

u · u dx
]1/2

, (2.4)

where V is the volume of the computational domain. The search algorithm typically
solves the discretized equations to a residual of O(10−14); that is, the spectral
coefficients of f T(u) and u are equal to nearly double precision. The accuracy of
a given discretized solution as an approximate solution to the continuous equations
is estimated by increasing its spatial resolution by a factor of 3/2 in each direction,
decreasing the time step by a factor of two, and then recomputing the residual at
the higher resolution. Solutions are typically accurate to O(10−6), consistent with the
size of the truncated spectral coefficients. Further details of the implementation of
the search algorithm and time integration are given in Gibson et al. (2009), and the
code is available for download at www.channelflow.org (Gibson 2013).

2.2. Spatially periodic solutions: EQ1/NBCW, EQ7/HVS, and EQ8
Figure 1 shows a visualization of three spatially periodic equilibrium solutions
of plane Couette flow: the well-known ‘lower branch’ solution of Nagata (1990),
Clever & Busse (1992) and Waleffe (1998) (NBCW, called EQ1 in Gibson et al.
2009), and the ‘hairpin vortex solution (HVS)’ of Itano & Generalis (2009) and
discovered independently as EQ7 in Gibson et al. (2009). Henceforth we refer to
these as NBCW and EQ7. EQ8 is the upper branch of the EQ7 solution. The NBCW
solution is well-known not only as the first known exact nonlinear solution to the
Navier–Stokes equations, but also for a number of remarkable characteristics, which
we outline briefly here. The NBCW solution captures precisely, in the context of
plane Couette flow, the roll–streak structure that seems ubiquitous in shear flows
ranging from Taylor–Couette to the turbulent boundary layer, and consequently forms
an example of an exact instantaneous balance between the three cycles of Waleffe’s
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(a) (b)

x
y

z

(c)

FIGURE 1. Three spatially periodic equilibria of plane Couette flow. (a) NBCW lower
branch, (b) EQ7 lower branch, and (c) EQ8 (upper branch of EQ7), all at Re = 400
and α, γ = 1, 2, where α and γ are the streamwise and spanwise wavenumbers. The
visualizations show three-dimensional isosurfaces of signed swirling strength at (a,b) s=
±0.09 and (c) s=±0.2 in light/medium grey (see text). Isosurfaces of streamwise velocity
indicating high-speed streaks are shown in dark grey at (a) u = 0.4, (b) u = 0.15,
and (c) u = 0.3. The back plane shows contours of streamwise velocity at levels u =
±{0.03, 0.09, 0.15, . . . , 0.45} with dashed/solid lines indicating negative/positive values.
Note that by symmetry both solutions have streaks of equal magnitude and opposite
streamwise velocity; these are not shown in the isosurfaces to reduce clutter, but they
are indicated by the negative/positive symmetry of the back-plane contours of streamwise
velocity. The origin is at the centre of the box.

self-sustaining process for shear flows (Waleffe 1997, 1998). The NBCW solution
has also served as a starting point for recent efforts to formulate a dynamical-systems
theory of turbulence. At Reynolds numbers above the onset of turbulence, the NBCW
solution lies between the laminar solution and the chaotic turbulent region of state
space. It has a single unstable eigenvalue across a wide range of Reynolds numbers,
if only fundamental and superharmonic perturbations are allowed (Wang et al. 2007),
so that its stable manifold forms a boundary between states that decay to laminar
flow and states that grow to turbulence (Schneider et al. 2008). The comparatively
low viscous shear rate of the NBCW solution suggests that it might be feasible to
implement a control strategy to stabilize this single unstable direction and obtain
savings in the wall driving force compared to the turbulent flow (Kawahara 2005;
Wang et al. 2007). The NBCW solution also has been shown to have well-defined
asymptotic structure in the limit of large Reynolds number, which can be exploited
to form a reduced system that accurately captures the structure of the solution over
a wide range of Reynolds numbers (Wang et al. 2007; Hall & Sherwin 2010). The
asymptotic structure and reduced system are particularly relevant for this work, since
it seems likely that any analytic understanding of localization in Navier–Stokes
solutions will be more easily developed in the context of a reduced system.

The EQ7 solution has been conjectured to be related to hairpin vortices frequently
observed in the turbulent boundary layer (Itano & Generalis 2009). However it should
be noted that the hairpin shapes shown in the visualizations of Itano & Generalis
(2009) are vortex lines, whereas hairpin vortices are typically illustrated using criteria
that highlight the magnitude of vortices, such as the Q criterion, lambda criterion, or
swirling strength (Adrian 2007). Figure 1 shows NBCW, EQ7, and EQ8 visualized
with signed swirling strength isosurfaces to show the roll structure and streamwise
velocity isosurfaces to show high-speed streaks. Neither EQ7 nor EQ8 appear to have
hairpin structure in this plot, nor do they when visualized with the Q or lambda
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criterion. The swirling strength at x is defined as the magnitude of the complex
part of the eigenvalue of the velocity gradient tensor ∇u(x) (Zhou et al. 1999).
We chose swirling strength over other measures of fluid circulation such as the Q
criterion because it most clearly identified in three-dimensional isosurfaces the regions
of highly concentrated circulation that are apparent in two-dimensional quiver plots
such figure 5. Since the invariant solutions in this paper have elongated regions of
concentrated circulation nearly aligned with the x axis, we attached a ± sign to the
swirling strength that indicates clockwise/counterclockwise circulation with respect
to the positive x axis, following Wu & Christensen (2006) and Stanislas, Perret &
Foucaut (2008).

2.3. Construction of localized initial guesses by spanwise windowing
The localized equilibria and travelling waves of plane Couette flow described in
Schneider et al. (2010b) and Schneider et al. (2010a) are spanwise-localized versions
of the spatially-periodic NBCW solution. These localized solutions are comprised of a
core region that closely resembles the periodic NBCW solution, weak tails that decay
exponentially towards laminar flow, and a transitional region between the core and
tails. This form suggests that new localized solutions might be found by imposing
a similar core-transition-tail structure on other known spatially periodic solutions,
and then refining these initial guesses with a Newton–Krylov solver. The rough
form of this desired structure can be imposed on initial guesses by multiplying a
known spatially-periodic solution, expressed as a perturbation on laminar flow, by an
even positive windowing function W(z) that is nearly unity over a core region |z|< a,
decreases smoothly and monotonically to nearly zero over a transition region a6 |z|<
a+ b, and vanishes as |z| →∞, followed by projecting the resulting field W(z)u(x)
onto the divergence-free subspace. We have found that with a robust Newton–Krylov
solver, the precise details of the windowing function and the projection are
unimportant, and that the only important details are smoothness and the widths of
the core and transition regions. One choice that suffices is the windowing function

W(z)= 1
4

(
1+ tanh

(
6(a− z)

b
+ 3
))(

1+ tanh
(

6(a+ z)
b

+ 3
))

. (2.5)

This W(z) behaves as desired: it is even, smooth, monotonic in |z|, satisfies
0.995<W(z) < 1 for |z|< a and 0<W(z) < 0.005 for |z|> a+ b, and it approaches
zero exponentially as |z|→∞. Here W(z) is specified in this particular form because
we found that the most important factor in producing a good initial guess was the size
and location of the transition region, which are specified by the parameters a and b.
A sufficient projection is to apply W(z) to the streamwise and spanwise components
of velocity and reconstruct the wall-normal from the divergence-free condition. That
is, let u= [u, v, w] be a z-periodic solution expressed as a perturbation over laminar
flow. An initial guess for a z-localized solution ug = [ug, vg, wg] can be constructed
by setting ug = Wu, wg = Ww, and reconstructing vg from ∇ · ug = 0 and boundary
conditions. This projection has the advantage of being localized in x and z; that is,
vg(x, y, z) is determined by a differential equation in y in which x and z appear only
parametrically, and that requires vg to vanish along with ug and wg for large |z|. Note
that ∇ · (W(z) u(x)) = W ′(z)w(x) for incompressible u; therefore one can minimize
the corrections for incompressibility by choosing the transition region, where W ′(z)
is large, to coincide with spanwise bands where w is on average small. We also
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tested satisfying incompressibility by applying the windowing function to the vertical
velocity–vorticity representation and inverting; initial guesses produced in this way
had much weaker z-localization but sometimes resulted in the same solution under a
Newton–Krylov-hookstep search.

It is worth emphasizing that the localization procedure is rather crude. By
construction, the initial guess should be close to equilibrium in the core region
and the tails – nearly but not exactly because the guess merely approaches the
laminar solution for large z, and because the non-local effect of pressure will corrupt
the balance of terms that one would otherwise expect in the core region where W(z)
is very nearly unity. In the transition region, however, there is no reason to expect
that the velocity field that smoothly interpolates between tails and core will be close
to equilibrium. The quality of these initial guesses, thus, depends entirely on the
robustness of the solver used to refine the initial guess into a solution. In particular,
within the transition region the initial guess is too far from equilibrium to be refined
to an exact solution with a straight Newton method and requires instead a so-called
globally convergent search algorithm such as the hookstep (Dennis & Schnabel 1996;
Viswanath 2007, 2009).

2.4. Localization and symmetry
The symmetries of a desired solution are important both in determining solution
type (e.g. equilibrium versus travelling wave) and for reducing the search space,
which improves the speed and robustness of the search. The appropriate symmetries
for spanwise-localized solutions are determined as follows. We begin with a
spanwise-periodic solution with a known set of symmetries. Multiplying that solution
by a non-periodic windowing function W(z) breaks any of these symmetries that
involve z periodicity. Symmetries that do not involve z periodicity are preserved
through the localization procedure and form the symmetry group of the localized
guess. Note further that the symmetry group G of a periodic solution u transforms
by conjugation to τGτ−1 when the solution is phase-shifted to τu, and that the
localization procedure will break and preserve the different symmetry groups of u
and τu differently. Thus it is possible to construct localized guesses with different
symmetry groups by applying the windowing function to the same periodic solution
in different spatial phases.

