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The gyrokinetic stability of electron–positron plasmas contaminated by an ion
(proton) admixture is studied in a slab geometry. The appropriate dispersion
relation is derived and solved. Stable K-modes, the universal instability, the
ion-temperature-gradient-driven instability, the electron-temperature-gradient-driven
instability and the shear Alfvén wave are considered. It is found that the contaminated
plasma remains stable if the contamination degree is below some threshold and that
the shear Alfvén wave can be present in a contaminated plasma in cases where it is
absent without ion contamination.
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1. Introduction
The prospects for creating electron–positron pair plasmas magnetically confined in

dipole or stellarator geometries have been discussed since the early 2000s (Pedersen
et al. 2003, 2012). In the near future, the first experiment aiming at this goal
will be constructed (Saitoh et al. 2015). It is planned to confine electron–positron
plasmas in a cylindrical an approximately 20 litre vacuum vessel with a levitated
coil. The electrons are to be injected with an electron gun and the positrons
will be supplied from the research neutron source at the Technical University of
Munich. One expects the following plasma parameters: plasma density in the range
1010 m−3 < n< 1012 m−3, temperature in the range 1 eV< T < 10 eV, Debye length
λD =

√
ε0T/(2ne2) < 10−2 m and gyroradius ρ� λD. Recently, efficient injection and

trapping of a cold positron beam in a dipole magnetic field configuration has been
demonstrated by Saitoh et al. (2015). This result is a key step towards the ultimate
aim of creating and studying of the first man-made magnetically confined pair plasma
in the laboratory.

It has been shown by Helander (2014) that pair plasmas possess unique gyrokinetic
stability properties thanks to the mass symmetry between the particle species. For
example, drift instabilities are completely absent in straight unsheared geometry,
e.g. in a slab. They can be destabilised only in the presence of magnetic curvature
in more complicated confining fields. Helander & Connor (2016) found that this
result persists also in the electromagnetic regime. However, what happens if the
perfect mass symmetry between the positively charged particles (positrons) and the
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K-modes (ion type) Stable Electrostatic
K-modes (electron type) Stable Electrostatic
Universal instability Density gradient Electrostatic
ITG instability Ion temperature gradient Electrostatic
ETG instability Electron temperature gradient Electrostatic
Shear Alfvén waves Stable Electromagnetic

TABLE 1. Gyrokinetic modes in slab geometry. The mode name appears in the first
column. The second column indicates whether the mode is stable or not. For unstable
modes, the destabilising gradient is written. The third column indicates if the mode
requires an electromagnetic component to exist or if the electrostatic perturbation is
sufficient. In pure pair plasmas, only K-modes of the electron type exist. Other modes
require some degree of proton contamination.

negatively charged ones (electrons) is broken? This can happen if some fraction of
ions (e.g. protons) is introduced into the pair plasma, which will probably be the case
in experiments since the pumping and vacuum systems are never completely perfect.
Then one could expect that the drift instabilities will reappear.

In this paper, we address the effect of proton contamination on the gyrokinetic
stability of pair plasmas. We find that drift instabilities can indeed appear in
contaminated pair plasmas if the proton fraction exceeds some threshold. Also,
we find that the shear Alfvén wave is present in a contaminated plasma even if the
ion contamination is small. Its frequency, however, increases rapidly when the ion
fraction becomes negligible.

The structure of the paper is as follows. In § 2, the general electromagnetic
dispersion relation is derived. It describes slab gyrokinetic stability in plasmas with
an arbitrary number of species, although we consider only three species in this work.
Solutions of this dispersion relation can be classified with respect to the driving
gradient, stability and nature of the perturbations (electrostatic or electromagnetic). A
brief summary of the modes existing in a shearless slab is given in table 1. In § 3,
the stable part of the gyrokinetic spectrum (K-modes) is addressed. In §§ 4, 5 and 6,
drift instabilities in three-component plasmas are considered. In § 7, the shear Alfvén
wave in electron–positron–ion plasmas is described. Conclusions are summarised in
§ 8.

2. Dispersion relation
Following Helander (2014) and Helander & Connor (2016), we use gyrokinetic

theory to analyse the linear stability of electron–positron–ion plasmas. It is convenient
to write the gyrokinetic distribution function in the form:

fa = fa0

(
1− eaφ

Ta

)
+ ga = fa0 + fa1, fa1 =−eaφ

Ta
fa0 + ga. (2.1)

Here, fa0 is a Maxwellian, a is the species index with a= e corresponding to electrons,
a= p to positrons and a= i to the ions, ea is the electric charge, fa1 is the perturbed
part of the distribution function and ga is the non-adiabatic part of fa1. The linearised
gyrokinetic equation in this notation is

iv‖∇‖ga + (ω−ωda)ga = ea

Ta
J0

(
k⊥v⊥
ωca

)
(ω−ωT

∗a) (φ − v‖A‖) fa0 (2.2)
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with J0 the Bessel function, ω the complex frequency of the mode, ωca the cyclotron
frequency, k⊥ the perpendicular wavenumber, v‖ and v⊥ the parallel and perpendicular
velocities, φ the perturbed electrostatic potential and A‖ the perturbed parallel
magnetic potential in the Coulomb gauge. We consider an unsheared slab geometry
with the coordinates (x, y, z), a uniform magnetic field B = Bez pointing in the
z-direction and plasma profiles which are non-uniform in the x-direction. In slab
geometry, the drift frequency ωda = 0. Other notations used are

ωT
∗a =ω∗a

[
1+ ηa

(
v2

v2
tha
− 3

2

)]
, v =

√
v2
‖ + v2

⊥, k⊥ =
√

k2
x + k2

y (2.3a−c)

ω∗a = kyTa

eaB
d ln na

dx
, ηa = d ln Ta

d ln na
, vtha =

√
2Ta

ma
. (2.4a−c)

