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Foundations of General Relativity 1

1 Interpreting Relativistic Spacetimes
In 1919, four years after Albert Einstein completed his formulation of
the general theory of relativity, the English astronomer Arthur Eddington
organized two expeditions to test its prediction of the deflection of light
around massive objects. Their observations of starlight around the Sun during a
solar eclipse vindicated Einstein’s theory and brought it immediate worldwide
attention, including its apparently revolutionary implications for the nature of
time, space, and scientific methodology (Ryckman 2005).1 Having passed all
subsequent tests yet made of it, that theory – now commonly known by the
moniker “general relativity” (GR) – is currently our best theory of space, time,
gravitation, and the cosmos. It is thus still an essential source from which we
paint the scientific image of the world.
Painting that image is the business of interpreting GR: metaphysically,

depicting what the world, or parts of it, could be like if the theory were
true; semantically, giving the truth conditions of the theory’s commitments.
A partial interpretation, then, is an unfinished canvas, depicting some aspects
of what could be or giving some truth conditions. For instance, it may describe
the fundamental ontology and properties without advancing any thesis about
the metaphysics of properties. What Curiel (2009, 46) calls a “concrete”
interpretation is at least a partial interpretation, for it “expresses the empirical
knowledge the framework contains – for example, the fixation of a Tarskian
family of models, or, less formally, the contents of a good, comprehensive text-
book” like Synge (1960), Hawking and Ellis (1973),Misner et al. (1973),Wald
(1984), or Malament (2007, 2012).2 A “concrete” interpretation thus depicts,
using interpretive principles, at least what could be empirically.
An example of such a “concrete” interpretation starts with the “pure”

gravitational models that abstract away from matter. These are the smooth,
four-dimensional Lorentzian manifolds (M,g). They represent ways that a
universe or a portion of a universe could be. Those that represent possible
universes are sometimes termed cosmological. The points of the manifold
M represent atomic events, which have no extension or duration, such as an
idealized finger snap that gets shorter and smaller without limit; the smooth
structure of the points represents how these events are connected together in
a four-dimensional continuum modeled locally on R4. This means that each

1 See Crelinsten (2006) and Kennefick (2019) for details about the expeditions and later
controversies about their results.

2 In what follows, I assume familiarity with the differential geometry these textbooks use in
formulating GR. For lack of space and in light of the often voluminous physics literature, I
also often cite only recent philosophical reviews of topics in which many further references
can be found.
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2 Philosophy of Physics

of the three spatial dimensions and the one temporal dimension are modeled
(again, locally) on R. Because of this interpretation in terms of events, there
are a few topological restrictions onM:3

1. M isHausdorff. This ensures any two distinct atomic events can be separated
as being parts of disjoint, extended, composite events.

2. M is path-connected. A path or curve in M is a continuous function
γ : I → M, with I ⊆ R a connected interval, so being path-connected ensures
that any two points lie on a common path. This ensures that all events are a
part of the same connected continuum.

3. M is second countable. This ensures that the collection of events is not so
large that a smooth derivative operator (discussed later in this section) or
metric cannot be defined on it (Geroch 1971, Marathe 1972). For example,
it precludes collections of events based on the long line (Steen & Seebach
1978, 71).

Ultimately, the interpretation of M in terms of events and the concomitant
restrictions on the structure ofM derive from the interpretation of the spacetime
metric g. It represents the durations, lengths, and other derived and related
quantities of certain classes of events. Showing how requires some preliminary
elaboration. The metric mathematically is a smooth pseudo-Riemannian metric
tensor field, meaning that it smoothly assigns a symmetric bilinear form gab to
the tangent space TpM of each point p ∈M. (Here, and in what follows, I have
the occasion to use the abstract index notation, on which see, e.g., Wald [1984]
orMalament [2012].) That the metric has a Lorentzian signature means that one
of its four eigenvalues (in any orthogonal basis) is of the opposite sign as the
other three. Thus, in each tangent space TpM, there is a double cone, emanating
from the origin, of vectors va satisfying gabvavb = 0. Appropriately, the vectors
in these cones are called null or sometimes lightlike; those in the interior are
called timelike and those in the exterior are called spacelike. The justification
for these labels comes from a certain mathematical fact about curves and a set
of representational principles. The mathematical fact is that tangent vectors at
p represent directions in the manifold in which a C1 curve γ : I → M passing
through p can point. Such curves can then be classified as null (lightlike),
timelike, or spacelike when all their tangent vectors have these respective
labels. If va is the tangent vector field to any such curve γ, then the magnitude
of the curve, |γ |, is defined as

∫
I |gabv

avb |1/2ds, where the integrand is called the
magnitude of the vector va. Note that |γ | is invariant under reparameterization,

3 See Geroch and Horowitz (1979) for an extended, accessible discussion.
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Foundations of General Relativity 3

so curves with the same image have the same magnitude. The first pair of
representational principles pertain to certain of these curves:

Duration γ is timelike if and only if |γ | represents the duration of the events
in γ[I ]. (This principle is sometimes called the clock hypothesis for reasons
to which I turn in Section 2.2, where I also discuss the justification of this and
other representational principles.)
Length γ is spacelike if and only if |γ | represents the length of the events
in γ[I ].4

That timelike curves have duration while spacelike curves have length in
part justifies the names “timelike” and “spacelike” for their respective sets of
tangent vectors. For example, a timelike curve might represent a process or
a person’s history, and the curve’s magnitude the duration of that process or
history. These principles entail that every atomic event has zero duration and
length, as well as the other features I attributed to them earlier in this section.
In addition to representing durations and lengths, the metric provides a

criterion of change for the (signed) magnitude of a vector field ua along a
curve γ: ua is constant in (signed) magnitude with respect to gab just in case
the scalar field gabuaub is constant on γ. A (covariant) derivative operator (or
“affine connection”) ∇a provides another criterion of change. (As alluded to
before, these operators exist globally if and only if M is second countable.)
If, as before, va is the tangent vector field to γ, then vb∇bua is the directional
derivative of ua along γ, which vanishes just in case ua is constant with respect
to ∇a on γ. (Both notions of constancy can be generalized to any tensor field on
M.) In general, there will be infinitely many derivative operators onM, but the
Levi-Civita derivative operator is the unique, torsion-free one compatible with
the metric, in the sense that a vector field along a curve is constant with respect
to the derivative operator only if it is constant in magnitude with respect to the
metric. (Compatibility is equivalent with the computationally useful equation
∇agbc = 0.) In this sense, the Levi-Civita derivative operator extends the notion
of change provided by the metric.
A derivative operator determines a Riemann curvature tensor field Ra

bcd,
which encodes how the operators ∇c and ∇d fail to commute, as represented by
the path-dependence of parallel transport of vectors.Ra

bcd in turn determines the
Ricci tensor field Rab = Rc

abc and, with the metric, the scalar curvature field
R = Rabgab. The Einstein field equation (EFE) correlates these curvatures –
hence the structure of durations and lengths – with the energy–momentum

4 One can add principles supplemental to Length for representing areas, volume, and angles in
the obvious way, the former two using the volume measure induced on metric submanifolds,
and the latter using the usual cosine formula.
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4 Philosophy of Physics

tensor, Tab, which describes the distribution of energy and momentum across
spacetime:

Rab −
1
2
Rgab − Λgab =

8πG
c4

Tab, (1)

where Λ is the cosmological constant, G is Newton’s gravitational constant,
and c is the speed of light in vacuum. Eq. (1) shows that the metric, through
curvature, determines the distribution of energy and momentum. The trace of
Eq. (1) is (8πG/c4)T = −R − 4Λ, which, when combined with that equation,
yields its “trace-reversed” form,

Rab =
8πG
c4

(
Tab −

1
2
Tgab

)
− Λgab, (2)

where T = Tabg ab, showing that the distribution of energy and momentum
determines only the Ricci tensor, hence constraining the metric without
determining it.5 However, the metric does not determine which matter fields
contribute to energy and momentum, or how they contribute.
To represent matter more explicitly in GR, one must supplement the pure

gravitational models with mathematical fields and with rules for how the
fields and their interactions contribute to Tab. (If one writes Tab as a sum
of tensor fields that depend on the fields representing matter, the interaction
terms are those that depend nontrivially on more than one field.) If the matter
theories have a Lagrangian formulation, then the associated action principle
determines their contributions to energy–momentum and their equations of
motion (although nothing in GR requires that matter theories have a Lagrangian
formulation).6 These equations of motion sometimes invoke further spacetime
structure χ – fields that do not themselves contribute to energy–momentum –
such as frame fields or a temporal or spatial orientation. The fields in χ are often
tensor fields on M, but more generally they can be sections of any principal
bundle over M. Importantly, for every p ∈M, each field takes on a value in its
bundle’s fiber over p, representing a sort of part of the field. This further justifies
interpreting p as an atomic event, for it is the event of point-coincidence (or,
perhaps better, part-coincidence) of matter fields at p.
In addition to the durations, lengths, and derived quantities assigned to

events, the metric also assigns empirical content to the tensor fields in the pure
gravitational models and to matter fields represented as tensor fields. It does
so through an intermediary, the local orthonormal frame field. Such a field is a

5 Perhaps surprisingly, these relationships depend on the four-dimensionality of spacetime; what,
exactly, the field equation is supposed to be for other dimensions (if this is even a meaningful
question) is subtle (Fletcher et al. 2018).

6 One can also derive Eq. (1) from a Lagrangian formulation with the Einstein–Hilbert action
(Hawking & Ellis 1973, 75), but this will not play a role in my subsequent discussion.
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Foundations of General Relativity 5

local assignment of four pointwise orthogonal vector fields, one timelike and
the rest spacelike. Being “normal” here means havingmagnitude 1 according to
the metric, so these vector fields express, respectively, one temporal or spatial
unit.7 Since they span the tangent space, any component of a tensor field at
a point can be expressed as scalar multiples of tensor products of the frame
elements. This scalar expresses the magnitude of the corresponding component
in the temporal or spatial units chosen.
Aside frommatter fields, it is also common to consider relativistic spacetimes

with certain types of material point particles, the treatment of which further
supports the interpretation of each p ∈M as an atomic event or material
coincidence. This treatment adds three representational principles:

Histories The images of smooth timelike curves represent one-to-one the
possible histories of massive test particles. (The curve producing such an
image is called the corresponding particle’s worldline.)
Freedom The images of smooth timelike geodesic curves represent one-to-
one the possible histories of force-free massive test particles. (This principle
is sometimes called the geodesic principle.)
Light The images of smooth null geodesic curves represent one-to-one the
possible histories of (test) light rays (or photons, quantum connotations
notwithstanding) in vacuum.