To illustrate, we show how the symmetries of the equilibrium, travelling wave,
and rung solutions of plane Couette flow in Schneider et al. (2010a) arise from
localizing the NBCW solution in different spatial phases. In the spatial phase
of Waleffe (2003), the (`x, `z)-periodic NBCW solutions have symmetry group
〈τxσz, τzσxyz〉 = {e, τxσz, τxzσxy, τzσxyz}, which is the S symmetry group of Gibson et al.
(2009). (Note that in Gibson et al. 2009, the y subscript on σxy was suppressed.) The
localizing procedure above sets [ug,wg](x, y, z)=W(z)[u,w](x, y, z) and determines vg
from incompressibility. A simple series of substitutions shows that the first symmetry
is preserved under localization, ug = τxσzug, but the second and third symmetries
are not: ug 6= τxzσxyug and ug 6= τzσxyzug. Intuitively, since the windowing function
W(z) is constant in x and y and even about z = 0 but not periodic in z, windowing
preserves the z-reflection, x-translation symmetry τxσz of the NBCW solution, but not
its τxzσxy or τzσxyz symmetries, which both involve z periodicity. The sole preserved
symmetry, τxσz, is in fact the symmetry of the localized travelling wave reported
in Schneider et al. (2010a), i.e. [ug, vg, wg](x, y, z) = [ug, vg, −wg](x + `x/2, y, −z).
Refinement of this initial guess by a search method that respects symmetry results in
a travelling-wave solution with the same symmetries.
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The same localization process on a shifted NBCW solution produces an initial guess
with the symmetry of the localized equilibrium solutions of Schneider et al. (2010a).
Shifting the NBCW solution by a quarter-wavelength in z, i.e. by τ 1/2

z = τ(0, `z/4),
thus changes its symmetry group by conjugation τ 1/2

z sτ−1/2
z from {e, τxσz, τxzσxy, τzσxyz}

to {e, τxzσz, τxzσxy, σxyz} = 〈τxzσz, σxyz〉 which is the Rxz symmetry group of Gibson
et al. (2009). Of these symmetries, the z-localization breaks τxzσz and τxzσxy, since
they involve periodicity in z, and leaves only σxyz symmetry, which is in fact the
symmetry of the localized equilibrium of plane Couette flow reported in Schneider
et al. (2010a). For choices of z phase that are not integer multiples of `z/4, each of
the three symmetries of the periodic solution is broken by the localization, leaving
completely unsymmetric initial guesses, corresponding to the rung solutions of
Schneider et al. (2010a).

2.5. Spanwise-localized equilibria of plane Couette flow: computation
In this section we construct new spanwise-localized equilibrium solutions of plane
Couette flow by applying windowing and refinement to the spatially periodic EQ7
solution. Figure 2 illustrates how spanwise-localized initial guesses with different
symmetry groups are constructed from different spatial phases of the spatially
periodic solution. Figure 2(a) shows EQ7 at Re = 400 with fundamental streamwise
and spanwise wavenumbers α, γ = 1, 2 (i.e. periodic lengths `x = 2π/α = 2π and
`z = 2π/γ = π). The figure shows three copies of the periodic structure in the
z ∈ [3π/2, 3π/2] subset of the full Lx, Lz = 2π, 6π computational domain. The
spatial phase of EQ7 in figure 2(a) is chosen so that one concentrated vortex
structure is centred on the z = 0 plane. In this phase the solution has symmetry
group 〈σxy, τxz, τxσz〉. Each of these symmetries is readily apparent in the figure,
keeping in mind that the orientation of swirling with respect to the x axis and thus
the shade of the isosurfaces changes under σxy (rotation about z axis) and τxσz (x-shift,
z-reflect symmetry). The windowing function W(z) is plotted as a function of z on
the front face of the box. Multiplication of the periodic structure shown in figure 2(a)
by the windowing function, followed by projection onto the divergence-free subspace
as described in § 2.3, produces the initial guess shown in figure 2(c). In this case the
windowing parameters a, b = 0.3, 1 were chosen to preserve the single concentrated
vortex structure centred on the z = 0 plane and to taper rapidly to nearly zero
before the next vortical structure. The w component of EQ7 drops from O(10−1) to
O(10−2) between the concentrated vortices, so placing the transition region of the
windowing function in this region also minimizes corrections on the initial guess for
incompressibility, as discussed in § 2.3. The localization in z breaks the τxz symmetry
of the periodic solution, since it involves z periodicity, leaving a localized initial
guess with symmetry group 〈σxy, τxσz〉. Any solution in this symmetry group will be
an equilibrium, since the x reflection in σxy prevents travelling waves in x and the z
reflection in τxσz symmetry prevents travelling waves in z.

Figure 2(b,d) illustrates construction of a localized initial guess with different
symmetries by windowing the periodic solution in a different spanwise phase.
Figure 2(b) shows the same periodic EQ7 solution as in figure 2(a), but translated by
a quarter-wavelength in z. In this phase the periodic NBCW solution has symmetries
〈σxy, σz, τxz〉, which are again readily apparent in the figure (and which can be derived
by conjugating 〈σxy, τxz, τxσz〉 with quarter-wavelength shift τz

1/2 and choosing the
specified symmetries as generators for the conjugated group). A wider windowing
function, with a = b = 1, preserved a pair of mirror-symmetric concentrated vortical
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(a) (b)

(c)

W(z)

(d )

x

z

y

1

0

FIGURE 2. Construction of localized initial guesses by windowing. (a,b) The spatially
periodic EQ7 solution of plane Couette flow, in two spatial phases. Three copies of
the α, γ = 1, 2 periodic solution at Re = 400 are shown in the z ∈ [−3π/2, 3π/2]
subset of the full Lx, Lz = 2π, 6π computational domain, with the z = 0 plane shown
bisecting the box to highlight the z symmetries. The solutions in (a) and (b) are related
by a quarter-wavelength phase shift in z. (c,d) Initial guesses for localized solutions with
different symmetry groups, produced by multiplying (a,b) by windowing functions W(z)
(heavy line on front planes). Isosurfaces of signed swirling strength at s=±0.12 are shown
in (light/medium grey) and contours of streamwise velocity on the back plane at contour
levels u=±{0.03, 0.09, 0.15}.

structures in the core region and tapered rapidly to nearly zero before reaching the
next vortices, as shown in figure 2(b). The windowing breaks symmetries with factors
of τxz, producing an initial guess for a spanwise-localized solution with symmetry
group 〈σxy, σz〉. Again, sign changes in all three coordinates in this symmetry group
fix the phase of the velocity field with respect to the origin and rule out travelling
waves. Thus, the localized solutions in both choices of z phase will be equilibria,
unlike the localized solutions of Schneider et al. (2010a), where one choice of phase
produces equilibria and the other streamwise-travelling waves.

The localized initial guesses depicted in figure 2(c,d) were then refined to
numerically exact equilibrium solutions of plane Couette flow shown in figure 3(a,c)
using methods discussed in § 2.1. These solutions were computed at Re = 400 in a
2π, 6π computational box and a 32× 65× 192 grid, with integration time T = 10 and
time step dt = 0.0625, resulting in a CFL number of ∼0.7 The residuals ‖ f T(u) −
u‖/T of the discretized equations began at roughly 10−3 for the windowed initial
guesses and were reduced to O(10−14) after six or seven iterations of the Newton–
Krylov-hookstep algorithm. The discretized solutions were found to approximate
solutions of the continuous equations to O(10−6), as discussed in § 2.1. The tails of
the localized solutions drop to O(10−4) at the z = ±3π edge of the computational
domain. The computational cost is modest: about one CPU-hour for each solution,
running serially on a desktop computer with a 3.3 GHz Intel i7-3960X processor.
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(g) (h)

(c) (d)

(e) ( f )

(a) (b)

FIGURE 3. Spanwise-localized equilibrium solutions of plane Couette flow at Re = 400:
(a) and (b) the lower and upper branches of EQ7-1, respectively, (c,d) those of EQ7-2,
(e,f ) EQ7-3, and (g,h) EQ7-4. The plotting conventions are the same as in figure 2 with
swirling strength isosurfaces at s=±0.14, but additional isosurfaces of streamwise velocity
at u= 0.2 are plotted in dark grey to show the positions of high-speed streaks near the
lower wall. Symmetric high-speed streaks near the upper wall are not shown. The z ∈
[−3π/2, 3π/2] subset of the Lx, Lz = 2π, 6π computational domain is shown.

2.6. Spanwise-localized equilibria of plane Couette flow: properties
Figure 3 shows four spanwise-localized equilibrium solutions of plane Couette flow
with streamwise wavenumber α = 1 and Re = 400. The four rows show distinct
solutions EQ7-1,2,3,4 with 1,2,3,4 copies of the basic concentrated vortical structure
shown in isolation in figure 3(a), with the lower branch of each solution on the left
and the upper branch on the right. EQ7-1,3 have 〈σxy, τxσz〉 symmetry and EQ7-2,4
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2.5

f
g

h

e

d

c

b
a

2.0

1.5

1.0

0.5
200 300 400 500

I

Re
600 700 800

EQ7-1
EQ7-2
EQ7-3
EQ7-4

FIGURE 4. Bifurcation diagram of localized solutions of plane Couette flow. Integrated
shear rate I as defined in (2.6) versus Re for localized equilibria of plane Couette flow.
Labelled points correspond to solutions depicted in figure 3(a–h).

have 〈σxy, σz〉 symmetry. Figure 3(a,c,f,h) were obtained by the localization and search
methods outlined in § 2.5, (a,c) from the initial guesses shown in figure 2(c,d), and
(f,h) by increasing the core region of the window to fit three and four copies of
the concentrated vortex structures. The opposite branches (b,d,e,g) were obtained by
continuation in Reynolds number.