Here, ma is the particle mass, na is the ambient particle density and the sign
convention is such that ω∗i 6 0, ω∗p 6 0 and ω∗e > 0. For simplicity, we will assume
kx = 0 and k⊥ = ky throughout the paper. Taking the Fourier transform along the
parallel coordinate, we obtain:

(ω− k‖v‖)ga = ea

Ta
J0

(
k⊥v⊥
ωca

)
(ω−ωT

∗a)(φ − v‖A‖) fa0. (2.5)

This equation is trivially solved:

ga = ω−ωT
∗a

ω− k‖v‖

eafa0

Ta
J0(φ − v‖A‖). (2.6)

The gyrokinetic quasineutrality condition and the parallel Ampere’s law are(∑
a

nae2
a

Ta
+ ε0 k2

⊥

)
φ =

∑
a

ea

∫
gaJ0 d3v, A‖ = µ0

k2
⊥

∑
a

ea

∫
v‖gaJ0 d3v. (2.7a,b)

Here, ε0 is the electric permittivity and µ0 is the magnetic permeability of free space.
For the electromagnetic dispersion relation, it is convenient to define:

Wna =− 1
nav

n
tha

∫
ω−ωT

∗a
ω− k‖v‖

J2
0 fa0 v

n
‖ d3v. (2.8)

Taking velocity-space integrals, one finds:

Wna = ζa

{(
1− ω∗a

ω

)
ZnaΓ0a + ω∗aηa

ω

[
3
2

ZnaΓ0a − ZnaΓ∗a − Zn+2,aΓ0a

]}
. (2.9)

Here, the following notation is employed:

1
λ2

Da
= e2

ana

ε0Ta
,

1
λ2

D
=
∑

a

1
λ2

Da
, ba = k2

⊥ρ
2
a , ρa =

√
maTa

|ea|B (2.10a−d)

Γ∗a = Γ0a − ba[Γ0a − Γ1a], Γ0a = I0(ba)e−ba, Γ1a = I1(ba)e−ba (2.11)
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Zna = 1√
π

∫ ∞
−∞

xne−x2dx
x− ζa

, ζa = ω

k‖vtha
(2.12)

with I0 and I1 denoting the modified Bessel functions of the first kind. Using this
notation, we can cast the field equations into the form:

(1+ k2
⊥λ

2
D)φ +

∑
a

λ2
D

λ2
Da
(W0a φ −W1a A‖vtha)= 0 (2.13)

A‖ + 1
c2

∑
a

vtha

k2
⊥λ

2
Da
(W1a φ −W2a A‖vtha)= 0. (2.14)

Computing the determinant of this system of equations, we find the electromagnetic
dispersion relation describing an electron–positron–ion plasma in a slab geometry:(

1+ k2
⊥λ

2
D +

∑
a

λ2
D

λ2
Da

W0a

)(
1− 2

∑
a

βa

k2
⊥ρ2

a

W2a

)

+ 2
∑

a

λ2
D

λ2
Da

W1avtha

∑
a

βa

k2
⊥ρ2

a

W1a

vtha
= 0. (2.15)

Here, βa =µ0naTa/B2. The electrostatic limit corresponds, as usual, to βa = 0.
In the following, we will use this dispersion relation in order to describe instabilities

which can appear in three-component plasmas. This will give us insight into the
general properties of the gyrokinetic stability of such plasmas.

3. Gyrokinetic stable modes
We first consider the case of a pure electrostatic electron–positron plasma. Assuming

quasineutrality ω∗p=−ω∗e, equal temperatures Tp=Te and equal temperature gradients
ηp = ηe, we can reduce the dispersion relation to

1+ k2
⊥λ

2
D + ζZ0 = 0 (3.1)

with the electron and positron finite Larmor radius (FLR) effects neglected for
simplicity, implying that Γ0e = Γ0p = 1. Here, we use the notation Z0 = Z0e = Z0p
and ζ = ζe = ζp. Equations of this type have been considered in detail by Fried &
Gould (1961) and Yegorenkov & Stepanov (1987, 1988) for conventional (hydrogen)
plasmas. In a hydrogen plasma, equation (3.2), similar to (3.1), describes the plasma
stability in the absence of the density and temperature gradients for Ti = Te:

1+ k2
⊥λ

2
D + 1

2 [ζiZ0(ζi)Γ0i + ζeZ0(ζe)Γ0e]= 0. (3.2)

This equation has an infinite number of solutions, called K-modes (Yegorenkov &
Stepanov 1987, 1988). These modes can be of the ion type with ζi > 1 and ζe� 1, or
of the electron type with ζe > 1. In figure 1, the spectrum resulting from (3.2) for the
conventional plasma is plotted including K-modes of the ion type. This spectrum was
computed numerically using the Nyquist technique (Carpentier & Santos 1982; Davies
1986). The staircase-like visual appearance of figures 1 and 2 is an artefact caused by
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(a) (b)

FIGURE 1. (a) Gyrokinetic frequency spectrum for conventional plasmas including sound
wave and the electrostatic limit of the Alfvén wave. (b) Low-frequency part of the
spectrum (K-modes of the ion type).

(a) (b)

FIGURE 2. (a) The imaginary part of the spectrum in a homogeneous plasma. (b) The
same in the presence of an ion temperature gradient κTiρi= 0.1 with κTi=−d ln Ti/dx. In
this figure, i-modes denote modes rotating in the ion diamagnetic direction (corresponding
to the negative frequencies, recall the sign convention ω∗i < 0 and ω∗e > 0) and e-modes
correspond to modes rotating in the electron diamagnetic direction (positive frequencies).

the density of the roots of the dispersion relation increasing towards the origin of the
coordinates. This complicates the numerical solution in this area.