These principles invoke some terms to explicate. First, although they invoke
the histories of particles, these principles are not restricted to spacetimes with
a temporal orientation.Without one, there is no matter of fact represented about
the correct narrative direction of a history. Second, a test particle (whether
massive or light) is one whose mass does not contribute to Tab. Their histories
are affected by the curvature of the spacetime geometry, but not vice versa.
Combined with Duration, Histories implies that the magnitude of a test
particle’s worldline is the duration of its history. Third, a curve γ : I → M
is a geodesic when its tangent vector field va satisfies the geodesic equation,
va∇avb = 0, which states that the tangent vector field is constant along γ or,
equivalently, that the (four-)acceleration va∇avb of the curve vanishes. Fourth,
the free particles are those that are free of net force. Thus, Freedom is the four-
dimensional general relativistic analogue of Newton’s first law. The analogue
of Newton’s second law states that the net (four-)force Fa satisfies Fa =

mva∇avb, where m is the particle’s mass. Fifth, that Light refers to histories
of light rays in vacuum means only that the light rays do not interact with
matter at the events of their histories, for example, so as to undergo refraction.
They behave as if they were the only material system under consideration.

7 One can justify this as a limiting-case extension of Duration and Length.
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6 Philosophy of Physics

Sixth, each of these representational principles describes possible rather than
actual histories. In a pure gravitational model, each appropriate curve image is
a representational candidate that can be added explicitly to the model to make
it more representationally complete.
For reasons I detail more fully in Sections 2.2 and 4.1, test particles occupy

a liminal position in the structure of GR. So, stipulating principles about them
adds unnecessary precariousness to the theory’s interpretation – even more so
if these, rather than Duration and Length, are taken as the theory’s basic
representational stipulations, as some authors do. Nevertheless, versions of
these principles may be derived in special cases from Duration, Length, and
particular matter theories, such as electromagnetism. Consequently, my partial
interpretation does not adopt these as stipulations, but does invoke them on
occasion in clearly applicable circumstances.8

In sum, while the minimal, “pure” gravitational models of GR are
Lorentzian manifolds (M,g), the models more fully include the cosmological
constant Λ, further auxiliary spacetime structure χ (such as a temporal or
spatial orientation), and matter fields Φ (including, perhaps, test particles):
(M,g,Λ, χ,Φ). Applied to sets of events, as well as the components of tensor
fields with respect to local frames, durations, lengths, and quantities derived
from these are the empirical content of the models. Different models may
nevertheless have different types of auxiliary spacetime structure and matter
fields. For example, one model may have a scalar matter field and no auxiliary
spacetime structure, while another may have a vector matter field and a
temporal orientation. In any case, each of χ and Φ is or can be represented
as a field or fields over M. Mathematically, two models, (M,g,Λ, χ,Φ) and
(M′,g′,Λ′, χ′,Φ′), are isomorphic when there is a diffeomorphismψ : M → M′

that preserves all of the structure of thesemodels, that is,Λ=Λ′ and its pullback
ψ∗ satisfies ψ∗(g′)= g, ψ∗(χ′)= χ, and ψ∗(Φ′)=Φ.9 Isomorphic models have
the same representational capacities, meaning that they can represent the same
states of affairs equally well, because the representational principles refer only
to the structures of the models. In particular, isomorphic models can represent
the same empirical content equally well.
Alluding to “concrete” interpretations like the foregoing, Curiel (2009, 47n3)

writes that “[o]ne can fairly argue over the virtues and demerits of each with

8 Readers familiar with GR may note that many other “physical principles” besides the ones I
have discussed have figured importantly in the history of relativity theory. I set these aside for
lack of space and their superfluousness for articulating my partial interpretation.

9 For matter fields valued outside of products of the tangent and cotangent space at a point, the
structure-preservation conditions are more complicated, but eliding that subtlety is of little
moment to the remainder.
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Foundations of General Relativity 7

respect to depth, rigor and thoroughness, and with respect to a whole set
of particular philosophical problems and issues,” while holding that they are
nevertheless sufficiently clear, in contrast with the case of quantum theory.
Such contrasts aside, I aim in the remaining sections of this Element to amplify
the foregoing interpretation by more thoroughly and rigorously treating (1)
what possibilitiesGR represents, (2) the internal structure of those possibilities
and their interrelations, and, to some extent, (3) how those possibilities differ
from what’s come before, for example, from special relativity and Newtonian
gravitation. To my knowledge, such a comprehensive interpretation of GR has
not been recently attempted. I hope that readers will use my interpretation as
a foil in their own work, either to amplify parts not yet sufficiently thorough
and rigorous or to propose contrasting interpretations. In a word, I hope that
it will engender further fair arguing over our best theory of space, time, and
gravitation.

2 How and What Relativistic Spacetimes Represent
2.1 Two Views on Representation

In Section 1, I adumbrated an interpretation of GR by stipulating what
certain of the mathematical elements in the models represent. This enables
one of the core functions of modeling: facilitating surrogative reasoning.
In reasoning about the models – Lorentzian manifolds, perhaps with extra
structure – we arrive at conclusions about what the models represent, ways
that a gravitational universe, or part of one, could be. Like with other parts
of science, this often involves idealization. In addition to abstracting away
or simplifying the properties represented, sometimes one represents one sort
of phenomena as another (Frigg & Nguyen 2021, §7). For instance, one may
represent extended but localized events as an atomic event in spacetime or
represent a part of a universe as a whole one. Examples of the latter typically
include asymptotically flat spacetimes used in gravitational wave modeling
(cf. Section 4.4), where the gravitational wave detector is “at infinity” outside
the model.10 There are, of course, many other important questions about the
nature of scientific representation, and even more competing detailed answers
thereto (Frigg & Nguyen 2021). But like with the examples of localized events
and (non-)cosmological models just discussed, this interpretation of GR does
not demand anythingmore of scientific representation than that for other typical
scientific theories.

10 Such a model is inextendible, meaning that any embedding of it into another spacetime model
is an isomorphism. Being inextendible is arguably sufficient for amodel to represent a universe,
rather than a proper part of it, as the model cannot be extended to include the other parts.
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8 Philosophy of Physics

There may be another interpretation, or program for interpretation, of GR
that does demand more. On this reading, the “dynamical” approach or
perspective of Harvey Brown (2005), elaborating suggestions by Eddington
(1965, 146) and Anderson (1967, 342), insists in particular that the metric g
can represent durations, lengths, and other geometrical facts if and only if it
correlates appropriately with the behavior of material clocks and rigid rods.
(This is not intended as a reductive definition, as time and distance are implicit
in what it means for a physical system to be a clock or rod.) One establishes
this correlation, Brown and colleagues suggest, in a two-step justification (cf.
Read et al. 2018, §4.1). First, one does so in special relativity, where one argues
that the Minkowski metric η is merely a codification of and reduces to the
dynamical symmetries of matter, including clocks and rods (Brown & Pooley
2001, 2006). Second, one assumes the strong equivalence principle (SEP)
(Brown 2005, 8–9, 151, 170).11 There are many formulations of the SEP, but
in the present context it amounts to the claim that for any p ∈M of a relativistic
spacetime (M,g), there is a neighborhood of p and inertial coordinates
(determined by g) thereon, according to which the metric g approximately takes
the form of η and the equations of motion for matter fields approximately take
on their special relativistic form (cf. Fletcher & Weatherall 2023a,b). One then
interprets the metric g locally and approximately as one would the Minkowski
metric η. Since η is correlated with the readings of clocks and measures of rigid
rods in special relativity, so too must g, locally and approximately.
This alternative strategy is striking, but it faces challenges at every step

of its execution and justification. First, it is not yet clear why the successful
representation of physical magnitudes ought to meet a different standard in
GR than in other, generic scientific modeling contexts. Rugh and Zinkernagel
(2009, 2017), arguing for a similar thesis regarding time, assert that some
material process in a spacetime region needs to set a timescale in order for
one to represent time in that region. This is because the constants appearing
in the EFE, c and G, do not set a timescale themselves. However, they are
mistaken that this is a necessary condition: Particular solutions to the EFE can
well determine a timescale even if the EFE do not, and if the cosmological
constant Λ is nonzero, it sets timescales and length scales in concert with c. In
any case, fixing a timescale is not necessary for representing time – rather, it
presupposes that time is already represented in a model, only with the unit for
time unfixed.
One might instead justify a different standard in cases in which the targets

of the model are obscure, as is the case arguably in quantum mechanics and

11 Brown (2005, 9) also assumes versions of Duration and Length, which I only discuss further
in the following subsection since they drop out of later discussions (e.g., Read et al. 2018).
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Foundations of General Relativity 9

quantum gravity (Curiel 2009, §§5–6). But the targets in GR are familiar,
quantitative concepts of duration and length, and concepts derivative from
them. They are nomore obscure in GR than they are in other spacetime theories.
In reply, Brown (2005, 8, 150) might emphasize that only in GR is the metric,
which is to represent these concepts, “a dynamical agent” that interacts with
matter. Read et al. (2018, §2.2) clarify that this means that the metric is not a
fixed field in the models of GR, and it enters ineliminably into the EFE. This
is true, but from it nothing about standards for representation with this field
follows. Nothing about spatiotemporal concepts obscures how non-fixed fields
could represent them.
Brown (2005, 160, 175) and Read et al. (2018, §6) also correctly observe,

