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Diverse functions of BRCA1 in the

DNA damage response

Breast cancer is one of the most common causes of cancer-related mortality in
women. It affects more than one in nine women over their lifetime. Although
most breast cancers are sporadic, the genetics and molecular biology of the
heritable forms of breast cancer have provided valuable insights into not only
breast cancer but also cancers in general. Among the mutations linked to
heritable breast cancers, the mutations in the breast cancer 1 (BRCA1) gene
are the best characterised. The BRCA1 gene encodes a nuclear protein that is
important for maintaining genome integrity. However, a growing list of BRCA1-
associated proteins suggests that BRCA1 has diverse and unexpected
functions.
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Most breast cancers are sporadic. Indeed, only
5–10% of all breast cancers are considered to be
familial. Among these, germline mutations in
the breast cancer 1 (BRCA1) gene are found in
almost all of the families with inherited breast and
ovarian cancers and about half of the families with
only breast cancer (Ref. 1; reviewed in Ref. 2).
Cancer cells from carriers of the BRCA1 mutation
contain ‘loss of heterozygosity’ (LOH) at the wild-
type chromosome; this indicates that the loss of
function predisposes to tumourigenesis and the
wild-type BRCA1 is therefore considered to be a
tumour suppressor (Ref. 3).

The BRCA1 gene is found on chromosome
17q12-21 in humans and encodes a 1863 amino
acid polypeptide (Ref. 4). The protein contains
two notable types of domains: a RING finger in

the N-terminal region and two BRCT domains
in the C-terminal region (Fig. 1). The RING
finger is a zinc-binding domain that interacts
with BRCA1-associated RING domain protein
(BARD1), which also contains an N-terminal
RING finger and two C-terminal BRCT domains
(Ref. 5). The BRCA1–BARD1 interaction is
abolished by tumourigenic missense mutations in
the RING finger of BRCA1, raising the possibility
that tumour suppression is mediated by a
heteromeric complex of BRCA1 and BARD1 (Ref.
5). The RING finger of BRCA1 also interacts with
BAP1 (BRCA1-associated protein 1), a ubiquitin
C-terminal hydrolase (see below). The BRCT
domains in BRCA1 can activate transcription and
are frequently found in proteins involved in DNA
repair and cell cycle regulation (Refs 6, 7, 8, 9, 10).
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BRCA1 function
BRCA1 and regulation of cell proliferation
BRCA1 protein is localised to the nucleus (Refs
11, 12) and is expressed in a wide range of tissues
in developing mouse embryos, particularly in
proliferating and differentiating cells (Refs 13, 14).
Its expression varies throughout the cell cycle,
with a peak occurring in late G1 and S phase (Refs
15, 16, 17). Although BRCA1+/− mice are normal
and fertile, the complete loss of BRCA1 expression
causes embryonic death before day 7.5 of
embryogenesis (E7.5) (Refs 18, 19, 20). BRCA1−/−

embryos also demonstrate an early (~E7.5) cell-

proliferation block accompanied by elevated
expression of the cyclin-dependent kinase
inhibitor p21 (Refs 19, 21), suggesting that
BRCA1 protein plays an important role in cell
proliferation. This is further supported by the
observation that the mutation of BRCA1 in
mammary epithelial cells leads to blunted ductal
morphogenesis and apoptosis (Ref. 22).

The apoptosis seen in BRCA1−/− cells might in
part be a result of a disruption in the ‘cell cycle
checkpoint’, which is a temporary halting of cell-
cycle progression at G1, S, G2 or M phases of the
cell cycle to allow cells to repair DNA damage