In figure 2, one sees that, as Fried & Gould (1961) suggested, most of the solutions
of (3.2) are strongly damped, satisfying |γ | ∼ |ω|. The least damped solutions can be
destabilised by plasma profile gradients leading either to the ion-temperature-gradient-
driven instability (ITG), the electron-temperature-gradient-driven instability (ETG) or
the universal instability, driven by the density gradient. This is shown in figure 2,
where the effect of the ion temperature gradient on the gyrokinetic spectrum in a
conventional plasma can be seen. In pure pair plasmas, however, the electron and
the positron diamagnetic contributions cancel also in presence of profile gradients,
making such plasmas absolutely stable in a slab geometry within the gyrokinetic
description. Note however, that perfect symmetry between the electron and positron
density and temperature profiles is required to guarantee the cancellation of the
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diamagnetic terms. While density profiles are always identical for the two species in
a quasineutral plasma, the temperature profiles can differ. In this case, a pure pair
plasma can be temperature-gradient unstable, as we will see in the following. The
gradient-driven instabilities can also appear if a pair plasma is ‘contaminated’ by
protons or other ions.

Some analytic progress can be made for K-modes in an electron–positron plasma.
Assuming ζe = ζp � 1 and |γ | ∼ |ω|, the plasma dispersion function can be
approximated:

Z0(ζe)≈ 2i
√

πe−ζ
2
e − 1

ζe
− 1

2ζ 3
e

. (3.3)

Using this expansion and neglecting the Debye length, k⊥λD� 1, we obtain:

4i
√

πζ 3
e e−ζ

2
e = 1. (3.4)

Introducing the notation ζe = x − iy and assuming x = ±(y + ∆) with ∆ � y
(Yegorenkov & Stepanov 1987, 1988), we can write the dispersion relation in the
form:

8y3
√

2πe−2y∆ exp(2iy2 − iπ/4)= 1≡ exp(2πmi). (3.5)

Splitting this relation into equations for the argument and for the absolute value and
employing ∆/y� 1, we obtain:

2y2 −π/4= 2πm, 8y3
√

2πe−2y∆ = 1. (3.6a,b)

Thus, an infinite family of solutions is found:

ym =
√

πm+π/8≈√πm, ∆m = ln(8y3
m

√
2π)

2ym
, xm =±(ym +∆m). (3.7a−c)

Finally, we write our solutions in the form:

ωm =±k‖vthexm, γm =−k‖vtheym. (3.8a,b)

These relations describe strongly damped K-modes in a pure electron–positron plasma.
In figure 3, we compare these analytic results with the numerical solution of the
original dispersion relation (2.15) and find very good agreement. Note that the
expansion (3.3) is valid for m� 1. For low m, the dispersion relation must be solved
numerically.

In a conventional hydrogen plasma, one can make the usual assumption ζi� 1 and
ζe � 1 corresponding to the K-modes of the ion type. In this case, the following
expansions of the plasma dispersion function can be used:

Z0(ζi)= 2i
√

πe−ζ
2
i − 1

ζi
− 1

2ζ 3
i
, Z0(ζe)= i

√
π− 2ζe, (3.9a,b)

which lead to the approximated dispersion relation (assuming k⊥λD� 1):

(1− Γ0i/2)+
(

iζi
√

πe−ζ
2
i − 1

4ζ 2
i

)
Γ0i +O(ζe)= 0. (3.10)
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(a) (b)

FIGURE 3. ‘K-mode’ solution of the dispersion relation for a pure pair plasma. All modes
are strongly damped. Here, k⊥λD= 0 has been assumed. The numerical solution of (2.15)
is compared with the analytic result (3.8).

(a) (b)

FIGURE 4. ‘K-mode’ solution of the dispersion relation for conventional plasma assuming
k⊥λD = 0. One can see the ion and the electron parts of the spectrum. The numerical
solution of (2.15) is compared with the analytic result (3.13). For the numerical solution,
we set the density and temperature gradients appearing in (2.15) to zero.

For simplicity, we neglect FLR effects, implying Γ0i= 1. Also, the small contribution
1/(4ζ 2

i )� 1 can be neglected compared to the other terms. Then, we obtain:

2iζi
√

πe−ζ
2
i + 1= 0. (3.11)

Using the notation ζi = x− iy with x=±(y+∆) and employing ∆� 1, we can split
the dispersion relation into equations for the argument and for the absolute value:

2y
√

2πe−2y∆ exp(2iy2 − 3πi/4)= 1≡ exp(2πmi). (3.12)

Finally, the solutions for the K-modes of the ion type are

ym =
√

πm+ 3π

8
≈√πm, ∆m = ln(2y

√
2π)

2y
, xm =±(ym +∆m). (3.13a,b)

In figure 4, these analytic results are compared with the numerical solution of the
original (exact) dispersion relation (2.15).
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Interestingly, the same dispersion relation can be obtained for K-modes in a pure
pair plasma keeping the Debye length finite. In this case, the dispersion relation (3.4)
is replaced by

4i
√

πζ 3
e e−ζ

2
e + 2ζ 2

e k2
⊥λ

2
D = 1 H⇒ 2i

√
πζee−ζ

2
e + k2

⊥λ
2
D = 0, (3.14)

which reduces to (3.11) if k⊥λD� 1/ζe with k⊥λD replacing 1 and ζe replacing ζi.
Going back to a hydrogen plasma, we consider a regime with ζi � ζe � 1

corresponding to the K-modes of the electron type. In this case, we can expand

Z0(ζi)= 2i
√

πe−ζ
2
i − 1

ζi
− 1

2ζ 3
i
, Z0(ζe)= 2i

√
πe−ζ

2
e − 1

ζe
− 1

2ζ 3
e

. (3.15a,b)

A dispersion relation very similar to that describing the K-modes of the ion type, see
(3.11), can be derived for the K-modes of the electron type keeping ion FLR terms
and neglecting the electron FLR effects. This can be done since ρe� ρi; it implies
Γ0e ≈ 1. In this case, we obtain:

1− Γ0i

2
+
(

iζe
√

πe−ζ
2
e − 1

4ζ 2
e

)
+O

(
1
ζ 2

i

)
= 0. (3.16)

Here, recall that ζi � ζe. At finite k⊥ρi � 1/ζe, implying 1 − Γ0i � 1/ζ 2
e , one can

neglect the last term in (3.16), transforming it to

2iζe
√

πe−ζ
2
e + (1− Γ0i)= 0. (3.17)

This equation and, hence, its solution coincide with the dispersion relation (3.11) for
the K-modes of the ion type if we replace the last term in (3.11) with (1− Γ0i) and
ζi with ζe. In the opposite limit of negligible k⊥ρi� 1/ζe, the dispersion relation for
the K-modes of the electron type, equation (3.16), becomes

iζe
√

πe−ζ
2
e − 1

4ζ 2
e

= 0 ⇐⇒ 4iζ 3
e

√
πe−ζ

2
e = 1. (3.18)

This equation and its solution coincide exactly with the pair-plasma K-mode dispersion
relation with k⊥λD neglected, see (3.4).

In a three-component plasma with the ion fraction νi= ni/ne, the K-mode dispersion
relation for ζe� 1 (electron type) becomes

νi(1− Γ0i)+ (2− νi)

(
2iζe
√

πe−ζ
2
e − 1

2ζ 2
e

)
+O

(
1
ζ 2

i

)
= 0. (3.19)

The last term (∼1/ζ 2
e ) is negligible unless νi → 0 or k⊥ → 0. Here, electron and

positron FLR effects have been neglected.
In summary, K-modes, considered in this section, are the only solutions of the

slab dispersion relation in pure electron–positron plasma for arbitrary density and
temperature profiles provided these profiles coincide for the two species. If the
positron and the electron temperature profiles differ, a temperature-driven instability
can appear also for pure pair plasma in a slab geometry. This will be considered in
more detail in the following.
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4. Universal instability
The first unstable mode to be considered is the universal instability driven by the

density gradient. For simplicity, we assume the temperature profiles to be flat and
equal, i.e. Ti = Te = Tp. In this case, the dispersion relation is

1+ k2
⊥λ

2
D +

1
2

∑
a=i,p,e

νaζa

(
1− ω∗a

ω

)
Z0aΓ0a = 0. (4.1)

Here, νa= na/ne is the density fraction corresponding to a particular species a= i, e, p.
For electrons, νe = 1. Taking the limit k‖vthi�ω� k‖vthe, we obtain:

Z0i ≈− 1
ζi
, Z0e ≈ i

√
π. (4.2a,b)

Let us introduce the notation ω∗ = −ω∗i. Employing the quasineutrality, νe = νp + νi
and νiω∗i + νeω∗e + νpω∗p = 0, we obtain to lowest order:[

2
(
1+ k2

⊥λ
2
D

)− νiΓ0i
]
ω− νiω∗Γ0i + iζe

√
π[ω(νe + νp)− νiω∗] = 0. (4.3)

Here, the electron and positron FLR have been neglected Γ0e=Γ0p= 1. We solve the
dispersion relation for ω=ωr + i γ assuming ωr� γ . Then, to the lowest order,

ωr = νiω∗Γ0i

2
(
1+ k2

⊥λ
2
D

)− νiΓ0i
, γ = 2ωr

k‖vthe

√
π νiω∗

k2
⊥λ

2
D + (1− Γ0i)[

2
(
1+ k2

⊥λ
2
D

)− νiΓ0i
]2 . (4.4a,b)

One sees that in the long-wavelength limit, Γ0i→ 1, the universal mode is unstable for
finite k⊥λD with ωr independent of λD and γ proportional to k2

⊥λ
2
D for small k2

⊥λ
2
D. For

large k2
⊥λ

2
D, both ωr and γ are proportional to 1/k2

⊥λ
2
D. This behaviour is seen in the

numerical solution of the dispersion relation (2.15) shown in figure 5. Here, we use
the parameters k⊥ρi = 0.1, k‖ρi = 7.43× 10−4, κniρi = κneρi = κnpρi = 0.3 and κTiρi =
κTeρi= κTpρi= 0.0 with κna=−d ln na/dx and κTa=−d ln Ta/dx. For these parameters,
ω∗/ωci = kyκniρ

2
i = 0.03. Recall that x denotes the direction of non-uniformity of the

plasma profiles, see § 2.
From (4.4) one sees that to be unstable at λD = 0, the universal mode needs a

finite and large enough value of 1−Γ0i, which is the case if k⊥ρi∼ 1. The numerical
solution corresponding to this case is shown in figure 6. The dispersion relation
(2.15) is solved for the parameters k⊥ρi = 2.0, k‖ρi = 7.4 × 10−4, κTi = κTe = 0,
λD = 0. One sees that the universal instability can exist in pair plasmas in a slab
geometry but requires both the proton fraction and the ion density gradient to exceed
some threshold. Note that one would have to include resonant contributions (e.g.
proportional to e−ζ 2

i ) and other higher-order terms into the growth rate calculation to
find the threshold analytically. Such terms have been omitted in the derivation of (4.4),
which is therefore valid only in the unstable domain. It is however straightforward to
find the threshold numerically. Practically, it suggests that the universal mode will be
stable in pair plasmas if the proton contamination is small. Interestingly, the positron
density gradient has zero effect on the universal mode if quasineutrality ne = np + ni
is assumed since any effect of the positron density gradient on the universal mode is
perfectly cancelled by the electrons. Note, however, that the positrons still contribute
through their finite fraction since νi = 1− νp.
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(a) (b)

FIGURE 5. Frequency and growth rate of the universal mode as functions of the Debye
length in a contaminated pair plasma with the positron fraction νp = 0.7. The parameters
are k⊥ρi= 0.1, k‖ρi= 7.43× 10−4, κniρi= κneρi= κnpρi= 0.3, and κTiρi= κTeρi= κTpρi= 0.0
with κna=−d ln na/dx and κTa=−d ln Ta/dx. For these parameters, ω∗/ωci= kyκniρ

2
i = 0.03.