using examples from alternative gravitational theories, that a field cannot
represent durations, lengths, and so on solely in virtue of itsmathematical form.
(Indeed, general doctrines about scientific representation that identify it with
structural isomorphism face similar, grave difficulties [Frigg & Nguyen 2021
§4.2].) However, they seem to conflate this formalist or structuralist position
regarding representation with any in which “the metric field has a primitive
[i.e., unanalyzed] connection to spacetime geometry.” That the interpretation
of Section 1 does not explicate concepts of durations, lengths, and so on does
not imply that they cannot, or should not, admit of further conceptual
and operational analysis. But such analysis lies in fundamental metrology’s
province, not GR’s.
The second challenge targets the first step of the justification, that in special

relativity the Minkowski metric is reduced to a codification of the dynamical
symmetries of matter, including rods and clocks. As Norton (2008) and
Hagar and Hemmo (2013) argue, these sorts of justification must fail if they do
not already assume some primitive spatiotemporal concepts. The underlying
idea is simply that describing the dynamics of matter, or interpreting abstract
equations as representing matter and its change over time, presupposes the
representation of the very spatiotemporal concepts under consideration. Pooley
(2013, 572) and Myrvold (2019, §6) concede on behalf of the dynamical
approach that they must represent some spatiotemporal concepts in order
to secure the justification in question, emphasizing that this is nonetheless
acceptable for some of their ontological claims about the reducibility of the
Minkowski metric or the explanation of its symmetries (for more on which,
see Section 3). However, it amounts to abandonment of the stronger demand
for what it takes to represent durations, lengths, and so on.
The third challenge targets the second step that applies the interpretation

of the Minkowski metric η – the second challenge notwithstanding – locally
to the interpretation of the general spacetime metric g. This step infers the
interpretation of g from the approximate, local coincidence of symmetry groups
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10 Philosophy of Physics

of equations involving η and g, but it is not clear why this step is valid. After all,
as discussed before in this section, the mathematical properties of an object in
a model do not determine anything about what the object represents. It seems
rather that a spatiotemporal interpretation of g must be presupposed in order
to infer that this mathematical coincidence has representational significance,
but this is to presuppose the very fact to be established. Moreover, there is no
logical relationship between symmetries of equations governing matter fields
and spacetime symmetries, even of the approximate local sort (Fletcher 2020a),
as would be needed in the two-step justification.
In light of these challenges, one might abandon the stronger requirement

for what it takes for a representation to be of spatiotemporal concepts but
still pursue Brown’s two-step process in interpreting GR. Ehlers (1973, 45)
considers this option, remarking that it is still not “theoretically completely
satisfactory” without elaborating on why. Nevertheless, one can adduce at least
four reasons:

1. It is circular. The third challenge showed that the second step of the process
must presuppose facts about how g represents durations and lengths in order
to justify why the local matching of the structure of g with that of η has any
interpretational significance.

2. It is doubly vague. First, because the interpretation relies on an approximate
rather than an exact matching of metric structure and matter dynamics in a
local region, it is unclear to what extent its validity depends on the precise
notion of approximation and its degree. Different notions of approximation
will in general be incompatible with one another (Fletcher & Weatherall
2023b). Second, because there is no unique way to match locally and
approximately the structure of g with that of η – there are infinitely many
different ηs that will agree only at a point (Fletcher & Weatherall 2023a) –
there is no unique degree to which the approximation holds.

3. It is doubly restricted. It only provides an interpretation of the local structure
of spacetime, while certain global properties, such as those concerning
causality (Section 5), are certainly of interpretational interest. It also restricts
the possible matter models to those that satisfy the SEP, relative to the notion
and degree of approximation chosen.

4. It conflicts with some of our explanatory expectations. By interpreting GR
through the lens of the less encompassing, accurate, and fundamental special
theory of relativity, it seems to conflict with the common expectation that the
order of interpretation (if any) should be in the other direction, from more
fundamental to less. Rather than explaining the success of special relativistic
physics, such success is seemingly guaranteed by interpretational postulate.
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Foundations of General Relativity 11

In this way, the two-step interpretational strategy is similar to Bohr’s
employment of “classical concepts” in the basis of his interpretation of
quantum mechanics (Faye 2019) and is vulnerable to analogous criticisms.

None of these reasons is decisive; we may well accept an interpretation of
a theory with each of these vices if there is no better on offer. But the
interpretation of Section 1 suffers from none of these vices, in addition to being
much simpler and easier to apply.
There is nonetheless an important insight within the original demand to

connect representations of duration and length with material models of clocks
and rods. To see why, suppose that instead of Duration and Lengths, I had
chosen the following simpler, absurd alternatives:

No Duration The duration of any collection of events is 0.
No Length The length of any collection of events is 0.

I am of course free to stipulate these representational principles. But if I were
to do so, I would find that the resulting models misrepresent systematically:
Essentially any case of spacetimemodeling of interest will involve representing
durations and lengths well above zero. This may move me to revise my models
and – especially in this case, in light of the pattern of misrepresentation – my
representational principles of the models’ targets. The defeasible process of
testing and adjusting models and representational principles against empirical
and theoretical evidence about the target phenomena, so as to arrive at a
reflective equilibrium, however temporary, until new evidence arrives, supports
the equilibrium commitments over others considered (Daniels 2020).
Even when there are no other potentially suitable representational principles

explicitly under consideration, one might wonder how much this is just
due to a lack of imagination. If stipulated representational principles can be
(in part) responsible for misrepresentation, then how can one be confident
that one’s adopted principles don’t contribute to misrepresentation in some
subtle, systematic way? There are at least three strategies for coordinating
representation and phenomena with models.

1. Prediction. The extensive successful predictions of and control with
a theory, using its representational principles, provides some inductive
evidence at least for the models successfully applied. General relativity has
passed all such applications in which it clearly applies, as of this writing.

2. Accommodation. When the models of a theory accommodate or closely
approximate the descriptions and predictions of the models of a successfully
applied prior theory (including its representational principles) to a common
target, it provides abductive evidence also for thosemodels.Most commonly
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12 Philosophy of Physics

for GR, these prior theories are the special theory of relativity and
Newtonian gravitation.

3. Examples.Wemay construct simple, paradigmatic examples within models
of the theories, and examples that we have largely independent reasons
to believe should illustrate or instantiate the representational target. (They
might be regarded as thought experiments [Brown & Fehige 2022], the role
of simplicity in which is only to exclude inessential distractions.) In the case
of GR, these targets would be durations, lengths, and concepts derived from
them.

The last two strategies for gleaning evidence of the adequacy of representational
principles, Accommodation and Examples, resemble Brown’s requirements
for justifying why the metric g can represent spatiotemporal quantities. But
these strategies do not serve to make the metric’s representation of durations
and lengths possible or apt, as Brown seems to demand: One can perfectly well
stipulate how the metric represents these targets, as I have done in Section 1.
Instead, these strategies, when successful, merely provide evidence that the
principles do not contribute to systematic misrepresentation. I turn to some of
this evidence, and other connections between the representational principles of
GR, in the next subsection.

2.2 The Representation of Kinematical Properties
What evidence do we have that Duration does not lead GR into systematic
misrepresentations? At the least, we have the sorts of evidence that Prediction
and Accommodation afford: inductive evidence from the successful
application of GR in tasks that depend on precise timing, such as in GPS
systems (Ashby 2003), and abductive evidence from the approximate matching
of the representation of durations in Newtonian gravitation (Fletcher 2019) and
special relativity (Fletcher & Weatherall 2023b). But both of these could be
challenged: Perhaps the duration of a timelike curve γ is best represented by a
quantity that diverges from |γ | in circumstances we have not examined, such
as in high accelerations (Mainwaring & Stedman 1993, Mashhoon 2017) or
strong ambient matter fields (Hojman 2018). Rindler (1960, 28–30) observes,
for instance, that representing the duration of γ as being independent of its
acceleration is only the syntactically simplest extension of the formula that
applies in less controversial cases where its acceleration vanishes.
Syntactic simplicity, however, is not always the mark of truth or accuracy.

This is in part why I, in previous work, pursued Examples by constructing
models of light clocks in an arbitrary relativistic spacetime (Fletcher 2013).
For a given timelike curve, I showed how to construct an infinite sequence
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Foundations of General Relativity 13

of “companion” timelike curves that in a precise sense converge to the given
curve. These curves represent idealized mirrors, between which bounces a null
geodesic, representing a light ray. As the companion curves converge, the
construction “measures” the magnitude of any closed segment of the given
curve, as accurately and regularly as one wishes, in terms of the number of
bounces and a certain measure of the distance d between the given curve and
its companion. If one assumes that such constructions are paradigmatic clocks,
then one should represent the duration of a timelike curve by its magnitude.
In other words, if arbitrarily small light clocks are ideal clocks, measuring
duration perfectly, then one should adopt Duration. This is why Duration is
often called the clock hypothesis and is stated in terms of ideal clocks (that they
measure the magnitudes of curves). (Some state the clock hypothesis merely in
terms of the independence of the rate of an ideal clock from acceleration, but
such statements are incomplete because they do not fix the duration of γ as |γ |.)
Other interpretive principles support, but do not establish, that light clocks are
paradigmatic clocks:Light establisheswhat the bouncing null curve represents,
and Length justifies why the numerical quantity d represents a length. Light
clocks’ simplicity is an interpretive virtue: complex constructions that represent
actual clock mechanisms better may fail to be ideal because of how they are
engineered.
The logic of this construction is important for its interpretation. It does not

state that, for any standard of accuracy and regularity, there is a light clock of a
single size that measures the magnitude of (any closed segment of) any timelike
curve to those standards. Rather, the size of the clock needed is bespoke to the
curve: For any standard of accuracy and regularity and (any closed segment
of) any timelike curve, there is sufficiently small light clock that measures its
magnitude to those standards: In short, the order of the last two quantifiers is
reversed. It is thus compatible with the claim that “for any given clock, no
matter how ideal its behaviour when moving inertially, there will in principle
be an acceleration such that to achieve it the external force acting on the clock
will disrupt its inner workings” (Brown 2018, 54). It is not any individual light
clock that is ideal, but the entire family of them working in concert. There is no
need to demand one clock to rule them all. Thus, I would deny that, as Knox
(2010) and Brown (2018) respectively suggest, the clock hypothesis fails for
certain neutrino oscillation systems and for accelerated iron atoms and muons.
Rather, the analysis of these systems merely shows their periodic behavior or
their decay rates cannot serve as ideal clocks under certain conditions.
Another sort of response to my results has been to question the adequacy

