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Assuming resonant nonlinear wave interactions to be the dominant physical mechanism
of growing wind-driven seas we propose a concise relationship between instantaneous
wave steepness and time or fetch of wave development expressed in dimensionless
wave periods or lengths. This asymptotic physical law derived from the first principles
of the theory of weak turbulence does not contain wind speed explicitly. The validity
of this law is illustrated by results of numerical simulations, in situ measurements of
growing wind seas and wind-wave tank observations. The impact of this new view
of sea-wave physics is discussed in the context of conventional approaches to wave
modelling and forecasting.
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1. Introduction

Wind-driven waves are usually seen as a well-understood phenomenon of which the
physics appears ‘self-evident’: waves are growing due to wind and dissipate due to
wave breaking. This ‘common-sense’ understanding of sea wave physics is reflected
in conventional scaling of wave growth by wind speed (e.g. Sverdrup & Munk 1947;
Kitaigorodskii 1962) and in attempts to find features of wave growth universality in
terms of such scaling. The non-dimensional wave height variance ε (wave energy
in the wave community terminology) and the non-dimensional characteristic wave
frequency, defined respectively by

ε= Eg2

U4
h

(1.1)
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σ = ω̃Uh

g
, (1.2)

with the acceleration due to gravity g, the wind speed Uh at a reference height h or the
friction velocity u∗ (for a constant-flux turbulent boundary layer u∗= (〈U′W ′〉)1/2), and
the wave height variance E = 〈|η|2〉, are widely used in experimental and numerical
studies. The characteristic wave frequency ω̃ in (1.2) can be defined as the mean-over-
spectrum frequency ωm, the zero-crossing ωz or the spectral peak frequency ωp. Below
we refer to the spectral peak frequency ωp as the characteristic one unless otherwise
stated.

Quite often results of wave studies are recapitulated in the form of power-law
functions of the dimensionless time duration τ = tg/Uh or the fetch χ = xg/U2

h , as
follows:

ε= ε0τ
pτ , σ = σ0τ

−qτ ; ε= ε0χ
pχ , σ = σ0χ

−qχ , (1.3a−d)

that already implies, in a manner, a universality of wind wave growth. However, the
coefficients ε0, σ0 and the exponents pτ (pχ), qτ (qχ) of such parameterizations vary in
a relatively wide range (e.g. 0.7< pχ < 1.1, see table 2 Badulin et al. 2007a).

We consider that the very fact of a power-like dependence of energy and
representative frequency on fetch and duration is significant and requires a theoretical
explanation. A number of reasons can be called upon to explain the lack of complete
universality: the inadequacy of the power-law fit, the complexity of wind–wave
interaction, the irrelevance of scaling by a mean wind speed with no account of the
air flow stratification, gustiness etc. All these issues imply a leading effect of wind
forcing rather than accounting for all the complexity of wind–sea dynamics. It leaves
(intentionally or unintentionally) the inherently nonlinear dynamics of wind waves at
the periphery of the discussion.

In this paper we come back to the fundamental problem of the balance between
the various physical mechanisms governing wind-wave growth. In contrast to the
conventional ‘common-sense’ understanding of this well-known natural phenomenon
we develop an alternative paradigm of weakly turbulent wind-driven seas where
the universality of wind-wave growth is determined, first of all, by the features of
nonlinear wave–wave interactions in a random field of water waves. These features
cause a strong tendency of wind-driven seas to self-similar behaviour as shown
theoretically, in simulations and in analysis of experimental data (Badulin et al. 2002,
2005, 2007a, 2008; Gagnaire-Renou, Benoit & Badulin 2011). The corresponding
theory predicts power-law dependence of wave energy and characteristic frequency
on dimensionless duration or fetch very similar to the conventional parameterizations
(1.3). The distinctiveness of the theoretical approach lies in offering an alternative
scaling for describing wind-wave development that does not refer directly to wind
speed.

Here we show that for duration- and fetch-limited setups wind-wave growth can
be presented in a remarkably concise, but somewhat paradoxical, form that does not
contain parameters of wind at all, namely

µ4ν = α3
0, (1.4)

where α0 ≈ 0.7 is a universal constant and µ, the wave steepness, is given by

µ= E1/2ω2
p

g
. (1.5)
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Universality of sea wave growth 505

The ‘number of waves’ ν in a spatially homogeneous wind sea (i.e. for duration-
limited wave growth) is defined as follows:

ν =ωpt. (1.6)

For spatial (fetch-limited) wave growth the coefficient of proportionality Cf that
appears in the equivalent expression ν = Cf |kp|x (kp being the wavevector of the
spectral peak) is close to the ratio between the phase and group velocities Cph/Cg= 2.
The universal constant α0 in (1.4) is an analogue of the Kolmogorov–Zakharov
constant of wave turbulence theory (e.g. Zakharov, Lvov & Falkovich 1992; Badulin
et al. 2007a).

The relationship (1.4) can be re-written as a function of one dependent variable
(e.g. µ) of another independent variable (e.g. ν); thus, it becomes a good predictive
tool. An evident advantage (and surprising outcome) is that all the necessary
information on wind-generated wave growth is contained in the wave data and
no wind measurement is necessary for describing the wave field evolution.

Note that the dependence on wind speed can be excluded from empirical power-law
fits (1.3) and a counterpart of our key result can be written in the spirit of (1.4) as
follows:

µ4νr = β(ε0, σ0), (1.7)

where for the duration-limited case (subscript τ )

rτ = 8qτ − 2pτ
1− qτ

(1.8)

and for the fetch-limited setup one has (subscript χ )

rχ = 8qχ − 2pχ
1− 2qχ

. (1.9)

In contrast to the theoretically based relationship (1.4) the alternative one (1.7) is not
universal in two ways: the exponent r is dependent on an empirical wave growth
rate and the empirical pre-exponents ε0, σ0 vary in a wide range as mentioned above.
Thus, the physical roots of (1.4) can be discussed in terms of mechanisms that are
responsible for the universal exponent r of the number of waves ν being equated to 1
in (1.7) and that makes the right-hand-side term β in (1.7) independent of wave input
features. The essence of these mechanisms can be summarized in the two following
issues:

(i) the dominance of nonlinear interactions in the energy balance in wind-driven seas
pre-determines the essential physical links that make (1.4) a universal law without
any explicit reference to wind parameters;

(ii) the ubiquity of self-similar regimes in wind-driven seas (e.g. Badulin et al. 2005,
2007a; Zakharov 2005; Gagnaire-Renou et al. 2011) makes the invariant (1.4) an
efficient tool for physical analysis of experimental and numerical results.

In this paper, we start with a brief theoretical overview of the basic physics that
leads us to the key result (1.4). More details can be found in the paper series (e.g.
Badulin et al. 2002, 2005, 2007a, 2008; Pushkarev, Resio & Zakharov 2003; Zakharov
2005, 2010).

Then we present the key result of this work, the wind-free invariant (1.4),
and introduce the corresponding wind-free scaling of wave growth. A number of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

46
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.468


506 V. E. Zakharov, S. I. Badulin, P. A. Hwang and G. Caulliez

theoretical–empirical models of wave growth are based essentially on the physical
scale of wind speed and power-law dependence of dimensionless wave height on
wave period. These models and their reference exponents are well known as the Toba
(1972) law of 3/2, Hasselmann et al. (1976) law of 5/3 and Zakharov & Zaslavsky
(1983) law of 4/3. We show that the physical scales of time duration or fetch are
able to replace the conventional wind speed scaling fairly well. The corresponding
dependence within the new scaling gives two different exponents, namely 5/2 for
fetch- and 9/4 for duration-limited cases. A key outcome of the new scaling is in
eliminating any question on features of wind–wave coupling when the mean wind
speed alone cannot reflect the complexity of this coupling in full.

The simple relationship (1.4) and the new wind-free scaling are verified in several
examples presented in this study. All the data for the verification of the theoretical
result have been obtained prior to this work. We, thus, revisit a collection of in
situ observations (see Hwang 2006; Hwang, Garciá-Nava & Ocampo-Torres 2011,
and references therein), simulations by Badulin et al. (2002, 2005, 2007a, 2008),
Zakharov, Resio & Pushkarev (2012) and wind-wave tank experiments by Toba
(1972), Caulliez (2013). A historical tour to the brilliant work by Sverdrup & Munk
(1947) brings back the concept of significant wave height as an effective alternative
to the spectral description of wind seas.

In the final section we recapitulate the various validations of the universal
relationship in order to show their logical links and to outline prospects for further
studies.

2. Invariant form of the self-similar solutions for growing wind seas

The core of our theoretical approach is the concept of self-similar wind-driven
seas. Vladimir Zakharov was the first who reported the theoretical background and
experimental illustrations of the concept (Zakharov 2002). It took three years for the
paper to find a publisher (Zakharov 2005). In parallel, the ideas of the paper have
been developed and supported by extensive numerical analysis (Badulin et al. 2002,
2005, 2007a,b, 2008; Pushkarev et al. 2003; Korotkevich et al. 2008) based on the
exact simulation of spectral nonlinear transfer with the algorithm by Webb (1978, see
also Tracy & Resio 1982). Independently, some features of the self-similar evolution
of wind-wave spectra have been justified in Lavrenov, Resio & Zakharov (2002),
Lavrenov (2003a) using an alternative numerical approach, the so-called Gaussian
quadrature method (GQM).

