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On drag reduction scaling and sustainability
bounds of superhydrophobic surfaces in high

Reynolds number turbulent flows
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The drag reduction characteristics and sustainability bounds of superhydrophobic
(SH) surfaces in high Reynolds number turbulent flows are investigated using results
from direct numerical simulation (DNS) and scaling-law analysis. The DNS studies
were performed, using lattice Boltzmann methods, in turbulent channel flows at bulk
Reynolds numbers of Reb = 3600 (Reτ0 ≈ 222) and Reb = 7860 (Reτ0 ≈ 442) with SH
longitudinal microgrooves or SH aligned microposts on the walls. Surface microtexture
geometrical parameters corresponding to microgroove widths or micropost spacings
of 4 . g+0 . 128 in base flow wall units and solid fractions of 1/64 6 φs 6 1/2 were
investigated at interface protrusion angles of θp = 0◦ and θp =−30◦. Analysis of the
governing equations and DNS results shows that the magnitude of drag reduction
is not only a function of the geometry and size of the surface microtexture in
wall units, but also the Reynolds number of the base flow. A Reynolds number
independent measure of drag reduction can be constructed by parameterizing the
magnitude of drag reduction in terms of the friction coefficient of the base flow
and the shift, (B − B0), in the intercept of a logarithmic law representation of the
mean velocity profile in the flow with SH walls compared to the base flow, where
(B − B0) is Reynolds number independent. The scaling laws for (B − B0), in terms
of the geometrical parameters of the surface microtexture in wall units, are presented
for SH longitudinal microgrooves and aligned microposts. The same scaling laws are
found to also apply to liquid-infused (LI) surfaces as long as the viscosity ratios are
large, N ≡µo/µi & 10. These scaling laws, in conjunction with the parametrization of
drag reduction in terms of (B−B0), allow for a priori prediction of the magnitude of
drag reduction with SH or LI surfaces in turbulent flow at any Reynolds number. For
the most stable of these SH surface microtextures, namely, longitudinal microgrooves,
the pressure stability bounds of the SH surface under the pressure loads of turbulent
flow are investigated. It is shown that the pressure stability bounds of SH surfaces
are also significantly curtailed with increasing Reynolds number of the flow. Using
these scaling laws, the narrow range of SH surface geometrical parameters which can
yield large drag reduction as well as sustainability in high Reynolds number turbulent
flows is identified.
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328 A. Rastegari and R. Akhavan

1. Introduction
Superhydrophobic (SH) surfaces have received much attention as a means of

skin-friction drag reduction in wall-bounded turbulent flows in recent years (Rothstein
2010). These are surfaces with apparent receding contact angle exceeding a certain
value, e.g. 150◦ (Schellenberger et al. 2016), which repel liquids by trapping gas
inside the nano- or micro-scale features of a textured hydrophobic surface. The
entrapped gas prevents direct contact between the liquid and the wall, leading to the
so-called Cassie–Baxter state, and providing a mechanism for liquid slip at the wall.
This effective slip has been shown to be the primary mechanism of skin-friction drag
reduction with SH surfaces in both the laminar and turbulent flow regimes (Rastegari
& Akhavan 2015, 2018a).

Drag reductions of up to 50 % (Daniello, Waterhouse & Rothstein 2009) and up
to 75 % (Park, Sun & Kim 2014) have been reported in laboratory-scale experiments
in turbulent channel flows and turbulent boundary layer flows, at 135 . Reτ0 . 250,
using SH longitudinal microgrooves with solid fractions of φs = 0.5 and φs = 0.05,
respectively, where Reτ0 ≡ uτ0δ/ν is the friction Reynolds number in the base
flow, uτ0 is the wall friction velocity in the base flow, δ is the boundary layer
thickness or channel half-height and ν is the kinematic viscosity. It has been
noted that the magnitude of drag reduction increases with increasing width of the
surface microtexture indentations, g, and decreasing solid fraction, φs, approaching
a maximum drag reduction of DR ∼ (1 − φs) in the limit of large g (Daniello et al.
2009; Rothstein 2010; Park, Park & Kim 2013). Scaling laws have been proposed
for the slip length and the slip velocity in terms of g and φs in both the laminar
(Ybert et al. 2007) and turbulent (Seo & Mani 2016) flow regimes. However, the
relation between these scaling laws and the magnitude of drag reduction has not been
clarified.

These drag reduction capabilities of SH surfaces, however, are lost if the SH
surface undergoes a wetting transition, from the Cassie–Baxter state to a Wenzel
state, whereby the trapped gas pockets inside the surface microtexture are depleted
and replaced with the working fluid. This wetting transition can occur because of (i)
depinning of the contact line and/or sagging of the liquid–gas interface under high
local pressures (Zheng, Yu & Zhao 2005; Checco et al. 2014) or (ii) diffusion or
entrainment of the gas layer into the working liquid under high local shear rates
(Samaha, Tafreshi & Gad-el Hak 2012; Karatay, Tsai & Lammertink 2013; Wexler,
Jacobi & Stone 2015; Ling et al. 2017) of turbulent flow.

There is also anecdotal evidence, from both direct numerical simulation (DNS)
and experiments, which suggests that, for a given geometry and size of the surface
microtexture in wall units, the drag reduction performance of SH surfaces degrades
with increasing Reynolds number of the base flow (Rastegari & Akhavan 2018a).
Here, and throughout this study, ‘wall units’ refers to normalization with respect to
the wall friction velocity of the drag reduced flow, uτ , and the kinematic viscosity,
ν, and quantities normalized in this manner are denoted by a + superscript. This
degradation in drag reduction has been recently demonstrated in DNS studies of
turbulent channel flows with SH longitudinal microgrooves at Reτ0 ≈ 222 and 442
(Rastegari & Akhavan 2018a), and can also be observed in earlier DNS studies of
turbulent channel flows with SH longitudinal microgrooves at 180 . Reτ0 . 590 (Park
et al. 2013, figure 8b), even though the authors do not comment on it. Evidence of
this degradation in drag reduction can also be found in recent experimental studies in
turbulent boundary layer flows with spray coated SH walls, where a given upwards
shift of the logarithmic layer in wall units, corresponding to 1U+ = 1.1, was found
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to result in 12 % drag reduction at Reτ0 ≈ 863, but only 11 % drag reduction at
Reτ0 ≈ 1408 (Ling et al. 2016).

