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Three-dimensional airway reopening: the steady
propagation of a semi-infinite bubble into a

buckled elastic tube

By ANDREW L. HAZEL AND MATTHIAS HEIL
Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK

(Received 28 February 2002 and in revised form 24 October 2002)

We consider the steady propagation of an air finger into a buckled elastic tube
initially filled with viscous fluid. This study is motivated by the physiological problem
of pulmonary airway reopening. The system is modelled using geometrically nonlinear
Kirchhoff–Love shell theory coupled to the free-surface Stokes equations. The resulting
three-dimensional fluid–structure-interaction problem is solved numerically by a fully
coupled finite element method.

The system is governed by three dimensionless parameters: (i) the capillary number,
Ca = µU/σ ∗, represents the ratio of viscous to surface-tension forces, where µ is the
fluid viscosity, U is the finger’s propagation speed and σ ∗ is the surface tension at the
air–liquid interface; (ii) σ = σ ∗/(RK) represents the ratio of surface tension to elastic
forces, where R is the undeformed radius of the tube and K its bending modulus;
and (iii) A∞ = A∗

∞/(4R2), characterizes the initial degree of tube collapse, where A∗
∞

is the cross-sectional area of the tube far ahead of the bubble.
The generic behaviour of the system is found to be very similar to that observed

in previous two-dimensional models (Gaver et al. 1996; Heil 2000). In particular, we
find a two-branch behaviour in the relationship between dimensionless propagation
speed, Ca, and dimensionless bubble pressure, p∗

b/(σ
∗/R). At low Ca, a decrease in p∗

b

is required to increase the propagation speed. We present a simple model that explains
this behaviour and why it occurs in both two and three dimensions. At high Ca, p∗

b

increases monotonically with propagation speed and p∗
b/(σ

∗/R) ∝ Ca for sufficiently
large values of σ and Ca. In a frame of reference moving with the finger velocity, an
open vortex develops ahead of the bubble tip at low Ca, but as Ca increases, the flow
topology changes and the vortex disappears.

An increase in dimensional surface tension, σ ∗, causes an increase in the bubble
pressure required to drive the air finger at a given speed; p∗

b also increases with
A∗

∞ and higher bubble pressures are required to open less strongly buckled tubes.
This unexpected finding could have important physiological ramifications. If σ ∗ is
sufficiently small, steady airway reopening can occur when the bubble pressure is
lower than the external (pleural) pressure, in which case the airway remains buckled
(non-axisymmetric) after the passage of the air finger. Furthermore, we find that the
maximum wall shear stresses exerted on the airways during reopening may be large
enough to damage the lung tissue.

1. Introduction
A number of pulmonary diseases can cause the smaller airways of the lung to

collapse and become occluded by the liquid that normally coats their interiors
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(Pride & Macklem 1986; Hughes, Rosenzweig & Kivitz 1970; Macklem, Proctor &
Hogg 1970). If the airways remain occluded for significant periods of time then
gas exchange will be severely impaired with potentially fatal consequences. Airway
collapse is facilitated by a number of mechanical factors (Halpern & Grotberg 1992),
including: (i) increased lung compliance (e.g. in emphysema); (ii) an increase in the
volume of fluid in the liquid lining (e.g. in asthma or pulmonary œdema); and/or (iii)
increased surface tension of the liquid lining, usually caused by insufficient natural
surfactant (e.g. respiratory distress syndrome).

The propagation of an air finger into the buckled fluid-filled regions is believed to
reopen the airway, a phenomenon first studied by Gaver, Samsel & Solway (1990).
The same mechanism also occurs at the ‘first breath’ when air enters the fluid-filled
lungs of a newborn baby. The aim of any treatment is to ensure that the propagating
air finger reopens the airways as quickly as possible, but without damaging the lungs.
This is particularly important during mechanical ventilation.

Gaver et al. (1990) performed an experimental study to model airway reopening.
They investigated the propagation of an air finger into a buckled thin-walled
polyethylene tube, filled with viscous fluid. The authors determined the dependence
of the propagation speed, U , upon the applied bubble pressure, p∗

b , and found that
p∗

b appeared to approach a finite value as U tended towards zero. This finite value
was interpreted as the minimum pressure required to initiate motion of the finger:
the yield pressure.

The mechanics of airway reopening are governed by a complex three-dimensional
fluid–structure interaction (a free-surface flow coupled to the deformation of an elastic
tube) and are still incompletely understood, partly because all previous theoretical
studies have been based on two-dimensional models. The first such study was
conducted by Gaver et al. (1996), who modelled the airway as an infinitely long
two-dimensional channel with flexible walls, subject to an imposed axial tension, T .
In this model, the walls are supported by linearly elastic springs of stiffness Kspring

with a rest length that corresponds to a channel width of 2H . A semi-infinite bubble,
under internal pressure p∗

b , propagates at a constant speed, U , into the channel, which
contains a fluid of viscosity µ, and the surface tension between the air and the fluid is
σ ∗. The model was used to predict the bubble pressure as a function of propagation
speed in the absence of inertia. Generic results are shown in figure 1, in which the
bubble pressure is non-dimensionalized on the capillary scale, p∗

b/(σ
∗/H ), and the

capillary number, Ca = µU/σ ∗, the ratio of viscous forces to surface-tension forces,
is used as a measure of the bubble speed.

The model predicts a two-branch behaviour. At high Ca, the physically expected
behaviour is observed and an increase in bubble pressure causes an increase in
propagation speed. In this regime, the fluid layer appears to ‘peel’ the channel walls
apart. Conversely, at low Ca, the behaviour changes and a decrease in bubble pressure
is required to increase the propagation speed of the air finger. In this regime, a large
volume of fluid is ‘pushed’ ahead of the bubble tip and a closed recirculation region
develops in a frame of reference moving with the bubble tip. Gaver et al. (1996) termed
the low-Ca region the ‘pushing’ branch and the high-Ca region the ‘peeling’ branch.
Perhaps the most useful result, from a clinical point of view, was the prediction of a
minimum pressure, p∗

min, where the two branches connect and below which there are
no steady solutions.

Extensions to the two-dimensional airway-reopening model have been considered
by a number of authors: Yap & Gaver (1998) investigated the effects of surfactant
on the system; Heil (2000) explored the rôle of fluid inertia; Horsburgh (2000)
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Figure 1. Bubble pressure vs. capillary number for the two-dimensional model of Gaver et al.
(1996). The data were generated by Heil’s (2000) numerical code using the material parameters
η = T/σ ∗ = 100 (dimensionless wall tension) and Γ = KspringH

2/σ ∗ = 0.5 (dimensionless wall
stiffness). Inset figures illustrate generic channel shapes and streamlines on the two branches;
only one half of the domain is shown.

determined the effect of wall permeability, motivated by the first-breath scenario. He
also examined the stability of the ‘pushing’ branch and showed that it is unstable if
the flow is driven by a prescribed pressure. More recently, Jensen et al. (2002) have
developed an asymptotic description of the ‘peeling’ branch.