Originally, the concept of self-similarity was developed for approximate solutions
of the kinetic equation. Recently, exact self-similar solutions have been presented for
specific functions of wind-wave external forcing (Zakharov et al. 2012; Pushkarev &
Zakharov 2015). These input functions provide rather good fits to available empirical
parameterizations and, thus, have prospects for various applications in wave modelling.

Note that self-similarity of wind seas was implied by many previous approaches,
starting with the concept of significant wave height by Sverdrup & Munk (1947),
developed as a similarity approach in Kitaigorodskii (1962) and Pierson & Moskowitz
(1964) and then in substantial generalization of experimental and theoretical
knowledge in the JONSWAP campaign (Hasselmann et al. 1973). The distinctiveness
of the Zakharov (2005) approach that we follow in this paper is a consistent physical
theory that leads to analytical results for this extremely complicated problem where
such results are rare.
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2.1. The physical model of self-similar wind-driven seas
We follow a statistical description of a random field of weakly nonlinear wind-driven
waves under the effect of wind forcing and wave dissipation. The spectral density of
the wave action N(k, x, t) as a function of wavenumber k, spatial coordinate x= (x, y)
and time t can be described by the kinetic equation (Hasselmann 1962) as follows:

∂Nk

∂t
+∇kωk∇xNk = Snl[N(k)] + Sin + Sdiss. (2.1)

The idea of a balance between wind input Sin, wave dissipation Sdiss and wave–wave
interactions Snl has been circulating since long before World War II (e.g. Sverdrup
& Munk 1947; Lavrenov 2003b). The start of the modern concept of the spectral
balance of a wind-wave field is usually attributed to the paper by Gelci, Cazalé &
Vassal (1957) where all the terms in (2.1) have been treated as wave-scale dependent.

The milestone papers of the early 1960s by Klauss Hasselmann (1962, 1963a,b)
provided a consistent physical description of the term for four-wave resonant
interactions Snl. The role of these interactions in the evolution of wind-driven waves
has been recognized but has not been realized in full. The basic results of the theory
of weak turbulence of water waves (Zakharov & Filonenko 1966; Katz & Kontorovich
1971; Katz et al. 1975; Zakharov & Zaslavsky 1983; Zakharov et al. 1992) including
those for the anisotropic Kolmogorov–Zakharov spectra (Katz & Kontorovich 1974)
remained outside the chief topics studied by the wind-wave community. The efforts
were focused mostly on numerical aspects of accounting for the effect of wave–wave
interactions in operational and research models.

The knowledge today of the terms Sin and Sdiss on the right-hand side of (2.1) is
based mostly on empirical parameterizations. This represents an additional problem
for wind-wave studies when correct modelling of wave evolution requires tuning to
the features of a particular environment. Below we present results that do not depend
on these features and do not contain any parameters of wave generation or dissipation
explicitly. The physical roots of this surprising result lie in the leading role of the
wave–wave interaction term Snl (e.g. Hasselmann et al. 1973; Young & van Vledder
1993; Badulin et al. 2005; Zakharov & Badulin 2011): the effects of external forcing
appear directly embedded in the intrinsic parameters of the nonlinear wave field.

Following the previous works (e.g. Badulin et al. 2005, 2007a; Zakharov 2005) we
consider an asymptotic model describing the wind-driven seas. Assuming wave–wave
interactions to be dominant compared to wind forcing and wave dissipation one can
split (2.1) into two equations. In terms of the spectral energy density E(k, x, t) the
model takes the form

dEk

dt
= Snl, (2.2a)

d〈Ek〉
dt
= 〈Sin + Sdiss〉. (2.2b)

The angular brackets in (2.2) denote integration over wave scales (i.e. in wave vector
space). Equation (2.2a) describes the effect of resonant wave–wave interactions only.
Equation (2.2b) imposes closure conditions corresponding to the balance of the total
energy: the net input (input and dissipation) is equal to the growth rate of the total
wave energy. Hwang & Sletten (2008) used (2.2b) to address the dissipation issue of
wind generated waves in field experiments.
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A breakthrough can be made for deep water waves when the wave dispersion
relation and the wave–wave interaction term Snl are homogeneous functions of the
spectral energy density E(k, x, t) and the wave vector k, i.e.

Snl[υE(%k)] = υ3%17/2Snl[E(k)], (2.3)

with υ and % being arbitrary positive coefficients (e.g. Zakharov 1999). This important
property allows one to look for self-similar solutions as function of time (fetch) and
wave frequency (wavenumber).

2.2. Power-law dependence of the self-similar solutions
Now we briefly outline features of self-similar solutions for the system (2.2), details
being given in appendix A. Let us introduce dimensionless variables for the model
(2.2) as follows (Badulin et al. 2005, 2007a; Zakharov 2005):

χ = x/l0, k̃= kl0,

τ = t/t0, ω̃=ω√l0/g=
√
|k̃|,

Ẽ(k̃)= E(k)/l4
0, Ẽ(k)= E/l2

0.

 (2.4)

Note that the time and length scales t0 and l0 can be chosen arbitrarily in the deep
water case, say, by accepting wind speed scaling (1.1), (1.2) as an option (e.g. Hwang
2006).

For the duration-limited setup one has in (2.2)

d
dt
→ ∂

∂t
, (2.5)

and the solution in the form of the so-called incomplete self-similarity can be written
as

Ẽ(k̃, τ )= aττ pτ+4qτΦpτ (ξ), (2.6)

where ξ = bτkt2qτ . Substitution of (2.6) into (2.2) leads to two constraints on
parameters pτ , qτ and aτ , bτ that are of key importance for further analysis. Thus,
energy growth and frequency downshift are governed by the linear relationship

qτ = 2pτ + 1
9

, (2.7)

while the parameters of the solution amplitude aτ and its width in wavenumber space
bτ obey the equation

aτ = b17/4
τ . (2.8)

These useful relationships confirm empirical power-like laws (1.3a,b) with

ε0 = a9/17
τ Iτ , σ0 = a−2/17

τ Jτ I−1
τ . (2.9a,b)

Here Iτ , Jτ (see (A 3), (A 5) in appendix A) are integral expressions of the shape
function Φpτ (ξ) in (2.6) that do not depend on exponent pτ explicitly. After combining
relationships (1.3a,b), (2.7), (2.9) in the form of the invariant (1.4) we observe a
remarkable outcome: the result does not depend on time and initial state (i.e. on
pre-exponent aτ ). Moreover, its implicit dependence on exponent pτ is expressed
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by integrals of the shape function Φpτ (ξ). Assuming spectral shape invariance, i.e.
integrals Iτ , Jτ to be constants, we get immediately that α0 in (1.4) is constant. This
is what we call the universality of wind-driven seas.

Note that the assumption of spectral shape invariance is introduced here for the
integral quantities Iτ and Jτ and is not equivalent to a point-by-point matching of the
shape functions Φpτ (ξ) for different exponents pτ . This assumption has been carefully
checked in previous extensive numerical studies (Badulin et al. 2005, 2007a, 2008).
A similar assumption has been exploited by Hasselmann et al. (1976, see § 2).

The same universal behaviour holds in the fetch-limited setup. Now one has

d
dt
→ ∂ω

∂k
∂

∂x
, (2.10)

and the self-similar solution is given by the expression

Ẽ(k̃, χ)= aχχ pχ+4qχΦpχ (ζ ), (2.11)

with ζ = bχ k̃x̃2qχ . Again, substitution into (2.2) gives links between exponents

qχ = 2pχ + 1
10

(2.12)

and pre-exponents
aχ = b9/2

χ . (2.13)

Similarly to the duration-limited case the pre-exponents of wave growth in (1.3c,d)
are

ε0 = a5/9
χ Iχ , σ0 = a−1/9

χ Jχ I−1
χ . (2.14a,b)

It is easy to check that the invariant (1.4) keeps the same form as the one in the
duration-limited case with the number of waves ν defined in terms of spatial wave
period. Again, the invariant does not depend on time and initial state (i.e. on pre-
exponent aχ ). The implicit dependence of the integrals Iχ and Jχ in (A 10), (A 13) on
exponent pχ is weak and the assumption of spectral shape invariance can be accepted
to fix the right-hand-side value as constant α0.

2.3. Universal constant α0 for duration- and fetch-limited setups
The importance of links between parameters of self-similar solutions (2.7), (2.8),
(2.12), (2.13) was first realized by Badulin et al. (2007a, see (1.9)) in the form of
the so-called weakly turbulent law of wind-wave growth

Eω4
p

g2
= αss

(
ω3

p dE/dt

g2

)1/3

. (2.15)

Here αss is a coefficient that depends on the exponent of wave energy growth pτ
(pχ ) only. Assuming spectral shape invariance (quasi-universality of spectral shape in
the words of Badulin et al. 2007a) one obtains αss ∼ p−1/3

τ (αss ∼ p−1/3
χ ). For a given

parameter pτ (pχ), i.e. for a power-law growth of wave energy, the relationship (2.15)
allows for the conversion of the instant wave energy and frequency into the instant
wave input or vice versa (see § 5 in Badulin et al. 2007a).