While other experimental studies have reported an enhancement of drag reduction
with increasing Reynolds number in SH turbulent boundary layer flows (Zhang et al.
2015) or in SH or liquid-infused (LI) turbulent Taylor–Couette flows (Srinivasan et al.
2015; Van Buren & Smits 2017), it should be noted that these experiments were not
performed with a fixed size of the surface microtexture in wall units at different
Reynolds numbers. Instead, they used a given surface microtexture with a fixed size
in ‘physical units’ at different Reynolds numbers, which leads to an increase in the
size of the surface microtexture in wall units as the Reynolds number increases.
As will be discussed in detail in §§ 3 and 4, an increase in the size of the surface
microtexture in wall units can affect the drag reduction in a number of conflicting
and competing ways. In the absence of a wetting transition or roughness effects, an
increase in the size of the surface microtexture in wall units enhances the magnitude
of drag reduction. However, an increase in the size of the surface microtexture in
wall units also makes the surface more susceptible to a wetting transition, at which
point the surface microtexture can begin to act as surface roughness and cause a drag
increase. In addition, for random surface microtextures, where the height of the surface
micro-features is variable, the protrusion heights of the surface elements above the
liquid/gas interface will increase in wall units as the Reynolds number increases. This
can also give rise to roughness effects with increasing Reynolds number, which can
degrade the drag reduction. The interplay between these competing effects determines
the trends in drag reduction when a surface microtexture of a given size in physical
units is employed at different Reynolds numbers. Depending on which features
are at play or dominate, the magnitude of drag reduction can be enhanced with
increasing Reynolds number (Srinivasan et al. 2015; Zhang et al. 2015; Van Buren
& Smits 2017), or degrade (Bidkar et al. 2014; Ling et al. 2016; Reholon & Ghaemi
2018), or show enhancement at low Reynolds numbers followed by degradation at
higher Reynolds numbers (Aljallis et al. 2013; Bidkar et al. 2014; Gose et al. 2018).
Collectively, the available experimental data in high Reynolds number SH turbulent
boundary layer flows or SH turbulent channel flows, performed with a fixed size
of the surface microtexture in physical units, show a trend towards enhancement of
drag reduction with increasing Reynolds number up to a maximum of ∼30 % drag
reduction at Reτ0 ≈ 1500 (Aljallis et al. 2013; Zhang et al. 2015; Ling et al. 2016),
followed by degradation of drag reduction at higher Reynolds numbers, approaching
negative drag reductions at Reτ0 & 5000 (Aljallis et al. 2013; Ling et al. 2016). These
results all point to the need for an understanding of the scaling of drag reduction and
the sustainability bounds of SH and LI surfaces with surface microtexture and flow
parameters in turbulent flow.

The degradation in the drag reduction performance of microtextured surfaces with
increasing Reynolds number of the base flow, for a fixed geometry and size of the
surface microtexture in wall units, is a well-known feature of riblets (Bechert et al.
1997; Spalart & McLean 2011), where the highest drag reductions achieved in high
Reynolds number turbulent flows of practical interest, with optimal ‘blade riblets’
of spacing ∼15 wall units (Bechert et al. 1997), were found to be nearly half the
highest drag reductions, of ∼10 %, obtained with the same geometry and size of the
riblets in wall units in laboratory-scale experiments (Spalart & McLean 2011). It has
been suggested (Bechert et al. 1997; Spalart & McLean 2011; García-Mayoral &
Jiménez 2012) that a Reynolds number independent measure of drag reduction can
be constructed by parameterizing the magnitude of drag reduction in terms of the
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330 A. Rastegari and R. Akhavan

friction coefficient of the base flow, Cf0 , and the shift, (B− B0), in the intercepts, B
and B0, of log-law representations of the normalized mean velocity profiles in the
drag reduced and the base flow, respectively, where (B − B0) is Reynolds number
independent and only a function of the geometry and size of the surface microtexture
in wall units. In Rastegari & Akhavan (2018a), this formulation was extended to SH
surfaces to obtain a parameterization of the magnitude of SH drag reduction in terms
of Cf0 and the shift (B− B0).

While such a parametrization allows the drag reduction results from low Reynolds
number turbulent flows to be extrapolated to higher Reynolds number flows of
practical interest (Rastegari & Akhavan 2018a), developing optimal designs of SH
surfaces also requires an understanding of the scaling laws for (B− B0) in terms of
the geometrical parameters of the surface microtexture, as well as the sustainability
bounds of SH surfaces in turbulent flow.

In this study, scaling arguments are combined with results from DNS of SH
turbulent channel flows at Reτ0 ≈ 222 and 442, performed with a wide range of
SH longitudinal microgroove or aligned micropost surface microtexture geometrical
parameters, to demonstrate the Reynolds number dependence of the drag reduction,
and the Reynolds number independence of (B − B0), and to present the scaling
laws for (B − B0) in turbulent flow in terms of the geometrical parameters of the
SH surface in wall units. The combination of these parametrizations allow for a
priori prediction of the magnitude of drag reduction with SH surfaces in turbulent
flow at any Reynolds number. For the most stable of such SH surfaces, namely
longitudinal microgrooves, we further present the pressure stability bounds of the SH
surface in turbulent flow in terms of the Weber number, the geometrical parameters
of the SH surface in wall units and the friction Reynolds number of the flow. These
parameterizations are used to identify the narrow range of SH surface geometrical
parameters which can ensure large drag reduction as well as sustainability in high
Reynolds number turbulent flows of practical interest.

2. Numerical methods and simulation parameters
The DNS studies were performed in turbulent channel flows using standard D3Q19

(three-dimensional, 19 discrete velocity), single-relaxation-time lattice Boltzmann
methods (Succi 2001) with grid embedding (Lagrava et al. 2012), of grid ratio 4 : 1,
in the near-wall regions to better resolve the flow features near the SH walls. The
resulting grid spacings were ∆+0

f ≈ 0.5 for z+0 . 30, and ∆+0
c ≈ 2 for z+0 & 30 in

all three directions in all the simulations, where ∆f and ∆c denote the grid spacings
on the fine grid and the coarse grid, respectively, and the +0 superscript denotes
normalization with respect to the kinematic viscosity, ν, and the wall-friction velocity,
uτ0 , of a ‘base’ turbulent channel flow with smooth, no-slip walls at the same bulk
Reynolds number as the channel flow with SH walls. To preserve the order of
accuracy of the lattice Boltzmann method, and ensure smoothness and continuity of
the variables at the transition between the coarse and the fine grids, the two grids
were overlapped for one cell width of the coarse grid, as suggested by Lagrava
et al. (2012), and the interpolations between the two grids were performed using
third-order bi-cubic Hermite splines in space, and second-order Hermite polynomials
in time. The details of the numerical methods and verification studies performed to
ensure the accuracy of the numerical methods and adequacy of the domain sizes and
grid resolutions are described in the appendix of Rastegari & Akhavan (2018a).