While the two-dimensional models appear to capture many features of airway
reopening, a number of potentially important three-dimensional effects have been
neglected. In particular, the flow and the wall deformation in the region close to
the tip of the air finger will be inherently three-dimensional. A more fundamental
shortcoming of the existing two-dimensional models is that a change in transmural
pressure, P∗

tm, defined to be the external (pleural) minus the internal (fluid) pressure,
in the fluid-filled region is equivalent to a rescaling of the transverse lengthscale. In
three dimensions, the undeformed airway radius sets a natural transverse lengthscale
and the transmural pressure (or, equivalently, the initial degree of collapse) becomes
an important parameter in the problem.

This paper is an extension of the previous work of Heil (2000) and represents a fully
consistent model of three-dimensional airway reopening. The aim of the study is to
determine the relationship between the (applied) bubble pressure and the (resulting)
propagation speed under the influence of the system parameters.

2. The model
We consider the steady motion of an inviscid air finger into a fluid-filled elastic tube

of infinite length, undeformed midplane radius R, wall thickness h, Poisson’s ratio ν

and Young’s modulus E. Far ahead of the finger tip, the fluid is at rest and the tube
is in a uniformly buckled state, characterized by its cross-sectional area, A∗

∞. The air
finger is driven by an internal bubble pressure, p∗

b , and propagates at a constant speed,
U . After passage of the finger tip, the tube reopens and a film of fluid is deposited on
the tube walls. The fluid is assumed to be Newtonian and incompressible with viscosity
µ and the surface tension at the air–liquid interface is assumed to be a constant, σ ∗.
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Figure 2. An inviscid air finger propagates at a constant speed, U , into a buckled elastic
tube (Young’s modulus E and Poisson’s ratio ν) initially filled with a fluid of viscosity µ. The
internal pressure of the air finger is p∗

b and the (constant) surface tension at the air–liquid
interface is σ ∗. Illustrative cross-sections through the fluid domain are shown, demonstrating
the deformation of the finite element mesh in response to changes in the position of the wall
and the air–liquid interface; only one quarter of the domain is shown.

The presence of natural surfactant in the lung could result in a non-uniform surface
tension along the interface, see e.g. Yap & Gaver (1998) and Ghadiali, Halpern &
Gaver (2001), but this effect is neglected in the present work.

The problem is formulated in dimensionless Cartesian coordinates, x = (x1, x2, x3) =
x∗/R. Hereinafter, an asterisk is used to indicate dimensional quantities, as opposed
to their dimensionless equivalents. The x3-coordinate is chosen to vary along the axis
of the tube, with the finger propagating in the negative x3-direction, and x1, x2 are
the transverse coordinates, see figure 2.

2.1. Fluid equations

The fluid velocity scale is chosen to be the propagation speed of the finger, u = u∗/U

and the internal fluid pressure is scaled on the viscous scale, p = p∗/(µU/R). The
effects of fluid inertia are neglected and hence the capillary number, Ca = µU/σ ∗, is
the only dimensionless grouping in the fluid equations.

In a frame moving with the (constant) velocity of the bubble, U , the flow is governed
by the dimensionless, steady Stokes equations

− ∂p

∂xi

+
∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
= 0, (1a)

and the continuity equation

∂ui

∂xi

= 0, (1b)

where i, j = 1, 2, 3 and the Einstein summation convention is used.
There are two boundary conditions on the free surface:

uini = 0 (non-penetration), (2a)

−pni +

(
∂ui

∂xj

+
∂uj

∂xi

)
nj +

1

Ca
κni = −pbni (dynamic boundary condition). (2b)

n is the unit normal to the free surface (directed out of the fluid), κ = κ∗R is the dimen-
sionless (first) curvature of the surface, the sum of the principal curvatures, and pb is
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the dimensionless internal bubble pressure. Finally, we fix the bubble tip at the origin:

(x3)tip = 0. (2c)

2.2. Wall equations

We use geometrically nonlinear Kirchhoff–Love shell theory to model the deformation
of the elastic tube. In this theory, the deformation of the shell is completely specified
by the displacements of its midplane, v = v∗/R. Lagrangian coordinates, ξα = ξ ∗α/R,
where α = 1, 2, are introduced to parameterize the midplane, and time is non-
dimensionalized by t = t∗U/R. Changing to a frame moving with the bubble tip
is equivalent to formulating the problem in Lagrangian travelling-wave coordinates,
ζ 1 = ξ 1 + t , ζ 2 = ξ 2. The location of the undeformed midplane is then given by the
position vector, r = r∗/R,

r = (cos(ζ 2), sin(ζ 2), ζ 1), ζ 1 ∈ [−∞, ∞], ζ 2 ∈ [0, 2π]. (3)

The base vectors of the undeformed midplane are aα = r,α , where the comma
denotes partial differentiation with respect to ζ α , and the covariant midplane metric
tensor is aαβ = aα · aβ , with determinant a = a11a22 − a12a21. We also define a curvature
tensor, bαβ = n · aα,β , where n = a1 × a2/|a1 × a2| is the unit normal to the midplane.

After deformation, the midplane position is

R(ζ α) = r(ζ α) + v(ζ α). (4)

Uppercase letters are used to denote shell variables associated with the deformed
midplane and we now define: the deformed midplane base vectors, Aα = R,α;
deformed covariant midplane metric tensor, Aαβ = Aα · Aβ , with determinant A;
and deformed curvature tensor, Bαβ = N · Aα,β , where N = A1 × A2/|A1 × A2| is the
unit normal to the deformed midplane.

The deformation of the midplane may be characterized by the strain and bending
tensors, γαβ and καβ , respectively

γαβ = 1
2
(Aαβ − aαβ), καβ = −(Bαβ − bαβ).

The large bending deformations of the thin-walled elastic tube that occur in the
present system only generate small strains, allowing us to employ a linear constitutive
equation (Hooke’s law). The principle of virtual displacements, which describes the
shell’s deformation, is then∫ 2π

0

∫ ∞

−∞
Eαβγ δ

(
γαβδγγ δ +

1

12

(
h

R

)2

καβδκγ δ

)√
a dζ 1 dζ 2

=
1

12

(
h

R

)3
1

1 − ν2

∫ 2π

0

∫ ∞

−∞

(
R

h

)
f · δR

√
A dζ 1 dζ 2. (5)

f = f ∗/K is the traction per unit area of the deformed midplane, non-dimensionalized
by the bending modulus of the shell, K = E(h/R)3/12(1 − ν2) and Eαβγ δ is the plane
stress stiffness tensor, non-dimensionalized by Young’s modulus

Eαβγ δ =
1

2(1 + ν)

(
aαγ aβδ + aαδaβγ +

2ν

1 − ν
aαβaγ δ

)
, (6)

where aαβ is the contravariant metric tensor of the undeformed midplane. Appendix
A illustrates the behaviour of such thin-walled elastic tubes when loaded by uniform
external pressures.
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2.3. Boundary conditions

2.3.1. Fluid–solid coupling

The no-slip boundary condition implies that the fluid velocity on the tube wall
must be the same as the local wall velocity, and in the moving frame of reference

u =
∂ R(ζ α)

∂ζ 1
on the tube walls. (7)

The fluid exerts a traction on the shell, and the load terms in the solid equation (5)
are given by

fi = P (ext)Ni − σCa

(
pNi −

(
∂ui

∂xj

+
∂uj

∂xi

)
Nj

)
, (8)

where N is the (inward) normal to the deformed shell midplane, P (ext) = P (ext)∗/K is
the external pressure and σ = σ ∗/(RK) is the dimensionless surface tension, which
represents the ratio of surface-tension forces to the tube’s bending stiffness.