In contrast to αss in (2.15), α0 in the invariant (1.4) is constant (with the assumption
of spectral shape invariance) and the invariant itself does not contain time or space
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derivatives but physical quantities that we are interested in only (wave height and
period). Thus, the conservation law (1.4) can be treated as an adiabatic invariant
for (2.15) and for the corresponding families of self-similar solutions of the model
(2.2) with pτ (pχ) being formally a slowly varying parameter. The features of this
adiabatic invariant are, first, independence of the parameter of adiabaticity pτ (pχ)
and, secondly, independence of the initial state of the system. The first one implies
an arbitrary dependence of wave growth on time or fetch. The second feature looks
strange amongst examples of classic mechanics when a conservative quantity, say the
wave action of an oscillator, is determined by its initial energy and frequency. In
fact, our special case reflects an asymptotic nature of the self-similar solutions of the
kinetic equation and their inherent nonlinearity that forces the system to forget the
initial state.

It is useful to specify different values of the constant α0 in (1.4) for duration-
and fetch-limited setups. The correspondence of these cases comes directly from the
relationships between the partial derivative in time and the convective operator in the
model (2.2), i.e.

d
dt
→ ∂

∂t
→ V

∂

∂x
. (2.16)

The velocity V is associated with averaging the wave energy flux over the wave-scale
range, i.e.

〈Cg(k)E(k)〉 = V〈E(k)〉. (2.17)

Generally, V differs from the group velocity of the spectral peak given by

Cg(ωp)= 0.5
g
ωp
, (2.18)

a quantity we are exploiting in our analysis. This case allows a simple definition of
the number of waves ν in the fetch-limited case, that is

ν = 2|kp|x, (2.19)

which will be used below in this paper for the fetch-limited case. Furthermore, to
check the law (1.4) we take the definitions (1.6) and (2.19) for duration- and fetch-
limited cases respectively as follows:

µ4ν = α3
0(d) or µ4ν = α3

0(f ). (2.20a,b)

The notation α0 without the extended subscript is used below provided this does not
lead to confusion. Following Badulin et al. (2007a) and Gagnaire-Renou et al. (2011)
one can obtain the two estimates

α0(d) = α(d)ss p1/3
τ ≈ 0.70, (2.21)

α0(f ) = α(f )ss p1/3
χ ≈ 0.62. (2.22)

The difference in magnitude of α0(d) and α0(f ) can be partially related to the difference
in shape of the wave spectra of duration- and fetch-limited seas. This is unlikely to
be the major effect if we accept spectral shape invariance. It is more natural to treat
the small (about 10 %) difference as one between the characteristic velocity V and
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the group velocity of the spectral peak. If we are looking for a ‘perfect universality’
of our law, i.e. equivalence between α0(f ) and α0(d), we have to take into account this
difference between V and Cg(ωp) in the definition of the number of waves ν in (2.19),
i.e.

V
Cg(ωp)

=
(
α0(f )

α0(d)

)3

≈ 0.7. (2.23)

The characteristic velocity V for wind-wave spectra appears to be approximately 30 %
smaller than that of the spectral peak Cg(ωp) which matches quite well with previous
experimental results (e.g. Yefimov & Babanin 1991; Hwang & Wang 2004; Hwang
2006).

3. Physical scaling of growing wind seas and the first test of the universality of
wind-wave growth
The theoretical results of the previous section look paradoxical and contradictory to

a common sense understanding of wind-wave dynamics: the invariant (1.4) does not
refer to any wind parameters. All the complexity of wind-wave coupling is embedded
in the intrinsic wave parameters, i.e. the wave steepness µ and the dimensionless
number of waves ν. Thus, the common sense notion of ‘wind rules waves’ should
be replaced by a new one:

‘waves chronicle wind development’,
as a balance between the number of waves ν and their wave steepness µ (i.e.
nonlinearity). This new formulation, first, implies a new physical scaling that will be
introduced below. The consistency of the new formulation with previous experimental
and theoretical results will be detailed in order to show the correspondence of this
formulation with results inherently based on a wind speed scaling.

3.1. Physical scaling of self-similar wave growth
The invariant (1.4) of self-similar solutions for wind-driven seas can be written in
the form of a dependence of wave height on wave period. An example of such a
dependence is the famous Toba (1972) law of 3/2 (the dimensionless wave height is
proportional to the power 3/2 of non-dimensional wave period). The key difference of
the new dependence is in the physical scaling: the conventional scaling is based on
wind speed (1.1), (1.2) while the new one implied by invariant (1.4) is wind-speed
free.

Let us introduce the dimensionless wave height and period for the fetch-limited case
as follows:

H̃ = Hs

x
, T̃ = T

√
g

8π2x
, (3.1a,b)

for fetch x, the spectral peak period T and the significant wave height Hs= 4
√

E. For
the duration-limited case similar quantities can be introduced as

H̃ = Hs

gt2
, T̃ = T

2πt
. (3.2a,b)

The dimensionless periods defined by (3.1), (3.2) have a simple physical meaning as
they express wave lifetime in terms of the number of instantaneous temporal or spatial
wave periods. For the duration-limited case (3.2) it follows that

T̃ = ν−1, (3.3)
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and for the fetch-limited case (3.1)

T̃ = ν−1/2. (3.4)

Definitions (3.3), (3.4) represent a kinematic treatment of invariant (1.4): the
instantaneous wave steepness is thus determined by the time (distance) of wave
evolution expressed in dimensionless instantaneous wave periods.

One can propose a dynamical interpretation of (1.4). The µ4 defined by (1.5) gives
a scale for the nonlinear relaxation of a deep-water wave field (see (22), (23) in
Zakharov & Badulin 2011). Thus, one can treat dimensionless time ν as a dynamical
lifetime:

T̃ = Bα0
τnl

T
, (3.5)

where τnl, given by

τnl = (Bωpµ
4)−1, (3.6)

is a characteristic time of the nonlinear relaxation of a deep-water wave field. B is a
large coefficient as shown by Zakharov & Badulin (2011) (B = 36π in the limit of
a narrow angular wave spectrum, B= 22.5π for an isotropic wave field). Thus, (1.4)
states that the wave age tτ−1

nl measured on the nonlinear relaxation scale τnl remains
constant for growing wind waves. In accordance with (3.5) and estimates by Zakharov
& Badulin (2011) time t does not exceed 100 relaxation times τnl.

Within the new wind-free scaling (3.2) one gets a law of 9/4 for the duration-
limited setup, namely

H̃ = 4α3/4
0(d)T̃

9/4 ≈ 3.06T̃9/4. (3.7)

The fetch-limited dependence differs from (3.7) by a factor of 2, but, what is more
significant is the exponent. It gives a 5/2 law:

H̃ = 8α3/4
0(f )T̃

5/2 ≈ 5.59T̃5/2. (3.8)

The difference between the exponents in (3.7) and (3.8) provides a quantitative
criterion for discriminating between spatial and temporal scenarios of wave growth.

3.2. A parametric model by Hasselmann et al. (1976) and universality of wave
growth

The exponents 9/4 and 5/2 in (3.7), (3.8) look confusing in view of their counterparts
of dimensionless single-parameter dependence of wave height on period scaled by
wind speed (e.g. Toba 1972; Hasselmann et al. 1976; Zakharov & Zaslavsky 1983).
The latter set of exponents conforms with a specific ABC of wind-wave growth (see
Badulin 2010). These well-known exponents of 5/3 (Hasselmann et al. 1976), 3/2
(Toba 1972) and 4/3 (Zakharov & Zaslavsky 1983) correspond to different reference
regimes of wind–wave coupling associated with permanent fluxes of momentum,
energy and wave action (Gagnaire-Renou et al. 2011; Badulin & Grigorieva 2012).
The laws of 9/4 and 5/2 presented above do not allow one to discriminate between
these reference dynamical regimes of wave growth. Instead, they describe a continuous
evolution from one regime to the other in a universal way. We will show in the
following analysis of the wave prediction model by Hasselmann et al. (1976) that
these laws are fully consistent with the previous studies.
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3.2.1. Self-similarity of the spectral shape
Hasselmann et al. (1976) started with the JONSWAP parameterization of a

wind-wave spectrum (Hasselmann et al. 1973) as a function of five parameters. Then
they exploited empirical links between these parameters and wind speed in order to
describe the spectral evolution in terms of a set of partial differential equations.

In contrast to this parametric approach we get self-similar solutions as functions of a
set of four parameters aτ , bτ , pτ , qτ (aχ , bχ , pχ , qχ ) from the asymptotic model (2.2).
Consistency of the model imposes two links between these parameters (2.7), (2.8),
(2.12), (2.13). The explicit shape of the solutions (functions Φpτ and Φpχ ) is of no
importance in this case. Thus, both the approach by Hasselmann et al. (1976) and
ours follow the concept of self-similarity in very similar ways as further discussed
below.

3.2.2. The balance between nonlinear transfer and external forcing
A condition of permanent wind stress exerted on waves (in other words, constant

wave momentum flux or constant drag coefficient) is introduced to close the balance
of the wave energy in the model of Hasselmann et al. (1976, see (3.4)). It fixes the
ratios qτ/pτ = 3/10 (qχ/pχ = 3/10) for both duration- and fetch-limited cases. Note
that only the ratio is fixed, the exponent q (or p) itself remains a free parameter.

Alternatively, the balance (2.2b) and its counterpart (2.15) treat the balance in terms
of total fluxes of energy, momentum or wave action without any explicit reference to
wind speed and features of wind–wave coupling. As a result, the growth rate pτ (pχ)
appears to be linked to the frequency downshift exponent qτ (qχ) exclusively by the
properties of homogeneity of the kinetic equation (2.3). The corresponding linear
relationships (2.7), (2.12) do not follow the ratio qτ/pτ = 3/10 (qχ/pχ = 3/10) given
by the model of Hasselmann et al. (1976). Within our approach the dependence
of spectral fluxes on time or fetch are not restricted by additional assumptions of
constant wind stress or any other specific scenarios of wave input. Thus, the approach
can be regarded as more general than the theoretical–empirical model by Hasselmann
et al. (1976).