of Light, which I used as part of the support for the premise that light clocks
are paradigmatic clocks. Menon et al. (2020, §4.3) point out that in a variably
dispersive or refractivemedium, the worldlines of light raysmay not effectively
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14 Philosophy of Physics

have the same relative velocity to a timelike worldline (representing a mirror
in the light clock), so that in such contexts null geodesics are not adequate
representations of light. Just so, but there is a sense in which this objection
misunderstands both Light and the structure of Examples.
Light is a representational principle for test light rays in vacuum, which are

limits of certain solutions to Maxwell’s electromagnetic field equations. That
they are test light rays means that their energy andmomentum do not contribute
to Tab in the EFE; that they are “in vacuum” means not that Tab = 0 at the
events they are present, but rather that they do not interact with any dispersive or
refractive material medium. Thus, objecting to Light on the basis of dispersion
or refraction, if one accepts test light rays in vacuum in this sense, is simply to
conflate such rays with ones not in vacuum.
There seems to be little room in the practice of the general relativist not

to permit test light rays in vacuum. While I affirm that test matter requires
more delicate treatment than it is usually given, there are coherent and fruitful
treatments. But to the extent that, as I discuss more in Section 4.1, it is an
approximation of the behavior matter that we expect to be realized in the
best general relativistic models of portions of our universe, one might hold
the assumption that light clocks are paradigmatic clocks to be less plausible.
The simplicity of the light clock, in other words, may turn from virtue to
vice if it is too extreme. One can ameliorate this softened version of the
objection, if admitted, by providing an entirely analogous construction that
allows the bouncing light ray or particle to have a variable speed in the inter-
mirror medium, which can either be varying sufficiently slowly (Fletcher 2013,
1382n9) or for which one merely corrects with a more complicated limiting
formula. It is immaterial whether light is the periodic mechanism.
Before returning to the other representational principles about test matter –

Histories and Freedom – at the end of this subsection, I focus attention on
Length and then briefly on other representational principles derived from or
supported by it and Duration.
From the beginning of relativity theory (Einstein 1923/1905), rigid

measuring rods have often been invoked in the same breath as lengths, just
as clocks have with duration (see Brown 2005, 4 et passim.). If one wishes to
pursue Examples for Length, then one might begin in analogy with Duration
by analyzing a simple, paradigmatic model of rods. (Of course, bothPrediction
and Accommodation are also available.) But one would be quickly frustrated:
There is no completely satisfactory concept of rigidity for an extended object
in relativity theory, as the best option, Born rigidity, precludes any acceleration
(Synge 1960, Ch. III.5). Moreover, it is less obvious whether it is possible
to define any concept of rigidity at all without already presupposing that the
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Foundations of General Relativity 15

magnitudes of spacelike curves represent lengths – for what is rigidity if not
the constancy of all spatial relations between parts? Even without rigidity, it is
not entirely obvious how to define uniquely the length of an object in relativity
theory, as several definitions that are equivalent in prerelativistic physics are
not in GR (Geroch 1978, 140–150). Synge (1960, 108) goes so far as to deny
the need for an additional representational principle like Length at all: “For us
time is the only basic measure. Length (or distance), in so far as it is necessary or
desirable to introduce it, is strictly a derived concept.” Synge (1960, Ch. III.4)
goes on to define the length of a spacelike vector in terms of that of timelike and
null vectors, but it is unclear if this really serves to eliminate or reduce length
concepts to time concepts for spacelike curves.
It may yet be possible to fulfill Synge’s ambition through some conceptual

and technical ingenuity, but I shall take an intermediate position here
by sketching a construction that assumes Duration, Light, and (perhaps
eliminably) Freedom. Instead of using rods, it uses radar (light) ranging
of distant events (Geroch 1978, Chs. 5–6), much as Einstein (1923/1905)
originally proposed, but inspired by the discussion of Synge (1960, Ch. III.12).
(One can well dispense with Einstein’s rods and refer only to the events where
light is incident on their ends.) Given a spacelike curve, construct a sequence
of timelike geodesics intersecting and normal to it with the following property:
Each geodesic (except for the last) has a pair of null geodesics, representing
light rays, connecting an event on its past and an event on its future to the event
where the next timelike geodesic intersects the spacelike curve. The sum of the
durations of these timelike curve segments in between the light emission and
reception is proportional to an estimate of the distances between the events
where these timelike curves intersect the spacelike curve. As this sequence
grows in number and its elements closer together, the quantity proportional
to this sum converges to the magnitude of the length of the curve. Insofar
as this radar ranging method for distances is a paradigmatic construction for
determining distances, we should represent the latter according to Length.
I conjecture that the details of this construction can be filled out to give a

justification of Length based on Duration, Light, and perhaps Freedom that
is as satisfactory as the one I gave for Duration in terms of Length and Light.
(I am untroubled by a coherentist justification for representational principles in
which some support others and vice versa – cf. what Weatherall [2017] calls
the “puzzleball” view of physical theories.) Aside from Length, one could
engage in similar projects for justifying our usual representations of angle and
relative velocity (Synge 1960, Ch. III.6–7), energy and momentum (Synge
1960, Ch. IV), rotation (Malament 2012, Ch. 3.2–3), and much else.
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16 Philosophy of Physics

Notably, many of these derived quantities are relational to some auxiliary
spacetime structure or material field, such as a particular frame field or a
coordinate system defined by such a field. It is sometimes expressed that frame-
or coordinate-dependent quantities are not meaningful in GR. For, if one omits
the auxiliary structure in the expression of a spacetime model, such quantities
might not seem to be invariant under isomorphisms. But once such structure is
included, it too must be pulled back along the diffeomorphism giving rise to the
isomorphism. So such denials of meaning can be more charitably interpreted as
denials of the representational significance, or at the least the fundamentality,
in some sense, of the auxiliary structure on which these quantities depend. (See
also my discussion of energy–momentum pseudotensors in Sections 4.3–4.4.)
Finally, bothHistories andFreedom deserve a brief special discussion. They

are both representational principles for test particles, but there is something
dubious about test matter. As I discuss more in Section 4.1, all realistic
matter fields – ones that are at least in the neighborhood of being satisfactory
representations of matter in our actual universe – contribute to Tab, unlike
test matter. We allow test matter into our ontology only because it is an
approximation of matter with relatively meager energy and momentum; we
allow particles into our ontology only because they are an approximation of
matter that is relatively localized.12

Given this, “What should we make of a foundational principle that, by the
lights of the theory of which it is part, relies on the counterfactual behavior of
impossible objects?” (Weatherall 2020a, 222). That our interest in test particles
is thus only derivative suggests that Histories, Freedom, and Light should be
derivative, too, from more fundamental principles about matter fields, namely
their equations of motion and contributions to energy–momentum.
Since almost the advent of GR in 1915, there have been attempts to derive

Freedom in particular from other assumptions (Brown 2005, 162). I confine
my discussion to some recent developments and refer to the citations therein
and to Weatherall (2020a) for broader reviews. Geroch and Weatherall (2018)
show Freedom follows from a few assumptions: The matter fields under
consideration are source-free, and their associated energy–momentum Tab
satisfies the conservation condition, ∇aT ab = 0, and the dominant energy
condition (DEC): For every timelike vector va at any event, Tabvavb ≥ 0 and
Tbava is timelike or null. I discuss the interpretation of DEC in Section 4.1,
but the first two conditions simply state, respectively, that the field is not
undergoing any external forces and is not interacting with any other matter

12 See Weatherall (2020a, §2.1) for some of the problems with non-test particles as distributional
sources for the EFE; see Fletcher (2020c) for problems forHistories in spacetimes with closed
timelike curves.
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Foundations of General Relativity 17

fields. This is exactly what one should expect of free particles. Moreover,
Geroch and Weatherall (2018) prove Histories for Maxwell’s equations with
sources. None of these results require the EFE, so it appears that similar results
extend to many other spacetime theories, even nonrelativistic ones (Weatherall
2017, 2019).

2.3 Einstein’s Field Equation and the Cosmological Constant
As I mentioned in Section 1, the EFE, Eq. (1), correlates curvature at an
event with the energy and momentum at that event. In Section 3.2, when
I turn to the nature of the determination and dependence relations between
spacetime structure and matter, it will be helpful to know more about how
they correlate and depend on one another. For this purpose, we can adapt
some of the representational insights of the previous subsection to express two
distinct characterizations of the meaning of the EFE in terms of orthonormal
frames. (For these characterizations, I adapt the treatment by Malament [2012,
162–166].)
One expression of the meaning of the EFE concerns the geometry of space

relative to every observer at an event p ∈M. Represent the observer with
an orthonormal frame { iea} at p with timelike component 0ea. Consider any
spacelike hypersurface S intersecting p, with vanishing extrinsic curvature,
whose tangent vectors there are spanned by the spacelike components of the
frame. (To say that it has vanishing extrinsic curvature means that every
geodesic of the hypersurface, considered as a metric submanifold, is a geodesic
of (M,g).) Such a hypersurface represents any construction of space at p
for the observer that is standard at p. The subset of these consisting of
geodesically generated hypersurfaces, whose events are composed from those
of the spacelike geodesics through p, are those that are standard on every point
on which they are defined. Now let RS denote the scalar curvature of S at p.
The EFE holds at p if and only if for all such frames { iea} and surfaces S,

RS =
16πG
c4

Tab
0ea0eb + 2Λ. (3)

Since Tab
0ea0eb is the energy density at p according to the observer, this

equivalence states that the scalar curvature of space for any observer is an
increasing linear function of the energy density that the observer would ideally
measure. The cosmological constant Λ determines the function’s intercept.
In case it seems remarkable that the EFE can be characterized using only
energy density, since Tab also describes momentum, recall that this equivalence
constrains the energy densities as ideally measured by all observers: The
momentum flux observed for some becomes energy for others.
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18 Philosophy of Physics

