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Abstract

The main purpose of this theory is to present a simple picture of magnetic field generation by a relativistic equilibrium
counterstreaming electron–negative hydrogen ion (e–H−) plasmas propagating parallel to an ambient external magnetic
field. The existence of such kind of plasma flows can be imagined during the negative hydrogen ion propagation
through neutralizing plasma, in order to generate an energetic neutral hydrogen beam. The produced magnetic field
deflects the electron and negative hydrogen ion flows and reduces the efficiency of hydrogen neutral beam generation.
We focused our analysis on the influences of the negative hydrogen ion contribution, the particles thermal velocity and
the external magnetic field on the growth rate of generated sheared magnetic field. The dispersion relation is obtained
using a relativistic two-fluid model and Maxwell equations. The analytical and numerical solutions admit generation of
a purely growing transverse electromagnetic field across the ambient external magnetic field. It is shown that H−

current filaments are responsible for deep penetration of the sheared magnetic fields into plasma, however, applying a
weak magnetic field ω2

ce≪ω2
pe suppresses magnetic field generation for a counterstreaming e–H− plasma in the

absence of H− ions dynamics. On the other hand, a magnetic field exists with a small growth rate for strongly
magnetized (ω2

ce ≫ ω2
pe) e–H

− plasma when the influence of H− ions is included. Although the growth rate is small,
we expect that magnetic field generation is further amplified and the penetration depth is increased owing to H− ions
stream, on a time scale much longer than the plasma period t ≫ ω−1

pe .
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1. INTRODUCTION

It is widely believed that the high-energy astrophysical
beams, such as gamma ray burst or supernova remnants,
emit non-thermal radiations (Kennel & Petschek, 1967; Fon-
seca et al., 2003; Schlickeiser & Shukla 2003). This funda-
mental phenomenon was first reported by Erich Weibel,
who predicted the generation of strong magnetic fields in
plasmas fulled by free energy stored in the temperature an-
isotropy (Weibel, 1959). He analyzed instability process by
a bi-Maxwellian distribution function, with temperature an-
isotropy (u0≠ uz), as

f0(v0, vz) = n

u20uz (2π)3/2
exp − v20

2u20
− v2z

2u2z

[ ]
, (1)

where v0 = (v2x + v2y)1/2 and vz are velocity components in
x–y plane and z-direction; u0

2 and uz
2 are corresponding tem-

peratures, respectively. He could show that a purely trans-
verse electromagnetic instability was generated when u0≫
uz. Later in the same year, a very closely related instability
was discovered by Fried that was driven by momentum an-
isotropy with a distribution function as the form (Fried, 1959)

f0(v) = δ(vy)δ(v2z − a2)δ(vx). (2)

According to the Fried theory, a beam–plasma system turns
unstable against electromagnetic modulation normal to the
plasma flow (k⊥ vb). This instability is often called as the
current filamentation (CF) or Weibel-like instability. While
in a laser–plasma context, the CF instability is usually iden-
tified with the Weibel instability (Califano et al., 2006), it is
revealed that the filamentation mode is transverse when both
beams are strictly identical (Pegoraro et al., 1996; Tzoufras
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et al., 2006; Fiore et al., 2006; Bret et al., 2007; Hao et al.,
2008; 2009; Yalinewich & Gedalin, 2010). On the other
hand, the Weibel instability develops from a temperature an-
isotropy and exists in the presence or absence of any beam.
Consequently, the CF instability is “beam based”, while
the Weibel instability is “temperature anisotropy based”.
The existence of Weibel and CF instabilities was approved

not only in astrophysical but also in laboratory plasmas as
well. For instance in streaming and counterstreaming
plasma flows (Brian Yang et al., 1993; Califano et al.,
2001; Bret et al., 2005; 2006; Shukla & Shukla, 2007;
Tautz & Sakai, 2007; Lazar, 2008; Liu et al., 2009;
Abraham-Shrauner, 2010; Lazar et al., 2010; Ghorbanalilu
et al., 2014) microwave discharge of neutral gases and
laser produced plasmas (Bendib et al., 1998; Okada et al.,
1999; Ghorbanalilu, 2006; 2011; 2013; Quinn et al., 2012).
In addition, on the basis of computer simulation, a strong
magnetic field can be generated due to colliding electron
clouds in an unmagnetized electron–ion plasma (Sakai
et al., 2004). On the other hand, in the recent simulation per-
formed for the interaction between electron–ion plasma flows
with a magnetized plasma, the role of heavy ions on the
Weibel instability was discussed, in detail (Ardaneh et al.,
2014). It was shown that the ions form the current filaments
that are the sources of deeply penetrating of the sheared
magnetic field into the plasma. Furthermore, the filamenta-
tion instability was investigated for counterstreaming electro-
n–proton plasma flows as a main mechanism of collisionless
shocks generation (Bret, 2013; 2014). Moreover, in the recent
experiment, the CF instability was observed and studied in a
laboratory environment (Allen et al., 2012).
It is well known to initiate nuclear fusion, the fusion fuel,