2.3.2. ‘End’ conditions

As ζ 1 → −∞ (far ahead of the bubble tip), the fluid is at rest and the (dimensionless)
cross-sectional area of the tube is A∗

∞/R2 = 4A∞. We truncate the computational
domain at ζ 1 = ζ

S
and assume that at this point the wall slope has become so small

that a long-wavelength approximation applies (lubrication theory). Hence, the fluid
equations reduce to a two-dimensional Poisson equation in the final cross-section:

∂

∂xβ

(
∂u3

∂xβ

)
= G at ζ 1 = ζ

S
, (9a)

subject to the no-slip boundary condition

u3 =
∂ R
∂ζ 1

· e3 on the tube wall. (9b)

Here, β = 1, 2 (the transverse directions) and e3 is the unit vector in the x3-direction.
G is a constant pressure gradient that must be determined as part of the solution.
The solution of equations (9a, b) is applied as a Dirichlet boundary condition for the
axial velocity component, u3, and traction-free boundary conditions are applied for
the transverse velocities. In the moving frame, the fluid has uniform unit velocity as
ζ 1 → −∞ and hence the axial flow rate in any cross-section must equal 4A∞. This
constraint is used as an additional equation to determine the extra variable G:∫ ∫

u3|
ζ1=ζ

S

dx1 dx2 = 4A∞. (9c)

Far behind the bubble tip, we truncate the domain at ζ 1 = ζ
F
, set u3 = 1 and

apply traction-free boundary conditions in the other coordinate directions, allowing
the development of transverse draining flows. At both ends of the domain, instead
of matching to the decaying eigenfunctions explicitly, the axial gradients of the
transverse wall displacements are set to zero. On doubling the length of the domain
the results were found to change by less than 0.5%, indicating that this approximation
is suitably accurate. Finally, rigid body motions are suppressed by setting the axial
wall displacement to zero at ζ 1 = ζ

F
, far behind the bubble tip.

2.4. Numerical implementation

The coupled system of equations (1a, b), (2a–c), (5), (7), (8), (9a–c) was solved
numerically using a finite-element method. The method of solution in the fluid
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domain is exactly the same as that described by Hazel & Heil (2002). Briefly, the fluid
domain, shown in figure 2, is decomposed into NF three-dimensional, Taylor–Hood
finite elements (Taylor & Hood 1973) and the nodal positions of the fluid mesh
near the free surface are adjusted by the method of spines (Kistler & Scriven 1983).
The solid domain is decomposed into NS two-dimensional Hermite finite elements
(Bogner, Fox & Schmit 1967). We impose symmetry at the planes x1 = 0 and x2 = 0,
which permits the restriction of the computational domain to positive values of the
transverse coordinates, x1 � 0, x2 � 0 and ζ 2 ∈ [0,π/2].

An automatic mesh generation scheme deforms the fluid mesh in response to
changes in the position of the wall and the air–liquid interface. For this purpose an
initial mesh is generated in the undeformed tube. The position of each fluid node
is then represented as a function of the Lagrangian surface coordinates, ζ α , using a
generalized spine method. After deformation, the positions of the nodal points are
recalculated based upon the new positions of the material points on the wall. The
mesh thus deforms with the tube, see figure 2.

The weak form of the Stokes equations (C 1a–c) and the variational equations for
the shell (C 2), both shown in Appendix C, were discretized and solved simultaneously
by a Newton–Raphson method. A frontal scheme (Duff & Scott 1996) was used to
assemble the Jacobian matrices and solve the resulting linear systems.

For a typical initial guess, the residuals are of O(1) and the Newton iteration was
deemed to have converged when the absolute value of the largest residual is less than
10−8. The initial guess was generated by using Hazel & Heil’s (2002) code to find
the flow field corresponding to a bubble propagating through a rigid circular tube
at low Ca (Ca = 0.5). The flow rate from the rigid-tube computation was then used
as the initial value of A∞ in a computation with weak fluid–structure interaction
(σ = 0.001). From this initial guess, a converged solution of the fully coupled system
was obtained in 7–8 Newton steps. A continuation technique was then used to step
through different values of Ca, σ and A∞. At the standard resolution of 43 000 degrees
of freedom, one Newton iteration requires about fifteen minutes of CPU time on a
1.4 GHz Linux PC.

The fluid solver has been previously validated in problems of bubble propagation
in rigid tubes (Hazel & Heil 2002). The newly developed shell solver was validated
by comparison with an existing shell solver used previously by Heil (1997). Further
validations included a comparison of the computed buckling loads with theoreti-
cal predictions (Yamaki 1984) and a comparison of the non-axisymmetric tube
shapes under uniform pressure loading with the predictions from Flaherty, Keller &
Rubinow (1972) inextensible Euler–Bernoulli model.

The spatial convergence of the results was assessed by repeating selected studies
with higher spatial resolution, see figure 10. Finally, the effect of varying the length of
the computational domain was investigated. The standard length was 40 dimensionless
units (−20 � x3 � 20) and the results were found to change by less than 0.5% on
doubling the domain length to 80 (−40 � x3 � 40), see figures 3 and 5(a).

3. Results
Throughout this work, we used a Poisson’s ratio of ν = 0.49 to reflect the near

incompressibility of lung tissue. The wall thickness was set to h/R = 1/20, close to
the upper limit of applicability of thin-shell theory. The external pressure is taken to
be the reference pressure and was set to zero, P (ext) = 0. The non-dimensional surface
tension, σ , represents the ratio of surface-tension forces to the bending stiffness of
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Figure 3. Bubble pressure vs. capillary number for the standard system parameters (solid
line). The symbols show the results obtained from a calculation in which the length of the
computational domain was doubled. The dashed line is the asymptotic prediction for the
behaviour on the ‘pushing’ branch, see § 3.1.1(a). Inset figures illustrate tube and interface
shapes on the two branches.

the tube and unless otherwise stated we used σ = 1. The standard value for the
cross-sectional area of the buckled end of the tube was set to A∞ = 0.373, which
corresponds to maximum inward radial displacement of 80% of the tube’s undeformed
radius. (Recall that A∞ = A∗

∞/(4R2) and so for an undeformed axisymmetric tube
A∞ = π/4 ≈ 0.785.)

3.1. Variations in bubble speed: Ca

3.1.1. Bubble pressure

Figure 3 shows the bubble pressure on the capillary scale as a function of
the propagation speed, expressed in dimensionless form by the capillary number.
Qualitatively, the behaviour is similar to that predicted by the two-dimensional
models.

(a) Low capillary number – the ‘pushing’ branch

At low values of the capillary number, the slope of the pb–Ca curve is negative
and a decrease in bubble pressure is required to increase the propagation speed.
Examination of the fluid domain reveals that, as in the two-dimensional model, a
large volume of fluid is being pushed ahead of the air finger. Furthermore, the air
finger is located in a region in which the tube is uniformly inflated. This observation
motivates the development of a simple model for the system’s behaviour in this
regime.