Figure 4 shows a bifurcation diagram of the EQ7-1,2,3,4 solutions under continua-
tion in Reynolds number. The vertical axis is the integrated shear rate I defined as

I = 1
2Lx

∫ Lx/2

−Lx/2

∫ Lz/2

−Lz/2

(
∂u
∂y

∣∣∣∣
y=1

+ ∂u
∂y

∣∣∣∣
y=−1

)
dx dz. (2.6)

Note that this measure of shear is not normalized by Lz, in order to make I insensitive
to the choice of computational domain for spanwise-localized solutions. Since the
deviation u from laminar flow of a localized solution vanishes exponentially at large
z, the integral on the right-hand side of (2.6) approaches a finite constant as Lz→∞,
making I as defined insensitive to Lz for large Lz. Note that each of the EQ7-1,2,3,4
solutions lies on a distinct solution branch. This is in contrast to the localized versions
of the NBCW solutions, for which all solutions with the same symmetry lie on a
single solution branch, and additional copies of the fundamental structure grow at the
fronts in a continuous fashion along the solution branch while the internal structure
remains constant.

Following convention we designate the lower versus upper branches of the
EQ7-1,2,3,4 solutions based on the shear rate of the two branches immediately after
each saddle–node bifurcation. However, the lower versus upper branch designation
provides a less natural classification scheme for these solutions than it does for
spatially periodic solutions. Broadly characterized, the lower branches of spatially
periodic solutions are closer to laminar flow and the upper branches are closer to
turbulence by a number of measures, including shear rate, energy norm, instability,
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Symmetry α, γ Re Lx, Lz Grid Accur. Tails Pos. λr Max λr

NBCW 〈τxσz, τzσxyz〉 1, 2 400 2π,π 20× 49× 36 10−7 – 1 0.047
NBCW 〈τxσz, τzσxyz〉 1, 2 400 2π, 6π 20× 49× 216 10−7 – 5 0.047
EQ7 〈σxy, τxz, τxσz〉 1, 2 400 2π,π 24× 65× 36 10−8 – 3 0.070
EQ7 〈σxy, τxz, τxσz〉 1, 2 400 2π, 6π 24× 65× 216 10−8 – 21 0.070
EQ7-1 LB 〈σxy, τxσz〉 1, – 400 2π, 6π 32× 65× 192 10−6 10−5 4 0.047
EQ7-1 UB 〈σxy, τxσz〉 1, – 400 2π, 6π 40× 65× 216 10−6 10−5 9 0.111
EQ7-2 LB 〈σxy, σz〉 1, – 400 2π, 6π 24× 65× 162 10−6 10−4 6 0.066
EQ7-2 UB 〈σxy, σz〉 1, – 400 2π, 6π 32× 65× 192 10−6 10−4 7 0.045
EQ7-3 LB 〈σxy, τxσz〉 1, – 400 2π, 6π 32× 65× 192 10−7 10−4 12 0.058
EQ7-3 UB 〈σxy, τxσz〉 1, – 400 2π, 6π 32× 65× 162 10−7 10−4 11 0.054
EQ7-4 LB 〈σxy, σz〉 1, – 400 2π, 6π 32× 65× 192 10−7 10−4 15 0.048
EQ7-4 UB 〈σxy, σz〉 1, – 400 2π, 6π 24× 65× 162 10−6 10−4 13 0.064

TABLE 1. Characteristics of equilibrium solutions of plane Couette flow. The last two
columns show the number of eigenvalues with positive real part and the maximum real
part respectively. Accuracy and tails are as described in § 2.1. LB and UB denote lower
and upper branch respectively.

and smoothness (Gibson et al. 2009). The same holds true for the lower and upper
branches of EQ7-1,2, but not for EQ7-3,4, whose upper branches are smoother and
less unstable than their lower branches (see table 1). Judging by the visualizations
in figure 3, the sequence of one, two, three, and four copies of the same unit of
concentrated vortical structure is formed by EQ7-1 lower, EQ7-2 lower, EQ7-3 upper,
and EQ7-4 upper, and in fact for EQ7-3 and EQ7-4, windowing and refinement
produced the upper branches rather than the lower. Additionally, for EQ7-4, the lower
branch most closely resembles the upper branch of EQ7-2.

The spatial structure of the EQ7-1 and EQ7-2 lower branches is illustrated in
more detail in figure 5. Figure 5(a–e) shows the cross-stream velocity [v, w](yz) for
the lower branch of EQ7-1 in five streamwise-normal cross-sections spaced evenly
between x = −π and x = 0, which are the front face and the middle of the box in
figure 3(a). The medium grey isosurface of signed swirling strength in the front half
of the box in figure 3(a) appears here as a concentrated counter-clockwise vortex that
begins just below and to the left of the origin at x=−π in figure 5(a), increases in
strength and moves upward and to the right in (b–d), and ends above and to the right
of the origin at x= 0 in (e). By the τxσz symmetry of EQ7-1, the equivalent quiver
plots for x=0 to x=π would be the z-mirror images of (a–e), showing a concentrated
clockwise vortex starting below and to the right of the origin and moving upwards and
leftwards, and corresponding to the light grey isosurface of signed swirling strength in
the back half of the box in figure 3(a). Likewise, the predominant features of EQ7-2
shown in figure 5(f –j) are two z-symmetric counter-rotating vortices that begin near
the lower wall at x=−π in (f ), and rise upwards and closer together in (g–j). Due
to the σxy symmetry of EQ7-2, cross-sections from x = 0 to π would appear as the
y-mirror images of (j–f ), with a pair of nearby counter-rotating vortices in the lower
half of the (y, z) plane rising and separating, as in the back half of figure 3(c). The
clear and distinct concentrations of circulating fluid in figure 5 constitute our main
justification for speaking of ‘regions of concentrated vortical structure’ and show
that isosurface plots of signed swirling strength are not misleading but rather show
precisely where such regions lie.
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FIGURE 5. Cross-sections of spanwise-localized equilibrium solutions of plane Couette
flow. (a–e) Quiver plots of [v, w](y, z) for EQ7-1 lower branch at x = {−π, −3π/4,
−π/2,−π/4, 0} with y vertical and z horizontal. (f –j) EQ7-2 lower branch at the same
x values. Here α = 1 and Re= 400 for all plots. Compare to the same solutions shown
with isosurfaces of signed swirling strength in figure 3(a,c); the cross-sections here are
evenly spaced along the front half of those figures. The z ∈ [−π, π] subset of the full
z ∈ [−3π, 3π] computational domain is shown.

The mean roll–streak structure of EQ7-1 and EQ7-2 is illustrated in figure 6.
The four counter-rotating vortices surrounding the origin in figure 6(a) result from
x-averaging the counter-clockwise vortex that slopes upwards and rightwards from
x = −π to 0 in figure 3(a) and figure 5(a–e) with its clockwise τxσz-symmetric
counterpart that slopes upwards and leftwards from x = 0 to π. These four vortices
create the pattern of alternating positive and negative streamwise streaks (relative
to laminar flow) shown in figure 6(b) by advecting high-speed fluid (utot = ±1)
from the walls towards the interior in the region near z = 0, and low-speed fluid
(utot ≈ 0) from the interior towards the walls for larger z. Figure 6(c,d) shows the
corresponding mean roll–streak structure for EQ7-2; here the doubling of the basic
concentrated vortex structure compared to EQ7-1, apparent in figure 3(c), results in
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(c)
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FIGURE 6. Streamwise-averaged roll–streak structure of spanwise-localized equilibria of
plane Couette flow. (a) Quiver plot of x-average [v, w](y, z) and (b) contour plot of x-
average u(y, z) for EQ7-1 lower branch with y vertical and z horizontal. (c,d) The same,
but for EQ7-2 lower branch. Both solutions are shown at α = 1 and Re= 400. Contour
lines are plotted at levels u = ±{0.03, 0.09, 0.15}, with negative values in dashed lines
and positive in solid. Quiver plots are autoscaled. The z ∈ [−π, π] subset of the full z ∈
[−3π, 3π] computational domain is shown.

the eight counter-rotating mean vortices shown in figure 6(c) and an increased pattern
of alternating streamwise streaks shown in figure 6(d).

Table 1 summarizes physical characteristics and discretization properties of the
EQ7-1,2,3,4 solutions in comparison to the periodic NBCW and EQ7 solutions.
The NBCW solution has a single unstable eigenvalue in its fundamental domain
Lx, Lz = `x, `z = 2π/α, 2π/γ = 2π, π, but additional subharmonic instabilities appear
when the eigenvalue calculation is performed in domains that hold several copies
of the periodic structure. The additional four spanwise subharmonic instabilities for
NBCW at Lx, Lz = 2π, 6π consist of two additional real eigenvalues, each of which
appears twice, corresponding to eigenfunctions at two different phases in z. Similar
calculations revealed additional streamwise subharmonic instabilities for NBCW,
and similar considerations apply for EQ7. The numbers of unstable eigenvalues
for EQ7-1,2,3,4 are comparable to the instability of NBCW when subharmonics
compatible with the Lx, Lz = 2π, 6π domain are included. We are not aware of
previous calculations of subharmonic instabilities for the NBCW solution. The
existence of subharmonic instabilities means that NBCW is more unstable as a
repeated pattern in an extended domain than as a single structure in a minimal
flow unit. This is consistent with the observation of Jiménez et al. (2005) that such
states are visited less frequently in extended flows, and it suggests that stabilizing
an experimental flow about the NBCW solution would require a higher-dimensional
control strategy than suggested by the eigenvalue analysis in the minimal flow unit.

3. Travelling-wave solutions of channel flow
In this section we extend the results of § 2 to Poiseuille (channel) flow conditions.