must be heated to over 100 million degrees centigrade. This
is accomplished, for example, by injecting fast neutralized
hydrogen particles into the plasma. The positively charged
hydrogen particles have been used exclusively up to now
in the heating systems. Therefore, electrons are removed
from neutral hydrogen and the positively charged hydrogen
ions are then accelerated by electric fields to the required
energy. The hydrogen ion beam should be neutralized be-
cause charged particles would be deflected by the magnetic
field of the plasma cage. To do this purpose the ions have
to pass through a cell containing gas or plasma-neutralizer.
As a result the ions regain the missing electron from the
gas and can be injected as fast neutrals into the plasma. To
get a more efficient neutral beam it is necessary to use neg-
ative hydrogen ions instead of positive ones, which are easy
to be neutralized at high velocities. In this case the dominant
role of positive charges is the neutralizing of H− ions. How-
ever, the additional electron, which is responsible for the
negative charge of the hydrogen particles, is only loosely
bounded and is accordingly readily lost. Therefore, the
plasma-neutralizer efficiency is not 100% and a complete
neutralization has not been available so far. In this paper
the filamentation instability due to the counterstreaming of
e–H− plasmas suggested as a mechanism which may play

an important role in conversion-efficiency of a neutral hydro-
gen beam. This means that, if the filamentation of H− beam
occurs before its neutralization, the hydrogen ions are de-
flected by the self-generated magnetic field and thrown out
from the beam line. In the course of this paper, we focus
our attention on the instability process and the neutral
beam generation does not cover the goal of this investigation.
We use a simple relativistic two-fluid model and Maxwell

equations to derive the dispersion equation. The obtained dis-
persion equation can be easily generalized to other types
of plasma systems such as e–e and e–i plasma flows. We
show that ions dynamics plays an important role in the insta-
bility process and deep penetration of the generated magnetic
field into the plasma. Although the heavy H− ions have a
minor contribution on the instability growth rate, this contri-
bution remains unchanged even in the presence of very
strong external magnetic fields. Therefore, it is plausible on
a time scale much longer than the plasma period t ≫ ω−1

pe
that the sheared magnetic field becomes strong enough to de-
flect the electron filaments and amplifies the CF instability.
On the other hand, the numerical analysis shows that the in-
stability growth rate is decreased by increasing the particles
thermal velocity. Moreover, the instability happens just in a
finite interval of wavenumbers depending on the ratio of
the electron thermal velocity to the drift velocity.
The organization of the present paper is as follows. In Sec-

tion 2, by making use of relativistic two-fluid model and
Maxwell equations a general dispersion relation is obtained
for counterstreaming e–H− plasma propagating parallel to
an ambient external magnetic field. In Section 3, the disper-
sion relation is solved for two limiting cases: (a) Cold
unmagnetized counterstreaming e–H− plasma (b) cold and
magnetized counterstreaming e–H− plasma propagating par-
allel an ambient external magnetic field, when the influence
of heavy H− ions is ignored in the instability process. For
both cases the solutions admit generation of a purely growing
electromagnetic wave, however, the external magnetic field
sufficiently suppresses instability growth. In order to get a
complete solution we solved the dispersion relation numeri-
cally. The numerical solution allows to consider the in-
fluences of the external magnetic field, the contribution of
ion filaments, and the particles thermal velocity on the insta-
bility process. The results for analytical and numerical solu-
tions are in good agreement. Finally, a summary and
conclusions are given in Section 4.