3.2.3. Shape invariance of wave spectra
Another parallel between the two theories can be found in the assumption of quasi-

universality (as defined by Badulin et al. 2007a, and in § 2.3) or shape invariance
of wave spectra (in the words of Hasselmann et al. 1976). The integral properties of
wave spectra depend on total energy and a characteristic frequency only and can be
assumed to be independent of fetch or duration because this weak ‘dependence is not
discernible within the scatter of the JONSWAP spectra’ (see p. 203 in Hasselmann
et al. 1976). Similarly, in our work we assume integrals of spectral shape functions
Id, If , Jd, Jf (A 3), (A 5), (A 10), (A 13) to be independent of wave growth rate pτ (pχ)
in order to get the universal invariant of wave growth (1.4). We stress that in both
theories, the spectral shape invariance refers to integral quantities and does not require
point-by-point proximity of spectral distributions.

3.2.4. Special solutions by Hasselmann et al. (1976) and wave growth universality
A remarkable feature of the Hasselmann et al. (1976) work is that their solutions

(see § 5 therein) can be written in the form (3.7), (3.8). Following the notation
of Hasselmann et al. (1976, (5.3)–(5.10) therein) one can obtain for duration- and
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0

0.2

0.4

0.6

0.8

1.0

p
–0.5 0 0.5 1.0 1.5 2.0 2.5 3.0

q

FIGURE 1. Dependence of frequency downshift exponent q on energy growth exponent
p for duration- and fetch-limited setups for experimental fits by Hwang & Wang (2004)
(symbols), the theory of this paper (solid and dashed lines) and the theory of Hasselmann
et al. (1976) (dash-dotted line).

fetch-limited cases, respectively,

H̃ = 4(2π)9/4C1/2A7/12T̃9/4, (3.9a)
H̃ = 4(8π2)5/4C1/2A5/6T̃5/2. (3.9b)

Here the parameter of spectral shape invariance can be assumed to be constant, C=
5.1 × 10−6 (Hasselmann et al. 1976). The coefficient A in (3.9a,b) depends weakly
on parameters of solutions and can be assumed constant as well, i.e. A = 16.8 for
duration- and A = 2.84 for fetch-limited cases (see Hasselmann et al. 1976, (5.7)–
(5.10)). Substituting these values into (3.9a,b) one gets, respectively,

H̃ ≈ 2.93T̃9/4, (3.10a)
H̃ ≈ 5.07T̃5/2. (3.10b)

The coefficients in (3.10a,b) are quite close to those of our theory (cf. (3.7), (3.8))
and correspond to (cf. (2.21), (2.22))

α0(d) = 0.660, α0(f ) = 0.545. (3.11a,b)

The formulae derived by Carter (1982) on the basis of the theory by Hasselmann et al.
(1976) give slightly different estimates of the coefficients in (3.10a), i.e. 2.92 rather
than 2.93 with α0(d) = 0.658, and in (3.10b) 4.99 instead of 5.07 with α0(f ) = 0.533.

To end this section it is stressed that there is a deep correspondence between
the theoretical–empirical approach by Hasselmann et al. (1976) and the theoretical
one developed in this work. Both approaches lead to the same wind-speed-free
dependence (3.7), (3.8). Independent estimates of the physical invariants also give
remarkably close values of α0(d) and α0(f ). This can be considered as a positive
validation of our approach.

4. Simulations of wind-wave growth
In this section we make use of numerical simulation results by Badulin et al. (2002,

2005, 2007a, 2008) and Zakharov et al. (2012) for verifying the above theoretical
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102 104 106
10−1

100

101(a) (b)

10−1

100

101

100 101

Donelan 10 m s−1

Hsiao & Shemdin 10 m s−1

Snyder et al. 10 m s−1

Hsiao & Shemdin 20 m s−1

Snyder et al. 20 m s−1

Masuda & Komatsu 20 m s−1

FIGURE 2. Dependence of parameter α0= (µ4ν)1/3 (1.4) on: (a) non-dimensional duration
τ = tg/U10 and (b) inverse wave age σ =ωpU10/g in simulations of duration-limited wind
wave growth by Badulin et al. (2002, 2005, 2007b, 2008). Simulation setups (wind input
parameterization and wind speed, e.g. table 6 of Badulin et al. 2005 for details) are given
in the legend. The horizontal dotted line shows theoretical value α0(d) = 0.7.

results both in terms of the invariant (1.4) and the single-parametric dependencies
of wave height on period (3.7), (3.8). The details of the corresponding numerical
approaches can be found in the cited papers.

4.1. Duration-limited growth
The results of simulations (e.g. Badulin et al. 2005) are used here for verification of
the law (1.4) for duration-limited wave growth. Figure 2 presents somewhat eclectic
dependence of the wind-free invariant α0= (µ4ν)1/3 on non-dimensional duration τ =
tg/U10 (figure 2a) and inverse wave age σ =ωpU10/g (figure 2b). Wave input functions
and wind speed values are shown in the legends. The straight line α0(d) = 0.7 is
shown as a reference. All the simulations except the last one (our reproduction of the
case by Komatsu & Masuda 1996) have been carried out with a primitive dissipation
function associated with a hyper-dissipation at high frequencies (see Badulin et al.
2005). In these cases there is no saturated (fully developed or mature) wind-sea state
and all the dependences are tending to α0(d)≈ 0.7 in full agreement with the results of
§ 2. The inverse wave age ωpU10/g can be considerably less than unity, i.e. nonlinear
interactions support the growth of waves that can propagate significantly faster than
wind (Glazman 1994).

To describe wave dissipation Komatsu & Masuda (1996) used the more sophisticated
‘white-capping’ function by Hasselmann (1974) (see also Komen, Hasselmann &
Hasselmann 1984). In this case, wave height and period tend to their limits at large
time. This feature is evidenced by a break of the dependence from the general
tendency at inverse wave age ωpU10/g . 1 in figure 2. Wave steepness µ and
frequency ωp are then approaching the limiting values while time t and, evidently,
number of waves ν continue to grow.
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(a) (b)

FIGURE 3. Wave growth curves in simulations of the fetch-limited setup (Zakharov et al.
2012) with: (a) fetch scaling (3.1) and (b) duration scaling (3.2). Curves are given for
fixed fetches 1, 2, 4, 8, 16, 32 km (see legends). Theoretical dependences (3.7) and (3.8)
are shown by dotted lines.

4.2. Simulations of fetch-limited growth
The fetch-limited growth has been simulated by Zakharov et al. (2012) starting from
an initial white-noise spatially homogeneous wave field in a fetch interval 0–41 km
and for times up to 385 000 s (approximately 107 h). Strictly speaking, there is no
classic fetch-limited regime as a stationary state in these simulations. The evolution
looks like a sequence of stages where reference dependences (3.7), (3.8) describe
intermediate asymptotics. Figure 3 presents these results in terms of dependence on
time at fixed fetches. Curves for log-spaced fetches 1, 2, 4, 8, 16 and 32 km are shown.

Figure 3(a) shows the evolution of wave parameters for wind-free scaling from the
lower left to upper right corner and demonstrates an impressive coincidence with the
5/2 power law (3.8) over a wide range. Deviations from this dependence are seen
at small dimensionless periods T̃ (short times, lower left in figure 3a) when wave
spectra are far from self-similarity. For longer periods T̃ (longer times, upper right
in figure 3a) a saturation of the wave field is reflected in the vertical asymptotes of
the curves: wave periods (both dimensional and dimensionless) tend to their finite
limits while wave heights continue to grow. This effect is probably associated with
a simulation setup where the waves are modelled in a finite spatial box. At long
times when the quasi-stationary state is reaching the upper bound of the box, the
quasi-stationary fetch-limited growth then gives way to a duration-limited scenario.

The time-scaled representation (3.2) in figure 3(b) traces the wave evolution in an
opposite sense when compared with figure 3(a): both H̃ and T̃ are decreasing with
time. Curves plotted for different fetches appear to be remarkably close to each other
and fit the theoretical tangent 9/4 in a range of more than one decade of T̃ . For
small dimensionless periods T̃ < 2× 10−5 and, correspondingly, long times and a large
number of waves (T̃ ∼ ν−1), the saturation of wave field growth is evident as curves
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deviating well above the reference dependence (3.7), counterparts of the saturation
stage in figure 3(a). Thus, the wind-free relationships H̃(T̃) (3.7), (3.8) provide a good
reference for the physical analysis of wave evolution.

5. Wind-wave growth in field experiments

In this section we investigate the invariance of wind-wave growth expressed by
(1.4) for a collection of field experiments on wind-wave growth. First, we consider a
number of experimental works since the milestone work by Sverdrup & Munk (1947)
and then proceed with in situ data of wave riders of the Field Research Facility
available from 1997 to the present (http://www.frf.usace.army.mil/frf_data.shtml).