The air finger is moving in a region of nearly constant tube shape and so we expect
its behaviour to be similar to that of a finger propagating into a rigid circular tube
of the same radius. In that system, Bretherton (1961) and many others have shown
that the thickness of the deposited film divided by the tube radius, h∞/RT , decreases
with Ca, eventually approaching zero as Ca → 0 and a static hemispherical bubble
fills the entire tube. In the present problem, conservation of mass demands that the
cross-sectional area occupied by the fluid at the open end of the tube must equal that
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at the closed end, from which we derive

R2
T =

4A∞

π(h∞/RT ) (2 − (h∞/RT ))
. (10)

Given that h∞/RT → 0 as Ca → 0, this implies that the open end of the tube
must inflate dramatically as the capillary number decreases. This inflation can only
be achieved by a large increase in internal bubble pressure and hence, at low Ca,
p∗

b/(σ
∗/R) must increase as Ca decreases.

Numerical results for h∞/RT , as a function of Ca, in an axisymmetric rigid tube
are shown in Appendix B. Inserting these results into equation (10) yields RT (Ca).
Finally, using the pressure–radius relationship for a uniformly inflated tube, given
in Appendix A, we obtain an expression for the bubble pressure as a function of
the capillary number, pb(Ca). The predictions of this model agree well with the
computational results at low Ca, see figure 3.

Gaver et al. (1996) presented a similar analysis for the two-dimensional problem
with equally good agreement between the model predictions and computational
results. The behaviour at small Ca is a consequence only of the facts that (i) mass
is conserved and (ii) h∞/RT → 0, as Ca → 0. Statements (i) and (ii) are true in both
two and three dimensions, which explains why both models exhibit the qualitatively
similar two-branch behaviour. Horsburgh (2000) showed that, for pressure-driven
flows, the ‘pushing’ branch is unstable in the two-dimensional model and we presume
that this is also the case in three dimensions.

(b) High capillary number – the ‘peeling’ branch

At high Ca, an increase in bubble pressure causes an increase in propagation speed,
which is the physically expected behaviour. Figure 3 shows that on the ‘peeling’
branch, p∗

b/(σ
∗/R) ∝ Ca and a linear regression analysis for 1 � Ca � 10 shows

that p∗
b/(σ

∗/R) ≈ 1.43 + 5.02 Ca, with a correlation coefficient r2 = 0.999. Thus,
for large Ca the bubble pressure is approximately constant on the viscous scale,
p∗

b/(µU/R) ≈ 1.43/Ca + 5.02.
The explanation for this behaviour is that the tube approaches a limiting geometrical

configuration as Ca increases: ahead of the bubble tip, the tube has the cross-section
specified by A∞ and the tube is held in this configuration by the negative fluid pressure
p = −P

tm
(A∞), see Appendix A. The tube is reopened by the rise in fluid pressure

in the vicinity of the bubble tip; behind the bubble tip, the fluid pressure rapidly
approaches another constant value which maintains the tube in its distended state.
The pressure rise experienced by the wall increases with Ca, equation (8), but once
the reopened section of the tube has become inflated it becomes very stiff and so
even relatively large changes in internal pressure do not significantly affect the wall
shape behind the tip.

The air finger also approaches a limiting shape as Ca increases. This is similar to
the behaviour observed during the propagation of air fingers into rigid tubes (e.g.
Cox 1962 and Appendix B). Hence, the shape of the entire fluid domain and with it
the flow field and stresses (on the viscous scale) become independent of Ca.

3.1.2. Flow fields

Figure 4 illustrates the tube shapes, fluid pressures and streamlines over a range
of capillary numbers. At the lowest values of Ca, the system is on the ‘pushing’
branch and the tube remains inflated for some distance ahead of the bubble tip.
In two dimensions, a closed vortex develops ahead of the bubble tip in this mode,
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see figure 1. In three dimensions, there are no closed vortices; instead, a horseshoe
vortex forms ahead of the tip, emanating from the two-dimensional focus in the plane
x2 = 0, marked F in figure 4. As Ca increases, the focus moves towards the bubble
where it merges with the saddle point S1 on the bubble in the plane x2 = 0. The
horseshoe vortex disappears, although a small reversed-flow region remains ahead of
the tip. Further increasing Ca causes the remaining reversed-flow region to disappear
when the stagnation point ahead of the bubble tip, S, reaches the tip and merges
with Sc. Ultimately, the stagnation points S2 and Sc merge, leaving only Sc at the tip:
complete bypass flow. The transport properties of the flow in three dimensions are
therefore quite different to those of the two-dimensional models. In particular, the
bulk transport of any surfactant in the system, and the consequent effects upon the
overall dynamics, could be greatly influenced by the lack of a closed vortex in three
dimensions.

Increasing Ca causes the buckled region of the tube to move closer to the bubble
tip and a ‘neck’ develops, where the local cross-sectional area of the tube is less than
A∞. The ‘neck’ is the site of the greatest negative fluid pressure, which pulls the wall
inwards. A similar effect has been observed in the two-dimensional models (Gaver
et al. 1996; Heil 2000). Gaver et al. (1996) and Heil (2001) showed that the ‘neck’ is
caused by damped oscillatory eigensolutions for the wall displacement field far ahead
of the bubble tip. The contours in figure 4 also demonstrate that the fluid pressure
is approximately constant in each cross-section, apart from the ‘neck’ region where a
noticeable transverse pressure gradient develops.

3.1.3. Finger shapes

Figure 5(a) shows the radii of the air finger taken in the horizontal and vertical
planes of symmetry, r1 and r2, respectively, at x3 = 15. At low Ca, on the ‘pushing’
branch, the air finger is axisymmetric and both radii have the same value. As Ca
increases, however, the radii begin to differ and at Ca = 5, the finger is noticeably non-
axisymmetric at this point, as shown in figure 5(b). This asymmetry is caused by the
mechanism identified by Hazel & Heil (2002) in their study of bubble propagation in
rigid, non-circular tubes. In such tubes, the non-axisymmetric passage of fluid around
the tip of the bubble necessitates a non-uniform transverse pressure distribution
which causes the air–liquid interface to become locally non-axisymmetric, even if
it ultimately approaches an axisymmetric shape far behind the tip. Hazel & Heil
(2002) found that this effect becomes more pronounced as Ca increases because
longer axial distances are required for the relatively weak surface tension forces to
return the interface to an axisymmetric shape. In elastic tubes, the effect is enhanced
by additional transverse flows caused by the sidewalls moving inwards as the tube
reopens. At high Ca, therefore, even if the tube becomes approximately axisymmetric
a short distance behind the bubble tip, the interface remains visibly non-axisymmetric
for much longer distances downstream.

Figure 4. Streamlines in the planes x1 = 0, x2 = 0 and on the surface of the air finger,
for A∞ = 0.373, σ = 1. Contours of fluid pressure on the capillary scale, p∗/(σ ∗/R) are also
presented.