2. TWO-FLUID MODEL AND DISPERSION
EQUATION

Let us consider a two-component plasma with charge species
α (α= e, H−) counterstreaming relativistically with velocity
v0zα along an external magnetic field B0êz, where êz is the
unit-vector along the z-axis in a Cartesian coordinate
system and B0 indicates the strength of the external magnetic
field. If charge species flow with the same velocity and op-
posite directions along the external magnetic field, the
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distribution function for charge species will be given by
Eq. (2). We assume that the electromagnetic perturbation is
an extraordinary mode in which the magnetic and electric
fields perturbations are along the y- and z-axes, respectively.
In this case the extraordinary mode propagates along the
x-axis (k⊥ B0). We expect that a finite density perturbation
is excited owing to cross–coupling of the external magnetic
field B0 and the sheared magnetic field perturbation. The rel-
ativistic momentum equation which is governed on charge
particle dynamics is given as

d(γαmα�v)
dt

= �Fα(t),

dγα
dt

= γ30�v

c2
.
d�v

dt
,

(3)

where �Fα(t) defines all the forces acting on charge particle α
and γα= (1− v2/c2)−1/2 is the relativistic gamma factor.
Here v = (v2α + v20zα)1/2, in which vα is particle fluid velocity
and γ0 = (1− v20zα/c

2)−1/2 is zero order of relativistic
gamma factor. Therefore, to analyse the problem in the
linear regime, it is sufficient to describe the charge particles
dynamics using the Eq. (3), Maxwell and continuity equa-
tions and Faraday’s law as below:

∂nα
∂t

+ n0α
∂vxα
∂x

= 0, (4)

∂vxα
∂t

= − eαBy

mαγ0c
v0zα + ωcα

γ0
vyα − 1

mαγ0n0α

∂ pα
∂x

, (5)

∂vyα
∂t

= −ωcα

γ0
vxα, (6)

∂vzα
∂t

= − eα
mαγ30

Ez, (7)

∂By

∂x
= 4π

c

∑
α

eαnαv0zα + 4π
c

∑
α

eαn0αvzα + 1
c

∂Ez

∂t
, (8)

∂By

∂t
= c

∂Ez

∂x
, (9)

where n0α is the charge density of relativistic particles, vxα,
vyα, and vzα are the components of fluid velocities, and nα
is the small (nα≪ n0α) density perturbation. Furthermore,
Ez and By are the electric and magnetic fields corresponding
to the electromagnetic perturbations, eα, mα, and c are charge
density, rest mass, and speed of light, respectively; ωcα=
eαB0/mαc is Larmor frequency. Note that the terms arise
from dγα/dt in Eqs. (5) and (6) are nonlinear and ignored,
however, this term come into play just in z component of
equation of motion in Eq. (7). Using Eqs. (5) and (6)
and the continuity Eq. (4) along with pα= kBnαTα (where

kB= 1.38 × 10−23 jK−1 is Boltzmann constant), we easily get

∂2

∂t2
+ ω2

cα

γ2α
− kBTα

mαγα

∂2

∂x2

( )
nα = eαn0αv0zα

mαγαc

∂By

∂x
. (10)

It is found from Eq. (10) that the electromagnetic fields Ez and
By are coupled with density perturbations in the presence of
the external magnetic field and the pressure gradient of
charged particles. We assume that the perturbations quantities
behave sinusoidally and are proportional to e(ikx−ωt) (where k
and ω are the wavenumber and frequency). Consequently, by
making use of the linearization procedure for coupled Eqs.
(8)–(10), we arrive to the following dispersion relation for
small perturbations propagating across the external magnetic
field

1− ω2

c2k2
+

∑
α

ω2
pα

c2k2γ30

+
∑
α

ω2
pαv

2
0zα

c2γ0[ω2 − (ω2
cα/γ

2
0) − (k2v2thα/γ0)]

= 0,

(11)

where vthα =
������������(kBTα/mα)

√
is the thermal velocity of charge

particle α. It should be noted that α is running over electron
and H− for e–H− plasma in Eq. (11). In the next section we
are going to solve dispersion Eq. (11) and analyze the stability
of plasma.