The second expression of the meaning of the EFE concerns the relative
acceleration between free observers. Consider now not just a single observer
with an orthonormal frame but a frame field { iea} on an open set of spacetime,
again with timelike component 0ea, but whose integral curves are timelike
geodesics. The spacelike components, iea for i ∈ {1,2,3}, are connecting fields
that designate the direction of neighboring integral curves. Further suppose
that on at least one of the integral curves γ, the Lie derivative of these
spacelike components with respect to the timelike component vanishes, that is,
£0e

iea = 0 for i ∈ {1,2,3}. Then 0ea∇a(
0eb∇b

iec) represents the relative acceleration

of integral curves with γ in the direction iea. Call the average of the radial
components of these relative accelerations at a point p – the components
respectively parallel to { iea} – the average radial acceleration (ARA) at p.
The EFE holds at p if and only if for all such geodesic frame fields { iea} on
a neighborhood of p,

ARA = −8πG
3c2

(
Tab −

1
2
Tgab

)
0ea0eb +

Λc2

3
. (4)

Negative values of ARA indicate that gravitation is attractive, in the sense that
on average nearby freely falling observers will accelerate towards one another
in their frames of reference.
To get another sense for the meaning of Eq. (4), it can be helpful to specialize

to a perfect fluid model (cf. Baez & Bunn 2005). In this case, supposing that the
frame field is comoving with the fluid, Tab = ρ

0ea
0eb+

∑3
i=1

ip iea
ieb, where ρ is the

energy density of the fluid and ip is the fluid’s pressure in the direction iea. The
fluid has a volume function V = ϵabcd

0ea1eb2ec3ed, where ϵabcd is a volume element
defined in a neighborhood of p. Then 3(ARA) = [0ea∇a(

0eb∇bV )]/V ≡ ÜV/V,
and

ÜV
V
= −4πG

(
ρ +

1
c2

3∑
i=1

ip

)
+ Λc2. (5)

Thus, the EFE holds at p if and only if the change in the rate of change of
volume, per unit volume, is proportional to the sum of the energy density at p,
the pressures in three orthogonal spatial directions at p, and the cosmological
constant.
One can gain further insight by combining Eq. (3) and Eq. (4). This yields

that the EFE holds at p if and only if

ARA = 4πG
3c2

T − RSc2

6
+
2Λc2

3
. (6)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108954082
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 05 Feb 2025 at 20:22:22, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108954082
https://www.cambridge.org/core


Foundations of General Relativity 19

The EFE evidently demands a certain algebraic balance at every event between
ARA of geodesic reference frames and a weighted combination of energy,
momentum, scalar spatial curvature, and the cosmological constant. Eq. (6)
is in turn equivalent to the pair of equations

(8πG/c4)T = −R − 4Λ, (7)

ARA = −(R +RS)c2/6, (8)

where (again) Eq. (7) is the trace of the EFE, which substituted into Eq. (6)
yields Eq. (8). Remarkably, as this latter equation shows, the aforementioned
balance can be cast entirely in local geometrical terms – without reference to
energy or the cosmological constant – as being proportional to the average of
the spatial and spatiotemporal scalar curvatures there. This equation alone is
implied by but does not imply the EFE, however, as it determines nothing about
how curvature and acceleration are correlated with matter and the cosmological
constant. But it turns out that only the trace of the EFE, Eq. (7), is needed to
provide this correlation.
So far, I have discussed the meaning of the EFE while leaving tacit that

of the cosmological constant. Einstein brought attention to the possibility of
the term Λgab in the EFE in 1917 to allow GR to model a certain static
cosmological model, one in which the universe described is neither expanding
nor contracting. He selected the sign of Λ to counterbalance the attractive
nature of gravitation without it. He then abandoned it by the early 1930s
when (among other reasons) observational evidence indicated that in fact
the universe was expanding. Since then, astronomers and cosmologists have
repeatedly reenacted variations on this theme as they attempt to reconcile
cosmological models with observation. (See Ray [1990], Earman [2001], and
O’Raifeartaigh et al. [2018] for more details of this history of justifications for
introducing or discarding the constant.)
Despite its chequered history, the cosmological constant currently plays a

central role in modern cosmology’s standard model, called the ΛCDM (or
concordance) model (Smeenk 2013). (“CDM” is an abbreviation for “cold dark
matter.”) The current best estimates for Λ give it a definitely nonnegative, but
small, value (Aghanim et al. 2020). Its most straightforward interpretation is as
a new constant of nature that, if nonzero, sets an intrinsic length scale – hence,
with c, an intrinsic timescale – to pure gravitational models. Eqs. (3)–(7) detail
what this scale means for local spatial geometry, ARA, and so on. For instance,
at events with an effective vacuum, meaning that Tab = 0, a nonzero Λ ensures
a correspondingly nonzero spatial curvature and ARA. This role as a constant,
dimensionful (length−2) number coheres with its representation as such in the
Einstein-Hilbert action.
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I will return to the relationship between Λ and an effective vacuum shortly.
But first I turn to a different sense inwhichΛ could be a “constant,” with alleged
implications for the possible models of GR. Substituting Eq. (7) into the EFE
(Eq. (1)) to eliminate Λ yields the “trace-free” EFE,

Rab −
1
4
Rgab =

8πG
c4

(
Tab −

1
4
Tgab

)
. (9)

This equation is not equivalent with the EFE, but when combined with any one
of the following three equations, it is:

∇aT ab = 0, (10)

∇a[(8πG/c4)T + R] = 0, (11)

(8πG/c4)T + R = const. (12)

The point of this reformulation is that one can rewrite the EFE in terms of
equations that eliminate reference to Λ. In fact, it can be recovered by labeling
the constant in Eq. (12) as−4Λ, in which case the equation just becomes Eq. (7).
Earman (2003, 563) writes of this reformulation that “it is not a new universal

constant of nature but rather a humble constant of integration” so that, unlike the
standard formulation, “the value of [Λ] can vary from solution to solution (in
the philosophers’ jargon, from physically possible world to physically possible
world)” (Earman 2003, 562). (Earman [2003, 562] also considers, implicitly,
another reformulation in which the cosmological “constant” is not a number
but a scalar field λ that satisfies the field equation ∇aλ = 0. Then, presumably,
λ would be just a “humble” scalar field. Remarks analogous to mine in the rest
of this section about constants apply mutatis mutandis to such fields.)
Whether this comparative conclusion follows depends on what further

assumptions one is willing to make. On my reconstruction, Earman implicitly
assumes the following two premises:

1. A dimensionful constant associated with a physical theory appears in the
theory’s fundamental laws if and only if it is a universal constant of nature.

2. A dimensionful constant associated with a theory is a universal constant of
nature if and only if it takes on only one value in the theory’s models.

The first premise is needed to conclude that some constants, such as c, are
universal constants of nature, and that others, such as λ (as a “humble constant
of integration”), are not. The second premise is needed to conclude that this
division entails a difference in the possible values the constants can take on in
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the models of the theory. Each part of each conclusion employs one direction
of each of the biconditionals.
There are good reasons to reject each of these premises. As I mentioned in

Section 1 and discuss in more detail in Section 3.1, the mathematical formalism
of a theory is only a guide to its interpretation. Any strict rule for correlating
them, such as the first premise, can hold at best ceteris paribus. In this case,
the ceteris are not paribus, for it conflicts with scientific practice. For instance,
Earman (2003, 562) indicates the electron charge as an example of a constant
of nature, but according to QED, this is only an effective quantity arising
from the bare charge of the electron. The same goes for the mass of many of
the fundamental particles. So there are constants of nature associated with a
theory that do not appear in fundamental equations. Conversely, the quantity
8πG/c4 appears in all versions of the EFE, but it is not itself considered to be
a fundamental constant, but an algebraic function of the constants of nature c
and G.
The second premise also conflicts with scientific practice. Contrary to what

Earman seems to suggest, it is very common for physicists to consider models
with different values of physical constants as solutions to a physical theory (cf.
Read 2023, 19n35). The principal interest of the models whose constants take
on the actual values is that they, presumably, will be more descriptively and
predictively accurate than those with different values, not because they are the
only “true” models of the theory. Conversely, it is sometimes useful to restrict
what one would otherwise have considered to be possible values of a quantity
that is not a fundamental constant. For example, this was Sommerfeld’s
strategy, in introducing his quantization condition, for avoiding the ultraviolet
catastrophe and recovering Nernst’s law (Duncan & Janssen 2022).
So, there is no good reason to suppose that reformulating the EFE according

to the outline of the previous few paragraphs automatically changes the
range of values that Λ can take in the models of the theory. Proposals for
wider or narrower ranges of values, which assert corresponding ranges of
physical possibilities, are equally compatible with the standard EFE and these
alternatives, such as the trace-free EFE with the conservation condition.
Nevertheless, these different proposals do suggest that the interpretation ofΛ

may be more or less relatively fundamental, in the sense that they may support
the same possibilities forΛwhile differing in what subjunctive (counterfactual)
conditionals they support. In the standard EFE, Λ is not determined by any
other constant, structure, or field. Consequently, as one varies T, for instance,
Λ remains the same. But using the trace-free EFE plus conservation condition,
Λ is determined by the values of T and R. Hence, as one varies T, Λ will in
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general vary, too. (I am setting aside how to implement the semantics for these
dependencies in terms of conditionals, but see Fletcher [2021a] for a proposal.)
In Section 3.2, I will have much more to say about relations of determination

and dependence in GR. Before doing so, I conclude this section with a
quite different perspective on what Λ represents that has been influential in
cosmology, and a “problem,” or a research question, that it has engendered.
In the two characterizations of the EFE in terms of spatial curvature and

ARA, Λ formally plays a similar role as energy and momentum, except that it
does not vary from event to event. Indeed, one can formally rewrite the EFE
simply by moving the cosmological constant term to the “matter” side from the
“geometry” side:

Rab −
1
2
Rgab =

8πG
c4

Tab + Λgab =
8πG
c4

(
Tab +

Λ

Tab
)
, (13)

where one has defined
Λ

Tab = (Λc4/8πG)gab. One then interprets Tab not as the
net energy–momentum tensor, but only that for ordinary, non-gravitational

fields;
Λ

Tab is the energy–momentum of the “gravitational field” g or of
spacetime itself. Here, Λ is still a constant of nature, but quantifies the scale
of gravitation’s or spacetime’s contribution to energy–momentum.
This interpretation ascribes energy–momentum to g or to events themselves,

while the interpretation of Section 1 does so only to matter fields. I elaborate
reasons to prefer the latter in Sections 3.3 and 4.1, where I discuss the ontology
of the “gravitational field” and constraints on acceptable matter theories in
terms of how they contribute to energy–momentum.
These reasons notwithstanding, if one assumes that a “vacuum” is a

model of GR in which Tab = 0, then
Λ

Tab represents the local energy and
momentum of such a vacuum. It is then extremely tempting to identify this
“energy of the vacuum” with the “vacuum energy” of quantum field theory,
that is, the expected energy of the ground state of the quantum fields of matter.
(Earman [2003, 565] drolly characterizes this dubious identification as “a bit
of word play.”) But the resulting calculation of this energy yields a value for
Λ that differs from its observed value by up to 120 orders of magnitude in
standard units. This has been dubbed the “cosmological constant problem”
(Rugh & Zinkernagel 2002). But if it truly is a problem at all – and careful
analyses cast severe doubt on it (Bianchi & Rovelli 2010, Koberinski 2021) –
then it is a problem for the interpretation of the quantum field theoretic vacuum
in the context of curved spacetime, rather than a problem for GR per se.
It might therefore best be interpreted as a heuristic for research in quantum
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gravity (Schneider 2020) (although it is yet unclear how successful this has
been [Koberinski 2021]).

3 Dependence and Ontology
3.1 Models as a Guide to Metaphysics

In the following subsections, I will use the structure of the models of
GR as a guide to its attendant metaphysics (cf. Coffey 2014, §6). A
metaphysical interpretation of GR extends the partial interpretation of
Section 1, providing much more about what the theory claims beyond
the broadly empirical. Roughly speaking and at a first pass, the models
themselves represent possible worlds or states of affairs, while each
model’s objects and mathematical relations might represent its ontology and
metaphysical relations (or “ideology”), respectively. Relations of functional
dependence and determination between these objects and mathematical
relationsmight represent real relations ofmetaphysical dependence and relative
fundamentality.
This is only a “first pass” because, as we shall see in the remainder of this

section, nothing compels one to match so neatly the formal parts of the models
with what they represent. Since one can stipulate whatever “interpretational
schema” one likes for a certain modeling purpose (Nguyen 2017), one cannot
simply transcribe metaphysical commitments from formal structure. This
would be so even if one had a recipe for transcription, for we model for many
other purposes besides metaphysical clarity, such as computational efficiency,
pedagogical effectiveness, or cognitive understanding (Frigg & Hartmann
2020). Also, in general, our models idealize – abstract from or distort what
they represent. We can often de-idealize – augment or change a model so that it
misrepresents less – but usually only in dialogue with a (perhaps temporarily)
assumed interpretation.
Despite these limitations – despite being only a guide – the structure of

the models should guide our interpretation of GR ( pace Teitel 2021). An
interpretation of a scientific model that harmonizes with the structure of
the model facilitates surrogative reasoning with the model. This is so with
metaphysical interpretations as much as it is with “concrete” ones. It is virtuous
to the extent that reasoning with the model enables precision and impedes
incoherence and inconsistency. With mathematical models, as we have for GR,
our confidence in the consistency of the underlying mathematics underwrites,
at least in part, our confidence in the consistency of the interpretation.
Interpretations of models that harmonize with the whole structure of each

model are not necessary to avoid error, but it is difficult to emphasize enough
howmuch they help given the natural tendency to interpret only certain aspects
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of models in isolation. A little thought experiment may illustrate this. Imagine
a planet whose atmosphere is so windy that every part is in fluid motion; at each
place on it, the air moves smoothly across it. Have you got it? Are you ready
for metaphysical inquiry into that no windier than which can be imagined? You
haven’t and aren’t, despite how it may seem to you. The reason is that there can
be no such planet to imagine. The hedgehog (or “hairy ball”) theorem states
that there is no continuous vector field on the smooth sphere that is nowhere
vanishing. If one can adequately represent the direction and magnitude of the
wind on the planet with such a vector field, then its air must be still somewhere.
When the phenomena and metaphysics are complex, one can fall into

incoherence without realizing how local, simple interpretations can fail to
join consistently. Harmonizing interpretation with structure helps to prevent
this. Still, as I alluded before in this section, neither the formal nor the
nonformal aspects need to be completely fixed in the process of interpreting
a theory. Given an interpretation, its ontology, properties, and (meta)physical
dependencies should have formal correlates in the models. Conversely,
given a set of mathematical models, their formal objects, structures, and
functional dependencies should reflect the interpretations’ objects, relations,
and (meta)physical dependencies. Each consideration may warrant adjustment.
Other virtues, besides this harmony, are relevant as well, virtues such as saving
the empirical phenomena, wide scope, and economy of commitment. Thus will
the structure of GR’s models guide the following interpretation.

3.2 Determination and Dependence
It may seem queer to treat determination and dependence in GR, hence
relative fundamentality and metaphysical dependence, before the ontology
of spacetime and matter. However, queerness is virtuous for investigating
the metaphysics of GR, as many of the central ontological positions and
arguments turn on considerations of fundamentality and dependence. So, in
this subsection, I’ll first describe the facts about mathematical determination
and dependence in the models of GR. Then I’ll explain what interpretations
these facts suggest. Next, in Section 3.3, I’ll review and critically evaluate
some alternative proposals for interpretations. Finally, I’ll discuss determinism
in GR, conceptions of which will play a role in the discussion of Section 3.4.
Mathematically, within a class of models, the objects in one set, A,

(nontrivially) determine simpliciter those in another, B, when those determined
are a (nonconstant) function of those determining.13 In other words, there is a

13 In some cases of interest, the function may be partial, in which case one may distinguish
between complete and partial determination.
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Figure 1 Commutative diagrams of the determination relations for models of
GR, in the “pure” case and the case with matter and auxiliary spacetime
structure. Among the objects, gab is the metric, Λ is the cosmological

constant, χ is the auxiliary spacetime structure, Φ is the collection of matter
fields, ∇a is the affine connection, Tab is the energy–momentum tensor, Rd

abc
is the Riemann tensor, and Rab is the Ricci tensor. Among the arrows, πi is
the ith component projection, δ is the delta (contraction) tensor, “def” is a
mathematical definition, “EoM” is the assignment of energy and momentum
from the matter fields, “EFE” is the Einstein field equation, and “LC” is the
Levi-Civita construction. All arrows not labeled follow from the universal
property of products. (Note that the trace-reversed arrows are not needed for

these.) Inessential identity and projection arrows are omitted.

(nonconstant) function f : A → B such that f (a) = b if and only if the pairing
(a,b) appears in one of the models. In practice, if b ∈ B is so determined, then
it is often omitted in the expression of the models, since it is specified uniquely
from a. (The determining f itself rarely appears explicitly in the models.) Also
in practice, B is often a space with nontrivial isomorphisms, in which case
determination is only up to isomorphism: Whenever b and b′ are isomorphic,
the pairing (a,b) appears in the models if and only if (a,b′) does. In these cases,
one can still speak of functional determination, where the uniqueness of the
value of the function in B for any given element in its domain A is understood
to be only up to isomorphism. I will let this qualification be understood and
tacit in what follows.
Figure 1 depicts the central determination relations among the objects of

the models of GR, in both the cases of (a) pure gravitation and (b) matter
and auxiliary spacetime structure. There are just a couple of nontrivial ones
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shared in both cases. First, the Levi-Civita construction, as I mentioned
in Section 1, determines from the metric gab a unique, torsion-free affine
connection ∇a, hence unique associated Riemann and Ricci tensors, Rd

abc
and Rab, respectively. Second, given the metric gab, any two from the triple
(Λ,Rab,Tab) determines the third via the EFE and its trace-reversed version.
According to the alternative I discussed in Section 2.3, in which the EFE is
replaced by the trace-free EFE (Eq. (9)) and one of Eqs. (10)–(12), Λ and
Tab would switch places everywhere in diagram (a), making it more similar
to (b), which itself would not be affected by adopting this alternative. In
that case, however, (gab, χ,Φ) also determine the energy–momentum tensor
Tab – in principle, every component is needed. In general, none of the reverse
determinations hold. (See Fletcher [2021b] for more details on these.) Note that
the manifoldM does not appear in the diagrams, as all the objects invoked (with
the exception ofΛ) are fields onM or (in the case of∇a) operators thereon.14 So,
in a way, each of them determines M (and none vice versa), but only because,
considered as functions,M is their common domain.
Asymmetric determination generally suggests relative fundamentality: The

more fundamental objects determine the less fundamental ones, but not vice
versa. Product objects are perhaps an exception to this: They asymmetrically
determine their components, but insofar as the product objects are constructed
from the components, it suggests that the components are more fundamental.
According to these doctrines, in any given model of either the pure gravitation
or the matter cases, the metric gab of the model is more fundamental than
its connection ∇a, which is more fundamental than its Riemann tensor Rd

abc,
which is more fundamental than its Ricci tensor Rab. In both cases also the
Tab in the model is less fundamental than gab and Λ together, and in the
nonpure gravitation case, Tab is less fundamental than spacetime structure
(gab and χ) and matter (Φ) together, but in general not less fundamental than
either separately (cf. Lehmkuhl 2011). In no other cases is one object more
fundamental than another.
Objects that (i) are not determined by any others (save for product

objects) or that (perhaps also) (ii) collectively and minimally determine all
other objects suggest being interpreted as the absolutely fundamental. These
two requirements are sometimes respectively labeled as independence and
complete minimal basis (Tahko 2018). We can limn fundamentalities from
Figure 1: Call an object A an ancestor of B if there is a chain of arrows from A
toB. Then objects satisfying independence have no ancestors themselves (save