Figure 13. Contours of the magnitude of the tangential component of the wall shear stress, |τt |,
for A∞ = 0.373, σ = 1 and Ca = 0.493, 0.52, 5. The shear stress is presented on the viscous
scale.
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Figure 5. (a) Bubble radii vs. capillary number at x3 = 15. r1 is the radius in the x1-direction,
in the plane x2 = 0 and r2 is the radius in x2-direction, in the plane x1 = 0. The dashed
line shows the ‘pushing’ model’s (§ 3.1.1a) prediction of the axisymmetric bubble radius. The
symbols are the results obtained from a computation in a longer domain. The inset graph is
an enlargement of the low-Ca region. (b) Cross-section at x3 = 15 for Ca = 5 demonstrating
the non-axisymmetric bubble interface, transverse pressure gradient and persisting draining
flows.

3.2. Parameter variations

For bubble propagation in rigid tubes, Bretherton (1961) and many others have
demonstrated that the ultimate finger radius is set by the interaction between viscous
and surface-tension effects near the finger tip, at least at small Ca. In the present
problem, the deformability of the tube adds a further level of complexity to this
interaction. Once the finger radius has been determined, however, the tube shape
far behind the tip follows directly from mass conservation and the bubble pressure
adjusts to ensure that the required tube shape is realized. The consequences of this
behaviour are explored in the following parameter studies.

3.2.1. Variations in the degree of collapse: A∞

Figure 6 shows the bubble pressure as a function of the capillary number for three
different values of A∞. The bubble pressure required to drive the air finger at a given
speed decreases with decreasing A∞: it is easier to reopen a more strongly buckled
tube. This somewhat counter-intuitive result may be understood by remembering that,
in the present problem, the fluid far ahead of the bubble is at rest. (A brief discussion
of the difference between this boundary condition and that appropriate to bubble
propagation in rigid tubes (Bretherton 1961) is given in Appendix D.) The propagating
bubble redistributes the fluid from the occluding plug into a thin film. Thus, the
larger the cross-sectional area ahead of the air finger, the greater the work required
in redistribution and the higher the pressure required to drive the flow. In addition,
as A∞ increases, the transmural pressure (external minus internal pressure), P∗

tm, far
ahead of the bubble must decrease (see figure 14), which requires an increase in the
fluid pressure because P (ext) = 0. This effect provides only a small contribution to the
differences in bubble pressures in figure 6, however. For instance, on the peeling branch
p∗

b(A∞ = 0.45) − p∗
b(A∞ = 0.373) ≈ 10σ ∗/R, whereas the difference in transmural

pressures far ahead of the bubble tip is P∗
tm(A∞ = 0.45)−P∗

tm(A∞ = 0.373) ≈ 0.3σ ∗/R,
see Appendix A and recall that σ = σ ∗/RK = 1 in figure 6.
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Figure 6. Bubble pressure vs. capillary number for σ = 1 and A∞ = 0.373, 0.41, 0.45. The
dashed lines are the asymptotic predictions based upon § 3.1.1(a).

Figure 6 also shows that, as the degree of tube collapse decreases, not only are
higher pressures required to initiate steady bubble motion, but such motion only
exists at higher propagation velocities. This phenomenon may be understood from
the ‘pushing’ model, § 3.1.1(a), which also predicts this behaviour. In rigid tubes, the
cross-sectional area occupied by the fluid film far behind the bubble tip increases
with capillary number, see Appendix B. Hence, if the system is in the ‘pushing’ mode,
as A∞ increases, the capillary number at which the (elastic) tube must first become
inflated in order to conserve mass increases and the pb–Ca curve shifts to the right,
as observed.

At the largest area, A∞ = 0.45, the prediction from the ‘pushing’ model, § 3.1.1(a),
begins to deviate from the numerical results. This is because for this value of A∞
the ‘pushing’ branch develops at Ca ≈ 3. At this relatively large capillary number
the tip asymmetry, referred to in § 3.1.3, causes the air–liquid interface to remain
non-axisymmetric for significant distances behind the bubble tip. This deviation from
the axisymmetric geometry assumed in the ‘pushing’ model is sufficient to cause the
observed disagreement between the model and numerical results.

Figure 7 shows the results for the bubble pressure plotted against A∞ for various
capillary numbers. As A∞ increases, the increase in cross-sectional area occupied by
the fluid at the open end of the tube must be effected by a decrease in the radius of
the air finger and/or an increase in the radius of the wall. Examination of the fluid
domains, shown in figure 8, indicates that at low values of A∞, the additional fluid is
initially accommodated by a decrease in bubble radius without a noticeable change
in wall shape or bubble pressure. At each Ca, however, there is a critical value of
A∞ above which the bubble radius no longer decreases and the open end of the tube
must inflate axisymmetrically to ensure conservation of mass of the fluid. The elastic
tube is very stiff under inflation and hence the bubble pressure must then rise very
steeply as seen in figure 7. For Ca = 1, the system is in the ‘pushing’ mode at this
point, see figure 6, and the ‘pushing’ model, § 3.1.1(a), agrees well with the numerical
predictions. At higher Ca, the tube is in the ‘peeling’ mode when the tube begins
to inflate and the ‘pushing’ model does not apply. Nonetheless, at every Ca, it is
expected that the solution will eventually match onto the ‘pushing’ model, once A∞
is high enough, because the ‘pushing’ branch shifts to higher Ca as A∞ increases, see
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Figure 7. Bubble pressure vs. A∞ for σ = 1. The dashed line is the prediction based upon the
‘pushing’ model, § 3.1.1(a), for Ca = 1.
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Figure 8. Interface and tube shapes for Ca = 5, σ = 1 and (a) A∞ = 0.31, (b) A∞ = 0.47.

figure 6. Additionally, once A∞ > π/4 the tube is axisymmetrically inflated ahead of
the bubble tip and must be further inflated behind the tip in order to accommodate
the air finger. Hence, at large A∞, the system is completely axisymmetric, satisfying
the assumptions underlying the derivation of the ‘pushing’ model in § 3.1.1(a).

3.2.2. Variations in the dimensionless surface tension: σ

An increase in the non-dimensional surface tension, σ = σ ∗/RK , can be caused
either by an increase in physical surface tension, σ ∗, or by a reduction in wall stiffness,
K . The load on the wall is proportional to the product of σ and the capillary number,
see equation (8). In terms of the wall mechanics, therefore, the effect of an increase
in σ is similar to the effect of increasing Ca: the pressure jump experienced by the
wall, near the bubble tip, increases. The increase in pressure behind the bubble tip
causes the tube there to become more inflated, and the increase in magnitude of the
pressure jump causes the reopening to take place over shorter axial lengthscales, see
figure 9. As σ increases and the tube becomes more inflated the interface curvature
actually decreases, leading to a slight decrease in the capillary pressure drop over the
bubble tip. Nevertheless, the pressure jump experienced by the wall increases because
although κ itself decreases, the load on the wall is given by the product σκ .
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Figure 9. Tube shapes for σ = 0.002 and 1. In both cases Ca = 10 and the tubes have the
same cross-sectional area, A∞ = 0.373, at the buckled end. The reopening region and tube
shapes at the open end are very different, however. In particular, the tube is still buckled at
the open end when σ = 0.002.
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Figure 10. Bubble pressure vs. σ for a fixed value of Ca = 10 and A∞ = 0.373, 0.45.
The symbols show the results computed on the same domain using a refined mesh.