(a) (b)

FIGURE 6. Frequency and growth rate of the universal mode in a contaminated pair
plasma. One sees that the ion density gradient and the ion contamination must be larger
than some threshold for the mode to become unstable. The ion density gradient κniρi= 0.3
has been used for the νi dependence (b).

5. ITG instability

For simplicity, we consider the flat density limit for all species. In this case, it is
convenient to define ωTa = ηaω∗a = kyTa/(eaB) d ln Ta/dx, which is finite also at zero
density gradient, with a= i, e, p being the species index. For electrons and positrons,
we also assume flat temperature profiles ωTe=ωTp=0. Only for ions is the temperature
gradient finite, ωTi 6= 0. To allow for unequal temperatures of different species, we
introduce the notation:

ν̂a = 2 νa/τa∑
a′
νa′/τa′

(5.1)

with νa= na/ne and τa= Ta/Te. Note that quasineutral plasmas satisfy both
∑

a νa= 2
and

∑
a ν̂a = 2. If the temperatures of all species are equal (τa = 1) in such plasmas,

then ν̂a = νa. Using this notation and assuming, as already mentioned, flat density
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profiles for all species (ω∗a = 0), the dispersion relation becomes

1+ k2
⊥λ

2
D +

∑
a=i,p,e

ν̂a

2
ζaZ0aΓ0a + ν̂iωTi ζi

2ω

(
3
2

Z0iΓ0i − Z0iΓ∗i − Z2iΓ0i

)
= 0. (5.2)

We consider the long-wavelength limit Γ0a = Γ∗a = 1 for all particle species. For
the ITG instability, we can assume k‖vthi � ω� k‖vthe. Then, the plasma dispersion
function can be expanded as

Z0(ζi)≈− 1
ζi
− 1

2ζ 3
i
− 3

4ζ 5
i
, Z0(ζp)= Z0(ζe)≈ i

√
π. (5.3a,b)

Using (2.12), it is straightforward to derive Z2i= ζi(1+ ζiZ0i). Here, one sees that the
fifth-order term must be included into the expansion of Z0i appearing in Z2i since we
need cubic (∼1/ζ 3

i ) terms for the ITG instability and we must keep all of them for
consistency. Neglecting ion FLR effects (i.e. setting Γ0i = 1 and Γ∗i = 1) as well as
the electron and positron contributions (∼ζe� 1), we obtain to leading order in 1/ζi

1− ν̂i

2
+ k2
⊥λ

2
D =−

ν̂iωTi

4ωζ 2
i
+ νi

2ζ 2
i
. (5.4)

Following Coppi, Rosenbluth & Sagdeev (1967), we also assume ωTi�ω. Then

1− ν̂i

2
+ k2
⊥λ

2
D =−

ν̂iωTi

4ω3
k2
‖v

2
thi. (5.5)

Note that by definition ωTi = ηiω∗i with ω∗i < 0, see § 2, and ηi > 0. Hence, ωTi < 0
and there is an unstable solution of the dispersion relation (5.5):

ω= 1
21/3

(
ν̂i|ωTi|k2

‖v
2
thi

2− ν̂i + 2k2
⊥λ

2
D

)1/3 (
−1

2
+ i

√
3

2

)
. (5.6)

This root corresponds to the well-known fluid limit of the slab ITG instability (Coppi
et al. 1967). Note that the real part of the ITG frequency is negative, as expected.
One sees that in an ion-contaminated electron–positron plasma, the frequency and
growth rate of the fluid ITG instability are proportional to (ν̂i|ωTi|)1/3. Hence, pure
pair plasmas with ν̂i = 0 cannot support the slab ITG. This is an obvious conclusion
since the absence of ions guarantees the absence of ion-temperature-gradient-driven
instabilities. More important, however, is that, similarly to the frequency and the
growth rate, the destabilisation threshold is also determined by the product ν̂i|ωTi|,
and not just |ωTi| as is the case for conventional (e.g. hydrogen) plasmas. This can
be deduced from the fact that ωTi appears only in combination with νi in the original
dispersion relation, equation (5.2). Note that the solution equation (5.6) corresponds
to the fluid instability and does not contain information about the threshold. In
this paper, we do not derive the threshold analytically, but we can easily find it
numerically. Numerical results demonstrating this prediction are shown in figure 7.
Here, the dependence of the ITG frequency and the growth rate on the proton
contamination is plotted. One sees that the absolute value of the frequency indeed
decreases strongly at a smaller proton content, in agreement with the analytic result.
One also sees that the mode is unstable only when the proton content exceeds some
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(a) (b)

FIGURE 7. Effect of proton contamination on the ITG mode in a pair plasma. The
wavenumbers are k⊥ρi = 0.24 and k‖ρi = 7.4 × 10−4. The density and the electron
temperature profiles are flat, κTi =−d ln Ti(x)/dx, and τi = 1.

FIGURE 8. ITG mode in a pair plasma with the proton contamination νi= 0.13 for τi= 1
and k‖ρi = 7.4× 10−4. Effect of the finite Debye length is considered.

threshold, whose value depends on the ion temperature gradient. This is of practical
interest since it indicates that the ITG modes may be stable at a large ion temperature
gradient in ion-contaminated pair plasmas if the ion fraction is small enough. Other
parameters, such as the density gradient or wavenumbers, can affect the value of
the threshold, too, but we keep all other parameters fixed in the calculation shown
in figure 7, changing only the proton fraction for two different values of the ion
temperature gradient.