The liquid/gas interfaces on SH walls were modelled as stationary, curved or flat
shear-free boundaries, with the shape of the meniscus determined from an analytical
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FIGURE 1. Schematic of the channels with SH walls, the coordinate system and
the computational grid: (a) SH longitudinal microgrooves; (b) SH aligned microposts;
(c) computational grid and protrusion angle.

solution of the Young–Laplace equation (Rastegari & Akhavan 2018a). Two interface
protrusion angles of θp = 0◦ and θp = −30◦ were investigated, corresponding to
liquid/gas interfaces which were either flat or at maximum advancing contact angle
(θc = θF,adv = 120◦), respectively.

The simulations were performed in channels of size 5h × 2.5h × 2h in the
streamwise (x), spanwise (y) and wall-normal (z) directions, respectively, as shown
in figure 1. A constant flow rate was maintained in the channel during the course
of all simulations, corresponding to bulk Reynolds numbers of Reb ≡ q/2ν = 3600 or
Reb = 7860, where q denotes the flow rate per unit spanwise width in the channel.
For reference, DNS studies were also performed in base turbulent channel flows with
smooth, no-slip walls at the same Reb as the SH channels. The corresponding friction
Reynolds numbers in the base turbulent channel flows were Reτ0 ≡ uτ0h/ν ≈ 222 at
Reb = 3600, and Reτ0 ≈ 442 at Reb = 7860.

A total of 53 simulations were performed with SH longitudinal microgrooves,
covering the range of microgroove widths 4 . g+0 . 128, solid fractions of
1/64 6 φs 6 1/2, protrusion angles of θp = 0◦ and θp = −30◦ and bulk Reynolds
numbers of Reb = 3600 (Reτ0 ≈ 222) and Reb = 7860 (Reτ0 ≈ 442), as shown in
table 1. In addition, as shown in table 1, four simulations were also performed with
SH aligned square microposts with g+0

≈ 28, 56, φs= 1/64 and θp= 0◦ at Reb= 3600
(Reτ0 ≈ 222) and Reb = 7860 (Reτ0 ≈ 442).

3. The scaling of drag reduction with surface microtexture and flow parameters
It has been suggested that in drag reduction with microtextured surfaces, be they

riblets, SH surfaces or liquid-infused (LI) surfaces, the magnitude of drag reduction
depends not only on the geometry and size of the surface microtexture in wall
units, but also the Reynolds number of the base flow (Bechert et al. 1997; Spalart
& McLean 2011; García-Mayoral & Jiménez 2012; Rastegari & Akhavan 2018a).
It has also been suggested (Bechert et al. 1997; Spalart & McLean 2011) that a
Reynolds number independent measure of drag reduction can be constructed by
representing the normalized mean velocity profiles in the base flow and in the flow
with microtextured walls as logarithmic profiles, 〈U〉/uτ0 = (1/κ) ln z+0

+ B0 and
〈U〉/uτ = (1/κ) ln z+ + B, throughout the cross-section of the flow, and expressing
the magnitude of drag reduction in terms of the shift, (B− B0), in the intercepts of
these logarithmic-law representations of the mean velocity profiles, as shown in the
figure 2. Here, and throughout this study, an overbar denotes Reynolds averaging in
time and any homogeneous flow directions, and brackets 〈 〉 denote averaging in the
wall-parallel directions.
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332 A. Rastegari and R. Akhavan

φs g+0 DR (θp = 0◦) (%) DR (θp =−30◦) (%)

SH longitudinal microgrooves, Reb = 3600 (Reτ0 ≈ 222)

1/2 4, 8, 16, 32, 64, 128 4.9, 10.4, 18.0, 19.2, 31.9, 42.4 –, 11.2, 18.5, 21.7, 33.9, 44.0
1/8 14, 28, 56 36.6, 48.1, 59.5 37.4, 51.7, 61.1
1/16 15, 30, 60, 120 46.0, 58.8, 69.9, 79.8 46.3, 60.3, 71.1, 80.1
1/32 62, 124 76.8, 85.4 76.7, 84.7
1/64 63, 126 81.5, 88.5 80.5, 87.5

SH longitudinal microgrooves, Reb = 7860 (Reτ0 ≈ 442)

1/8 14, 28 34.9, 46.3 36.6, 49.5
1/16 15, 30, 60, 120 44.4, 58.1, 67.7, 78.6 45.2, 59.3, 68.9, 78.5
1/32 62, 124 74.7, 83.8 75.2, 83.4
1/64 63, 126 79.8, 87.6 79.7, 86.6

SH aligned microposts, Reb = 3600 (Reτ0 ≈ 222)

1/64 28, 56 73.9, 80.7 —

SH aligned microposts, Reb = 7860 (Reτ0 ≈ 442)

1/64 28, 56 72.3, 79.2 —

TABLE 1. Summary of simulation parameters and resulting drag reductions, DR, in the
present study.

Using this formulation, the magnitude of drag reduction with microtextured surfaces
can be expressed as (Rastegari & Akhavan 2018a)

(1−DR)=

{
1+

[
1

2κ
ln(1−DR)+ (B− B0)

]√
Cf0

2

}−2

, (3.1)

where DR≡ 1− Cf /Cf0 is the magnitude of drag reduction, Cf and Cf0 are the skin-
friction coefficients in the flow with microtextured walls and in the base flow with
smooth no-slip walls, defined as Cf ≡ 2u2

τ/U
2
b and Cf0 ≡ 2u2

τ0
/U2

b0
in internal flow and

Cf ≡ 2u2
τ/U

2
∞

and Cf0 ≡ 2u2
τ0
/U2
∞

in external flow, respectively, κ is the von Kármán
constant, and (B − B0) is Reynolds number independent and only a function of the
geometry and size of the surface microtexture in wall units. The appearance of Cf0
in (3.1) leads to a degradation in the magnitude of drag reduction with increasing
Reynolds number of the base flow for a given (B− B0).

It was brought to our attention by one of the anonymous referees that (3.1) can be
recast into an explicit expression for DR, given by

DR= 1− κ2

(
2

Cf0

){
W

(
κ

√
2

Cf0
exp

(
κ

[
(B− B0)+

√
2

Cf0

]))}−2

, (3.2)

where W denotes the Lambert W function.
Figure 3 shows the predictions of (3.1) in turbulent channel flow for 222 . Reτ0 .

106 compared to results from present DNS studies in turbulent channel flows with
SH longitudinal microgrooves or SH aligned microposts at Reτ0 ≈ 222 and 442, as
summarized in table 1. For Reτ0 > 1000, the values of Cf0 in (3.1) were obtained
from the logarithmic skin-friction correlation suggested by Zanoun, Nagib & Durst
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FIGURE 2. Schematic representation of (B − B0) and U+s in turbulent flow with
microtextured walls: —— (black), – · · – (turquoise), mean velocity profiles in the
base turbulent flow and the flow with microtextured walls, respectively; – – – (black),
– · – (turquoise), logarithmic representations of the mean velocity profiles in the
base turbulent flow and the flow with microtextured walls, respectively.