At sufficiently high values of σ , the tube approaches a limiting geometrical
configuration: that which occurs if a large step change in pressure is applied at
the bubble tip. Once such a configuration has been attained, the system becomes
virtually independent of σ . This effect is demonstrated in figure 10, which shows
the bubble pressure plotted against σ at a fixed capillary number, Ca = 10, for
A∞ = 0.373 and 0.45.

Figure 11 demonstrates the effects of varying the non-dimensional surface tension,
σ , upon the pb–Ca relationship. The pressure and velocity scales both involve σ ∗ and,
hence, the variations in σ = σ ∗/(RK) should be interpreted as changes in the tube’s
bending stiffness, K .

For A∞ = 0.373, an increase in tube stiffness causes a monotonic decrease in
bubble pressure, at any given Ca. At the lowest value of σ shown (σ = 0.1), the
bubble pressure is negative at low values of Ca, which indicates that the tube is
still buckled at the open end. It is therefore possible to have steadily propagating
bubbles in tubes that remain buckled provided that σ is small. An example of such a
configuration is shown in figure 9.
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Figure 11. Bubble pressure vs. capillary number for σ = 0.1, 0.5, 1 and (a) A∞ = 0.373,
(b) 0.45. The dashed lines are predictions from the ‘pushing’ model, § 3.1.1(a).
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Figure 12. Bubble pressure vs. capillary number for σ = 0.1, 0.5 and 1 and (a) A∞ = 0.373,
(b) 0.45. The dashed lines are results from the ‘pushing’ model, § 3.1.1(a). The data are the
same as those shown in figure 11, but they are here presented on a surface-tension-independent
scale.

For A∞ = 0.45, the change in bubble pressure with tube stiffness is not monotonic
and the curve for σ = 0.5 lies above that for σ = 1. This behaviour is caused by the
presence of a local maximum in the pb(σ ) curve, as seen in figure 10 for A∞ = 0.45
and Ca = 10. In fact, local maxima appear to be generic features of pb(σ ) curves
at constant Ca. For sufficiently large σ , as σ continues to increase the only changes
in the fluid domain are a (slight) inflation of the tube behind the bubble tip and
a (slight) decrease in the distance between the bubble tip and the tube wall. These
changes cause a decrease in the volume of the region of significant fluid motion and
hence a decrease in the fluid dissipation, leading to the observed (small) decrease in
bubble pressure, on the viscous scale, as σ increases yet further.

Figure 12 shows the same data on a surface-tension-independent scale. The pressure
is non-dimensionalized by the tube’s bending stiffness and the bubble speed is
expressed as Q = σCa = µU/(RK), which represents the ratio of viscous forces
to the bending stiffness of the tube.
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The figure shows that, at a given bubble speed, an increase in physical surface
tension, σ ∗, causes an increase in bubble pressure. A higher value of σ ∗ also leads
to an increase in p∗

min and an increase in the propagation speed at p∗
b = p∗

min. For
A∞ = 0.45, the approximation from the ‘pushing’ model, § 3.1.1(a) loses accuracy at
higher values of σ . This is again a consequence of the tip asymmetry, § 3.1.3, the effect
of which becomes even more pronounced at higher σ because the loading on the tube
wall increases linearly with σ , see equation (8).

3.3. Fluid traction on the airway wall

In the context of airway reopening it is important to assess the stresses that the fluid
exerts on the wall as it is vital to avoid damage to the lung tissue.

Figure 13 shows the magnitudes of the tangential component of the wall shear
stress, τt . Far from the bubble tip, the stress tends to zero because the fluid is at rest.
The maximum tangential shear stress is exerted at the point of greatest axial wall
slope and increases with Ca. The maximum shear was also found to increase with
an increase in σ or a decrease in A∞. These effects are a result of the changes in
the geometry of the reopening region under parameter variations and the maximum
shear stress increases with increasing wall slope. The changes are all relatively minor,
however, and, on the viscous scale, the maximum tangential shear stress varies in the
range 2 < τ ∗

t /(µU/R) < 5 for all the parameter regimes investigated in this paper.
The normal stress is dominated by the contribution of the pressure, see figure 4,

and is, in general, greater than the tangential shear stress shown in figure 13. We
further find that the normal stresses on the wall do not vary greatly with azimuthal
position and are smallest in the buckled region and greatest in the region occupied by
the bubble. Finally, we observe that axial gradients in both the normal and tangential
components of the fluid traction increase with increasing wall slope, see figures 4
and 13.

4. Discussion
In this paper we have developed a fully consistent model of bubble propagation in

three-dimensional elastic tubes. The free-surface Stokes equations are coupled to the
equations of geometrically nonlinear shell theory and were solved numerically over a
wide range of system parameters.

A generic two-branch behaviour of the pb–Ca relationship was found, qualitatively
confirming the results of previous two-dimensional models (Gaver et al. 1996). The
low-Ca ‘pushing’ branch is a direct consequence of mass conservation and the fact
that the ratio of the trailing film thickness to the tube radius behind a moving air
finger in an axisymmetric tube tends to zero with Ca. This mechanism is independent
of the spatial dimension of the system and hence is observed in both two- and
three-dimensional models. At sufficiently high σ and Ca, the tube shape becomes
approximately constant, tending towards the limiting shape that would occur if a
large step change in pressure were imposed at the bubble tip. The tube shape ahead
of the bubble will be of the specified cross-sectional area, A∞, and behind the bubble
the tube will be inflated. Elastic tubes become very stiff under inflation and hence
even large further increases in the internal pressure will not cause significant changes
in the tube shape. The pressure drop on the viscous scale, therefore, tends to a
constant as Ca increases and p∗

b/(σ
∗/R) ∝ Ca on the high-Ca ‘peeling’ branch. This

behaviour has not been observed in Gaver et al.’s (1996) two-dimensional model,
where neither the membrane nor the linear springs stiffen under inflation and hence
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the wall shape continues to change significantly under increasing Ca. In principle, it
would be possible to modify the two-dimensional model to capture this aspect of the
three-dimensional system by using suitable nonlinear springs.

An important consequence of the two-branch behaviour is the existence of a
minimum bubble pressure, p∗

min, below which there are no steady solutions. Gaver
et al. (1996) have already noted that p∗

min is an upper bound for the experimentally
observed yield pressure. There could well be a range of pressures below p∗

min for
which the bubble starts to move, but never reaches a steadily propagating state. If
such transient motion of the bubble is sufficient to clear the (finite) blockages in the
lung, then a steady state may never be achieved, or indeed required, in ventilation
applications. Nevertheless, the trends affecting p∗

min would still be expected to apply
to the yield pressure.

We have shown that Gaver et al.’s (1996) two-dimensional model successfully
predicts (albeit qualitatively) many features of three-dimensional airway reopening.
Features that are not captured by the two-dimensional model include the observation
that an increase in the cross-sectional area of the tube far ahead of the bubble causes
an increase in bubble pressure. Higher pressures are therefore required to reopen less
strongly buckled tubes because a greater volume of fluid must be redistributed per
unit time. An increase in the volume of liquid lining the lung, e.g. caused by asthma
or pulmonary œdema, would therefore appear to be extremely dangerous. Not only
will the thicker film be more susceptible to the Rayleigh instability, which initially
causes the airway to collapse (Halpern & Grotberg 1992), but once in the buckled
state, the large volume of fluid will make the airway more difficult to reopen.