Figure 1. A schematic diagram of the BRCA1 polypeptide, and sites of its interaction with different
proteins. The regions of BRCA1 that interact with other proteins are shown above the polypeptide. The
phosphorylation sites (P) show the serine residues that are phosphorylated and the kinases responsible (in
purple). Only the proteins that have been shown to interact with BRCA1 in vivo are given here. The RING
domain is a zinc-binding domain that interacts with BARD1 (BRCA1-associated RING domain protein)
(Ref. 5) and BAP1 (BRCA1-associated protein 1) (Ref. 72); the BRCT domains can activate transcription and
interact with the transcription factors shown. The references for the BRCA1-interacting proteins are as follows:
CtBP-interacting protein (CtIP) (Refs 57, 58), BRCA2 (Ref. 30), histone deacetylase complexes HDAC 1/2,
retinoblastoma-associated proteins RbAP46 and RbAp48 (Ref. 59), Rad50 (Ref. 32), c-Myc (Ref. 60), p53
(Refs 8, 61, 62), retinoblastoma protein (RB) (Ref. 63), p300/CBP (CREB-binding protein) (Ref. 64) and RNA
helicase A (RHA) (Ref. 65) (fig001jcb).
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before DNA replication or cell division. Cells that
carry the deficient BRCA1 exon 11 isoform are
defective in the G2 checkpoint (Ref. 23). Some of
these cells exhibit amplification of functional
centrosomes (the primary site of nucleation of
microtubules in animal cells), leading to unequal
segregation of chromosomes (Ref. 23) and
aneuploidy, a hallmark of many cancer types.
Although the function of BRCA1 in centrosome
amplification is not clear, hypophosphorylated
BRCA1 interacts with γ-tubulin, a component
of the centrosome, during mitosis (Ref. 24).
Moreover, overexpression of wild-type BRCA1
induces G1–S arrest in tissue culture cells (Ref. 6),
whereas expression of a mutant form attenuates
the G2–M checkpoint (Ref. 25).

BRCA1 and DNA damage repair
BRCA1−/− cells are hypersensitive to ionising
radiation, which causes double-stranded DNA
damage (Ref. 26). This suggests that BRCA1 is
important for DNA repair. Indeed, cells lacking
BRCA1 are particularly deficient in transcription-
coupled repair whereby DNA repair is linked to
the transcriptional machinery such that the
transcribed strand is preferentially repaired. Cells
lacking BRCA1 are also deficient in homology-
directed DNA repair, which uses the homologous
sister chromatid as the repair template (Refs 27,
28, 29).

The role of BRCA1 in DNA damage repair is
further suggested by its association with other
proteins involved in DNA repair, including
BRCA2 (Ref. 30), Rad51 (Ref. 31) and the
hRad50−hMRE11−p95 complex (Ref. 32). The
BRCA2 gene, which was discovered soon after the
BRCA1 gene, is also mutated in some heritable
breast cancers and pancreatic adenocarcinomas
(Ref. 33), and encodes a large protein that is also
important for maintaining genome integrity.
More-recent work using immunoprecipitation
indicates that BRCA1 is associated with a large
complex (>2 MDa), named the BRCA1-associated
genome surveillance complex (BASC), which is
composed of several DNA repair proteins and
tumour suppressors: Mut S homologue 2 (MSH2),
Mut S homologue 6 (MSH6), Mut L homologue 1
(MLH1), the protein kinase ATM, Bloom (BLM)
and the hRad50−hMRE11−p95 complex (Ref. 34).
Although these associations do not prove
functional interaction, they are consistent with
the DNA-repair-defective phenotype of BRCA1-
mutated cells.

Figure 2. DNA-break-induced phosphorylation of
BRCA1 and its possible consequences. Ionising
radiation triggers ATM-dependent phosphorylation
(P) of hCds1 (Thr68) and CtBP-interacting protein
(CtIP) (Ser664 and Ser745). ATM and hCds1 are
kinases and CtIP is a transcription factor. ATM
phosphorylates Ser1423 and Ser1524 of BRCA1.
CtIP binds to BRCA1 and silences the activation
potential of BRCA1. hCds1 in turn phosphorylates
BRCA1 (Ser988). Potential functions of BRCA1 that
might be regulated by phosphorylation are shown.
Therefore, wild-type BRCA1 might function as a
coordinator of several activities that maintain genome
integrity (fig002jcb).