5.1. Classic experiments on duration- and fetch-limited growth
As discussed in Hwang & Wang (2004), two classes of ocean wave measurements
are of great importance for the study of the generation of ocean waves by wind. The
first class is the fetch-limited growth condition, under which the wave development is
limited by the available spatial coverage upwind of the measurement location. Over
the years, there have been several successful field experiments reported. Extensive
reviews and analyses of these datasets have been reported previously (e.g. Kahma &
Calkoen 1992, 1994; Young 1999; Hwang & Wang 2004; Hwang 2006; Badulin et al.
2007a; Hwang et al. 2011).

The second class is the duration-limited growth condition, under which the wave
development is limited by the temporal duration of the steady wind event acting on the
water surface. The ideal initial and boundary conditions satisfying the duration-limited
wave growth rarely occur in nature and it is no wonder that reports of such data are
very scarce. Young (1999) presents an extensive review of fetch- and duration-limited
wave growth studies. The only duration-limited datasets cited are Sverdrup & Munk
(1947), Bretschneider (1952a,b) and Darbyshire (1959), as compiled by Wiegel
(1961). DeLeonibus & Simpson (1972) report field data that contain duration growth
information. Liu (1985) describes an interesting episode of almost 60 hours of
quasi-steady wind forcing of wave growth measured by an NDBC wave buoy in
Lake Superior. All these data are obtained at later stages of wave development with
dimensionless time, τ = gt/U10, greater than about 7000. By chance, Hwang & Wang
(2004) obtained one data set describing the duration growth in the first two hours
of wind-wave generation and extended the data coverage by more than one order of
magnitude (τ between 498 and 8801).

For our quantitative analysis, the fetch or duration data sets require information on
the complete triplets of (ε, σ and τ ) or (ε, σ and χ ). We have been able to assemble in
figure 4 nine fetch-limited data sets (Burling 1959; Hasselmann et al. 1973; Dobson,
Perrie & Toulany 1989; Babanin & Soloviev 1998; Donelan 1979; Merzi & Graf 1985;
Garciá-Nava et al. 2009; Romero & Melville 2010, the first five data sets are called
collectively BHDDB, and the others D79, M85, G09 and R10 respectively), and three
duration-limited data sets (DeLeonibus & Simpson 1972; Liu 1985; Hwang & Wang
2004, referred to as D72, L85 and H04).

In keeping with the conventional observation that the wave growth can be
fitted by power-law functions (1.3) but allowing the exponents to vary with the
range of dimensionless fetch or duration in different experiments, Hwang & Wang
(2004) developed a second-order fitting of the power-law functions to the BHDDB
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fetch-limited data and obtained (cf. (1.3), notation is slightly modified compared with
Hwang & Wang 2004)

ε = ε0χχ
pχ (χ), (5.1a)

σ = σ0χχ
−qχ (χ), (5.1b)

where the exponents are slowly varying functions of dimensionless fetch χ given by

pχ(χ) = α1 + 2α2 ln χ, (5.2a)
qχ(χ) = β1 + 2β2 ln χ, (5.2b)

with ε0χ = exp(−17.6158), α1= 1.7645, α2=−0.0647, σ0χ = exp(3.0377), β1= 0.3990,
and β2=−0.0110. A sufficient range of the dimensionless fetch χ for computation is
100–106.

Excluding fetch χ in (5.2a,b) one has a counterpart of the linear link (2.12) for
self-similar solutions of the model (2.2)

qχ = 2Pχpχ + Sχ
10

, (5.3)

where

Pχ = 0.8501, Sχ = 0.9900 (5.4a,b)

are remarkably close to the theoretical value of unity. The duration-limited growth
functions can be derived from a similar approach using a formal conversion of fetch
x to time t (see Hwang & Wang 2004, for details). Trivial algebra leads to a similar
relationship between pτ and qτ (cf. (2.7) and (5.3)), i.e.

qτ = 2Pτpτ + Sτ
9

, (5.5)

where the values of coefficients Pτ , Sτ
Pτ = 0.8492, Sτ = 0.9889, (5.6a,b)

again, appear to be quite close to the theoretical value of unity. The empirical fits
(5.3), (5.5) and their theoretical counterparts (2.7), (2.12) are shown in figure 1.

One can examine the correspondence between the theory and the empirical
knowledge by following the notes in the Introduction. After excluding wind speed
from (1.3) one can easily obtain ‘empirical’ invariants (1.7):

µ4νrτ = constτ , µ4νrχ = constχ (5.7a,b)

in which exponents rτ , rχ depend on growth rates pτ (pχ ). Generally, these exponents
are close to unity as predicted by our theory (see (1.4)) but can vary in a wide range,
even being negative for high exponents pτ , pχ .

An alternative formulation of the results allows tracing of the effect of fetch as
follows:

(µ4ν)= ε2
0χσ

10
0χχ

−0.5391+0.0194 ln χ = α0(χ)
3. (5.8)

The additional dependence on dimensionless fetch χ yields a variation of α0 in (5.8)
by a factor 2.3833 when dimensionless fetch varies over a range of five orders of
magnitude, χ = 10–106. Figure 4 show the results of these field measurements
similarly to figure 2 for simulations. The theoretical reference value of α0 is
reasonably consistent with experimental data and with the empirical fitting (5.8)
by Hwang & Wang (2004). Typically, the duration-limited data show larger scatter,
reflecting the departure from ideal duration-limited wave generation conditions as
discussed at the beginning of this section.
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FIGURE 4. Dependence of experimental estimate of self-similarity parameter α0: (a) on
non-dimensional fetch χ = xg/U2

10 and duration τ = tg/U10; (b) on non-dimensional
frequency of spectral peak σ = ωpU10/g, for a combined collection of duration- and
fetch-limited datasets. The dashed line shows the theoretical value α0(f ) = 0.62, the solid
line is the empirical power-law fit (5.8) by Hwang & Wang (2004) for the collection.

5.2. Data by Sverdrup & Munk (1947)
The special attention we pay to the work by Sverdrup & Munk (1947) is not limited
to the historical aspects of wind-wave studies. The theoretical construction of their
paper is quite close to our physical approach. Ten years before the formulation of the
spectral approach for wind waves Sverdrup & Munk (1947) showed that ‘the concept
of ‘significant waves’ is essential for purpose of forecasting’. They started their theory
from the equation for the integral balance of energy (see (47) in Sverdrup & Munk
1947), i.e. the counterpart of the second equation of our model (2.2). The effect of
nonlinear interactions has been described by a semi-empirical relationship between
two dimensionless parameters: wave steepness and wave age. The experimental data
available at that time have been used to specify parameters of their model.

Figure 5 presents the data of tables II and III of appendix II by Sverdrup & Munk
(1947). Only measurements containing full triads of wave height, period and fetch
(duration) were taken into account. The upper row shows fetch- (figure 5a) and
duration-limited (figure 5b) data with the conventional wind speed scaling. There is
a rather large scatter of data around Toba’s 3/2 law (dotted line). Strong deviations
from Toba’s law are associated with four particular data groups: US Eng. and Cornish
for fetch- and Krümmel, Dover for duration-limited observations.

The alternative wind-free scaling plots in figure 5(c,d) also show large deviations
from the reference dependences (3.7), (3.8) but the ranges of the corresponding
dimensionless values are wider, especially, for the duration-limited case (figure 5d).
Again, we can notice a clear disparity of points associated with the source of data
and the method of estimating wave parameters. The data of USS Augusta and
Gibson (fetch-limited) and of USS Augusta and Berkeley (duration-limited) show
better agreement with theoretical dependence (dotted lines). The wave period in these

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

46
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.468


520 V. E. Zakharov, S. I. Badulin, P. A. Hwang and G. Caulliez

10−1 100
10−2

10−1

(a) (b)

(c) (d)

(e) ( f )

10−1 100
10−2

10−1

10−3 10−2
10−1

100

101

102

0 5 10 15
10−1

100

101

ID

10−6 10−5
10−3

10−2

10−1

100

0 5 10 15
10−1

100

101

ID

Augusta
Gibson
US Eng.
Cornish

Augusta
Berkeley
Paris
Krummel
Dover

FIGURE 5. Data by Sverdrup & Munk (1947): (a,b) wave height–period dependence
with the conventional wind speed scaling; (c,d) H̃(T̃) scaled by fetch (c) or time (d);
(e,f ) estimates of invariants α0(f ) and α0(d). The dotted lines in (a–d) show the Toba (1972)
law, and the dashed lines in (e,f ) our theoretical values of α0(f ) and α0(d). ID in (e,f )
corresponds to records’ ID in tables of Sverdrup & Munk (1947). (a,c,e) Data of table
II for fetch-limited cases; (b,d,f ) data of table III for duration-limited cases. Names of
observation ship and authors are given in the legends of (a,b).

observations was estimated directly whereas those of Krümmel and Paris have been
computed from measurements of wavelength.

The data in figure 5(c,d) cover the same range of dimensionless T̃ and H̃ as the
simulations by Zakharov et al. (2012) in figure 3. One point of duration-limited data
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Buoy ID Fetch Wave direction Total number Number of points
(m) (deg.) of data points of off-shore waves

190 6112 320 23 772 102
192 18 500 260 20 526 35
200 18 500× 3 280 5 773 24
430 18 500 250 70 995 606
630 3000 250 184 195 171

TABLE 1. Summary of wave rider data of the Field Research Facility of the US Army
Corps of Engineers. Wave direction is reported as the direction from which the waves
originate, e.g. waves coming from the west have direction 270◦.