(2009), which has been shown to give improved agreement with experimental data at
high Reynolds numbers compared to the classical Dean’s correlation (Dean 1978). In
agreement with the predictions of (3.1), for a given value of (B− B0), the DNS data
show small degradations of ≈1.0–2.5 % in drag reduction as the friction Reynolds
number of the base flow increases from Reτ0 ≈ 222 to 442. Also shown in figure 3
are the experimental data of Zhang et al. (2015), obtained in turbulent boundary layer
flow with SH random microposts at Reτ0 ≈ 460 and 560, the experimental data of
Ling et al. (2016), obtained in turbulent boundary layer flow with SH longitudinal
microgrooves at Reτ0 ≈ 863 or with SH random microposts at Reτ0 ≈ 863, 1408 and
4287, and the experimental data of Srinivasan et al. (2015), obtained in turbulent
Taylor–Couette flow with SH random microposts at Reτ0 ≈ 1193 and 3810. In plotting
these experimental data, the values of (B − B0) were approximated by the values
of 1U+ reported in the experiments. Good agreement can be seen between the
predictions of (3.1) and the experimental data, including the case where the SH
surface gives a negative drag reduction of −10 % in turbulent boundary layer flow at
Reτ0 ≈ 4287 (Ling et al. 2016). Evidence of the degradation of drag reduction with
increasing Reynolds number of the base flow, for a given value of (B−B0), can also
be seen in these experimental data. For example, in turbulent boundary layer flow
with SH random microposts, a (B − B0) = 1.1 is reported to give rise to 12 % drag
reduction at Reτ0 ≈ 863, but only 11 % drag reduction at Reτ0 ≈ 1408 (Ling et al.
2016). Similarly, a (B − B0) = 3.2 is found to give rise to 24.7 % drag reduction in
turbulent boundary layer flow with SH random microposts at Reτ0 ≈ 560 (Zhang et al.
2015), but only 22 % drag reduction in turbulent Taylor–Couette flow with SH random
microposts at Reτ0 ≈ 3810 (Srinivasan et al. 2015). While these degradations in drag
reduction are small at moderate Reynolds number, they become far more significant at
higher Reynolds numbers, requiring ever higher values of (B−B0) to achieve a given
level of drag reduction, as shown in figure 3. Nevertheless, with a judicious choice
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FIGURE 3. The magnitude of drag reduction, DR, as a function of (B − B0)
and the friction Reynolds number of the base flow, Reτ0 . Present DNS studies in
SH turbulent channel flow: , , , , (navy), SH longitudinal microgrooves,
Reτ0 ≈ 222, θp = 0◦, φs = 1/2, 1/8, 1/16, 1/32, 1/64; , , , , (navy),
SH longitudinal microgrooves, Reτ0 ≈ 222, θp = −30◦, φs = 1/2, 1/8, 1/16, 1/32,
1/64; , , , (blue), SH longitudinal microgrooves, Reτ0 ≈ 442, θp= 0◦, φs= 1/8,
1/16, 1/32, 1/64; , , , (blue), SH longitudinal microgrooves, Reτ0 ≈ 442, θp =

−30◦, φs = 1/8, 1/16, 1/32, 1/64; (navy), SH aligned microposts, Reτ0 ≈ 222, θp = 0◦,
φs = 1/64; (blue), SH aligned microposts, Reτ0 ≈ 442, θp = 0◦, φs = 1/64; (lavender),
DNS of turbulent channel flow with LI longitudinal microgrooves, Reτ0 ≈ 180, θp = 0o,
φs = 1/2, N = 0.1, 1, 2.5, 10, 20, 100 (Fu et al. 2017); p (red), experiments in turbulent
boundary layer flow with SH random microposts, Reτ0 ≈ 460 and 560 (Zhang et al. 2015);
f (green), experiments in turbulent Taylor–Couette flow with SH random microposts,
Reτ0 ≈ 1193 and 3810 (Srinivasan et al. 2015); u (orange), experiments in turbulent
boundary layer flow with SH longitudinal microgrooves or SH random microposts, Reτ0 ≈

863, 1408 and 4287 (Ling et al. 2016). The black lines show the predictions of (3.1) in
turbulent channel flow for: ——, Reτ0 ≈ 222 (Reb= 3600); — —, Reτ0 ≈ 442 (Reb= 7860);
– – –, Reτ0 = 103 (Reb ≈ 2 × 104); – · –, Reτ0 = 104 (Reb ≈ 2.6 × 105); – · · –, Reτ0 = 105

(Reb ≈ 3.2× 106); · · · · · ·, Reτ0 = 106 (Reb ≈ 3.8× 107).

of (B−B0), drag reductions of up to ∼50 % should still be feasible at Reτ0 ∼ 105–106

of practical interest. Finally, it should be noted that the drag reduction relation given
by (3.1) is equally valid for all microtexture surfaces, including LI surfaces. This
can be seen in figure 3 by a comparison of the predictions of (3.1) with the DNS
results of Fu et al. (2017), obtained in turbulent channel flows with LI longitudinal
microgrooves at viscosity ratios of 0.1 6 N ≡µo/µi 6 100 with φs = 1/2, θp = 0◦ and
Reτ0 ≈ 180.

Designing optimal SH surfaces for drag reduction in high Reynolds number
turbulent flows requires, in addition to (3.1), an understanding of the scaling of
(B−B0) with the geometrical parameters of the surface microtexture. Progress can be
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FIGURE 4. Contours of instantaneous streamwise velocity, U+(x, y, z), at z= 0 for: (a) SH
longitudinal microgrooves, Reτ0 ≈ 442, θp = 0◦, φs = 1/64, g+0

≈ 63; (b) SH longitudinal
microgrooves, Reτ0 ≈ 442, θp = −30◦, φs = 1/64, g+0

≈ 63; (c) SH aligned microposts,
Reτ0 ≈ 442, θp = 0◦, φs = 1/64, g+0

≈ 56.

made by noting that the shift, (B − B0), arises primarily because of the presence of
an effective streamwise slip velocity, U+s , at the wall, as shown in figure 2 (Min &
Kim 2004; Seo & Mani 2016; Rastegari & Akhavan 2018a). However, the magnitude
of (B − B0) is always smaller than U+s due to concurrent presence of spanwise slip.
As such, (B − B0) and U+s can be expected to have similar scalings with surface
microtexture geometrical parameters, but with a smaller multiplicative coefficient in
the scaling law for (B− B0) compared to U+s .