For the first set of solutions, we use a numerical continuation method similar in
spirit to Waleffe’s homotopy of the NBCW solution between plane Couette and
‘half-Poiseuille’ flow with no-slip at the lower wall and free-slip conditions at the
upper wall (Waleffe 1998, 2001). When extended by symmetry to full channel
conditions, Waleffe’s continuation produces a travelling-wave solution symmetric about
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the channel midplane, with two NBCW-like roll–streak structures, each positioned in
the high-shear region near each wall, and mirror symmetric (σy) to each other across
the midplane.

In the present study, we continue the EQ7 solutions from plane Couette to full
channel conditions, enforcing no-slip boundary conditions on both walls throughout.
The continuation is done in two stages: first with fixed wall speed and increasing
pressure gradient, then fixed pressure gradient and decreasing wall speed. As in § 2.1,
we decompose the total velocity field into a base flow and a deviation, utot(x, t) =
u(x, t) + U(y) ex, and the total pressure field into ptot = p(x, t) + x dP/dx, where
dP/dx is a parametric constant corresponding to the externally imposed mean pressure
gradient. To make the decomposition unique, we specify that the fluctuation pressure
p is periodic (so that the spatial mean of ∇p is zero), and that the base flow U(y)
satisfies the no-slip conditions at the walls and balances the imposed mean pressure
gradient, dP/dx= νU′′, where ν is the kinematic viscosity of the fluid. Consequently
the base flow is the laminar solution for the given flow conditions and the fluctuation
velocity satisfies zero Dirichlet conditions at the walls.

The Navier–Stokes equations again take the form of (2.1). The Reynolds number
Re = Ūh/ν is based on a velocity scale Ū appropriate to the flow as it transforms
from plane Couette to pressure-driven Poiseuille conditions, namely, Ū is half the
relative wall speed when continuing in pressure gradient and the centreline velocity
of the laminar base flow when continuing in wall speed (Ū = |dP/dx| h2/(2ν)). Thus
in non-dimensional terms the continuation is first in mean pressure gradient dP/dx
from 0 to −2/Re with wall speeds fixed at U(±1)=±1 (equivalently from U(y)= y
to U(y) = 1 + y − y2), and then continuation in wall speed from 1 to 0 with mean
pressure gradient held fixed at Px = −2/Re (equivalently from U(y) = 1 + y − y2

to U(y) = 1 − y2). For channel flow conditions U(y) = 1 − y2 and dP/dx 6= 0, (2.1)
and boundary conditions are invariant under any combination of x and z translations
and reflections about the y = 0 and z = 0 midplanes; thus the symmetry group of
channel flow is 〈σy, σz, τ (1x, 1z)〉. Travelling waves are computed as solutions of
f T(u)− τ(cxT, 0)u= 0, where f t is the finite-time integration of (2.1) and τ(cxt, 0)
is a streamwise shift of length cxt with the wave speed cx a free parameter.

3.1. Spatially periodic travelling-wave solutions of channel flow
TW1: Figures 7(a) and 8(a,b) show a spatially periodic travelling-wave solution of
channel flow with symmetry 〈σy, σz, τxz〉 obtained by continuation from plane Couette
conditions, as described above. The starting point for continuation was the spatially
periodic EQ7 equilibrium of plane Couette flow at Re = 2000 and α, γ = 1, 2; the
TW1 channel travelling wave has the same spatial periodicity and is shown at Re=
2300. Note that TW1 is mirror symmetric about the y = 0 midplane. The y mirror
symmetry is most clearly seen in the streamwise-averaged plots of cross-stream and
streamwise velocity in figure 8(a,b). Although σy symmetry is within the symmetry
group of channel flow, we did not expect the continuation to produce a solution with
this symmetry, since it was neither present in the initial plane Couette solutions nor
allowed in the intermediate steps in the continuation from plane Couette to channel
conditions. Instead, we expected that the increasing y asymmetry under continuation
in pressure gradient would push the vortex structures towards the lower wall, where
the shear of the base flow is higher (|U′(−1)| = 3, compared to |U′(1)| = 1, for the
base flow U(y) = 1 + y − y2 attained at the end of the pressure continuation), and
that this y asymmetry would be maintained during continuation in wall speed down
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(a) (b) (c)

FIGURE 7. Spatially periodic travelling waves of channel flow with decreasing
wall-normal symmetry. (a) TW1, constructed by continuing EQ7 from plane Couette
to channel conditions, has symmetry group 〈σy, σz, τxz〉. Isosurfaces of signed swirling
strength at s=±0.04 are shown in light/medium grey. High-speed streaks near the lower
wall are shown by dark grey isosurfaces of streamwise velocity at u= 0.02. High-speed
streaks near the upper wall, symmetric to those near the lower wall, are not shown as
isosurfaces but they are indicated in the contour plots of streamwise velocity on the
back plane. (b) TW2, found from an initial guess judiciously chosen from numerical
simulation data, has symmetry group 〈σz, τxz〉. Isosurfaces of signed swirling strength at
s = ±0.10 are shown in light/medium grey, and high-speed streaks near the lower wall
are shown by dark grey isosurfaces of streamwise velocity at u= 0.03. There are similar
but weaker vortex structures and high-speed streaks near the upper wall, but they do not
appear at these levels for the isosurfaces. Both (a) and (b) are shown at α, γ = 1, 2
and Re = 2300. (c) TW3, constructed by continuation in Reynolds number from TW2
and further symmetrization and Newton–Krylov refinement, has 〈σz, τxz〉 but periodicity
α, γ = 1, 6, and is shown at Re = 4000. Isosurfaces of signed swirling strength are at
s=±0.9 and u= 0.03. Each back plane shows a contour plot of streamwise velocity at
levels u= {0.03,−0.03,−0.09,−0.15, . . .}, positive in solid lines and negative in dashed.

to U(y) = 1 − y2. However, it turned out that weak vortices formed near the upper
wall under pressure continuation and grew in strength during wall-speed continuation
until the solution gained σy symmetry as the wall speed reached zero. In terms of the
symmetry groups, the starting plane Couette solution had symmetry group 〈σxy, σz, τxz〉,
continuation to non-zero dP/dx broke σxy symmetry, and σy was gained at the final
step of wall-speed continuation, resulting in symmetry 〈σy, σz, τxz〉. The structure of
vortices and streaks in TW1 can roughly be described as two copies of EQ7 stacked
on top of each other, with the upper copy either phase-shifted by half a wavelength in
x or having [v, w] reversed in sign via mirror symmetry in y. This is apparent from
comparison of TW1 in figure 7(a) to EQ7 in figure 1(b) and EQ7-1 in 3(b). The
stacking across the midplane is somewhat like the radially opposed structure in the
M2 pipe flow solution in figure 3(a) of Pringle, Duguet & Kerswell (2009), though
TW1 shows mirror symmetry about y= 0, whereas M2 is radially antisymmetric.

TW2: Figures 7(b) and 8(c,d) show a spatially periodic travelling-wave solution
of channel flow with asymmetry in y and symmetry 〈σz, τxz〉, obtained from an
initial guess from turbulent simulation data (Viswanath 2007; Gibson et al. 2009).
Specifically, we z-mirror-symmetrized an arbitrary turbulent velocity field of channel
flow at Re= 3750 in a 2π,π box by applying u→ (1/2) (1+ σz)u and then quenched
the turbulent field by lowering the Reynolds number and continuing time integration
with the bulk velocity fixed at 2/3 and the σz symmetry enforced by projection
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1(a) (b)

0
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FIGURE 8. Streamwise-averaged roll–streak structure of spanwise-periodic travelling
waves of channel flow. Vector plots of x-average [v,w](y, z) and contour plots of x-average
u(y, z) for (a,b) TW1, (c,d) TW2, and (e,f ) TW3, with the same spatial and Reynolds
parameters as in figure 7. Contour lines are shown at levels u=−0.2,−0.1 (dashed) and
u= 0.03 (solid), with an additional negative contour line shown at u=−0.3 in (d). The
vector plots are autoscaled. Axes are z horizontal and y vertical.

at regular intervals. After some experimentation, we found that after quenching to
Re = 2650, the fine-scale structure of the velocity field and the spatial-mean wall
shear decreased quickly, the latter reaching a local minimum after ∼50 time units
and growing slowly again for another 50 time units before resuming a high level
of wall shear with rapid fluctuations. The smoothness and length of this minimum
suggested a close pass to a hyperbolic edge state. Using a velocity field from this
minimum as an initial guess for a Newton–Krylov search produced a numerically
exact spatially periodic, wall-localized travelling-wave solution of channel flow with
〈σz, τxz〉 symmetry.

The y asymmetry of TW2 is exaggerated in figure 7(b) by the binary character of
isosurface plots. In fact at Re=2300 TW2 has weaker vortex structures near the upper
wall with swirling strength comparable to those of TW1, and weaker streaks there as
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well. Both the vortices and streaks near the upper wall are visible in the streamwise-
average plots of TW2 in figure 8(c,d). Note also that the swirling strength isosurfaces
of TW2 in figure 7(b) are at s=±0.10, over twice the magnitude of those for TW1 in
figure 7(a) at s=±0.4. Compared to the four layers of counter-rotating mean vortices
stacked symmetrically about y= 0 in TW1 (see figure 8a,b), TW2 has two layers of
counter-rotating mean vortices below y= 0 and a single layer of vortices above y= 0,
and these vortices have the same orientation as the vortices below them. And though
it is not clear from the autoscaled vector plots, the mean vortices of TW2 near the
lower wall are about three times the magnitude of those of TW1, as measured by
magnitudes of the [v,w] velocities, and the mean vortices of TW2 above y= 0 are of
comparable magnitude to those of TW1. However, the y asymmetry of TW2 increases
as the Reynolds number is increased (see TW3) and as z-periodicity is relaxed (see
TW2-1 and TW2-2).