How is the presence of DNA damage signalled
to BRCA1? One mechanism by which BRCA1
receives the DNA damage signal is through
phosphorylation (Fig. 2) (Refs 35, 36). Thus far,
three kinases – ATM (Ref. 37), ATM-related
kinase (ATR) (Ref. 38) and hCds1 (CHK2) (Ref.
39) – have been shown to phosphorylate BRCA1
after DNA damage (see below). BRCA1 is also
phosphorylated in late G1 and S phase (Refs
12, 35, 36, 40) by Cdk2 at the Ser1497 residue
(Ref. 41), but the role of this phosphorylation in
BRCA1 function is not known.
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Regulation of BRCA1 by ATM and ATR
The checkpoint protein kinase ATM is activated
by double-stranded DNA breaks (Ref. 42).
Mutations in the ATM gene cause ataxia
telangiectasia (AT), which is a complex autosomal
recessive disorder with a pleiotropic phenotype
including neuronal degeneration (particularly in
the cerebellum), oculocutaneous telangiectasias,
cancer disposition, immunodeficiency, gonadal
abnormalities, growth retardation and premature
ageing (Ref. 43). Cells derived from patients with
AT are characterised by reduced cell lifespan in
culture, cytoskeletal abnormalities, chromosomal
instability, hypersensitivity to ionising irradiation
and radiomimetic agents, and defective radiation-
induced checkpoints at G1, S and G2 phases of
the cell cycle (Refs 44, 45).

ATM interacts with BRCA1 in vivo and
phosphorylates Ser1423 and Ser1524 of BRCA1 in
response to ionising radiation (Ref. 37). It is not
known how phosphorylation of these residues
affects BRCA1 at the molecular level. However,
reconstituting BRCA1-mutated breast cancer cell
line HCC1937 with wild-type BRCA1 increased
their survival after ionising radiation, whereas
reconstituting with BRCA1 containing mutations
in the ATM-phosphorylated residues did not
increase survival. These findings suggest that
ATM phosphorylation of BRCA1 is important for
BRCA1-mediated responses to double-stranded
DNA breaks after ionising radiation.

ATR also phosphorylates Ser1423 of BRCA1
in response to DNA damage and replication
block (Ref. 38). However, unlike ATM, the
kinase activity of ATR is not enhanced by DNA
damage and replication block; instead, under
these conditions it relocalises to sites of stalled
replication forks where it colocalises with
BRCA1. More-recent work suggests that ATR
might also phosphorylate sites other than those
phosphorylated by ATM, indicating that ATM
and ATR act in parallel but partially overlapping
pathways of the DNA damage response [K.K.
Khanna (University of Queensland, Queensland,
Australia) and B-B. Zhou Zhou (Smith Kline
Beecham, King of Prussia, PA, USA), pers.
commun.].

Regulation of BRCA1 by hCds1
The ATM kinase phosphorylates Thr68 of
another checkpoint kinase, hCds1 (Refs 46, 47, 48,
49, 50), and activates it in response to ionising
radiation (Refs 46, 51, 52). hCds1 is mutated in

a variant form of Li-Fraumeni syndrome, a
highly penetrant familial cancer associated with
inherited mutations in the p53 gene (Ref. 53).
The link with a syndrome classically associated
with p53 mutation might indicate that hCds1
is a tumour suppressor that functions in the
same pathway as p53. This notion is supported
by the observation that hCds1 phosphorylates
Ser20 of p53 and stabilises it in response to DNA
damage (Refs 54, 55, 56). If hCds1 is indeed a
tumour suppressor, it is surprising that the hCds1
mutation is so rare in cancers (one heterozygotic
mutation in 49 cancers studied) (Ref. 53). One
explanation might be that the high frequency of
the p53 mutation or destabilisation obviates the
need for the hCds1 mutation.

hCds1 and BRCA1 colocalise in nuclear foci
(Ref. 39). However, after ionising radiation, the
hCds1–BRCA1 interaction is completely disrupted.
Exactly what regulates the hCds1–BRCA1
disruption is not known, but evidence indicates
that phosphorylation of BRCA1 by hCds1 might
play a role. In vitro, hCds1 phosphorylates
Ser988 of BRCA1 most strongly; in vivo, Ser988
is phosphorylated after ionising radiation but is
blocked in the presence of dominant-negative
hCds1, suggesting that hCds1 can phosphorylate
Ser988 in response to DNA damage. Dispersion
of BRCA1 and its separation from hCds1 after
ionising radiation are decreased if the hCds1-
phosphorylated residue (Ser988) is mutated. The
physiological significance of BRCA1 dispersion
is not known, but if the DNA-damage-induced
dispersion of BRCA1 is important for its function
in the DNA damage response, Ser988 should also
be important. Indeed, BRCA1 did not restore
survival after DNA damage in HCC1937 cells if
the hCds1-phosphorylated residue was mutated
(Ref. 39).