3. STABILITY ANALYSIS

We suppose the electron and negative hydrogen ion beams are
strictly identical, that is, have the same density and equal drift
velocity in opposite directions (v0ze= − v0zi= v0), so the net
current is zero. If we expand the dispersion relation (11) over α
for electron and H−, we get

z2 − x2 + (1+ η)
γ30

[ ]
x2 − y2

γ20
− z2β2δ2e

γ0

( )

x2 − y2η2

γ20
− z2β2δ2eη

γ0

( )
+ z2β2

γ0
x2 − y2η2

γ20
− z2β2δ2eη

γ0

( )

+ z2β2η

γ0
x2 − y2

γ20
− z2β2δ2e

γ0

( )
= 0,

(12)

where x=ω/ωpe, z= kc/ωpe, β= v0/c, y=ωce/ωpe, δe=
vthe/v0, η=me/mi, are dimensionless parameters, and ωpe=
(4πn0ee

2/me)
1/2 is the electron plasma frequency.

3.1. Analytical Solution

Equation (12) shows a relation in the sixth order of variable x,
so it is impossible to find the roots of x analytically. However
it is possible to write the Eq. (12) as a third order polynomial
in the variable x2, the analytical solution of this equation is
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very complicate. In spite of all that, for some limiting cases
we can find a simple analytical solution.

3.1.1. Cold and Unmagnetized Counterstreaming e–H−

Plasmas

In this case we consider the cold and unmagnetized plasma
regime. By substituting δe= 0 and y= 0 in Eq. (12) we get
a fourth order equation for x as below

x4 − z2 + (1+ η)
γ30

[ ]
x2 − β2z2

γ0
(1+ η) = 0. (13)

Solving Eq. (13), we find out a purely growing electromag-
netic wave with the growth rate as

ℑω= 1��
2

√ (z2 + (1+ η)
γ30

[ ]
1− 1+ 4β2z2γ50(1+ η)

[(1+ η) + γ30z
2]2

[ ]1/2
⎧⎨
⎩

⎫⎬
⎭

⎧⎨
⎩

⎫⎬
⎭

1/2

.

(14)

3.1.2. Cold and Magnetized Counterstreaming e–H−

Plasmas

The second limiting case which allows to find out an ana-
lytical solution for Eq. (12) is related to the cold and magne-
tized counterstreaming e–H− plasma propagating parallel to
an ambient external magnetic field, when the influence of
heavy H− ions is ignored in the instability process. Thus
by choosing δe= 0 and η= 0 in Eq. (12) we get

x4 − z2 + y2

γ20
+ 1

γ30

( )
x2 + y2

γ20
z2 + 1

γ30

( )
− z2β2

γ0

[ ]
= 0, (15)

whose solution also admit a purely growing electromagnetic
wave with the growth rate as

ℑω = 1��
2

√ z2 + y2

γ20
+ 1

γ30

( )[

1− 1− 4y2/γ20
( )

z2 + 1/γ30
( )[ ]− 4z2β2/γ0

( )
z2 + y2/γ20

( )+ 1/γ30
( )[ ]2

[ ]1/2
⎧⎨
⎩

⎫⎬
⎭
⎤
⎦

1/2

(16)

when the condition of y2 < γ40z
2β2/(γ30z2 + 1) is satisfied.

This means that the strength of the magnetic field should
be smaller than a critical value for developing the instability.

3.2. Numerical Solution

In this subsection we are going to solve Eq. (12), numerical-
ly. This solution allows to analyze the dispersion relation
without any limitation. Therefore, we are able to include
the influences of thermal particles, ion filaments, and the ex-
ternal magnetic field on the instability process.

Figure 1 plots the normalized growth rate γ = ℑω/ω pe of
the filamentation instability as a function of the normalized
wavenumber kc/ωpe (or the ratio of the penetration depth
c/ωpe to the wavelength λ= 2π/k) computed numerically
from Eq. (12), for cold and unmagnetized counterstreaming
e–H− plasma. This figure shows that the instability growth
rate is increased by increasing the particles drift velocity.
Moreover, in the large wavenumbers limit k2c2 ≫ ω2

pe, and
for weakly relativistic case (small β) the instability growth
rate saturates to γ→ β. Note that Figure 1 does not change
with or without the ions contribution, significantly. It may
be important to note that the analytical results obtained
from Eq. (14) are in excellent agreement with the numerical
computation of Eq. (12) plotted in Figure 1.
Physically speaking, when the electron current filaments

are created, the magnetic fields grow linearly due to mutual
attraction of these filaments. When the current filaments suf-
ficiently close to gather, the force of the pressure gradient be-
comes important in Eq. (5). Since the terms including δe in
Eq. (12) are the result of the pressure gradient effect, the in-
fluence of the particles thermal velocity on the instability
growth rate is depicted in Figure 2 for δe= 0.2. It is seen
from this figure that not only the maximum growth rate is de-
creased, but also the instability happens just for a finite inter-
val of wavenumbers. The numerical solution indicates that
the cut-off frequency and the maximum growth rate are de-
creased with increasing δe.
Figure 3 demonstrates the influence of the H− ions current