Another important difference between the two- and three-dimensional models is
the change in the flow fields ahead of the bubble tip. At low values of the capillary
number, in the frame of reference moving with the bubble, a closed vortex develops
ahead of the tip in two dimensions. In contrast, an open horseshoe vortex is formed
in three dimensions. These differences in the bulk transport properties of the fluid
could lead to significant changes in the effects of surfactant upon the three-dimensional
system compared to previous observations. For example, Ghadiali et al. (2001) studied
the propagation of a bubble into a rigid axisymmetric tube and found that at low
surfactant concentrations, bulk transport to the interface was reduced at low Ca,
leading to an increase in the interfacial pressure jump. It is unclear whether this effect
will occur to the same extent in the three-dimensional system where surfactant cannot
remain trapped in the vortex.

Variations in the dimensionless surface tension, σ = σ ∗/(RK), may be interpreted
as changes in either the wall stiffness or the surface tension of the liquid lining
the airways. At high values of σ , the wall slopes and the pressure on the viscous
scale appear to become independent of σ . This is again a consequence of the tube
approaching a constant shape – the limit of a very flexible tube. A decrease in wall
stiffness or increase in surface tension (increase in σ ) tends to cause an increase in
bubble pressure and an increase in p∗

min. (In some parameter regimes, pb(σ ) can have
a weak local maximum before pb becomes approximately independent of σ on the
capillary or viscous scales.) It follows that it would be expected to be harder to reopen
the lungs of patients with respiratory distress syndrome, in which the surface tension
is increased, or with diseases that cause a weakening of the airway walls.

In an attempt to restrict the number of parameters in our model and keep it as
simple as possible, we have deliberately not included an elastic bedding, which could
represent the effect of parenchymal tethering in the lung, or axial tension, which were
both present in Gaver et al.’s (1996) model. Consequently, our model does not have
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an equivalent to the parameter Γ = KspringH
2/σ ∗ defined by Gaver et al. (1996). Their

parameter η, a dimensionless wall tension, plays a role loosely equivalent to σ −1 in
that an increase in σ causes a shortening of the reopening region.

The greatest stresses exerted on the cells lining the airways are due to the fluid
pressure. After passage of the air finger the airway wall can be subject to very large
fluid pressures. It is therefore imperative that p∗

b be kept as low as possible during
any therapeutic procedure. For any given parameter combination, p∗

min is an upper
bound for the transmural pressure required to reopen the airway. In our model,
p∗

min/(σ
∗/R) ranges from approximately −20 to 30 over the parameters variations

presented. Negative values of p∗
min occur in situations in which the airway remains

buckled (non-axisymmetric) after the passage of the air finger, and this indicates that
the bubble pressure is lower than the external (pleural) pressure in the lung. Under
these conditions, the reopening is driven by the elastic restoring force of the airway
wall, as opposed to an applied positive bubble pressure.

The tangential component of the viscous wall shear stress, τ ∗
t /(µU/R), is found to

be largely insensitive to changes in the system parameters, with a maximum value
between 2 and 5. In dimensional terms, the maximum tangential wall shear stress is
τ ∗
tmax

= Ca(σ ∗/R)τtmax
and so the capillary number must be kept as small as possible to

minimize the shear stresses on the airway wall. In fact, steady reopening of the airway
at p∗

b ≈ p∗
min will minimize both normal and shear stresses. Nonetheless, the maximum

tangential wall shear stress can be extremely large. For example, consider the steady
reopening of the bronchi in the tenth generation of the lung, assuming that A∞ = 0.373
and that we can reopen at p∗

b = p∗
min. In such bronchi, R ≈ 0.06 cm, h/R ≈ 0.1 and

E ≈ 6 × 104 dyn cm−2 (Halpern & Grotberg 1992), giving K ≈ 0.66 Nm−2. The
surface tension of the lung lining fluid is approximately that of water, σ ∗ = 2.0 ×
10−2 Nm−1 and so σ = σ ∗/(KR) ≈ 50. For these parameters, we find that Ca ≈ 0.29
at p∗

b = p∗
min and τtmax

≈ 4, which yields a maximum dimensional wall shear stress of
τ ∗
tmax

≈ 40 Nm−2. In comparison, Fry (1968) found that a shear stress of 40 Nm−2 was
sufficient to remove aortic endothelial cells from the arterial wall.

The above analysis is independent of the dimensional bubble propagation speed,
U = σ ∗Ca/µ. If we assume the viscosity of the lung lining fluid to be that of water,
µ ≈ 10−3 kg m−1 s−1, then the propagation speed would be U = σ ∗Ca/µ ≈ 6 m
s−1, a completely unrealistic scenario. In that case, the airway reopening must be
either (a) an intrinsically unsteady phenomenon, and/or (b) driven by volume rather
than pressure control. In the latter case, the system could undergo steady reopening
on the ‘pushing’ branch, leading to high bubble pressures, but lower shear stresses.
Alternatively, mucus secretions (e.g. in asthma, cystic fibrosis and bronchitis) can
lead to significant elevation of the viscosity of lung lining fluid. Gaver et al.’s (1990)
estimate of µ ≈ 10−1 kg m−1 s−1 gives a (more realistic) bubble propagation speed of
6 cm s−1. In this high-viscosity scenario, steady airway reopening would be possible
on the ‘peeling’ branch.

The three-dimensional model presented here is not without shortcomings. In
particular, the effects of lung surfactant have been neglected by assuming a constant
surface tension, σ ∗. The transport of surfactant along the interface and its movement
between the interface and the fluid will affect the local value of σ ∗ and hence the
value of p∗

b at a given Ca (Yap & Gaver 1998). Inertial effects are also neglected
in the present work, although they could be included without a major change in
formulation. In two dimensions, Heil (2000) found that fluid inertia could lead to
significant changes in the wall and interface shapes and caused an increase in p∗

b at
any given capillary number. Finally, there is some question as to how well steady
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Figure 14. Variations in the cross-sectional area, A∗
∞, of an elastic tube under a uniform

transmural pressure load, P∗
tm. Illustrative cross-sections are also shown and the final point

on the graph is at opposite-wall contact, where A∞ ≈ 0.21.

reopening in an infinitely long straight tube approximates the physiological problem
in the lung, where the liquid blockages are finite, the airway branches short and
curved, and the motion unsteady, at least initially.

In response to this question, we refer to Cassidy, Gavriely & Grotberg (2001)
recent experiments, which indicate that finite-length liquid plugs in dry straight tubes
behave in a similar manner to semi-infinite plugs provided that the ratio of plug length
to tube radius is greater than 20. Furthermore, after passage through a symmetric
bifurcation, Cassidy et al. (2001) found that the behaviour of liquid plugs depends
mainly upon the local plug Ca. Thus, apart from the motion through the bifurcation
itself, the behaviour of the plug is adequately described by its behaviour in a single
tube. We are therefore optimistic that the simplified model presented herein does
indeed provide insight into the phenomena governing pulmonary airway reopening.