Transcriptional and other activities of BRCA1
A group of  BRCA1-interacting proteins
belongs to the transcription factor family (Fig. 2).
These include C-terminal binding protein
(CtBP)-interacting protein (CtIP) (Refs 57, 58),
histone deacetylase complexes HDAC 1/2,
retinoblastoma-associated proteins RbAP46 and
RbAp48 (Ref. 59), c-Myc (Ref. 60), p53 (Refs 8, 61,
62), retinoblastoma protein (RB) (Ref. 63), CBP
(CREB-binding protein) (Ref. 64) and RNA
helicase A (RHA) (Ref. 65). The BRCT domains at
the C-terminus of BRCA1 have transcription-
activating potential (Ref. 8). Indeed, BRCA1 has
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been shown to transactivate the GADD45 and
p21 promoters (Refs 6, 57, 66). The tumourigenic
missense mutations of the BRCT domains fail
to activate transcription, suggesting that
transcriptional activity of BRCA1 is important for
tumour suppression (Ref. 7). In contrast, BRCA1
suppresses the estrogen receptor α  (ERα )-
responsive promoter (Ref. 67) (see below) and the
insulin growth factor 1 (IGF1) receptor promoter
(Ref. 68).

The physiological relevance of the
transcriptional activity of BRCA1 has been
questioned by many in the field. However, the
following observations linking the DNA damage
signal and the transcriptional activity of BRCA1
argue that it is physiological. In the absence of
DNA damage, the activation potential of BRCA1
is partially suppressed by the CtIP−CtBP complex,
which binds to the BRCT domain of BRCA1 (Refs
57, 69). After ionising radiation, Ser664 and Ser745
of CtIP are phosphorylated by ATM, and, as a
result, BRCA1 and CtIP separate. However, it
must be noted that in a paper by another group,
radiation did not induce the separation of
BRCA1 and CtIP (Ref. 70). It is not known why
the two groups obtained contradicting results.

The physiological relevance of the role of
BRCA1 in transcription was further strengthened
by the observation that BRCA1 is a component
of the human SWI–SNF complex, a large ATP-
utilising complex that disrupts histone–DNA
contact, helping transcription complexes gain
access to DNA (Ref. 71). In light of the BRCA1–
SWI–SNF association, it would be intriguing to
test whether the genes encoding the components
of the SWI–SNF complex are also mutated in breast
cancers.

BRCA1 and ubiquitin metabolism
The diversity of BRCA1-associated proteins has
increased with the recent discovery that the RING
finger domain located near the N-terminus of
BRCA1 interacts with BAP1, a nuclear ubiquitin
C-terminal hydrolase (Ref. 72). In addition, the
BRCA1 RING finger itself mediates ubiquitination
in vitro (Ref. 73). There is no direct evidence
that the ubiquitin-related activity of BRCA1 is
a component of its function in the DNA damage
response or tumour suppression. However,
several tantalising observations support this
possibility: the growth-suppressive effect of
BRCA1 is enhanced by BAP1 and, in addition,
point mutations in the RING domain that are

associated with familial breast cancers abrogate
BRCA1–BAP1 interaction. It would be interesting
to test whether the ubiquitin-related activity of
BRCA1 is also regulated by DNA damage.