filaments contribution on the instability growth rate for coun-
terstreaming unmagnetized e–H− plasma. As shown in
Figure 3 (point line) the cut-off frequency is extended
upon to the large values, when the H− ion contribution is in-
cluded. This means that the penetration depth of the sheared
magnetic field into the plasma is increased, when the heavy
H− ions begin to get involved in the instability process.
As a result, the H− ions form current filaments that are

Fig. 1. Filamentation instability growth rate as a function of kc/ωpe for cold
and unmagnetized counterstreaming e–H− plasma when the influence of H−

ions is ignored (η= 0). The red, green, and blue lines are for β= 0.2, 0.4,
and 0.8, respectively.
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responsible to the deep penetrating of sheared magnetic into
the plasma.
Figure 4 compares the instability growth rate γ = ℑω/ω pe,

for magnetized and unmagnetized counterstreaming e–H−

plasma in terms of kc/ωpe. The results show that by applying
a magnetic field: (a) The instability growth rate and cut-off fre-
quency are sufficiently decreased, (b) the required threshold
wavenumber for the development of the filamentation instabil-
ity is increased with the increasing magnetic field strength.
Hence, the external magnetic field decreases the instability
growth rate and constrains further the finite interval of wave-
numbers. The results of the analytical and numerical solutions
are in good conformity. For example, for parameters β= 0.3,
η= 0, δe= 0, z= 2, maximum magnetic field strength for in-
stability development is found around ωce≈ 0.25ωpe from
both Eqs. (12) and (16).
In Figure 5 we are going to explain the influence of

H− ions filaments with more detail, in magnetized

counterstreaming e–H− plasma. This figure plots the instabil-
ity growth rate γ = ℑω/ω pe as a function of kc/ωpe. The red
and green lines are plotted for ωce/ωpe= 0.23 in the absence
and presence of the H− ion contribution, respectively. Obvi-
ously, the threshold and cut-off frequencies extension are
completely perceptible, when the H− ions filaments come
into play. The numerical solution reveals that when the strength
of the external magnetic field is increased upon to ωce/ωpe=
0.3, the contribution of electrons on the instability development
completely lacks. Consequently, the blue line in Figure 5
shows just the H− ion contribution on the instability process.
As shown in Figure 5, although the maximum growth rate is
very small, the instability covers a wide range of wavenumbers.
Therefore, we expect that the filamentation instability is
further amplified and as a result the sheared magnetic field
deeply penetrates into the plasma owing to H− ion streams,
on a time scale much longer than the plasma period t ≫ ω−1

pe .

Fig. 3. Filamentation instability growth rate as a function of kc/ωpe for un-
magnetized counterstreaming e–H− plasma in the absence [solid line (η=
0)] and presence of H− ions contribution [point line (η= 1/1838)], based
on the numerical solution of Eq. (12).

Fig. 2. Filamentation instability growth rate as a function of kc/ωpe for un-
magnetized counterstreaming e–H− plasma in the absence of H− ions con-
tribution for β= 0.3, computed numerically from Eq. (12). The green and
red lines are for δe= 0.2 and δe= 0, respectively.

Fig. 4. Filamentation instability growth rate as a function of kc/ωpe for a
magnetized counterstreaming e–H− plasma for β= 0.3, δe= 0.2, based on
the numerical solution of Eq. (12). The red, green, and blue line are for
ωce/ωpe= 0, 0.2, and 0.23, respectively.

Fig. 5. Filamentation instability growth rate for a magnetized counterstream-
ing e–H− plasma as a function of kc/ωpe for β= 0.3, δe= 0.2, and ωce/ωpe=
0.23. The red and green lines are plotted in the absence (η= 0) and presence
(η= 1/1838) of H− ions contribution, respectively. The blue line is for coun-
terstreaming e–H− plasma and ωce/ωpe= 0.3.