TW3: Figures 7(c) and 8(e,f ) show a wall-localized, spanwise- and streamwise-
periodic travelling wave of channel flow with symmetry 〈σz, τxz〉, discovered through
continuation of TW2 in Reynolds number. The fundamental z wavenumber of TW2
is γ = 2, but as Re increased towards 4000, the structure at this wavenumber
weakened and structure at γ = 6 grew, while the structure away from the lower
wall weakened substantially until it became nearly laminar. TW3 was computed by
zeroing all modes in TW2 at Re= 4000 with γ < 6 and refining this initial guess to
an exact travelling wave with a Newton–Krylov-hookstep search. The resulting TW3
solution has periodicity α, γ = 1, 6 and symmetry 〈σz, τxz〉, where τxz is understood
as involving a half-cell shift in z with respect to the smaller `z=π/3 periodic length.
Its most notable property is its very strong localization in the wall-normal direction,
as evidenced by figure 8(e,f ). This is similar to the strong near-wall concentration of
the higher-order M-class pipe flow solutions shown in figure 3(c,d) of Pringle et al.
(2009).

3.2. Spanwise-localized travelling-wave solutions of channel flow
In this section we construct spanwise-localized travelling-wave solutions of channel
flow by windowing the spanwise-periodic travelling waves of § 3.1, TW1 and TW2,
in different spatial phases. The resulting solutions are illustrated in figures 9–11.

TW1-1: This, shown in figure 9(a), was formed by phase-shifting TW1 in z by
π/4 to give it symmetry group 〈σy, σzτx, τxz〉, extending this periodic solution from a
2π,π to a 2π, 6π box, windowing the extended periodic solution, and then applying
Newton–Krylov-hookstep refinement to the windowed initial guess, producing
a spanwise-localized travelling wave with 〈σy, σzτx〉 symmetry. The windowing
parameters a, b = 0.5, 0.4 were chosen to isolate the central vortex structures in
swirling-strength plots. It did not take a great deal of effort to find windowing
parameters that gave a successful initial guess; we merely adjusted a and b by tenths
until swirling-strength plots of the initial guess appeared similar to the resultant
solution in figure 9(a). The initial guess for the wave speed was set to the wave speed
of the underlying periodic solution TW1, and the pressure gradient was held fixed at
dP/dx=−2/Re where Re= 2000. The Newton–Krylov-hookstep search converged to
machine precision in six steps, consuming about half an hour of single-core CPU time
on the machine described in § 2.5, for a 24× 81× 256 discretization of the 2π, 6π

computational domain. The computed solution turned out to be smoother in x and z
than the periodic solution on which it was based, enough that 10−6 × 10−10 × 10−6

truncation levels were retained on a reduced grid of 20× 81× 192. Similarly TW1-2
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(a) (b)

(c) (d)

FIGURE 9. Spanwise-localized travelling-wave solutions of channel flow. (a) TW1-1,
(b) TW1-2, (c) TW2-1, and (d) TW2-2. (a,b) TW1-1 and TW1-2 are 〈σy, τxσz〉 and
〈σy, σz〉 symmetric travelling waves obtained by localizing TW1 in two different z phases.
(c,d) TW2-1 and TW2-2 are τxσz and σz symmetric travelling waves obtained by localizing
TW2 in two different z phases. Plotting conventions are the same as in figure 7, but with
isosurfaces of signed swirling strength and streamwise velocity at (a,b) s=±0.05, u=0.05,
and (c,d) s = ±0.10, u = 0.08. Contour lines of streamwise velocity are shown on the
back y, z plane at levels u= 0.03 (solid lines) and (a,b) u= {−0.03,−0.09,−0.15}, (c,d)
u = {−0.03, −0.09, −0.15, −0.21, −0.27} (dashed). In (b) a high-speed streak near the
upper wall, symmetric to that near the lower wall, is suppressed to avoid visual clutter. By
contrast, (c,d) show true asymmetry in high-speed speed streaks: (c) has high-speed streaks
near the lower wall only, and in (d) the streaks near the upper wall are substantially
weaker, below the given isosurface levels. Solutions are shown at Re = 2300 in z ∈
[−3π/2, 3π/2] subsets of their full Lx, Lz = 2π, 6π computational domains.

in figure 9(b) was found by refining an initial guess formed from windowing TW1 in
its z-phase with 〈σy, σz, τxz〉 symmetry and with windowing parameters a, b= 1.2, 0.4,
resulting in a travelling-wave solution with 〈σy, σz〉 symmetry.

TW2-1 and TW2-2, shown in figure 9(c,d), are probably the most interesting
solutions presented in this paper, as they represent travelling-wave solutions that are
spanwise localized and strongly concentrated near a single wall and appear similar
to important near-wall flow structures identified in previous studies. TW2-1 was
formed by windowing TW2 in its z-phase with symmetry 〈τxσz, τxz〉 and windowing
parameters a, b= 0.6, 0.4 to get an initial guess with τxσz symmetry, and refining that
with Newton–Krylov-hookstep. We were unable to form TW2-2 by the phase-shifting,
windowing, and refining procedure employed for other localized solutions. Instead
TW2-2 was formed by shifting TW2-1 leftwards in z until its right-hand high-speed
streak was centred on z= 0, extending the shifted field from negative to positive z by
z-mirror symmetry, and then refining this initial guess with Newton–Krylov-hookstep.
We note that TW2-1 and TW2-2 required higher resolution than TW1-1 and TW1-2
to adequately resolve the stronger vortex structure. The computations of TW2-1 and
TW2-2 from their initial guesses took about seven CPU hours each.
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FIGURE 10. Cross-sections of spanwise-localized, near-wall travelling waves of channel
flow. (a–e) Vector plots of [v,w](y, z) for TW2-1 at x= {−π,−0.6π,−0.2π, 0.2π, 0.6π}
and (f –j) the same but for TW2-2, with y vertical and z horizontal. Both solutions are
at α = 1 and Re= 2300. The z ∈ [−π, π] subset of the full z ∈ [−3π, 3π] computational
domain is shown.

Each of the travelling-wave solutions depicted in figure 9 is formed from variations
of very similar basic structure, which is most clearly seen in isolation in TW2-1 in
figure 9(c). Near the lower wall there is an x-periodic chain of concentrated vortices,
alternating in sign of circulation (clockwise/counter-clockwise), and nearly aligned
with the x-axis but tilting slightly in the wall-normal and spanwise directions, as
shown in figure 10(a–e). The tilting of the chain of alternating vortices results in a
non-uniform x-average in the cross-stream flow, specifically, a pair of counter-rotating
mean vortices near the wall, figure 11(a). The mean vortices draw low-speed fluid
upwards between them and high-speed fluid downward on either side, producing the
mean high-speed streaks on either side of the mean vortex pair, depicted by solid
contour lines in figure 11(b). The streamwise momentum exchange induced by the
near-wall mean vortices has a net negative effect: the region of mean streamwise
flow slower than laminar indicated by negative (dashed) contour lines in figure 11(b)
is larger in both y, z area and magnitude than the high-speed streaks that outpace
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FIGURE 11. Streamwise-averaged roll–streak structure of spanwise-localized travelling
waves of channel flow. (a) Vector plot of x-average [v, w] and (b) contour plot of
x-average u(y, z) for TW2-1. (c, d) The same but for TW2-2. α = 1, Re= 2300 for both
solutions. Contour lines are plotted at levels u= {−0.25,−0.15,−0.05, 0.05, 0.15}, with
negative values in dashed lines and positive in solid. Vector plots are autoscaled. The
z ∈ [−π, π] subset of the full [−3π, 3π] computational domain is shown. Axes are z
horizontal and y vertical.

laminar flow, indicated by solid contour lines. Thus the net effect of the roll–streak
structure is a decrease of bulk flow relative to laminar for a fixed pressure gradient.
TW2-2 roughly consists of two copies of the TW2-1 basic structure, repeated with
mirror-symmetry about the z = 0 plane. This is evident from comparison of TW2-1
and TW2-2 in figures 9(c) and (d), 10(a–e) and (f –g), and 11(a,b) and (c,d). TW1-1
and TW1-2 have similar structure to TW2-1 and TW2-2, but with mirror symmetry
in y and weaker magnitudes of vorticity (by roughly a factor of two) and integrated
velocity deficit relative to laminar (by a factor of four or more).

TW2-1 is very similar to the near-wall coherent structures observed in numerical
simulations by Jeong et al. (1997) and analysed by Schoppa & Hussain (2002),
consisting of alternating, tilted streamwise vortices centred over a sinuous low-speed
streak. Jeong et al. (1997) produced these structures from conditional samples of
numerical simulation data, and Schoppa & Hussain (2002) analysed them as the
outcome of non-normal transient growth on a base flow of streamwise-constant,
spanwise-varying near-wall streaks. Compare, for example, the tilted alternating
vortices of TW2-1 evident in figure 9(c) to figure 26 of Schoppa & Hussain (2002).
Though these two figures use different visualization schemes (swirling strength versus
streamwise vorticity) we have verified that the gross structure is essentially the same
with either. The relative orientations of alternating circulation and tilting agree: the
light grey vortex in figure 9(c) has positive streamwise vorticity and tilts upward
in y and towards negative z, as does SP in Schoppa & Hussain (2002); whereas
dark grey and SN have negative streamwise vorticity and tilt towards positive z. The
tilting angles are roughly comparable: 7◦ wall-normal and ±8◦ spanwise tilts for the
vortices in TW2-1, compared to 9◦ and ±4◦ from Jeong et al. (1997). Figure 9(c)
shows only the high-speed streaks on either side of the alternating vortices; however
the low-speed streak beneath the vortices is evident in figure 11(b). The low-speed
streak of TW2-1 shows sinuous streamwise variation when viewed as a function of
x, z (not shown), but the variation in x is weaker than that shown in figure 25 of
Schoppa & Hussain (2002). The length scales in wall units match closely: TW2-1
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has streamwise-periodic length of 425 wall units, and the tilting vortices extend over
∼60 spanwise units and are confined to y+ 6 60, quite close to the 400 streamwise,
60 spanwise, and y+6 60 wall unit lengths evident in figure 6 of Jeong et al. (1997).