(figure 5d, Paris) appears below the lower limit of T̃ in figure 3(b), i.e. in the range
we treated as a saturated wave field (see comments in § 4.2). As the opposite extreme,
note the data of Gibson that fit both approaches (Toba’s and the new one) fairly well
(cf. figure 5a,c). Two points of Gibson correspond to very young waves in terms of
wind speed scaling (wave age C/U10 = 0.22 and C/U10 = 0.28, see figure 5a). Short
fetches (1.3 and 3.5 km) put these points into the upper right corner of figure 5(c).
In terms of the ‘life distance’ x/λ, these points correspond to approximately 152 and
267 wave periods.

The bottom row, figure 5(e,f ) demonstrates a surprising correspondence of the
experimental estimates of the invariant α0 to our theoretical values. Again, data of
USS Augusta, Gibson and Berkeley give the best fit to α0(d) = 0.7 and α0(f ) = 0.62.
The agreement is considered quite good given the relatively poor quality of these
early data sets.

5.3. Data of the field research facility wave riders
The data of wave riders in a near-shore area look very attractive for illustrating the
law (1.4) in terms of the dependence of wave height on wave period (3.8). This simple
5/2 power-law dependence is verified with data available at the website of the Field
Research Facility of the US Army Corps of Engineers http://www.frf.usace.army.mil/.
A summary of the data is given in table 1. The wave riders collected data for many
years; for example, Buoy 630 has been operational since 1997 and Buoy 430 since
2008. The most recent data downloaded for this analysis are dated September 2013.
The total number of measurements and the number of data points relevant to the
fetch-limited setup are listed in table 1. We have selected records when offshore wind
direction was ±30◦ from the coast normal. Buoy 200 is sheltered by a cape from the
north; this is the closest coastline but there is almost no wind from that direction.
Direction 280◦ has been taken as an alternative reference and the corresponding fetch
has been set as three times longer than the one from the closest shoreline.

Wind from the ocean is dominating in this area and only 0.31 % of total number
of data points (938 of 305 261) qualifies as consistent with a fetch-limited setup
of wave growth. When presented in dimensionless variables (3.1) these data match
the theoretical dependence H̃(T̃) (3.8) fairly well as seen in figure 6. The data of
the buoys cover a wide range of dimensionless periods (‘life distances’), similar to
figures 2–5 for simulations of wave growth, more recent wave growth data reported in
Hwang & Wang (2004) and the historical data by Sverdrup & Munk (1947). A slight
overshoot relative to the theoretical dependence can be explained by a systematic
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FIGURE 6. Data of Field Research Facility wave riders versus theoretical dependence (3.8)
shown as dotted line. Different buoy data are shown by different symbols (see legend and
table 1).

underestimating of wave periods. Underestimating of fetch can also contribute to this
overshoot when the wave development is slowed down by the coast sheltering effect.
The scaling gives a good approximation for the problem of wave growth at relatively
small slanting fetches, for our present knowledge up to 40◦ from the coastline normal.
At larger angles the wave growth off-shore is accompanied by a complex system of
along-shore modes as shown in recent simulations of fetch-limited growth in which
the effect of nonlinear wave–wave interactions has been accounted for in full (e.g.
Gagnaire-Renou 2009; Zakharov et al. 2012).

6. Wind-wave growth observed in laboratory experiments
It is commonly admitted that the dynamics of water waves observed in wind-wave

tanks differ dramatically from those of wind waves observed in open seas. Most of the
experimental facilities are considered as too short for reaching the full development
of wave–wave interactions and for observing the related statistical properties of wind-
wave fields. At the same time, a number of laboratory results have been generalized
successfully for in situ wave field conditions. Examining a set of wind-wave field data
obtained in the laboratory in a wide range of fetch and wind conditions according to
the approach developed in this paper may help to clarify, at least partly, the soundness
of this viewpoint.

In this section, we consider the results of two experiments made in two different
wind-wave tanks. Experiments in the early 1960s by Toba (1961) served as a basis
for later works on the famous 3/2 power law by Toba (1972, 1973a,b) that links
dimensionless wave height and wave period.

The observations reported by Caulliez, Makin & Kudryavtsev (2008), Badulin
& Caulliez (2009) and Caulliez (2013) were made in the large wind-wave tank
in Marseille for various fetches between 2 and 26 m (i.e. 2, 4, 6, 9, 13, 18 and
26 m) and 10 wind speeds (values given in the legends of figure 7). Measurements
of wind and wave parameters are based on much more advanced technology and
methodology, allowing a proper examination of wind-wave development both within
the conventional wind scale approach and the above-presented theory.
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6.1. Wind speed scaling in experiments by Toba (1961, 1972) and Caulliez et al.
(2008) and Caulliez (2013)

Figure 7(a) shows the classical representation of wind-wave growth in terms of the
dimensionless wind-dependent wave parameters H∗ and T∗, using the definitions based
on wind friction velocity as given by Toba (1972). The whole sets of data obtained
respectively by Toba (1972, table 1 therein, filled symbols) and by Caulliez (2013,
partially given in table 1, open symbols) are displayed. In particular, the Toba and
Caulliez data were collected for a number of similar conditions, namely for reference
wind speeds between 5 and 12 m s−1 and fetches between 6 and 14 m but in facilities
of quite different sizes, the water tanks being respectively 21 and 40 m long.

In addition, the air layer above Toba’s water tank was just 50 cm in height
× 75 cm in width and, clearly, the air flow above waves might be affected by the
walls. The wind friction velocity was determined from the mean velocity profiles
measured at three fetches by means of small cup anemometers while the significant
wave height was derived from the mean wave height estimates. When compared to
the Marseille data as given in Caulliez et al. (2008) and Caulliez (2013), the original
data reported by Toba (1972) in figure 7(a) show laboratory waves ‘unrealistically
young’ exhibiting abnormally small T∗ associated with inverse wave age in the range
20–45, i.e. propagating 20–45 times slower than the wind speed estimated at the
standard 10 m level (note that for short gravity waves, when neglecting drift current
effects on wave propagation, T∗ corresponds approximately to 2π times the wave age
C/u∗). A thorough examination of the data set has shown such very small values of
wave age are related to abnormally high values of friction velocity.

The observations reported by Caulliez (2013) in the large wind-wave tank in
Marseille were made for a wider range of wind speeds and fetches, from 2 m up
to 26 m, with an air layer above the water surface of 1.5 m in height and 3.2 m in
width. The friction velocity was determined from careful hot-X-wire measurements of
the vertical profiles of the turbulent momentum flux in air, a quantity found constant
within the whole water surface boundary layer (Caulliez et al. 2008). The significant
wave height was estimated as four times the root-mean-square value of the water
surface displacements. In this experiment, the inverse wave age varied between 4
and 18.

In figure 7(a), data sets by both Toba and Caulliez follow quite well the Toba 3/2
power law. However, the Toba data are strictly separated from the Caulliez ones in
the range of wave age T∗ observed. Additionally, all the Toba data are quite close
to the 3/2 power law while the Caulliez data observed at the shortest fetches, in
a range depending on wind speed (up to 26 m at 2.5 m s−1 to less than 6 m at
10 m s−1) show a transition to a ‘saturated wave field state’, in the words of Toba
(1972). These transitional points of the Caulliez data appear as outliers from the ones
of Toba collected in the same range of wave age and fetches (e.g. between 6 and
14 m).

Therefore, Toba’s data have been re-analyzed by using more realistic values of wind
and wave parameters based on the detailed measurements made in the large Marseille
wind-wave tank. In brief, new friction velocity values have been derived from drag
coefficient estimates obtained in Marseille at the same fetches and reference wind
speeds as Toba’s data. Note that these new values are in very good agreement with the
u∗ values measured by Kawai (1979) in a wind-wave tank of size comparable to the
tank used by Toba (1961) in the experiments analyzed here. In addition, significant
wave height has been evaluated from the mean wave height given by Toba (1972)
on the basis of the wave height probability distribution observed in Marseille and
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Toba

FIGURE 7. Data of wind-wave tank studies of wave growth by Toba (1972) (filled
symbols) and by Caulliez (2013) (open symbols) made dimensionless by using the gravity
parameter g and the conventional friction velocity u∗ = 〈U′W ′〉1/2 (T∗ = gT/u∗ and H∗ =
gHs/u∗2). (a) Toba’s data derived from table 1 in Toba (1972); (b) friction velocity values
u∗ given in Toba (1972) are replaced by estimates at the same reference wind speed and
fetch made on the basis of the Caulliez measurements in the large Marseille wind wave
tank. Solid line is the Toba (1972) 3/2 law.

not from the Rayleigh distribution generally assumed for in situ conditions (see for
instance figure 9 in Caulliez et al. 2008). When these new parameters are used for
estimating T∗ and H∗, it is striking to see in figure 7(b) that both data sets again
agree very well but now, in a more realistic way, fall into the same range of wave
age T∗. As previously mentioned, they also follow remarkably well the 3/2 power law
except for the non-saturated wave fields observed at the shortest fetches.

6.2. Wind-free scaling in experiments by Toba (1961, 1972) and Caulliez (2013)
Figure 8 shows the same data sets obtained by Caulliez and Toba but plotted with
the new scaling representation (3.1) based on the law of universality (1.4). For Toba’s
data in figure 8, the significant wave height has been estimated in the same way as
in figure 7(b). The correspondence between the two experimental data sets and the
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FIGURE 8. Data derived from wind-wave tank studies of wave growth by Toba (1972)
(filled symbols) and by Caulliez (2013) (open symbols) plotted in terms of the new scaling
(3.1). Solid line is the Toba (1972) 3/2 law.

theoretical 5/2 power-law dependence (3.8) looks very good for the well-developed
wave fields observed at the largest fetches, but the experimental points of Toba (1972)
are located about 1.5 times higher than the theoretical curve given by (3.8). This
overshoot may be explained by the use of different methods for estimating the spatial
wave period T̃ as given by (2.19) and (3.4).