The scaling of U+s with surface microtexture parameters can be clarified by
considering the dynamics of turbulence kinetic energy (TKE) within the ‘surface
layer’. This is a layer of thickness ∼g above the microtextured walls, in which the
flow transitions from the slip/no-slip patterns at the tip of the wall microtexture,
at z = 0, to a homogeneous turbulent flow in the wall-parallel directions at z ∼ g
(Rastegari & Akhavan 2015). For surface microtextures where the flow can find an
unobstructed passageway through the surface micro-features, such as with longitudinal
microgrooves or aligned microposts, sharp spanwise gradients of the mean streamwise
velocity develop between the slip and no-slip regions of the boundary, giving rise
to strong shear layers within the surface layer above these regions, as shown in
figures 4(a–c), 5(c,f ) and 6(c,f ). These shear layers are the strongest with longitudinal
microgrooves, but are also present with aligned microposts, where entire stripes
aligned with the row of microposts can act as low-slip regions, as shown in
figures 4(c) and 6(c,f ). The presence of interface curvature somewhat mitigates
the strength of these shear layers, but their mechanism is still at work, as can be
seen by a comparison of figures 4(a) and 4(b) or figures 5(c) and 5( f ).

These shear layers are the source of additional production of TKE within the
surface layer through the −uv ∂Ū/∂y term, as shown in figures 5(a,b) and 6(a). This
additional production of TKE, which is above and beyond the normal production
of TKE in wall-bounded flows through the −uw ∂Ū/∂z term, dominates the overall
production of TKE within the surface layer, as shown in figures 5(a,b,d,g) and 6(a,d,g).
The additional production of TKE through these shear layers is dissipated by the
turbulent eddies above the no-slip regions, as shown in figures 5(e,h) and 6(e,h), such
that

{−uv ∂Ū/∂y}shear layers ∼ {νsijsij}no-slip. (3.3)
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FIGURE 5. Production and dissipation of turbulence kinetic energy in turbulence channel
flow with SH longitudinal microgrooves at (a,c,d,e) Reτ0 ≈ 442, θp = 0◦, φs = 1/64,
g+0
≈ 63 and (b,f,g,h) Reτ0 ≈ 442, θp = −30◦, φs = 1/64, g+0

≈ 63: (a,b) ——,
— —, · · · · · ·, – · · – (turquoise), total production 〈P〉+ = −〈uiujSij〉

+, production arising
from −〈uw∂Ū/∂z〉+, production arising from −〈uv∂Ū/∂y〉+, dissipation 〈ε〉+ = 〈2νsijsij〉

+,
in turbulent channel flow with SH walls; – – –, – · – (black), production arising from
−〈uw∂Ū/∂z〉+ and dissipation, 〈ε〉+, in base turbulent channel flow with smooth, no-slip
walls; (c,d,e; f,g,h) spanwise variation of the mean streamwise velocity, Ū+, total
production, P+, and dissipation, ε+, at different z+ in turbulent channel flow with SH
longitudinal microgrooves at θp = 0◦ and θp = −30◦, respectively. The blue bars on the
lower horizontal axes of (c–h) denote the locations of the no-slip surfaces. L = g + w
denotes the pitch of the microgrooves.

An order of magnitude estimate of the terms in (3.3) leads to the scaling law
for U+s . Specifically, within the surface layer, the spanwise gradients of the mean
streamwise velocity can be estimated as ∂Ū/∂y∼ Uss/g, where Uss = Us/(1− φs) is
the average slip velocity on the slip portions of the microtextured walls. Furthermore,
the fluctuating strain rate above the no-slip regions can be estimated as {sij}no−slip ∼
√uτnuτ/(ν/

√uτnuτ ), where √uτnuτ is the characteristic velocity of the turbulent eddies
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FIGURE 6. Production and dissipation of turbulence kinetic energy in turbulent channel
flow with SH aligned microposts at Reτ0 ≈ 442, θp = 0◦, φs = 1/64, g+0

≈ 56: (a) total
production 〈P〉+ =−〈uiujSij〉

+, production arising from −〈uw∂Ū/∂z〉+, production arising
from −〈uv∂Ū/∂y〉+, dissipation 〈ε〉+ = 〈2νsijsij〉

+, in turbulent channel flow with SH
walls, compared to base turbulent channel flow with smooth, no-slip walls; (b) schematic
representation of sections A-A and B-B where turbulence statistics are shown in (c–e) and
( f–h); (c–e; f–h) spanwise variation of the mean streamwise velocity, Ū+, total production,
P+, dissipation, ε+, at different z+ of sections A-A and B-B, respectively. Line types in
(a) as in figure 5. The blue bars on the lower horizontal axes of (c–h) denote the locations
of the no-slip surfaces. L= g+w denotes the pitch of the microposts.

above the no-slip regions within the surface layer, estimated as the geometric average
of the wall friction velocities uτn = uτ/

√
φs and uτ above the no-slip regions at z= 0

and z ∼ g, respectively, and ν/
√uτnuτ is the associated inner length scale. Finally,

the Reynolds shear stress −uv can be estimated using a mixing-length model as
−uv ∼ νt∂Ū/∂y∼ u′` ∂Ū/∂y, where u′ ∼√uτnuτ is the characteristic velocity of the
largest eddies within the surface layer, and ` ∼

√
gν/uτ is their characteristic size,

approximated as the geometric average of g and ν/uτ , representing the size of the
largest eddies at z∼ g and z∼ 0, respectively. Substitution of these expressions into
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(3.3) gives the scaling law for U+s as

φ3/8
s

(1− φs)
U+s ∼ {g

+
}

3/4. (3.4)

Given that the dominant contribution to (B − B0) arises from U+s , a similar scaling
can also be assumed for (B− B0):

φ3/8
s

(1− φs)
(B− B0)∼ {g+}3/4, (3.5)

with the understanding that the multiplicative coefficient in the expression for (B−B0)
would be smaller than that for U+s .

Figure 7(a–d) shows U+s and (B − B0) from the DNS studies summarized in
table 1, compared to (3.4) and (3.5). At both Reτ0 ≈ 222 and 442, and for both
θp = 0◦ and θp = −30◦, U+s and (B − B0) scale as {g+}3/4, while normalization with
φ3/8

s /(1− φs) collapses the data from different φs. Both U+s and (B−B0) are Reynolds
number independent and only functions of the geometrical parameters of the surface
microtexture in wall units, in agreement with the predictions of (3.4) and (3.5).