Exact correspondence between TW2-1 and the cited structures should not be
expected, due to differences in their formulation and flow conditions. We conjecture,
however, that TW2-1 is formed from the streaky base flow and transient growth
mode elements identified by Schoppa & Hussain (2002) in the same way that the
NBCW solution of plane Couette flow is formed from the rolls, streaks, and sinuous
instability elements of Waleffe’s self-sustaining process (Waleffe 2003). Likewise, we
suppose that observations of alternating tilted streamwise rolls near the wall in Jeong
et al. (1997) result from close passes of the flow to the unstable invariant TW2-1
solution, much as the observed roll–streak structures of Hamilton et al. (1995) result
from close passes to the upper and lower branches of the NBCW solution. TW2-2
bears some degree of resemblance to the lambda vortices that develop as secondary
instabilities of Tollmien–Schlichting waves in spatially developing flow. The 3

structure shown in Saiki et al. (1993) figure 2(b) is evident in TW2-2 in figure 9(d),
and the cross-stream vector plots of TW2-1 and TW2-2 in figures 10 and 11 resemble
the cross-sections of near-wall lambda vortices of developing channel flow shown in
Saiki et al. (1993) figures 10 and 11. We intend to pursue the connections between
TW2-1,2 and previously identified coherent flow structures in future research.

Figure 12 shows a bifurcation diagram for TW1-1,2 and TW2-1,2 under continuation
in Reynolds number. The vertical axis of the bifurcation diagram is the integrated
velocity deficit, which we define as

Ud =− 1
2Lx

∫ Lx/2

−Lx/2

∫ 1

−1

∫ Lz/2

−Lz/2
u(x) dx dy dz. (3.1)

Since u(x) is the perturbation velocity relative to laminar flow at the same Reynolds
number and pressure gradient, Ud measures the deficit in streamwise velocity of the
travelling wave relative to laminar flow, integrated over the flow domain. As with the
integrated shear rate I defined in (2.6), Ud is unnormalized with respect to Lz in order
to make it insensitive to the choice of Lz for the z-localized solutions. TW1-1,2 and
TW2-2 are each born in saddle–node bifurcations whose upper and lower branches
continue smoothly to large Reynolds numbers. The solution curve for TW2-1 is more
complex; we were not able to continue it past the point (Re, Ud) = (1797, 0.395).
Physical characteristics and discretization parameters of the computed travelling-wave
solutions of channel flow are summarized in table 2.

4. Discussion
4.1. Exponential decay of tails

The spanwise-localized solutions presented in this paper display a three-part structure:
a core region that closely resembles a periodic solution, a transition region, and
weak tails that decay to laminar flow. In this section we show that the tails of
spanwise-localized streamwise-periodic equilibria are dominated by a mode that
decays exponentially at e−α|z|, where α is the fundamental streamwise wavenumber,
and that the structure of the tails depends on flow parameters α, Re, the laminar
flow profile U(y), and the wave speed c, but not on the details of the solution’s core
region.
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FIGURE 12. Bifurcation diagram of localized solutions of channel flow. Integrated velocity
deficit Ud as defined in (3.1) versus Re for localized travelling waves of plane Poiseuille
flow. TW1-2 has two distinct branches which appear to overlap at this resolution. Labelled
points correspond to solutions in figure 9(a–d).

Symmetry α, γ Re cx Lx, Lz Grid Accur. Tails Pos. λr Max λr

TW1 〈σy, σz, τxz〉 1, 2 2300 0.673 2π,π 24× 81× 48 10−7 – 7 0.041
TW1-1 〈σy, τxσz〉 1, – 2300 0.674 2π, 6π 20× 81× 192 10−6 10−5 6 0.033
TW1-2 〈σy, σz〉 1, – 2300 0.674 2π, 6π 20× 81× 256 10−6 10−5 8 0.034
TW2 〈σz, τxz〉 1, 2 2300 0.564 2π,π 32× 97× 64 10−6 – 29 0.025
TW2-1 τxσz 1, – 2300 0.661 2π, 6π 24× 97× 324 10−6 10−5 17 0.036
TW2-2 σz 1, – 2300 0.648 2π, 6π 24× 97× 324 10−6 10−5 36 0.032
TW3 〈σz, τxz〉 1, 6 4000 0.475 2π,π/3 32× 109× 36 10−7 – 9 0.035

TABLE 2. Characteristics of localized travelling-wave solutions of channel flow. The
streamwise wave speed cx is in non-dimensionalized units where the centreline velocity
of laminar flow is Ū = 1. Other quantities are as described in table 1.

As the tails of a spanwise-localized equilibrium or travelling wave approach laminar
flow, the perturbation velocity u approaches zero, so we expect u to approximately
satisfy the linearized form of (2.1) in which u · ∇u is set to zero,

∂u
∂t
+U

∂u
∂x
+ v U′ ex =−∇p+ 1

Re
∇2u, ∇ · u= 0. (4.1)

We look for normal-mode solutions of the form

uj,γ (x)= ũj,γ (y) ei(jα(x−ct)+γ z), pj,γ (x)= p̃j,γ (y) ei(jα(x−ct)+γ z) (4.2)

where α is real and γ = γr + iγi has γi > 0 for tails that decay exponentially as
z→∞. The slowest decaying normal-mode solution, with the smallest positive γi,
will dominate the tails as z→∞. For the remainder of this section we drop the j, γ
subscripts. To eliminate pressure we convert to velocity–vorticity form by taking the
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y-components of the curl and the curl of the curl of (4.1)(
∂

∂t
+U

∂

∂x

)
η+U′vz = 1

Re
∇2η,(

∂

∂t
+U

∂

∂x

)
∇2v −U′′vx = 1

Re
∇4v,

 (4.3)

where η= uz−wx is the wall-normal vorticity. Boundary conditions are η(x,±1, z)= 0
and v(x,±1, z)= v′(x,±1, z)= 0.

Equation (4.3) and boundary conditions permit a number of types of solution.
Where symmetries allow, the solution that dominates behaviour in the tails of
localized plane Couette equilibria and travelling waves turns out to be the trivial
solution v = η = 0. This solution in conjunction with the divergence-free condition
and the ansatz (4.2) requires that ũxx = −ũzz and w̃xx = −w̃zz, which is satisfied
by γ = ±ijα and w̃ = ±ijũ, the different signs governing exponential decay in the
different limits z→ ±∞. The j = 1 mode with γ = ±iα and w̃ = ±iũ thus gives
the slowest exponential decay rate (j = 0 is ruled out since it does not decay and
thus cannot be part of a z-localized solution). The y component of (4.1) gives that
∂ p̃/∂y= 0 so that p̃(y)= p̃ is a complex constant whose magnitude and phase are set
by the pressure conditions at the edge of the transition region at some fixed value of
z. The x component of (4.1) gives

ũ′′ − iαRe(U − c)ũ= iαRe p̃. (4.4)

The boundary conditions ũ(±1) = 0 set the homogeneous solution to zero, so that
ũ and thus w̃ are determined by the fixed value of p̃, the base flow profile U(y),
and the parameters α, c and Re. They are independent of the structure of the
core-region solution (except for differences of x phase between the ±z tails resulting
from the symmetries of the solution). Thus, the v = η = 0 solution to the linearized
Navier–Stokes equations contributes to the tails an exponentially decaying mode of
form [ũ(y), 0, iũ(y)]eiα(x−ct)−αz as z→∞.

Figure 13 confirms that over a wide range of α, the tails of EQ7-1 are dominated
by u,w components that decay as e−αz. Figure 13(a) shows the ∞-norm of u, v and
w as a function of z for EQ7-1 at α= 1. In this context ‖u‖∞(z) is the maximum of
|u(x, y, z)| over x, y as a function of z. As argued above, the magnitudes of the u and
w components are equal in the tails and scale as e−αz. The higher-order e−2αz scaling
for v results from the quadratic nonlinear term in u1,γ ,w1,γ that has been suppressed
on the right-hand side of (4.1) for the v0,γ equation for j = 0. For figure 13(b), we
continued EQ7-1 parametrically in α and observed that the e−αz scaling holds over the
explored range of 1/46 α6 2. For further confirmation of the dominance of v= η=
0 modes, figure 14(a) compares an x, y slice of streamwise velocity u(x, y, z) from
EQ7-1 at a fixed z to figure 14(b), the same as computed from (4.4).

The linearized equations for the tails have solutions other than v = η= 0; to show
that these decay more rapidly than the v= η= 0 modes (for plane Couette flow), we
reduce (4.3) to the eigenvalue equations

iα(U − c)η̃+ iγU′ṽ = 1
Re
(η̃′′ − (α2 + γ 2)η̃), (4.5)

iα(U − c)(ṽ′′ − (α2 + γ 2)ṽ)− iαU′′ṽ = 1
Re
(ṽ′′′′ − 2(α2 + γ 2)ṽ′′ + (α2 + γ 2)2ṽ). (4.6)
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FIGURE 13. Exponential decay in the tails of spanwise-localized plane Couette equilibria.
(a) Component-wise decay rates for EQ7-1 at α= 1/2, Re= 600 : u, v,w (solid lines) scale
as e−αz, e−2αz, e−αz respectively (dotted lines). (b) Decay of ‖w‖∞ for EQ7-1 (solid lines)
compared to e−αz (dotted lines) at Re= 600 and several values of α.
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FIGURE 14. (a,b) Asymptotic form of the tails of spanwise-localized equilibria of plane
Couette flow. Contours of streamwise velocity u(x, y) at fixed z: (a) a slice of EQ7-1
for α= 1 and Re= 400, at z= 11, where ‖u‖∞ ≈ 10−6, and (b) the asymptotic v= η= 0
normal-mode solution. Contours are plotted at ±[0.15,0.45,0.75] times the maximum of u,
with negative values in dashed lines. (c) Exponential decay rate for three types of normal
modes in the tails of plane Couette equilibria at Re= 400. The minimal γi as a function
of α is plotted for �, v = η = 0 solutions; ◦, solutions of (4.5) with ṽ(y) = 0; and F,
solutions of (4.6).