Another aspect of practical interest for the pair-plasma experiment (Pedersen et al.
2012) is the effect of the Debye length on the microinstabilities. This effect is usually
negligible for tokamak or stellarator plasmas, where the Debye length is much smaller
than the ion gyroradius. In the pair-plasma experiment, however, the Debye length is
not expected to be very small and can become comparable to the proton gyroradius.
This can have a strongly stabilising effect on the ITG stability, as shown in figure 8.
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One sees that for a given k‖, the ITG instability can disappear for all perpendicular
wavelengths if λD/ρi is large enough.

6. ETG instability
Consider now the case when only electron and positron temperature gradients are

present, i.e. ωT(e,p) 6= 0, while ωTi = 0 and ω∗(e,p,i) = 0 (flat density). Recall that ωTa =
kyTa/(eaB) d ln Ta/dx is proportional to the temperature gradient and can be finite also
at ω∗a = 0. In this section, we will also allow for unequal temperatures of different
species. Therefore, the notation defined in (5.1) will be used. For the perpendicular
wavenumbers, we assume k⊥ρi � 1 implying Γ0i = 0 and Γ∗i = 0. In this limit, the
dispersion relation is

1+ k2
⊥λ

2
D +

∑
a=p,e

ν̂a

2
ζa

[
Z0aΓ0a + ωTa

ω

(
3
2

Z0aΓ0a − Z0aΓ∗a − Z2aΓ0a

)]
= 0. (6.1)

Here, recall that from (2.12) one can derive Z2a = ζa(1 + ζaZ0a). Assuming large
frequencies ω� k‖vth(e,p), we can write

Z0(ζe,p)≈− 1
ζe,p
− 1

2ζ 3
e,p

− 3
4ζ 5

e,p

. (6.2)

The fifth-order term in this expansion is needed to account for the quadratic (∼ζ 2
a )

contribution appearing in Z2a. Assuming in addition small k⊥ρ(e,p)� 1, i.e. Γ0(e,p) = 1
and Γ∗(e,p) = 1, we finally obtain to the leading order(

ν̂i

2
+ k2
⊥λ

2
D

)
+ ν̂eτeωTe + ν̂pτpωTp

4ωζ 2
e

= 0. (6.3)

Here, the relations
∑

a ν̂a = 2 and ζ 2
p = ζ 2

e /τp have been employed. Similarly to the
ITG derivation, equation (5.5), we have assumed ωTe∼ωTp�ω, following Coppi et al.
(1967), i.e. our derivation of (6.3) follows exactly the same path as in the ITG case,
equation (5.5).

Let us now consider the case of equal electron and positron temperature profiles,
implying τp= τe=1 and ωTe+ωTp=0. Recall that τa=Ta/Te, and our sign conventions
imply ωTe > 0 and ωTp < 0. These conditions are likely since the characteristic time
of the energy exchange between the electrons and the positrons is comparable to
their Maxwellisation time. If the plasma has had time to reach a locally Maxwellian
state, as we have assumed, the electron and positron temperatures should also have
equilibrated. In contrast, the ion temperature can differ from the electron one, implying
τi 6= 1. Then, the unstable solution is

ω= 1
21/3

(
k2
‖v

2
the

ν̂i + 2k2
⊥λ

2
D
ν̂iτiωTe

)1/3 (
1
2
+ i

√
3

2

)
. (6.4)

This solution corresponds to the fluid limit of the slab ETG instability, which is
similar to the ITG instability, equation (5.6), but has a frequency of the opposite
sign. The mode is expected to be stable in a pure pair plasma ν̂i = 0, as can indeed
be seen from the numerical solution of the full dispersion relation (2.15), shown in
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(a) (b)

FIGURE 9. Frequency and growth rate of the ETG mode in a three-component electron–
positron-proton plasma for ωTp = ωTe. One sees that the ion fraction must exceed some
threshold for the ETG to be unstable. Here, k‖ρi = 7.4× 10−4, κni = κne = κnp = 0, κTi = 0,
κTeρi = κTpρi = 0.1, λD = 0 and τa = 1 with a= (i, e, p).

figure 9. In (6.4), however, also the denominator vanishes at ν̂i = 0 if k⊥λD = 0. This
singular limit contradicts to the assumption ω� ωTe made in the derivation of (6.4).
Therefore this equation cannot be used at very small νi unless k⊥λD is finite. For
finite k⊥λD, there is no singularity and (6.4) is valid even at very small νi. For this
regime, however, the finite Debye length effects are important. For example, ω is
proportional to (k⊥λD)

−2/3 if νi� k2
⊥λ

2
D.

Now, we consider a situation in which the electron and the positron temperature
gradients are different for some reason, implying ωTe + ωTp 6= 0. In this case, one
can show that the ETG mode can be unstable also in a pure pair plasma (ν̂i = 0).
Assuming for simplicity k⊥λD to be finite, we can write the unstable ETG solution as

ω= 1
21/3

(
k2
‖v

2
the

k2
⊥λ

2
D

τeτp

τe + τp
[|ωTe| − |ωTp|]

)1/3 (
1
2
+ i

√
3

2

)
. (6.5)

The numerical solution of the dispersion relation (2.15) corresponding to a pure
pair-plasma ETG is shown in figure 10. This result is valid if the electrons have
a steeper temperature profile. Otherwise, the ETG instability is replaced by the
positron-temperature-gradient (PTG) driven instability, which has a negative frequency:

ω= 1
21/3

(
k2
‖v

2
the

k2
⊥λ

2
D

τeτp

τe + τp
[|ωTp| − |ωTe|]

)1/3 (
−1

2
+ i

√
3

2

)
. (6.6)

The PTG solution is shown in figure 11. One can see that the frequency of the
PTG instability is negative whereas the frequency of the ETG instability, figure 10,
is positive, as suggested by (6.5) and (6.6). The growth rates of both instabilities
are equal. The absolute values of the ETG and PTG frequencies are equal, too, in
agreement with (6.5) and (6.6). Finally, one can see that the growth rate increases
with |ωTe + ωTp| for both instabilities. The modes are stable when |ωTe + ωTp| = 0,
as expected. Note that ωTe/ωci = kyκTeρ