A best fit to the DNS data gives the multiplicative coefficients in the expressions
for U+s and (B− B0) as

U+s = 0.52{(1− φs)φ
−3/8
s }{g+}3/4, (3.6)

(B− B0) = 0.41{(1− φs)φ
−3/8
s }{g+}3/4, (3.7)

with p-values of 0.98, obtained from the Kolmogorov–Smirnov goodness of fit test.
Figure 7(e,f ) shows the comparison of (3.6) and (3.7) with available DNS data

from other investigators, obtained in turbulent channel flows using SH longitudinal
microgrooves (Park et al. 2013), SH aligned microposts (Seo & Mani 2016) or
LI longitudinal microgrooves at viscosity ratios of N ≡ µo/µi = 0.1, 1, 10, 20, 100
(Fu et al. 2017). Good agreement can be seen between the predictions of (3.6)
and (3.7) and available DNS data from other investigators for both SH longitudinal
microgrooves and SH aligned microposts as long as g+ < 100. For g+ > 100, both
U+s and (B − B0) saturate and branch off from the predictions of (3.6) and (3.7).
This saturation has been attributed to the width of the microgrooves, g+, approaching
the mean streak spacing of λ+ ∼ 100 in turbulent wall flows (Park et al. 2013).
Presumably, for g+& 100, the dynamics of turbulence above the slip regions becomes
independent of the dynamics of turbulence above the no-slip regions, and both U+s
and (B− B0) approach their limiting values.

Good agreement can also be seen in figure 7(e,f ) between the predictions of
(3.6) and (3.7) and DNS results in turbulent channel flows with LI longitudinal
microgrooves (Fu et al. 2017) when the viscosity ratio, N, is greater than ∼10.
These results suggest that for high enough viscosity ratios, of N & 10, the drag
reduction of LI surfaces begins to approach that of SH surfaces. These findings are
consistent with analytical solutions in laminar shear flow with LI surfaces obtained
by Schönecker, Baier & Hardt (2014), and reproduced in figure 8, which show that
for LI longitudinal microgrooves of depth d = g, φs = 0.5 and viscosity ratio of
N = 10, the effective slip length is ≈86 % of the effective slip length predicted by
Philip’s solution (Philip 1972) for the same surface microtexture with ‘idealized’,
shear-free, SH interfaces. The LI results shown in figure 7(e,f ) are also consistent
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FIGURE 7. The scaling of U+s and (B − B0) with surface microtexture parameters in
turbulent flow with SH or LI walls: (a–d) present DNS data in turbulent channel flow with
SH longitudinal microgrooves or SH aligned microposts at Reτ0 ≈ 222 and 442, 1/64 6
φs 6 1/2, θp = 0◦ and −30◦; (e,f ) DNS data from other investigators in turbulent channel
flow with SH longitudinal microgrooves, LI longitudinal microgrooves or SH aligned
microposts at 180.Reτ0 . 590, 1/366φs 6 1/2. Symbols as in figure 3. Other symbols in
(e,f ): , , (brown), Reτ0 ≈180, φs=1/8, 1/4, 1/2, , , , (green), Reτ0 ≈395,
φs= 1/16, 1/8, 1/4, 1/2, , , , (red), Reτ0 ≈ 590, φs= 1/16, 1/8, 1/4, 1/2, SH
longitudinal microgrooves, θp= 0◦ (Park et al. 2013); , (brown), Reτ ≈ 195, φs= 1/64,
1/9, , , (green), Reτ ≈ 400, φs = 1/36, 1/16, 1/9, SH aligned microposts, θp = 0◦
(Seo & Mani 2016).
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FIGURE 8. Ratio of the effective slip length, Ls,N , obtained with a finite viscosity ratio,
N, based on the analytical solution of Schönecker et al. (2014), to the effective slip
length, Ls,∞, obtained with the assumption of shear-free liquid/air interfaces (Philip 1972),
in laminar shear flow over LI longitudinal microgrooves for groove depth d = g and
1/646φs 6 1/2: · · · · · ·, φs= 1/2; — · · —, φs= 1/8; — · —, φs= 1/16; – – –, φs= 1/32;
——, φs = 1/64.

with experimental measurements in turbulent Taylor–Couette flow with LI longitudinal
microgrooves of depth d= g, φs = 0.5 and 0.7 6 N 6 3.0 (Van Buren & Smits 2017),
which show the drag reduction of the LI surface at N ≈ 2.0–3.0 to be ≈50–60 % of
the drag reduction of a SH surface with the same surface microtexture.

In the derivation of (3.6) and (3.7), the multiplicative coefficients, of 0.52 and 0.41,
were obtained based on DNS data which assumed ‘idealized’, shear-free boundaries
at the air/water interfaces and, as such, did not consider the flow of air in the SH
microgrooves. This raises a concern that the magnitudes of U+s and (B− B0) would
be over-predicted by (3.6) and (3.7). An estimate of the degree of this over-prediction
can be obtained by comparing analytical solutions for the effective slip length, Ls,N ,
obtained with a finite viscosity ratio, N, in laminar shear flow with LI longitudinal
microgrooves (Schönecker et al. 2014) to the effective slip length, Ls,∞, which
would be predicted in the same flow based on the assumption of shear-free liquid/air
interfaces (Philip 1972). Figure 8 shows Ls,N/Ls,∞ as a function of N for longitudinal
microgrooves of depth d = g and the range of solid fractions, 1/64 6 φs 6 1/2,
investigated in the present study. It can be seen that for N ≈ 56, corresponding
to air/water interfaces, the ratio Ls,N/Ls,∞ ranges from 0.92 6 Ls,N/Ls,∞ 6 0.97 for
1/64 6 φs 6 1/2. These results suggest that for the range of 1/64 6 φs 6 1/2,
considered in the present study, the errors in (3.6) and (3.7) due to the assumption of
shear-free interfaces are no more than 10 %. These errors can become larger for solid
fractions of φs . 1/64 or for shallow grooves of d . g/2 (Schönecker et al. 2014).
However, such configurations of microgrooves are impractical to build, either because
the microgroove blades become too thin to be structurally sustainable, or because
the depth of the grooves becomes so shallow that the air/water interfaces can hit the
bottom of the grooves during their deformation, thus expediting their collapse.

Another concern is the effect of dynamic deformation of the interface on (3.6) and
(3.7), as the multiplicative coefficients in (3.6) and (3.7) were obtained from DNS
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FIGURE 9. Effect of dynamic deformation of the interface on (a) U+s and (b) (B− B0),
based on DNS results with deformable interfaces, but pinned contact lines, in turbulent
channel flows with LI longitudinal microgrooves at Reτ ≈ 180, φs= 1/2, N = 2.5 (Arenas-
Navarro 2017): (lavender), Weτ = 0; (dark violet), Weτ = 0.024.

studies which were performed with ‘stationary’, flat or curved, shear-free interfaces.
The effect of dynamic deformation of the interface can be assessed by examining
available DNS results obtained with deformable interfaces, but pinned contact lines,
in turbulent channel flows with LI longitudinal microgrooves at a viscosity ratio of
N = 2.5 for Weτ = 0 and Weτ = 0.024 (Arenas-Navarro 2017), where Weτ ≡ ρouτνo/σ

is the Weber number, ρo and νo are the density and kinematic viscosity of the outer
fluid, respectively, and σ is the surface tension.