Amplification of filamentation instability 485

https://doi.org/10.1017/S026303461500052X Published online by Cambridge University Press

https://doi.org/10.1017/S026303461500052X


The instability growth rate γ = ℑω/ω pe in terms of ωce/
ωpe is shown in Figure 6, in the presence and absence of the
H− ions contribution. The figure approves our claim that the
instability is suppressed by applying a weak magnetic field
ωce/ωpe≈ 0.3, when the H− ion contribution is missed. On
the other hand, the instability exists with a small growth
rate in the presence of a very strong external magnetic
field, when the H− ion filaments get involved. Subsequently,
after a long time scale (t ≫ ω−1

pe ) it is possible for the sheared
magnetic field to become strong enough to deflect the elec-
trons filaments again and amplifies the instability.
Figure 7 indicates the variation of the instability growth

rate γ = ℑω/ω pe against δe= vthe/v0. Here, we suppose
that the temperature of electrons and H− ions are equal
(vthi/vthe= η). As this figure demonstrates for a given exter-
nal magnetic field, increasing the particles thermal velocity

up to the value larger than a critical value can suppress insta-
bility generation. We find from this figure that increasing ex-
ternal magnetic field strength reduces this critical value,
while it will be increased when the H− ion contribution
gets involved in the instability process (pointed lines).

4. SUMMARY AND CONCLUSION

We have discussed the CF instability driven by counter-
streaming e–H− plasma propagating parallel to an ambient
external magnetic field. We have focused our attention on
the influences of the heavy H− ions contribution, the parti-
cles thermal velocity, and the external magnetic field on
the instability process. The dispersion relation is derived by
using a relativistic two-fluid model and Maxwell equations.
We present a analytical solution for two limiting cases (a)
cold and unmagnetized counterstreaming e–H− plasma (b)
cold and magnetized counterstreaming e–H− plasma propa-
gating parallel to an ambient external magnetic field, when
the influence of heavy H− ions is ignored. In order to
obtain a complete solution we solved the dispersion relation
numerically. Both numerical and analytical solutions admit-
ted generation of purely growing electromagnetic perturba-
tion across the ambient magnetic field. In addition, both
solutions, with same accuracy, approved that for unmagne-
tized counterstreaming e–H− plasma with non-thermal parti-
cles Tα→ 0, the instability growth rate saturates to γ→ β
which is in good agreement with previous analytical investi-
gations (Shokri & Ghorbanalilu, 2004a; 2004b). The stabil-
ity analysis revealed that when the particles have nonzero
thermal velocity δα≠ 0 (or Tα≠ 0), the maximum growth
rate is decreased and an instability develops in a finite inter-
val of wavenumbers. It was shown that when the heavy H−

ions got involved in the instability process, the cut-off fre-
quency was extended. The numerical investigation showed
that for a magnetized electron plasma flow: (a) The maxi-
mum growth rate and cut-off frequency were decreased, (b)
the required threshold wavenumber of filamentation instabil-
ity development was increased, with increasing magnetic
field strength. Consequently, the instability is more con-
strained by applying an external magnetic field in a finite in-
terval of wavenumbers. The influence of ion filaments was
very dominant for magnetized counterstreaming e–H−

plasma. It was shown that for a magnetized counterstreaming
e–H− plasma, in the absence of role of H− ion, the CF insta-
bility was suppressed by applying a weak external magnetic
field (ω2

ce≪ω2
pe). However, the instability occurred with a

small growth rate even in the presence of very strong external
magnetic fields (ω2

ce ≫ ω2
pe), when the influence of heavy

H− ions is included. As a result and an important remark, al-
though the growth rate of instability is small for strongly
magnetized counterstreaming e–H− plasma, the instability
covers a wide range of wavenumbers. This means that the fil-
amentation instability is further amplified and the sheared
magnetic field deeply penetrates into the plasma owing to

Fig. 6. Filamentation instability growth rate for a magnetized counterstream-
ing e–H− plasma as a function of ωce/ωpe for β= 0.3, δe= 0.2, kc/ωpe= 2.
The point and solid lines are plotted in the absence (η= 0) and presence (η=
1/1838) of H− ions contribution, respectively.

Fig. 7. Filamentation instability growth rate for a magnetized counterstream-
ing e–H− plasma as a function of δe for β= 0.3, kc/ωpe= 2, ωce/ωpe= 0.25.
The red and point lines are plotted in the absence (η= 0) and presence (η=
1/1838) of H− ion contribution, respectively.
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H− ion streams, on a time scale much longer than the plasma
period t ≫ ω−1

pe (Ardaneh et al., 2014).
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