2
i and ωTp/ωci = −kyκTpρ

2
i , so that ωTe + ωTp

is proportional to κTe − κTp. Here, the ion gyroradius ρi =√mHTe/(eB) with mH the
proton mass is defined through the electron temperature and used as a normalisation
constant in pure pair plasma, which does not contain ions by definition.
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(a) (b)

FIGURE 10. Frequency and growth rate of the ETG mode in a pure pair plasma when
the symmetry between the species is broken by a difference in the electron and positron
temperature profiles. The electron temperature profile with κTeρi= 0.1 is kept fixed. Here,
λD/ρi = 0.1 and τa = 1 with a= (e, p). Note that ρi =√mHTe/(eB) with mH the proton
mass is used here as a normalisation constant since pure pair plasmas do not contain ions.

(a) (b)

FIGURE 11. Frequency and growth rate of the positron-temperature-gradient mode in a
pure pair plasma when the symmetry between the species is broken by a difference in the
electron and positron temperature profiles. The electron temperature profile with κTeρi=0.1
is kept fixed. Here, λD/ρi = 0.1 and τa = 1 with a = (e, p). Note that ρi =√mHTe/(eB)
with mH the proton mass is used here as a normalisation constant since pure pair plasmas
do not contain ions.

7. Shear Alfvén wave
Finally, we consider a homogeneous plasma (all profiles are flat) and solve the

electromagnetic dispersion relation (2.15) at finite β. In this case, there are no sources
of free energy and, hence, no instabilities (all modes are damped or marginal). From
the definition of the plasma dispersion function, equation (2.12), one can derive Z1a=
1+ ζaZ0a and Z2a = ζaZ1a. Assuming k‖vthi�ω� k‖vthe, one can thus write:

Z0i =− 1
ζi
− 1

2ζ 3
i
+O

(
1
ζ 5

i

)
, Z0(e,p) = i

√
π+O(ζe) (7.1a,b)

Z1i =− 1
2ζ 2

i
+O

(
1
ζ 4

i

)
, Z1(e,p) = 1+O(ζe) (7.2a,b)
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Z2i =− 1
2ζi
+O

(
1
ζ 3

i

)
, Z2(e,p) = ζe +O(ζ 2

e ). (7.3a,b)

For flat profiles ω∗a = 0 and ηa = 0. Hence, from (2.9)

W0a = ζaZ0aΓ0a, W1a = ζaZ1aΓ0a, W2a = ζaZ2aΓ0a. (7.4a−c)

We consider perpendicular scales much larger than the electron gyroradius so that
one can neglect electron and positron FLR effects, implying Γ0e = 1 and Γ0p = 1.
Employing the appropriate expansions of the plasma dispersion function, we obtain:

W0i =−Γ0i − Γ0i

2ζ 2
i
+O

(
1
ζ 4

i

)
, W0(e,p) = iζe,p

√
π+O

(
ζ 2

e,p

)
(7.5a,b)

W1i =−Γ0i

2ζi
+O

(
1
ζ 3

i

)
, W1(e,p) = ζe,p +O

(
ζ 2

e,p

)
(7.6a,b)

W2i =−Γ0i

2
+O

(
1
ζ 2

i

)
, W2(e,p) = ζ 2

e,p +O
(
ζ 3

e,p

)
. (7.7a,b)

For equal temperatures and charges of the species, equation (2.15) becomes(
1+ k2

⊥λ
2
D +

1
2

∑
a

νaW0a

)(
1−

∑
a

2βa

k2
⊥ρ2

a

W2a

)

+
∑

a

νa W1avtha

∑
a

βa

k2
⊥ρ2

a

W1a

vtha
= 0. (7.8)

Here, the notation βa = µ0naTa/B2 is used. Note that the usual assumption of small
βa has been implicitly made in the derivation of the original dispersion relation (2.15)
since we have neglected the parallel magnetic field perturbation δB‖. We substitute
the approximate expressions for Wna, equations (7.5)–(7.7), into the dispersion relation
(7.8). Note that the small terms of the order 1/ζ 2

i and 1/ζi must be kept in W0i and
W1i, respectively, since they give order-unity contributions in the dispersion relation
when multiplied with ζ 2

e appearing in W2(e,p) and W2
1(e,p). For equal temperatures and

charges of the species, implying ζe = ζp, one can write:

ζ 2
e

ρ2
e

= ζ
2
i

ρ2
i
, ζevthe = ζivthi, βa = νaβe, νi + νp = 1. (7.9a−d)

Using these relations and assuming k‖vthi� ω� k‖vthe, one can write the dispersion
relation to the lowest order as follows:(

1+ k2
⊥λ

2
D −

νiΓ0i

2

) [
1− 2βeζ

2
e (1+ νp)

k2
⊥ρ2

e

]
+ (1+ νp)

2 βeζ
2
e

k2
⊥ρ2

e

+ νiβeΓ0i

k2
⊥ρ

2
i

[νi

2
(1− Γ0i)+ k2

⊥λ
2
D

]
= 0. (7.10)
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(a) (b)

FIGURE 12. Frequency and growth rate of the shear Alfvén wave (SAW) as a function
of ion contamination in a pair plasma for k⊥ρi = 0.05, k‖ρi = 7.4 × 10−4, λD/ρi = 0.01
and βe = 0.005. One sees the transition from the SAW regime νi ∼ 1 to a regime of an
electromagnetic wave travelling at the speed of light when νi→ 0. The latter limit is not
properly described by the gyrokinetic theory of this paper since the relativistic effects must
be taken into account in the wave dynamics (Zocco 2017).