14 As I mentioned in Section 2.3, one could alternatively take Λ to be a constant scalar field on
M instead of a numerical constant.
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for any from product objects containing them), while a set of objects satisfying
complete minimal basis will be a minimal ancestral set for all objects. In
the pure gravitation case, gab is absolutely fundamental in the independence
sense but not the complete minimal basis sense, while the converse holds for
(gab,Λ). Again, according to the alternative I discussed in Section 2.3, in which
the EFE is replaced by the trace-free EFE (Eq. (9)) and one of Eqs. (10)–(12),
Λ would be replaced by Tab in this case of pure gravitation. (The common
practice of omitting Λ from the pure gravitational models usually arises not
because of this alternative but because the EFE is not assumed or the value of
Λ is tacitly assumed to be some fixed constant.) In the case with matter fields
and auxiliary spacetime structure, each of (gab, χ,Φ) is absolutely fundamental
in the independence sense and the collection is absolutely fundamental in the
complete minimal basis sense.
Ehlers et al. (1972, 2012) propose a different “constructive axiomatics” for

GR that also suggests different determination relations. They begin with the
worldlines of free test particles and light rays as their basic objects, on which
they impose conditions so that the union of these worldlines results in a
Lorentzian manifold. There have been many developments and refinements of
this approach; see, for example, Pfister and King (2015, Ch. 2) or Adlam et al.
(2022) for recent reviews. However, a central deficiency they all share as an
alternative view of the internal determination relations is that they take test
matter as basic (hence seemingly absolutely fundamental) objects (cf. Sklar
1977, §VII.C). As I discuss more in Sections 3.3 and 4.1, test matter is an
approximation of the matter that contributes to Tab in any spacetime model
representing actual phenomena.We allow it into our ontology as a convenience,
if at all, justified by how it approximates more realistic matter fields. Insofar
as this justification seems already to presuppose the usual spacetime structure,
test matter is ill-suited to serve such a foundational role. But this does not make
the this constructive program worthless. In my view, it is better to interpret it
as fulfilling a role (Examples) analogous to that of light clocks discussed in
Section 2.2 (Fletcher 2013) or to that of heuristic principles and justifications.
It helps to justify why a symmetric, nondegenerate tensor field of Lorentz
signature is a good representation of chronogeometric quantities, and suggests
alternative theories against which GR can be tested (cf. Ehlers et al. 1972, 64).
Weaker than mathematical determination is mathematical dependence.

Within a class of models consisting of tuples from a product of sets A×B×· · · ,
the objects in one set, B, depend locally on A at a ∈ A when fixing that
value restricts the values of B. For example, let S ⊆ A × B be the paired
objects associated with the models of interest, and suppose, without loss of
generality, that dom(S) = A. Then B depends locally on A at a ∈ A in S
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when {b ∈ B : (a,b) ∈ S} , ran(S). B depends locally on A simpliciter when
it depends locally on A at some a ∈ A. B depends globally on Awhen it depends
locally on A for all a ∈ A. According to this definition, determination is a
particularly strong type of global dependence in which {b ∈ B : (a,b) ∈ S} is (up
to isomorphism class) a singleton for each a ∈ A, that is, S is a function. (One
can also formulate dependence in terms of multivalued functions, which can be
useful for discussions of supervenience, but I leave that to another occasion.)
So, all the determination relations discussed before in this subsection are also
global dependence relations. But the determining tuple of objects in these
cases also locally depends on the determined objects unless the determination
function is constant. This dependence is global if the determination function is
injective.
What are the dependence relations among the absolutely fundamental

objects? Those that are absolutely fundamental in the independence sense can
still globally depend on each other as long as that dependence doesn’t rise to
the level of determination. Whether matter fields Φ depend even locally on
spacetime structure gab, χ or vice versa is a function of the former’s equations
of motion and energy–momentum contributions. (Whether χ depends on gab
depends on the nature of χ. For example, time orientations will in general
depend globally on gab and vice versa, but fields encoding only topological
properties of M, such as its Euler characteristic, will not.) For instance, in
topological field theory, there is no such mutual local dependence as M
determines Tab. When a matter field’s contribution to energy–momentum is
constant across models, as is the case with test matter, that field can well
globally depend on gab without gab even locally depending on the matter field.
But these tend to be exceptional cases; typically, gab and Φ depend globally on
each other.
What is the nature of the dependence relations between all these elements?

There are many options available – grounding, ontological dependence, or
priority, among others (McKenzie 2022) – but much of the recent discussion
has focused on whether the dependence relations between matter Φ and
spacetime structure (gab, χ) are causal. For recent defenses and offenses, see
respectively Weaver (2020) and Vassallo (2020), and references therein.15

I will not intervene in this debate here except to point out that both of
these authors seem to assume that Φ and gab are not mutually dependent
on one another.16 This assumption is erroneous for general matter fields if

15 Vassallo (2020) is primarily critical of interpreting the dependence relations as purely causal
or grounding. He advocates instead for a mixture of the two.

16 Weaver (2020, §6.3) does offer an abductive argument for the claim that “The gravitational
field’s dynamical action is primary and causally prior to the inertial motion of massive bodies.”
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mathematical dependence guides metaphysical (or causal) dependence. Similar
conclusions hold for the suggestion of Baker (2005) thatΛ is a cause of motion
of matter if one is considering models of GR with matter fields explicitly
represented.
Whatever the interpretation of these dependence relations, it is generally

acknowledged that such relations support explanations. In light of them, one
can illuminate a challenge that Read et al. (2018, §5) pose to any interpretation
of GR, namely to explain the following two coincidences (what they call
“miracles”):

1. All nongravitational interactions are locally governed by Poincaré invariant
dynamical laws.

2. The Poincaré symmetries of the laws governing nongravitational fields
in the neighborhood of any point coincide – in the regime in which
curvature can be ignored – with the symmetries of the metric field in that
neighborhood.

The “invariance” and “symmetries” expressed are those of the coordinate form
of the metric and the equations of motion for matter fields. This explanatory
challenge is motivated by the idea that, in some sense, the symmetries of laws
for matter are more fundamental than the symmetries of spacetime structure.
Strictly speaking, there is nothing to explain because the first explanandum

isn’t true and the second presumes the truth of the first. For example,
the laws for source-free electromagnetism are invariant under a group of
symmetries wider than the Poincaré symmetries, as they include conformal
transformations, and the laws for the weak interaction are invariant under a
smaller group of symmetries, as they must preserve orientation structure in
addition to the metric. (The implications of these facts for the “dynamical”
approach, discussed in Section 2.1, do not seem to have yet been fully
appreciated by its proponents.)
Nonetheless, there is a line of inquiry in the conceptual vicinity without this

fault: Why do the dynamical equations for matter all depend on the metric or
on structures it determines? The answer is that insofar as dynamics is about
change over time (or perhaps, in a generalized sense, place), it must include
a representation thereof; the metric represents these times and determines the
representation of change in models of GR. This is just what it means for matter
dynamics to be adapted to spacetime geometry (Weatherall 2020a, §2). Matter
dynamics depends only on the spacetime structure there is, while whatever
spacetime structure there is depends on (because it must include) whatever

In any case, even for readers who follow his argument, whether one dependency is “primary”
or “prior” isn’t apparently relevant to the fact of mutual dependence at hand.
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structure the matter dynamics presupposes. Neither is more fundamental than
the other, in line with the conclusions drawn previously in this subsection.
The line of inquiry might continue: Isn’t it a coincidence that all matter

fields involve the same notions of time, distance, and change? Couldn’t there
be notions of these bespoke to particular types of matter? I can think of three
sorts of answers to this second question. The first is dismissive:

1. Is this a coincidence worth an explanation? What was one expecting, after
all? If this is a coincidence, it is not unique to GR, but applies equally
to all spacetime theories, relativistic and nonrelativistic. It has been an
adequate modeling assumption for all of these, and there is no clear evidence
otherwise. That’s why Newton, in the Scholium to his Principia, makes this
same assumption.

One can also well resist on conceptual grounds that this is a coincidence, or that
it cannot be explained through a kind of theoretical equivalence. The second
and third answers elaborate on this pair of conceptual responses in particular
ways.

2. If in fact there is only one matter field, only one representation of time,
length, and change is needed. Such a unified field theory needn’t have the
strong ambitions of grand unified theories in particle physics to have a
simple Lie group as the gauge group for matter; allowing product gauge
groups would suffice as long as one could interpret values in this space as
that of a single material field. One could argue that this has already been
achieved in the Standard Model of particle physics.

3. Suppose that there were matter fields with separate notions of time, distance,
and change, and yet those fields interacted. If it is possible to rewrite their
dynamical equations in terms of a single metric (or metric-like) structure –
representing just one notion of time, distance, and change, perhaps with
extra spacetime structure – then such a theory with, for example, multiple
structures representing time would be equivalent with one with a single such
structure. Some such theories have already been proposed, especially in the
context of problems in cosmology (e.g., Hossenfelder 2008, Hohmann 2014,
Petit & d’Agostini 2014). Brans-Dicke theory (Weinstein 1996) and TeVeS
(Brown 2005, §9.5.2) may also count as examples.17

These sketches of answers deserve fuller pursuit than I can sustain here. It is
worth emphasizing nonetheless that the questions to which they respond do

17 See also Lucas (1973) for an earlier philosophical discussion of the possibility of more than
one temporal structure.
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not concern the interpretation of GR per se. Just as one can stipulate what the
metric represents, one need give no apology for a single metric (and associated
structure) if it appears to be representationally adequate. The explanations that
these questions entreat draw not from a single theory, but an implicit collection
of alternatives, responding to how one might account for some atypicality of
GR within this class (Weatherall 2011, Lehmkuhl et al. 2016).