Figure 9 shows {φ3/8
s /(1−φs)}U+s and {φ3/8

s /(1−φs)} (B−B0) computed from these
DNS databases. Both {φ3/8

s /(1 − φs)}U+s and {φ3/8
s /(1 − φs)} (B − B0) can be seen

to scale as ∼g+{3/4}, in agreement with (3.6) and (3.7). However, the multiplicative
coefficients in the best fit lines to the LI data are smaller than those in (3.6) and
(3.7) by a factor of 0.6 for U+s and a factor of 0.4 for (B − B0). These factors are
comparable to the ratio Ls,N/Ls,∞= 0.6 observed for N= 2.5 and φs= 1/2 in figure 8.

The dynamic deformation of the interface is seen to have little effect on the slip
velocity, with the values for U+s at the two Weber numbers being nearly identical, as
seen in figure 8(a). However, the surface ripples formed by the dynamic deformation
of the interface can act as ‘surface roughness’ and reduce the magnitude of (B− B0)

by 2.5 − 25.5 % at Weτ = 0.024 compared to Weτ = 0, as seen in figure 8(b). The
results shown in figure 9 were obtained with LI longitudinal microgrooves at N = 2.5
and pinned contact lines. As will be shown in § 4 (figure 12), for SH longitudinal
microgrooves, a Weτ = 0.024 is very large and will lead to interface instability for
g+ > 6.5 at Reτ ≈ 200. Stable SH longitudinal microgrooves require much smaller
values of Weτ , for which the effect of dynamic deformation of the interface on (B−
B0) is much smaller than the results shown in figure 8(b). Nevertheless, these effects
can be accounted for by constructing a 1Bk associated with the ‘roughness’ of the
liquid/gas interface, and subtracting this 1Bk from the (B− B0) given by (3.7) to get
the drag reduction. More recent DNS studies (Rastegari & Akhavan 2018b) suggest
that the motion of the contact line may be a more important source of roughness
effects. A similar procedure can also be used to account for the roughness effects
arising from the motion of the contact line on SH or LI longitudinal microgrooves or
aligned microposts, assuming the interface has not fully collapsed.
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Finally, it should be noted that, given that the derivations of (3.6) and (3.7) require
an unobstructed passageway through the surface microtexture, these scalings are not
expected to apply to staggered microposts or transverse microgrooves.

4. Sustainability bounds of superhydrophobic surfaces
Equations (3.1) and (3.7) provide a tool for a priori prediction of the magnitude

of drag reduction with any pattern of SH longitudinal microgrooves or aligned
microposts in turbulent flow at any Reynolds number. However, design of optimal
SH surfaces also requires consideration of the sustainability bounds of such surfaces,
as all SH surfaces are susceptible to a wetting transition from the Cassie–Baxter
state to a Wenzel state. This wetting transition can occur because of (i) depinning of
the contact line and/or sagging of the liquid–gas interface under high local pressures
(Zheng et al. 2005; Checco et al. 2014) or (ii) diffusion or entrainment of the gas
layer into the working liquid under high local shear rates (Samaha et al. 2012;
Karatay et al. 2013; Wexler et al. 2015; Ling et al. 2017) of turbulent flow. Of
the two mechanisms, the wetting transition due to high local pressures is generally
the first mode of failure, and of the different SH surface microtextures, longitudinal
microgrooves are the most stable under this mode of failure, as impingement of
the flow on the back of microposts creates large stagnation pressures which can
expedite the wetting transition (Seo, García-Mayoral & Mani 2015). Consequently, in
this section we will focus only on the pressure stability bounds of SH longitudinal
microgrooves.

For SH longitudinal microgrooves with stable interfaces, the contact line is pinned
and the shape of the interface is governed by the Young–Laplace equation

1P=−
σ

R
=−

2σ cos(θc)

g
, (4.1)

where 1P is the pressure difference across the interface, σ is the surface tension,
R is the radius of curvature of the interface, θc is the contact angle and g is the
microgroove width. With increasing 1P, the contact angle increases until it reaches
the maximum advancing contact angle, θF,adv, at which point the contact line depins
(Checco et al. 2014). Assuming a maximum advancing contact angle of θF,adv = 120◦
(Nishino et al. 1999), the criterion for stability of SH interfaces becomes 1Pg/σ 6 1,
or

(1P+)(g+)(Weτ )6 1, (4.2)

where 1P+ ≡ 1P/(ρu2
τ ) is the non-dimensional pressure, and Weτ ≡ ρuτν/σ is the

Weber number.
Assessing the stability bounds of SH surfaces in turbulent flow from (4.2)

requires a knowledge of 1P+. In turbulent flow, 1P+ arises from the instantaneous
pressure fluctuations on the SH walls. The range of values assumed by the
instantaneous pressure fluctuations on the SH walls can be assessed by examining the
probability density function (p.d.f.) of the wall pressure fluctuations, fp(p+w/ {〈p2〉+w }

1/2).
Figure 10(a) shows the p.d.f. of wall pressure fluctuations in turbulent channel flow
with SH longitudinal microgrooves at Reτ0 ≈ 442, φs = 1/64, g+0

≈ 63 and θp = 0◦
and θp = −30◦, compared to turbulent channel flow with smooth, no-slip walls.
The p.d.f. of instantaneous wall pressure fluctuations in turbulent channel flow with
SH walls is found to be similar to that for smooth, no-slip walls. Both p.d.f.s
follow a non-Gaussian distribution with exponential tails. Similar non-Gaussian
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FIGURE 10. Probability density function and cumulative distribution function of the
wall pressure fluctuations in turbulent channel flow with SH longitudinal microgrooves,
compared to turbulent channel flow with smooth, no-slip walls: (a) probability density
function, fp(p+w/ {〈p2〉+w }

1/2); (b) cumulative distribution function, Fp(p+w/ {〈p2〉+w }
1/2); – – –,

– · –, SH longitudinal microgrooves, Reτ0 ≈ 442, φs = 1/64, g+0
≈ 63, θp = 0◦ and −30◦,

respectively; · · · · · ·, base turbulent channel flow with smooth, no-slip walls, Reτ0 ≈ 442;
—— (orange), Gaussian distribution.

distributions have also been reported experimentally in high Reynolds number
turbulent boundary layers (Tsuji et al. 2007). The probability that the instantaneous
pressure fluctuations fall within a given range of values, a 6 p+w/ {〈p2〉+w }

1/2 < b, can
be estimated from Fp(b)−Fp(a)=

∫ b
a fp(η) dη, where Fp is the cumulative distribution

function. Figure 10(b) shows the cumulative distribution functions, Fp(p+w/ {〈p2〉+w }
1/2),

for the cases shown in figure 10(a). Examination of these cumulative distribution
functions shows that the probability of the instantaneous wall pressure fluctuations
falling within ±4 {〈p2〉+w }

1/2 is 99.75 %. These results are consistent with experimental
measurements in turbulent boundary layer flows (Schewe 1983), which show a
probability of 99.7 % for the wall pressure fluctuations never exceeding 4 { p2+

w }
1/2.