For conventional plasmas with νi = 1 and νp = 0, with the long-wavelength
approximation Γ0i ≈ 1 − k2

⊥ρ
2
i , valid at small k⊥ρi < 1, and for k⊥λD → 0, this

dispersion relation reduces to the shear Alfvén wave (SAW):

2βeζ
2
i = 1 ⇔ ω2 = k2

‖
B2

µ0min0e
= k2
‖v

2
A ≡ω2

A. (7.11)

For a finite positron fraction, one can write

2βeζ
2
i =

1
νi

2− νiΓ0i +O(βe)

2− νi

k2
⊥ρ

2
i

1− Γ0i
(7.12)

if the Debye length is neglected. In the long-wavelength approximation Γ0i≈ 1− k2
⊥ρ

2
i

2βeζ
2
i =

1
νi
⇔ ω=ωA/

√
νi = k‖

B√
µ0min0i

= k2
‖v

2
Ai ≡ωAi. (7.13)

The numerical solution of the full dispersion relation (2.15) for the shear Alfvén wave
parameters is shown in figure 12. One sees, as expected, that the frequency of the
shear Alfvén wave increases very rapidly when νi→ 0 (note the logarithmic scale in
the figure), in agreement with our findings and Helander & Connor (2016). For νi= 1,
the classic shear Alfvén wave is recovered, see (7.11).

Note that (7.13) highlights the role of the ions, which carry most of the plasma
inertia even at small νi, but it is singular for νi = 0. This formal singularity can
be resolved taking the finite Debye length into account. In the long-wavelength
approximation (Γ0i ≈ 1− k2

⊥ρ
2
i valid for k⊥ρi < 1), one obtains:

2βeζ
2
i =

2− νi + 2k2
⊥λ

2
D

νik2
⊥ρ

2
i + 2k2

⊥λ
2
D

k2
⊥ρ

2
i

2− νi
= 1
νi + 2λ2

D/ρ
2
i

[
1+O

(
k2
⊥λ

2
D

)]
. (7.14)
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This equation describes coupling of the ‘ion shear Alfvén wave’, based on ion inertia,
to a wave travelling at the speed of light (Zocco 2017). Indeed, in a pure pair plasma,
the dispersion relation (7.14) reduces for small k⊥λD < 1 to

ω2 = k2
‖

B2

µ0men0e

ρ2
e

2λ2
D
⇔ ω= k‖c. (7.15)

As shown in figure 12, the SAW transforms for νi→ 0 into the electromagnetic wave.
The displacement current, not included into the original dispersion relation (2.15),
must be taken into account for this wave in order to address it properly, see (Zocco
2017) for details. Recall that we have assumed ω� k‖vthe in our derivation of (7.10).
Then, the solution ω= k‖c implies c� vthe which physically cannot be true. Therefore,
equation (7.15) is just a formal limit to which the SAW solution reduces at νi→ 0
and small, but finite, k⊥λD. Note that one can still satisfy the gyrokinetic ordering
ω�ωce for this formal limit, ω= k‖c, if k‖ρe� vthe/c.

For large k⊥λD > 1 and λD >ρi, the long-wavelength approximation cannot be used.
The dispersion relation appropriate for this case is

2βeζ
2
i =

2− νiΓ0i + 2k2
⊥λ

2
D

νi(1− Γ0i)+ 2k2
⊥λ

2
D

k2
⊥ρ

2
i

2− νi
. (7.16)

For k⊥λD� 1, a solution with ω∼ k2 can be obtained (recall that 0 6 Γ0i 6 1):

2βeζ
2
e =

k2
⊥ρ

2
e

2− νi
⇔ ω= 1

2− νi

k⊥ρe√
βe

k‖vthe. (7.17)

A solution of this kind can be found in conventional plasmas, in proton-contaminated
pair plasmas, and in pure pair plasmas as shown in figure 13, where the dispersion
relation (2.15) is solved numerically. The transitions between the shear Alfvén wave,
electromagnetic wave and the ω ∼ k2 solution can be seen clearly. Note that the
quadratic dispersion relation (7.17) is formally similar to the whistler wave although
its physics must be different since the Hall effect is absent in pure pair plasmas.

8. Conclusions

In this paper, we have studied the gyrokinetic stability of pair plasmas solving the
dispersion relation (2.15) analytically and numerically. It is found that pair plasmas
can support the gyrokinetic ITG, ETG and universal instabilities even in slab geometry
if the proton fraction exceeds some threshold. In practice, however, this threshold is
usually quite large, hopefully large enough to keep the proton content below this value
in pair-plasma experiments (Pedersen et al. 2012). These results extend the finding
of Helander (2014) that pair plasmas are stable to gyrokinetic modes in the absence
of magnetic curvature to the cases with small to moderate proton contamination. We
find, however, that pure pair plasmas can have temperature-gradient-driven instabilities,
if the electron and the positron temperature profiles differ. In reality, however, such
profiles are unlikely in steady state, since the characteristic time of energy exchange
between the species is comparable to the Maxwellisation time. In the electromagnetic
regime, we find that the shear Alfvén wave is present in a contaminated plasma. Its
frequency increases very rapidly when the ion fraction becomes negligible.
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(a) (b)

FIGURE 13. Frequency and growth rate of the shear Alfvén wave (SAW), ‘whistler-like’
and electromagnetic (EM) wave as a function of the Debye length in a conventional
plasma, proton-contaminated pair plasma and pure pair plasma. Transitions between
different regimes are clearly seen. The parameters used are k⊥ρi= 0.475, k‖ρi= 7.4× 10−4

and βe = 0.005. Note that λD & ρe/
√
βe implies vthe & c. The physics of this case is not

properly described by the gyrokinetic theory of this paper since relativistic effects must be
taken into account in the particle dynamics and distribution functions (Zocco 2017). The
‘whistler-like’ solution is a formal limit of the SAW dispersion relation at large k⊥λD.
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