Clinical implications
An unsolved mystery is the discrepancy
between the ubiquitous expression of BRCA1
and the restriction of the cancers caused by
BRCA1 mutations to the breast and ovary.
Because the breast and ovarian tissues are
responsive to the mitogenic stimulus of estrogen,
and BRCA1 suppresses the activity of ERα, it has
been speculated that BRCA1 acts as a tumour
suppressor in breast and ovary by counteracting
the mitogenic effect of estrogen (Ref. 67). Thus,
when there is a loss of function of BRCA1,
estrogen-induced growth might go unchecked,
and estrogen-induced breast cancer might
result. One argument against this theory is that
most BRCA1 breast cancers do not express ERα.
However, if the antagonistic relationship
between BRCA1 and estrogen is physiological, it
could have clinical implications. For example,
chemopreventive therapies (Ref. 74) with
antiestrogens such as tamoxifen and raloxifene
might be particularly beneficial for carriers of the
BRCA1 mutation.

Mutations of the BRCA1 gene are very rare
in sporadic breast and ovarian cancers. However,
the expression of BRCA1 is often suppressed
in many sporadic breast cancers, particularly in
those that are highly malignant (Refs 75, 76).
In some cases, the BRCA1 promoter region is
hypermethylated – a DNA modification that
is usually associated with inactive genes (Refs
77, 78). ATM, which regulates hCds1 activity
and also directly phosphorylates BRCA1 (Ref. 37),
is frequently expressed at low levels in many
sporadic breast cancers (Ref. 79); this might in
effect block BRCA1 function in the DNA damage
response. Moreover, LOH of the BRCA1 locus
(over 30%) and the ATM locus (40%) is frequently
seen in sporadic breast cancers (Ref. 80). Thus,
BRCA1-mediated tumour suppression might
be indirectly compromised in a significant
proportion of breast cancers – heritable as well
as sporadic. If this is the case, progress in the
understanding of BRCA1-mediated tumour
suppression should benefit not only the small
number of families carrying the BRCA1 mutation
but also the >10% of women in the general
population who will develop breast cancer.
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Concluding remarks
It is beginning to appear that BRCA1 is a
protein with complex and seemingly unrelated
functions. The future challenge is to understand
how these diverse functions work together to
suppress tumour development. Several groups
are currently investigating the roles of the BRCA1-
interacting proteins in DNA damage responses.
Understanding exactly how the DNA damage
signal pathways coordinate the functional and
physical interactions between BRCA1 and the
BRCA1-interacting proteins will be crucial as we
move towards the next phase of BRCA1 and breast
cancer research.
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Biesecker, B.B. et al. (1993) Genetic counseling for families with inherited susceptibility to breast and
ovarian cancer. JAMA 269, 1970-1974, PubMed ID: 93218062

Devilee, P. and Cornelisse, C.J. (1990) Genetics of human breast cancer. Cancer Surv 9, 605-630, PubMed
ID: 91330185

Kelly, P.T. (1983) Genetic counseling with the cancer patient’s family. Curr Probl Cancer 7, 15-41, PubMed
ID: 84027787

Lynch, H.T. (1991) Hereditary breast cancer. Ann Med 23, 475-477, PubMed ID: 92096227

Patient support groups in the USA

American Cancer Society (National; Tel: +1 800 ACS 2345)

Y-Me National Breast Cancer Organization

http://www.y-me.org

Susan G. Komen Breast Cancer Foundation

http://www.breastcancerinfo.com

National Coalition for Cancer Survivorship

http://www.cansearch.org/

Information resources for researchers, health professionals and patients

American Institute for Cancer Research (AICR) (focuses on diet and nutrition in cancer prevention and
treatment)

http://www.aicr.org

National Alliance of Breast Cancer Organizations

http://www.nabco.org

National Action Plan on Breast Cancer (information on hereditary factors, ethical issues and genetic testing)

http://www.4woman.gov/napbc/

NCI (National Cancer Institute) Cancer Information Service (Tel: +1 800 4 CANCER)

NCI Cancer Trials

http://cancertrials.nci.nih.gov

NCI CancerNet

http://cancernet.nci.nih.gov

OncoLink (information on genetics and cancer)

http://cancer.med.upenn.edu/causeprevent/genetics

The Genetics of Cancer

http://www.cancergenetics.org
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Features associated with this article

Figures
Figure 1. A schematic diagram of the BRCA1 polypeptide, and sites of its interaction with different proteins

(fig001jcb).
Figure 2. DNA-break-induced phosphorylation of BRCA1 and its possible consequences (fig002jcb).
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