Based on these results, an upper estimate for the magnitude of 1P+ can be obtained
as 1P+≈ 4 {〈p2〉

+

w,SH}
1/2, with 99.75 % confidence that the instantaneous wall pressure

fluctuations will not exceed this value.
Figure 11(a) shows 〈p2〉

+

w,SH as a function of Reτ from present DNS studies of
turbulent channel flow with SH longitudinal microgrooves at fixed protrusion angle of
θp=−30◦ (θc= 120◦). For reference, the fit 〈p2〉

+

w,smooth= 2.31 ln(Reτ )− 9.5, suggested
by Sillero et al. (2013), for turbulent channel flow with smooth no-slip walls is also
shown. Similar to turbulent flow with smooth no-slip walls, the mean-squared wall
pressure fluctuations in turbulent flow with SH walls is strongly Reynolds number
dependent. However, due to the presence of spanwise slip, the magnitude of 〈p̄2〉

+

w,SH

on SH walls is higher than that on smooth no-slip walls at comparable Reτ . Analysis
of DNS data suggests that the effect of this spanwise slip can be captured in a
function Γ (g+), such that

〈p2〉
+

w,SH ≈ Γ (g
+)+ 〈p2〉

+

w,smooth ≈ Γ (g
+)+ 2.31 ln(Reτ )− 9.5. (4.3)
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FIGURE 11. Mean-squared turbulent wall pressure fluctuations in turbulent channel flow
with SH longitudinal microgrooves: (a) 〈p̄2〉

+

w,SH as a function of Reτ ; (b) 〈p̄2〉
+

w,SH −Γ (g+)
as a function of Reτ , where Γ (g+)=2.32 ln({g+ }3/4)−4.5. Symbols as in figure 3. · · · · · ·,
the fit 〈p̄2〉

+

w,smooth = 2.31 ln(Reτ )− 9.5, suggested by Sillero, Jiménez & Moser (2013) for
turbulent channel flows with smooth, no-slip walls.

A best fit to the DNS data suggests the correlation

Γ (g+)≈

{
2.32 ln({ g+ }3/4)− 4.5, g+ & 5
0, g+ . 5.

(4.4)

For g+. 5, the microgrooves become too narrow to generate any significant spanwise
slip (Rastegari & Akhavan 2018a) and Γ (g+)≈ 0. The correlations (4.3)–(4.4) fit the
DNS data with a p-value of 0.97, based on the Kolmogorov–Smirnov goodness of fit
test. Figure 11(b) shows the comparison of these correlations to the DNS data.

Figure 12 shows the pressure stability bounds of SH longitudinal microgrooves
obtained from (4.2), with 1P+ approximated as 1P+ ≈ 4 {〈p2〉

+

w,SH}
1/2 and 〈p2〉

+

w,SH
computed from (4.3) to (4.4). Due to the strong Reynolds number dependence
of 〈p2〉

+

w,SH , the pressure stability bounds of SH surfaces become significantly
curtailed with increasing Reynolds number of the flow. Specifically, for the range
of 104 . Reτ0 . 105 and Weτ0 ≈ 5 × 10−3, typical of practical applications, figure 3
shows that achieving ∼50 % drag reduction requires a (B−B0)≈ 12–14. At the same
time, figure 12 shows that the microgroove widths should be kept to g+ . 17–20 to
maintain the stability of the interface. The only way such large values of (B − B0)
can be achieved with such small values of g+ is by using ‘blade’ or ‘scalloped’
longitudinal microgrooves with φs . 0.02–0.05, per (3.7), where the nomenclature for
‘blade’ or ‘scalloped’ longitudinal microgrooves is borrowed from the riblet literature
(Bechert et al. 1997).

The combination of (3.1), (3.7), (4.2) and (4.3)–(4.4) provides a set of design
tools for a priori prediction of the magnitude of drag reduction and the sustainability
bounds of SH surfaces in high Reynolds number turbulent flows. Given the Reynolds
number, Reτ0 , and Weber number, Weτ0 , of the base flow and a desired level of
drag reduction, (3.1) provides an estimate of the required (B − B0), while (4.2) and
(4.3)–(4.4) provide an estimate of the maximum groove width g+ for stability. These
(B−B0) and g+ values can then be used in (3.7) to determine the maximum allowable
solid fraction, φs.
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FIGURE 12. The maximum permissible We+ and g+ at a given Reτ to maintain the
stability of SH longitudinal microgrooves in turbulent channel flow. Lines show the
predictions of (4.2) for: ——, Reτ ≈ 200; — —, Reτ ≈ 400; – – –, Reτ ≈ 103; — · —,
Reτ ≈ 104; – · · –, Reτ ≈ 105; · · · · · ·, Reτ ≈ 106.

5. Summary and conclusions
Using scaling arguments and analysis of results from DNS, we present scaling laws

which allow for a priori prediction of the magnitude of skin-friction drag reduction
with SH or LI surfaces and the pressure stability bounds of SH surfaces in turbulent
flow. It is shown that the magnitude of drag reduction can be parameterized in terms
of the friction coefficient of the base flow and the shift, (B− B0), in the intercept of
logarithmic-law representations of the mean velocity profiles in the flow with SH or LI
walls compared to the base flow, where (B−B0) is Reynolds number independent. The
parameterization of (B− B0) in terms of the geometrical parameters of the SH or LI
surface, and the pressure stability bounds of SH longitudinal microgrooves in turbulent
flow are presented. It is shown that, for a given geometry and size of the surface
microtexture in wall units, both the magnitude of drag reduction and the sustainability
bounds of SH surfaces degrade with increasing Reynolds number of the base flow.
Using these scalings, the narrow range of surface microtexture geometrical parameters
which can yield large drag reduction while maintaining the stability of SH interfaces
in high Reynolds number turbulent flows have been identified.
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