For fetch-limited conditions, as seen from (2.19), the dimensionless spatial wave
period is a measure of the number of waves propagating over the fetch distance
x, i.e. T̃ = (2|kp|x)−1/2. In the Toba (1972) experiments based on one-point wave
gauge measurements, wave period was first derived from the mean-over-spectrum or
dominant peak time scale and the related spatial quantity T̃ was estimated by using
the linear dispersion relation for gravity waves. Caulliez (2013) however measured
directly the phase speed Cp of dominant waves by means of a cross-correlation method
between two wave signals recorded by a pair of wave gauges (Dudis 1981). This
method enables direct measurement of the velocity of wave propagation accounting
for the effect of surface drift current and, for the shortest waves, the effect of surface
tension. In the observations reported here, the magnitude of these combined effects
varies between 70 % of the linear phase velocity value for small fetches and wind
speeds, to 10 % for large fetches and winds. This clearly indicates that the dynamics
of wind-wave fields observed in the laboratory are governed not only by the gravity
force but also by surface drift and, at the shortest scales, by capillary forces.

The good agreement observed in figure 8 between the Caulliez (2013) data at large
fetches and the theoretical curve given by (3.8), in contrast to the Toba (1972) data,
validates the use of this experimental method for estimating T̃ for wind-wave tank
observations. This noticeable fit also supports the appropriateness of the new scaling
approach for describing well-developed wind-wave fields observed in laboratory at
large fetches.

Finally, figures 7 and 8 enable us to consider two issues thoroughly: the success
of the new approach for wind-wave tank observations and the related relevance of
the conventional wind speed scaling under Toba’s law. To support this viewpoint, one
can also notice that, in figure 8, the range of dimensionless periods T̃ observed at
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the smallest wind speeds overlaps the data of the Field Research Facility for buoys
190 and 630 located at the minimal distances from the coast, i.e. at 3 and 6 km
respectively (see figure 6). The equivalent dimensionless fetch in terms of wavelength
– the number of waves ν – for the wind-wave tank data can be estimated as 50 to
300, i.e. values quite close to those obtained by Gibson (T̃ is 152 and 266 at fetches
1.3 and 3.5 km and wind speeds 16.5 and 16 m s−1 respectively) described in our
analysis of the Sverdrup & Munk (1947) results. Thus, with the new approach one
can see that wind waves of lengths higher than roughly 15 cm observed in large water
tanks are developed enough to be considered for modelling the nonlinear interactions
and statistical properties of the resulting wave field.

6.3. Toba’s law and the wind-free approach: similarities and dissimilarities
The data presented here and in the previous sections (see figure 5 for data by
Sverdrup & Munk 1947) show quite good correspondence of the observations
both with our theoretical dependences and with Toba’s power law, especially for
wind-wave tank experiments. It reflects, in a sense, the similarities between the
basic physical assumptions of both the purely theoretical model described here and
the theoretical–empirical model by Toba (1972). Both models consider physical
mechanisms providing a local balance (as emphasized in the title of the paper by
Toba 1972).

Toba (1972) develops his model using a dimensional analysis, associating the wave
energy growth rate with the work of the wave-induced wind stress in the field of wave
orbital motions. Assuming that this work is directly controlled by the local air flow
(and not by wave parameters), and then is proportional to u∗3, he derived the so-called
3/2 Toba relationship between the dimensionless wave height and wave period. Note
that this law is equivalent to proportionality of the total drift current including the
Stokes one (i.e. the averaged value of the orbital velocity) and the friction velocity
u∗. This relation that links the wave steepness to the root-mean-square of the inverse
wave age expresses the local equilibrium of the dominant wind-wave field but here
the treatment is heuristical rather than theoretically well-grounded.

One of the reviewers pointed out that the Stokes drift current is an essentially
nonlinear effect of second order in the wave steepness and, thus, unrelated to viscosity
and to friction velocity: it is present in a nonlinear wave field in the absence of wind
as well. The Stokes drift current therefore can be easily observed in laboratory flumes
where waves are generated mechanically by a wavemaker. In the present use of the
terminology (of Stokes drift), we mean a somewhat different contribution to the
total drift current that results from the shear stress on the air–water interface due
to the presence of wind. Interestingly, in laboratory wind-wave facilities these two
different contributions to the drift current at the water surface are often of comparable
magnitude.

On the contrary, in the present theoretical model we assume the nonlinear
interactions to be dominant compared to the external forcing terms Sin and Sdiss

and exploit the key features of nonlinear transfer among the random water wave field
components explicitly. The remarkable fact is that one can express the corresponding
balance of the wave field energy (or momentum, or action) in terms of wave
parameters only, without any reference to wind forcing and/or dissipation. However,
when examining this model in terms of the dependence of wave height on wave
period, this balance gives the Toba 3/2 law but as an important special case of local
wave field equilibrium for which the flux of energy to waves (or the ‘rate of work
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done by the wind stress to wind waves’ in the words of Toba 1972) remains constant.
Furthermore, as shown in Gagnaire-Renou et al. (2011), the wave energy growth rate
can be expressed as a function of u∗3. The present model thus leads to expressing
the strong assumption made by Toba (1972) as the result of the predominance of
nonlinear interactions among the other processes governing the wind-wave field
evolution. It also means that, in this case, both models represent very similar physics,
but here our model reveals more precisely the governing physical mechanisms.

The mathematically consistent analysis of the model (2.2) allows the effect of
dominating nonlinearity to be accounted for in a quite ‘flexible’ way as two-parametric
families of self-similar solutions (2.6), (2.11) and, thus, a description of energy
flux that depends on time or fetch. The ‘freedom’ of these solutions comes from
homogeneity properties (2.3), i.e. from arbitrariness of physical scaling of deep-water
wave lengths and heights (coefficients υ and % in (2.3)). It allows the balancing
of the dominating nonlinear wave transfer and the total net input (see (2.2b)) in a
wide range of physically relevant wind-wave growth scenarios when energy income
depends on time or fetch. On the contrary, the restrictiveness of Toba’s model is
inherently associated with the definite physical scale of wind speed. Toba fixes this
scale by postulating that ‘the growth of wind waves is predicted by an integration
with respect to the fetch and duration’ (Toba 1972, p. 18) and, hence, in fact, by
freezing a particular scenario of wave development at constant energy growth rate.

A divergence of the two approaches is then observed beyond the quite restrictive
Toba’s wave growth scenario, i.e. when the energy flux to waves varies with time
or fetch. The cases by Hasselmann et al. (1976) and Zakharov & Zaslavsky (1983)
considered above (see also Gagnaire-Renou et al. 2011) provide other exponents in
the dependence of wave height on frequency. In the context of this problem, the
consistency between the ‘wind-based’ model by Toba and our ‘wind-free’ model,
especially for wind-wave tank observations (cf. figures 7 and 8) might be the most
striking manifestation of the ‘universal’ behaviour of wind–wave coupling occurring
in the laboratory when external air and water flow disturbances are minimized. These
conditions make the friction velocity u∗ a fully representative physical parameter.

7. Discussion and conclusions
In this paper we revisit a variety of theoretical, numerical and experimental

results obtained previously over several decades in order to examine in detail a
new theoretical concept of wind-wave growth. This final section aims to show the
inner consistency and logic of this reconsideration.

7.1. Theory
The key result of this paper is the invariant (1.4) of wind-wave field growth. The
basic assumption of the dominating role of nonlinear wave transfer leads to the
property of self-similarity of wind-wave spectra for the reference cases of duration-
and fetch-limited wave growth and the power-law dependence of dimensionless wave
parameters on fetch and time duration (1.3). In contrast to the traditional power-law
fits with four free parameters, the theoretical analysis demonstrates the existence of
rigid links between exponents and pre-exponents of (1.3). These universal links then
give us the universal form of the invariant (1.4), (cf. (1.7)) with the right-hand-side
α0 being expressed by cumbersome integral dependences of spectral shape functions
(e.g. Hasselmann et al. 1976). We assume α0 to be constant based on previous
experimental and numerical studies that showed spectral shape invariance of growing
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wind seas. The ultimate result of these theoretical considerations implies a surprising
conclusion that appears to contradict the present understanding of wind-wave growth:
the invariant (1.4) does not contain wind parameters explicitly. In other words:

waves chronicle wind development.

This wind-free paradigm implies a new scaling of dimensionless wave height
and period (3.7), (3.8): the simple time duration or fetch becomes a key physical
scale irrespective of the conditions of wind forcing. We show that the new
theoretical dependences agree fairly well with conventional theoretical–empirical
ones (e.g. Hasselmann et al. 1976; Carter 1982). Exclusion of wind speed from
these dependences gives exactly exponents 9/4, 5/2 and, what is more surprising,
provides consistent estimates of basic constants α0(d), α0(f ) (see (3.11)). In particular,
the reference to the theoretical–empirical model by Hasselmann et al. (1976) is quite
representative. The purely theoretical approach shows that the empirical estimations
of the parameters in the JONSWAP spectrum and its specific spectral shape are, in a
sense, exhaustive for the analysis: the results are substantiated by much more general
physical principles.