The latter is the time-independent form of the familiar Orr–Sommerfeld equation for
three-dimensional disturbances. Equation (4.6) is independent of η̃ and the eigenvalues
γ can be found numerically for given α, c, Re, and U(y). The iγU′ṽ coupling term
in (4.5) acts as a non-homogeneous forcing, requiring particular solutions for η̃(y) to
match the eigenmodes of (4.6). Eigenvalues distinct from those found for (4.6) can be
found by solving (4.5) with ṽ(y)= 0. Figure 14(c) shows the minimal γi allowed by
these two equations as a function of α for plane Couette equilibria at Re= 400. Note
that v= η= 0 modes have the smallest γi for α in the range shown (α< 2); thus these
modes dominate the behaviour of the tails in all solutions with streamwise wavelength
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greater than π. It should be noted, however, that streamwise-constant (α = 0) modes
can exist in domains of any length Lx, and thus might play a dominant role in short
(large α) domains if the symmetries permit them.

4.2. Asymptotic scaling of streamwise Fourier harmonics
In this section we provide a numerical account of the large-Reynolds-number
behaviour of the periodic and localized solutions developed in previous sections.
In particular we measure the scaling of various streamwise Fourier components of
the solutions with Re, and we show the development of critical layers at large Re.
These features are key to the asymptotic analysis of NBCW suggested by Wang et al.
(2007) and developed into a complete theory by Hall & Sherwin (2010). The main
results are as follows. The streamwise Fourier components of EQ7 and solutions
related to it, localized and in channel conditions, obey scaling laws similar to those
of NBCW, albeit with different exponents and substantially different magnitudes,
suggesting that Hall & Sherwin (2010)’s asymptotic analysis could be carried over
to the new solutions. EQ8 and the y-asymmetric channel flow solutions, in contrast,
do not fit the asymptotic scaling framework so cleanly. All solutions appear to have
well-defined critical layers, however, and the critical layer is particularly simple for
EQ7 and its localized counterparts.

As suggested by Wang et al. (2007) and developed into a complete theory by
Hall & Sherwin (2010), a reduced partial differential equation (PDE) system can be
developed for the spatially periodic NBCW solution from an asymptotic analysis of
its streamwise Fourier modes and the critical layer that develops at large Reynolds
numbers. Wang et al. (2007) showed numerically that NBCW has a simplified,
quasi-two-dimensional structure in the limit of large Reynolds numbers, with a
balance between O(1) streamwise-constant streaks, O(Re−1) streamwise-constant rolls,
and an O(Re−0.9) mode in the first (fundamental) streamwise Fourier harmonic, which
concentrates in a critical layer of thickness O(Re−1/3). Hall & Sherwin (2010) in turn
developed an asymptotic theory for NBCW based on vortex–wave interaction that
provides insight into the physics of how these components of NBCW balance, predicts
their scaling exponents, and which reduces the computation of the solution from a
three-dimensional Navier–Stokes problem at large-Re to a two-dimensional PDE at
Re = 1 coupled with a linear wave evolution equation. Specifically, the interactions
of very small fundamental-mode streamwise waves within the critical layer generate
non-zero mean stresses that cause jumps in the pressure and the normal derivative
of roll velocity across the critical layer. The jump in roll shear drives the mean
rolls, which in turn drive the mean streaks. Hall & Sherwin (2010) show that these
effects balance to leading order in Re−1, and that the asymptotic theory also reduces
computation of the three-dimensional steady state at high Reynolds number to a
simpler two-dimensional calculation at unit Reynolds number coupled with a linear
wave evolution equation.

This reduced quasi-two-dimensional PDE model of Hall & Sherwin (2010) is
of particular interest to us since a theoretical analysis of spanwise localization in
solutions of the Navier–Stokes equations should be easier to develop in the context
of a reduced model. There is strong numerical evidence that a theory of localization in
solutions of the Navier–Stokes equations might be developed. Schneider et al. (2010b)
noted a remarkable resemblance between the x, y-averaged energy of the localized
NBCW solutions and localized solutions of the one-dimensional Swift–Hohenberg
equation found by Burke & Knobloch (2007). The similarity was made more
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remarkable by Schneider et al. (2010a)’s demonstration that the localized NBCW
solutions undergo homoclinic snaking under continuation in Reynolds number, just as
the localized Swift–Hohenberg solutions do under continuations in their bifurcation
parameter. For Swift–Hohenberg, homoclinic snaking of localized solutions is quite
well understood theoretically via ‘spatial dynamics’ (Burke & Knobloch 2007).
Time independence reduces the fourth-order Swift–Hohenberg PDE for u(x, t) to
a fourth-order ordinary differential equation (ODE) for u(x), which can then be
considered as a four-dimensional dynamical system where x plays the role of time.
In this view, spatially periodic solutions correspond to periodic orbits of the spatial
dynamics, and spatially localized solutions correspond to homoclinic orbits that start
at the origin u = 0 at t → −∞, grow away from it along an unstable direction,
wander at finite amplitude for some time, and then reapproach u= 0 at t→∞ along
a stable direction. Localized solutions display approximately periodic form in their
core regions when the finite-amplitude excursion away from u = 0 makes a number
of circuits in the neighbourhood of an unstable periodic orbit of the spatial dynamics.

Thus the close correspondence between localized Navier–Stokes solutions and
localized Swift–Hohenberg solutions points to the possibility of a theoretical
explanation of localization in invariant solutions of the Navier–Stokes equations.
It also points to the importance of a reduced PDE system describing the localized
solutions, ideally to a one-dimensional system in the spanwise coordinate, to which
the idea of spatial dynamics might be applied. We report on the scaling of streamwise
Fourier components and the development of a critical layer in the plane Couette
and channel solutions because they are essential ingredients for developing such a
reduced-order PDE model. We note that Deguchi et al. (2013) have in fact extended
the asymptotic analysis of Hall & Sherwin (2010) to the case of the spatially periodic
EQ7, for large Re and small α, and have identified α ∼ Re−1 as the distinguished
limit at which the reduced-order system breaks down. They also showed that the
spanwise-localized EQ7-1 can be produced by a simple continuation of EQ7 in
spanwise wavenumber.

The perturbation velocity field of equilibrium and travelling-wave solutions can be
expressed as a sum of streamwise (x) Fourier modes in the form

u(x, t)=
∑

j

ûj(y, z)eijθ (4.7)

where θ = α(x − ct) and where û−j(y, z) = û∗j (y, z) so that u is real-valued. The
streamwise-constant mode û0 can be decomposed into streamwise streaks û0(y, z) and
cross-stream rolls [0, v̂0, ŵ0](y, z). Recall that u is the deviation from laminar flow
U(y)ex, with utot = u+ U(y)ex and ûtot,0 = û0 + U(y), so that the streaks are defined
relative to laminar flow. Wang et al. (2007) define streaks relative to the z-averaged
mean flow, but we do not, since z-averaging is inappropriate for spanwise-localized
solutions. Hall & Sherwin (2010) refer to the first (fundamental) harmonic û1(y, z) or
û1(y, z) exp(iα(x− ct))+ c.c. as the wave mode.

Figure 15 shows the scaling with Reynolds number of the magnitude of the streaks,
rolls, waves, and second and third harmonics for a number of plane Couette and
channel solutions. The magnitude is computed with the ∞-norm; for example, the
magnitude ‖û1‖∞ of the wave is the maximum over x, y, z and the vector components
[u, v,w] of u= û1(y, z)eiαx + û−1(y, z)e−iαx. A number of these solutions exhibit very
clear scaling of the form ‖ûj‖∞ =O(Re−µj). For example figure 15(a) shows that for
NBCW, the streaks are O(1), the rolls O(Re−1), and the waves O(Re−0.85). The streak
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FIGURE 15. Scaling of streamwise Fourier modes of plane Couette and channel solutions.
(a,b,c) Spatially periodic plane Couette equilibria NBCW, EQ7, EQ8, at α, γ = 1, 2. (d,e,f )
Spatially periodic channel flow travelling waves TW1, TW2, TW3, at α, γ = 1, 2. (g,h,i)
Spanwise-localized solutions: EQ7-1 plane Couette equilibrium and TW1-1 and TW2-1
channel flow travelling waves, at α= 1. The magnitude of various Fourier components of
the velocity, as measured by ∞-norm is plotted against Reynolds number (see text). The
labels s, r, 1, 2, 3 indicate the streaks û0, rolls [v̂0, ŵ0], and the first, second, and third
streamwise Fourier harmonics û1, û2, and û3.

and roll scalings equal the theoretical predictions of Hall & Sherwin (2010), and the
wave scaling is within 2 %. Note that the choice of ∞-norm changes the scaling
exponent for the NBCW wave component compared to the value of µ1= 0.9 reported
by Wang et al. (2007).