Financial support from the EPSRC is gratefully acknowledged. The HSL library
routine MA42, a frontal solver for sparse unsymmetric systems, and the cfortran.h
header file were used in the development of the numerical code in this work. The
authors would also like to thank the anonymous referees for their helpful comments.

Appendix A. Thin-walled elastic tubes under uniform external pressure
Many aspects of bubble propagation in elastic tubes are a consequence of the

tube’s deformation under uniform pressure loading. Figure 14 shows the transmural
(external minus internal) pressure, P∗

tm
, as a function of the cross-sectional area, A∗

∞,
of such a tube. The results were obtained by numerically solving equation (5) for
a tube of length 10, subject to symmetry boundary conditions at ζ 1 = 0, 10, and a
loading term fi = P

tm
Ni .

At P
tm

= 0, the tube is undeformed and the dimensionless cross-sectional area
is A∗

∞/(4R2) = π/4. If 0 < P
tm

< 3, the tube remains axisymmetric with only a
slight decrease in cross-sectional area. At P

tm
= 3, there is a bifurcation to a non-

axisymmetrically buckled shape and the area decreases rapidly with increasing external
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Figure 15. Dimensionless film thickness, h∞/RT , behind a semi-infinite air finger propagating
into a fluid-filled rigid circular tube of radius RT vs. capillary number.

pressure. Despite quite pronounced changes in tube geometry, the cross-sectional area
is always a monotonically decreasing function of P

tm
.

On the axisymmetric branch, the external pressure may be related to the deformed
tube radius, RT , by the following (linearized) expression:

P∗
tm

K
= −(RT − R)

12

(h/R)2
. (A 1)

For negative transmural pressures, RT > R and the tube will inflate axisymmetrically.

Appendix B. Bubble propagation in rigid circular tubes
Numerical results for the film thickness behind an air finger propagating into an

axisymmetric tube filled with a viscous fluid have been presented by many authors
(e.g. Reinelt & Saffman 1985; Giavedoni & Saita 1997). Figure 15 shows the film
thickness as a function of capillary number from our finite element code for the
propagation of air fingers in rigid tubes (Hazel & Heil 2002). As Ca → 0, h∞/RT → 0
and as Ca → ∞, h∞/RT → C, where C ≈ 0.36.

Appendix C. The integral form of the governing equations
The finite element solution of the free-surface Stokes equations is based on their

weak form. This is obtained by integrating the momentum equation (1a) over the
fluid domain and using the tri-quadratic velocity shape functions, ψ (F ), as test
functions. The viscous and pressure-gradient terms are integrated by parts and the
dynamic boundary condition (2b) is incorporated via the surface divergence theorem
(Weatherburn 1955) to give∫ ∫ ∫ [

p
∂ψ (F )

∂xi

−
(

∂ui

∂xj

+
∂uj

∂xi

)
∂ψ (F )

∂xj

]
dV

+

∫ ∫ [
−pni +

(
∂ui

∂xj

+
∂uj

∂xi

)
nj

]
ψ (F ) dS\Sfs
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+
1

Ca

∫ ∫
1

g
[g1]i

(
g22

∂ψ (F )

∂s1

− g12

∂ψ (F )

∂s2

)
+

1

g
[g2]i

(
g11

∂ψ (F )

∂s2

− g12

∂ψ (F )

∂s1

)
dSfs

−
∫ ∫

pbψ
(F )ni dSfs − 1

Ca

∮
ψ (F )mi ds = 0. (C 1a)

The volume integrals are evaluated over the entire computational domain, V , and the
surface integrals over the boundary of the domain, S, where n is the normal directed
out of the bounding surface. Sfs is the free surface, paramaterized by the coordinates
sα and the covariant base vectors gβ , β = 1, 2. gαβ ≡ gα · gβ is the covariant metric
tensor of the free surface and has the determinant g. The line integral is evaluated
along the boundary of the free surface, where m is a unit vector tangent to the free
surface and directed out of the domain.

The continuity equation (1b) is weighted by the tri-linear pressure shape functions
ψ (P ) ∫ ∫ ∫

∂ui

∂xi

ψ (P ) dV = 0, (C 1b)

and the boundary condition (2a) is weighted by the bi-quadratic shape functions for
the spine heights, ψ (H ) ∫ ∫

uiniψ
(H ) dSfs = 0. (C 1c)

A displacement-based finite element method is used to solve the shell equations
(5) and hence the variations of the strain and bending tensors, δγαβ and δκαβ , are
taken with respect to the displacements, v, and their derivatives with respect to the
Lagrangian coordinates. In this work, we choose to resolve the displacement vector
into components on the global Cartesian basis, rather than the undeformed basis
of the shell, so that v = viei , where ei is the unit vector in the xi-direction. This
representation (which differs from the one used in Heil 1997) is readily extendible
to more general shell geometries and also reduces the algebraic complexity of the
resulting variational equations, which become

∫ 2π

0

∫ ζ
F

ζ
S

Eαβγ δ

(
γαβ Aγ ψ

(S)
,δ +

1

12

(
h

R

)2

καβ

[
Nψ

(S)
,γ δ +

A2 × Aγ,δ√
A

ψ
(S)
,1 − A1 × Aγ,δ√

A
ψ

(S)
,2

− N · Aγ,δ

A

{
(A22 A1 − A12 A2) ψ

(S)
,1 + (A11 A2 − A12 A1) ψ

(S)
,2

}]) √
a dζ 1 dζ 2

=
1

12

(
h

R

)3
1

1 − ν2

∫ 2π

0

∫ ζ
F

ζ
S

(
R

h

)
f ψ (S)

√
A dζ 1 dζ 2. (C 2)

Here, the extent of the finite computational domain is ζ
S

� ζ 1 � ζ
F

and ψ (S) are
the Hermite shape functions interpolating the displacements and their derivatives
(Bogner et al. 1967).

Appendix D. Boundary conditions far ahead of the bubble tip:
rigid vs. elastic tubes

In both rigid and elastic tubes, the propagating air finger deposits a stationary
liquid film on the tube walls far behind the finger tip. Far ahead of the tip, fluid
completely fills the tube and in order for the air finger to propagate some of this
fluid must be displaced. In the case of the rigid tube, this can only be achieved by the
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fluid being pushed into the tube ahead of the bubble. Therefore, the axial velocity far
ahead of the bubble tip approaches a Poiseuille profile with a mass flux equal to the
cross-sectional area occupied by the bubble far behind the tip.

In elastic tubes, the tube itself can deform to accommodate the passage of the
bubble and there need not be any fluid motion far ahead of the tip. In fact, if
there was any flow, the induced viscous pressure gradient would lead to an increase
in transmural pressure, causing the tube to collapse more and more strongly with
increasing axial distance. This would be inconsistent with the assumption that the
tube’s cross-sectional area approaches the (prescribed) value A∞ as x3 → −∞. The
only possible steady-state travelling-wave solution is one in which ∂p/∂x3 → 0 as
x3 → −∞. This implies that far ahead of the bubble tip the fluid velocity approaches
a uniform profile, u3 = 1 as x3 → −∞ in the moving frame of reference.
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