7.2. Simulations of wind-wave growth
We stress that all the numerical experiments were accomplished almost ten years ago
with no reference to our findings in this paper. A series of runs for a duration-limited
setup from Badulin et al. (2005, 2007a, 2008) taken arbitrarily showed a very good
agreement with the results of this new theory.

The recent numerical study of fetch-limited growth by Zakharov et al. (2012)
gives us a broader view of the classic problem of wind-wave growth. We found that
the fetch-limited regime is just an intermediate asymptotic stage when wave growth
is limited in space. When waves from the coast arrive at the opposite side of the
simulation domain the waves continue to grow but according to a duration-limited
scenario.

7.3. Field experiments on wind-wave growth
Field studies of wave growth provide the dominant support for the new theory. First,
we show that the parameters of the power-law experimental fitting (1.3a−d) are
linked. The theoretical links (2.7), (2.12) reproduce the parameterizations by Hwang
& Wang (2004) reasonably well: a minor quantitative difference makes the invariant
(1.4) weakly dependent on dimensionless fetch (or wave age).

The outcome of our historical review of the brilliant paper by Sverdrup & Munk
(1947) is two-fold. First, we show that the relatively coarse wave observations
made during World War II are consistent with our theory. Secondly, we emphasize
the parallel between our self-similarity approach and the concept of significant wave
height. Both approaches describe the wave field with a minimal number of parameters:
significant wave height and peak period, in contrast to the more detailed but much
more expensive representation of wave field as an ensemble of a great number of
spectral components.

Data from wave riders of the US East Coast were analyzed as an additional
justification of these new theoretical outcomes. Wave heights and periods scaled by
the new wind-speed-free parameterization show remarkable closeness to the 5/2 law
for the fetch-limited case. We expect that more experimental proof of the validity of
such an approach can be found in more wave data.
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7.4. Wind-wave tank experiments: beyond the formal validity of the statistical
description?

The results obtained from wind-wave tank experiments are found to be well
representative. Even if the wind-wave tank experiments are generally considered
as too far from wind-sea reality, careful data treatment enables one to show that it is
probably not the case. In terms of the new wind-free scaling the results of experiments
in the Large Air-Sea Interaction Facility (LASIF) in Marseille fit the theoretical
dependences remarkably well. They correspond to high values of dimensionless H̃, T̃ ,
i.e. those obtained at relatively short fetches. As expected, the statistical description
used in this work may not apply in this case. At the same time, the range of wave
age observed in the wind-wave tank experiments overlaps those observed by the wave
riders. This finding affords promising perspectives for modelling sea waves in large
wind-wave facilities (Zavadsky, Liberzon & Shemer 2013).

7.5. A final remark
Evidently, the invariant (1.4) does not provide a full description of wind-wave field
evolution for the classic setups of duration- and fetch-limited growth. Essentially, it
shows that the problem can be split into two steps and, in the first step, gives an
essential physical constraint that does not contain any parameters of wind forcing. The
effect of wind can be accounted for in the next step to get the full description of wave
growth in terms of wave height and period as functions of time, fetch and parameters
of wind–sea coupling.

Thus, the concise expression (1.4) shows the validity and prospects of an analytical
theory of wind-driven seas. To a certain extent, this result breaks a long-lived belief
that the description of wind-driven seas must be the subject of extensive experimental
studies and costly simulations rather than the result of an elegant physical theory.
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Appendix A. Self-similar solutions for growing wind seas
A.1. Duration-limited case

Let us consider the duration-limited case, i.e. a spatially homogeneous case where
∂E/∂x ≡ ∂E/∂y ≡ 0. Solutions for the conservative kinetic equation (2.2a) with
homogeneity condition (2.3) can be found in the form of incomplete self-similarity
(2.6).

After substituting (2.6) into (2.2a) one has

(pτ + 4qτ )Φpτ (ξ)+ 2qτξ∇ξΦpτ = a2
τb
−17/2
τ τ RSnl[Φpτ (ξ)], (A 1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

46
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.468


530 V. E. Zakharov, S. I. Badulin, P. A. Hwang and G. Caulliez

where exponent R= 2pτ − 9qτ + 1 should be zero to cancel the explicit dependence on
time τ and to leave a dependence on self-similar argument ξ only. It gives the linear
link (2.7) between exponents pτ and qτ . An additional link between coefficients aτ
and bτ (2.8) can be introduced by simple re-scaling of dimensionless variables. The
total dimensionless energy for solutions (2.6) with (2.8) becomes

Ẽtot =
∫ ∫ +∞

−∞
aττ pτ+4qτΦpτ (ξ) dk= a9/17

τ τ pτ Iτ (A 2)

where

Iτ =
∫ ∫ +∞

−∞
Φpτ (ξ) dξ . (A 3)

Links (2.7), (2.8) are of key importance for further consideration. First, equation (A 1)
for shape function Φpτ (ξ) with (2.8) depends on exponents pτ , qτ but appears to be
independent of coefficients aτ , bτ . Secondly, the self-similar solutions (2.6) with the
integral (A 2) depending on two parameters only (say, aτ and pτ ) are consistent with
a power-law dependence of net wave input on time in (2.2b).

A characteristic frequency ω∗ can be introduced in different ways for a given
spectral shape function Φpτ (ξ). The mean-over-spectrum frequency is written as
follows:

ω̃m =

∫ ∫ +∞
−∞

ω̃Φpτ (ξ) dξ∫ ∫ +∞
−∞

Φpτ (ξ) dξ

= a−2/17
τ τ−qτ Jτ I−1

τ , (A 4)

where

Jτ =
∫ ∫ +∞

−∞
|ξ |Φpτ (ξ) dξ . (A 5)

Peak frequency ω̃p that corresponds to a maximum of the shape function Φpτ (ξ),
evidently, has similar dependence on time and parameter aτ

ω̃p = hpτ ω̃m = hpτ a
−2/17
τ τ−qτ Jτ I−1

τ , (A 6)

where the coefficient hpτ < 1 for wind-wave spectra: the mean frequency is generally
higher than the peak one. Note that this coefficient depends on the exponent pτ . Below
we use the spectral peak frequency ωp unless otherwise stated.

While total wave energy (A 2) and characteristic frequency (A 4), (A 6) are power-
law functions, the exponents of which are linked by a linear relationship (2.7) one
can construct easily a time-independent invariant in the form

Ẽs
totω̃

y
pτ = a9s/17−2y/17

τ τ spτ−yqτ+1Is−y
τ Jy

τh
y
τ (A 7)

by choosing appropriate exponents s and y. Exponents s = 2 and y = 9 cancel
dependence on time τ in (A 7). One remarkable result is that this choice cancels
dependence on parameter aτ as well. Condition (2.7) on exponents pτ and qτ gives
a time-independent invariant that depends on one parameter only of the family of
self-similar solutions (2.6). The invariant (A 7) can be associated with the weakly
turbulent law of wind-wave growth by Badulin et al. (2007a) in the form of the
Kolmogorov relationship between energy and energy flux (total net input) (2.15).
Finally, one has the invariant in a remarkably concise and physically transparent form
in terms of wave steepness µ (1.5) and number of waves ν as defined by (1.6)

µ4ν = I−7
τ J9

τh
9
τ = α3

ss(d)pτ = α0(d). (A 8)

Here we use subscript (d) for the duration-limited case.
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A.2. Fetch-limited case
Self-similar solutions for a fetch-limited setup can be considered quite similarly to
the duration-limited case. Assuming the wave field to be stationary (∂E/∂t ≡ 0) and
growing in increasing x one has self-similar solutions in the form (2.11) and condition
(2.13) is quite similar to the duration-limited case.

For dimensionless energy (cf. (A 2) with (2.13)) one has

Ẽtot =
∫ ∫ +∞

−∞
aχτ pχ+4qχΦpχ (ζ ) dk= a5/9

χ χ pχ Iχ , (A 9)

where

Iχ =
∫ ∫ +∞

−∞
Φpχ (ζ ) dζ . (A 10)

The mean-over-spectrum frequency is written as follows:

ω̃m =

∫ ∫ +∞
−∞

ω̃Φpχ (ζ ) dζ∫ ∫ +∞
−∞

Φpχ (ζ ) dζ

= a−1/9
χ χ−qχ Jχ I−1

χ (A 11)

and the peak one as

ω̃p = hpχ ω̃m = hpχa−1/9
χ χ−qχ Jχ I−1

χ , (A 12)

where

Jχ =
∫ ∫ +∞

−∞
|ζ |Φpχ (ζ ) dζ . (A 13)

The fetch-independent invariant can be derived in the same way as the one for the
duration-limited setup (A 7) and related with formulations by Badulin et al. (2007a),
Gagnaire-Renou et al. (2011)

Ẽtotω̃
4
p = αss(f )

(
ω̃2

p

2
∂Ẽtot

∂χ

)1/3

. (A 14)

Finally, one has the invariant in terms of wave steepness µ (1.5) and number of waves
in terms of wavelength

ν = 2kpx, (A 15)

which is identical to the duration-limited case

µ4ν = I−8
χ J10

χ h10
χ = α3

ss(f )pχ = α0(f ). (A 16)

The right-hand sides of (A 8), (A 16) are formally different and are determined by self-
similar functions Φτ (ξ), Φχ(ζ ).
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