EQ7 in figure 15(b) shows equally clear asymptotic scaling with exponents
comparable but not equal to those of NBCW. The same is true of all solutions derived
from EQ7 by parametric continuation and localization by windowing. Examples of
such EQ7-related solutions are shown in figure 15, namely figure 15(d) TW1, the
spatially periodic travelling wave of channel flow obtained from EQ7 by continuation;
figure 15(g) EQ7-1, the spanwise-localized equilibrium of plane Couette flow obtained
by windowing; and figure 15(d) TW1-1, the spanwise-localized travelling wave of
channel flow obtained by windowing TW1. Scaling exponents for these solutions plus
EQ7-2 and TW1-2 are listed in table 3. It should be noted that the magnitudes of
Fourier harmonics of EQ7 and solutions derived from it are substantially different
from those of NBCW. For example, comparison of EQ7 in figure 15(b) to NBCW in
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j NBCW EQ7 EQ7-1 EQ7-2 TW1 TW1-1 TW1-2

0 Streak 0.01 0.10 0.14 0.12 0.06 0.08 0.09
1 Wave 0.85 0.77 0.90 0.83 0.80 0.80 0.82
0 Roll 1.00 0.97 1.00 1.00 1.05 1.02 1.00
2 1.40 1.25 1.40 1.35 1.35 1.40 1.35
3 2.20 2.60 2.25 2.45 1.95 2.20 2.00

TABLE 3. Scaling exponents for streamwise Fourier harmonics of equilibrium and
travelling-wave solutions of plane Couette and channel flow. Components of solutions u
scale as ‖ · ‖∞ =O(Re−µ) for the given values of µ.

figure 15(a) shows that the EQ7 streaks are about a factor of three smaller than those
of NBCW, and its fundamental harmonic is about a factor of three larger, resulting
in an order of magnitude less scale separation between these components.

In contrast, the upper-branch and y-asymmetric solutions reported here have no clear
asymptotic scaling in streamwise Fourier harmonics and substantially poorer separation
of scales, namely figure 15(c) EQ8, the upper branch of EQ7; figure 15(e) TW2, a
spanwise-periodic travelling wave of channel flow obtained from judiciously chosen
DNS data; figure 15(f ) TW3, a higher-wavenumber spanwise-periodic travelling wave
of channel flow obtained from continuation in Re of TW2; and figure 15(i) TW2-1,
a spanwise-localized travelling wave of channel flow obtained from windowing TW2.
TW2-2 (not shown) is similar to TW2-1. Among these, none of EQ8, TW2, TW2-1, or
TW2-2 continue in a straightforward fashion to higher Reynolds number; instead the
solutions curves turn around at finite Re and follow complex paths. The same is true
for EQ2, the upper branch of NBCW. The numerical evidence thus weighs against the
possibility of an asymptotic analysis of these solutions based on streamwise Fourier
harmonics.

4.3. Critical layers
The development of critical layers is an important consequence of the separation of
scales in the streamwise Fourier modes (Wang et al. 2007; Hall & Sherwin 2010).
The critical layer is the surface on which the mean streamwise fluid velocity matches
the wave speed, i.e. ûtot,0(y, z)= c. When higher harmonics become negligible and the
roll velocities v̂0, ŵ0 are small compared to the streaky streamwise velocity ûtot,0, the
equation for the fundamental mode simplifies to[

iα(ûtot,0 − c)û1 + (û1 · ∇ûtot,0)ex
]

eiθ =∇(p̂1eiθ)+ Re−1∇2(û1eiθ). (4.8)

As argued by Wang et al. (2007), for large Re the fundamental harmonic û1
concentrates in a region of thickness δ = Re−1/3 about the critical layer, in which
(4.8) is dominated by a balance between its first and last terms. For a point
x in this region and xc nearby on the critical layer, this requires a balance of
α(ûtot,0(x)− c)≈ α(x− xc) · ∇ûtot,0 against Re−1∇2. If δ∼ |x− xc| is the thickness of
the region, the balance requires αδ|∇ûtot,0| ∼ Re−1δ−2 or δ = (α|∇ûtot,0|Re)−1/3.

Figure 16 illustrates the development of the critical layer for three spatially periodic
equilibria of plane Couette flow. For equilibria, the wave speed vanishes, so the critical
layer in these plots is the surface y= f (z) on which utot(y, z)=0. For NBCW, shown in
figure 16(a,b), the height of the critical layer varies in z, and its thickness δ decreases
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FIGURE 16. Critical layers of spanwise-periodic equilibria of plane Couette flow.
(a,b) NBCW at Re= 1000 and 30 000, (c,d) EQ7 at Re= 1000 and 30 000, and (e,f ) EQ8
at Re= 1000 and 3000 for streamwise, spanwise wavenumbers α, γ = 1, 2. Dashed contour
lines show total streamwise velocity at levels utot=±{0,0.25,0.50,0.75}. The critical layer
where utot(y, z)= c= 0 is shown with a thick solid contour line. Thin solid contour lines
show the autoscaled magnitude of the fundamental Fourier harmonic, |û1|. The axes are
y vertical and z horizontal.

as Re−1/3 between (a) Re=1000 and (b) Re=30 000. Figure 16(a,b) largely duplicates
figures 2 and 3 of Wang et al. (2007); however we note that our plots show contour
lines of |û1| rather than just the vertical component, |v̂1|, and so more clearly convey
the fact that, for NBCW, the concentration of the fundamental mode is spread almost
uniformly over the entire critical layer.

The critical layers for EQ7 and its upper branch EQ8 are markedly different
(figures 16c, d and 16e, f ). First, the critical layer for these solutions is the line y= 0.
This follows from their σxy symmetry, i.e. [u, v, w](x, y, z)= [−u,−v, w](−x,−y, z).
Under this symmetry the x-average of the perturbation velocity and total velocity
vanishes on y= 0. We note that some of the complexity of Hall & Sherwin (2010)’s
analysis results from the need to work in a coordinate system aligned with the curved
critical layer; for EQ7 and EQ8 this complexity would be eliminated. Second, the
fundamental mode û1 does not concentrate uniformly over the whole critical layer,
but apparently in isolated spots within it. Third, EQ8 seems to form a critical layer
at Re= 2000, even though its scale separation is much poorer and its large-Re limit
does not appear to exist (we were unable to continue it beyond Re= 3000).

Figure 17 shows that the critical layer structure of EQ7 carries over directly to its
spanwise-localized counterparts EQ7-1 and EQ7-2, with tapering to laminar flow at
large |z|. In particular the isolated concentrations of û1 in the critical layer can be
seen, by comparison with figure 5, to result from the first-harmonic x variations of the
y, z-localized and concentrated vortex structures. Figure 18(a,b) shows that the critical
layer structure of EQ7 and EQ7-1 carries over to TW1-1, in two copies mirrored
symmetrically about y=0. The channel travelling waves have a non-zero wave speed c
and lack the σxy symmetry of EQ7, and therefore have a critical layer ûtot,0(y, z)− c=0
whose height varies in z.

Figure 18(c,d) shows critical layer development for the y-asymmetric channel
travelling wave TW2-1. Note that y-asymmetry increases while y and z length scales
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FIGURE 17. Critical layers of spanwise-localized equilibria of plane Couette flow.
(a,b) EQ7-1 at Re = 1000 and 30 000 and (c,d) EQ7-2 at Re = 1000 and 30 000 for
streamwise wavenumber α = 1, with y vertical and z horizontal. Plotting conventions are
the same as figure 16. The z∈ [−π,π] subset of the full [−3π, 3π] computational domain
is shown.
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FIGURE 18. Critical layers of spanwise-localized travelling waves of channel flow.
(a,b) TW1-1 at Re = 2000 and 30 000 and (c,d) TW2-1 at Re = 2000 and 20 000 for
streamwise wavenumber α = 1, with y vertical and z horizontal. Plotting conventions
are the same as figure 16 except total streamwise velocity contours are shown at levels
utot = {0.1, 0.3, . . . , 0.9}. The z ∈ [−π, π] subset of the full [−3π, 3π] computational
domain is shown.

decrease with increasing Re. In particular, û1 concentrates in a smaller region that
approaches the wall as Re increases. An obvious question is whether this represents
a near-wall coherent structure that is constant in wall units. We intend to address this
question in future work. For the time being we note that the behaviour illustrated in
figure 18(c,d) is still subject to a prescribed length scale in the form of the streamwise
wavelength α, and that this prescription must be removed, by streamwise localization
or proper scaling with Re, in order for the length scales to be determined naturally.

5. Conclusions
We have found a number of new spanwise-localized equilibrium solutions of plane

Couette flow and travelling-wave solutions of channel flow, and additionally a few
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spanwise-periodic solutions of channel flow incidental to the construction of the
localized solutions. The spanwise-localized solutions consist of a core region that
closely resembles a spanwise-periodic solution, a transition region, and exponentially
decaying tails. The decay rate of the tails is e−α|z|, and their structure is determined
solely by the streamwise wavenumber, the laminar flow profile, and the wave speed,
and is otherwise independent of the structure of the core region. The solutions related
to Itano & Generalis (2009) and Gibson et al. (2009)’s HVS/EQ7 display clear
scale separation and asymptotic scaling in streamwise Fourier harmonics, suggesting
that they are amenable to analysis via a reduced-order PDE retaining only a few
harmonics.

Several solutions, namely TW2-1 and TW2-2, capture particularly isolated and
elemental exact coherent structures in the near-wall of shear flows, which suggestively
resemble structures previously identified in numerical simulations Jeong et al. (1997)
and analysed in terms of transient growth mechanisms by Schoppa & Hussain (2002).
These solutions consist of long bands of concentrated vortices near the walls, with
alternating orientation, and roughly aligned with the streamwise axis but tilting slightly
in the spanwise and wall-normal directions. The concentrated vortices near the walls
are centred over sinuous low-speed streaks and flanked by high-speed streaks very
near the walls, and otherwise surrounded by very large regions where the streamwise
velocity is reduced relative to the laminar background. These solutions capture, as
exact time-independent solutions of the Navier–Stokes equations, the process by
which near-wall vortices exchange momentum between the wall and core regions of
shear flows and thereby increase drag.
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