3.3 Ontology of Gravity and of Spacetime Structure
The traditional ontological debate in the philosophy of space is between
positions we now call substantivalism and relationalism (Pooley 2013).
Substantivalists maintain that space is a sort of entity that exists independently
of matter, while relationalists insist that space is only an abstraction from the
spatial relations between material bodies or parts thereof. In the transition to
modern and relativistic physics, an analogous debate continues concerning
spacetime, hence concerning the status of spatiotemporal structures.
Before addressing this debate and how the interpretation of Section 1

interfaces with it, I will discuss the distinction between and identification
of spacetime structure and matter. This distinction raises issues about the
interpretation of test matter. I then draw some consequences for the ontology
of gravity itself and its relation to the notion of a gravitational field in GR. Only
then do I return to the initial question about the ontology of spacetime, with the
results of the previous discussion in hand.
As I mentioned in Section 1, the interpretation of GR I described there

has two sorts: spacetime structure and matter fields. For each of these sorts,
I mentioned a representational criterion and a formal criterion, which (with
one exception to be explained presently) align as necessary and sufficient
conditions that partition the fields into the two sorts. Matter fields are the stuff
that events are (at least potentially) about: They involve coincidence values
of these fields. Familiar cases, such as the density and pressure of fluids and
the strength of electromagnetic fields, illustrate this, but it can be difficult to
apply to unfamiliar cases. The formal criterion is much easier to apply: Matter
fields are just those fields for which there is an explicit procedure for how they
variably contribute to the energy–momentum, in the sense that the latter is a
function of (hence, determined by) the values of the former. That matter fields
interact means that they have the potential to exchange energy and momentum,
leading to differences in their dynamics.
Test matter presents a problem case for the alignment of these criteria: It

ostensibly represents stuff that events could be about, but it does not contribute
to energy–momentum. One response to this is to interpret the criteria as not
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logical criteria but cluster criteria, in the sense that something is more deserving
of the title “matter” to the extent that it satisfies each of the criteria (Baker
2021). Test matter then occupies a liminal position between (nontest) matter
and spacetime structure because it satisfies enough, but not too many, of the
cluster criteria for both. However, I prefer instead of adopting cluster criteria
to make an explicit exception for test matter in light of its theoretical role in GR
and in spacetime theory more generally. We allow for test matter in our models
to the extent that it approximates, as a limiting case, the properties of matter
fields that do contribute to energy–momentum. This will present a contrast with
spacetime structure. (Although I favor this sort of interpretation of test matter,
in Section 4.1, I will discuss in more detail one other way of how to implement
this interpretation of test matter by reviving the old distinction between active
and passive charges or properties.)
Unlike matter, spacetime structure is not stuff that events are about, but

rather encodes spatiotemporal properties of collections of events. In other
words, spacetime structure represents spatiotemporal concepts. In GR, these
include the familiar cases of duration, length, angle, change, and so on, as
represented by the metric gab and possibly an orientation field. Like with the
representational criterion for matter, this may be difficult to apply when faced
with an unfamiliar structure, and there is some vagueness regarding which
concepts are spatiotemporal. Also as before, the formal criterion is much easier
to apply: Fields that represent spatiotemporal structure are just those that do not
contribute variably to the energy–momentum. Test matter fields are an explicit
exception; spacetime structure is not generally the limit of (nontest) matter.
Discussions of spacetime structure often have various spacetime theories

as their subject. Although such generalization is not my primary object here,
I would venture that the formal criterion of energy–momentum contribution
would be the most important when exploring the interpretation of an unfamiliar
proposal for a spacetime theory. If such a theory is not explicitly stipulated to
represent spatiotemporal concepts, as some claim to be the case with certain
models of quantum gravity, then “spacetime structure” might be a misnomer,
even if the contrast with matter is still apt. It may in such theories be the case
that the candidates one identifies for representing emergent spacetime are partly
“pre-spatiotemporal” and partly material.
In any case, this generalization, focusing on the formal criterion, also

contrasts with other recent characterizations of matter and spacetime structure
in the literature, of which I’ll consider three. First, Martens and Lehmkuhl
(2020) present a list of eight criteria of increasing strength for matter and
eight criteria for spacetime structure. However, both sets of criteria are
unsatisfactory. Their weakest matter criterion is that “The object under
consideration is not constant/static, but varies/changes.” Static, nonvacuum
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relativistic spacetimes fail this criterion but by stipulation contain matter
fields, such as perfect fluids. Unless one wants to eliminate such models as
physical possibilities, this and all their other criteria cannot be necessary. Their
spacetime structure criteria just stipulate that particular structures, such as
Lorentzian manifolds or affine connections, represent spacetime structure, but
no mathematical structure represents anything spatiotemporal in virtue of its
mathematical properties alone.
Second, Baker (2021, S290) proposes that spacetime structure is a cluster

concept, listing nine different criteria (without claiming completeness). One
criterion is my formal criterion, that spacetime structure does not carry
energy or momentum. While I’m sympathetic to the idea that many natural
concepts are cluster concepts, I’m also not convinced that any of the other
criteria he listed have much independent weight. Many of them, like the
criteria of Martens and Lehmkuhl (2020), are much too specific to particular
mathematical structures, or are plausible only to the extent that they presuppose
the functional, representational criterion, such as “ground[ing] or explain[ing]
a family of modal facts about which states are geometrically possible.”
Third, Knox (2019, 122) proposes a functionalist criterion just for spacetime

structure: “spacetime is whatever serves to define a structure of inertial frames,
where inertial frames are those in whose coordinates the laws governing
interactions take a simple form (that is universal insofar as curvature may be
ignored), and with respect to which free bodies move with constant velocity.”
The representational component of my criterion also has a functionalist

flavor, but locates the function more broadly in spatiotemporal concepts
rather than narrowly in inertial frames. (Read and Menon [2021, §5] note this
alternative functionalist possibility but rightly complain that it makes it difficult
to apply to unfamiliar cases, as I acknowledge. The formal component of my
criterion, I should emphasize by contrast, is not functionalist.) This narrower
conception leads to unsatisfactory results even just within GR (even setting
aside what it means for the laws to be “simple”). In one respect, it is too
narrow: It rules out orientation structure, since orientation plays no role in
determining inertial frames. It also rules out the spacetime metric, since neither
the signature of the metric nor its scale factor are needed to determine such
inertial frames: The metric provides more structure than is needed. If one
generously allows any formal structure that provides at least enough to define
inertial frames to count as spacetime structure, then any contrived amalgam
with at least this much will count. In another respect, it is too broad: In perfect
fluid models, the velocity vector field of the fluid defines a frame in which
the equations of motion simplify even further (Fletcher 2020a), but this field
represents material, not spacetime structure. If one generously allows any
structure representing material structure that provides at least enough to define
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inertial frames to count as spacetime structure, then too muchmaterial structure
will also count as spacetime structure. (See Baker [2021] and Read and Menon
[2021] for further criticisms.)
Turning now to the ontology of the gravity itself, Lehmkuhl (2008) provides

a helpful classification of three types of positions concerning the relative
ontological priority of gravity and spacetime geometry.

Geometric Gravitation reduces to, or is nothing more than, a manifestation of
spacetime geometry.
Field Spacetime geometry reduces to, or is nothing more than, a manifestation
of gravitation, that is, the gravitational field.
Egalitarian Gravitation and spacetime geometry are identical, with neither
reducing to the other.

Spacetime geometry consists of the facts about durations, lengths, angles,
changes, and so on that the metric represents. “Gravitation” is more imprecise:
It refers to the more vaguely defined class of gravitational phenomena whose
common source one might reify in a material gravitational field. Lehmkuhl
(2008, §4) considers three candidates for such a reification, including the
connection components (Einstein’s preference), opting for the metric itself,
since it determines all the other objects that have gravitational significance –
that is, those that play a role in describing gravitational phenomena. One can
see this in Figure 1(a) (taking a tacit, fixed value of the cosmological constant).
However, the fact that the metric determines the other structures of a

relativistic spacetime with gravitational significance does not entail that it
represents a material gravitational field or potential. There are also two positive
reasons against it. First, the usual conception of a field or potential, from
matter theory, is that there is a zero section of the field bundle that represents
a vanishing field, the absence of the field’s material effects. In the case of
gravitation, one should find this at least in Minkowski spacetime, which
characteristically represents a relativistic universe (or a portion of one) in the
absence of gravitation. But the metric, always being nondegenerate, admits
of no zero section. It does not help to identify the gravitational field as the
difference between the metric gab and the Minkowski metric ηab (cf. Pooley
2013, 539n34), for this quantity is not well defined when the underlying
manifold is not R4, and not uniquely defined when the underlying manifold
is R4 (Fletcher & Weatherall 2023a).
This suggests a better candidate to represent the source of gravitational

effects: Lehmkuhl’s other candidate, the Riemann tensor Ra
bcd (Synge 1960,

viii). It vanishes in Minkowski spacetime and in all and only other spacetimes
where, by definition, there is no spacetime curvature. Lehmkuhl (2008, 96)
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objects that this does not allow one to describe a “homogeneous” gravitational
field, even in idealization, but the basis of the objection seems to be incorrect.
Insofar as a homogeneous gravitational field is an object of Newtonian
gravitation, it can be expressed as the limit, or idealization, of certain general
relativistic models (Fletcher 2019).
That said, even if the Riemann tensor encodes the local phenomena of

gravitation, it cannot be interpreted as a material field according to my criteria
for matter fields. This is because it does not contribute to energy–momentum.
The same applies to the metric itself. Moreover, the phenomena of gravitation
is not merely local; it may manifest across quite extended collections of events
without appreciable curvature.
Although I postpone further discussion of gravitational energy to Section 4.3,

I can note here that this second reason against interpreting the metric in
particular as a material field bears upon some suggestions that it must be
material because it obeys its “own” dynamical equations, the EFE, and that
it acts on and reacts against matter fields (Brown 2005). Rovelli (1997, 197)
expresses the idea forcefully:

A strong burst of gravitational waves could come from the sky and knock
down the rock of Gibraltar, precisely as a strong burst of electromagnetic
radiation could. Why is the first “matter” and the second “space”? Why
shouldwe regard the second burst as ontologically different from the second?
Clearly the distinction can now be seen as ill-founded.

If the EFE is really a dynamical equation for the metric, it must express how
the metric changes from one event to another. But according to what standard
is the metric changing? The only absolute standard available for change – that
is, one not relative to some auxiliary structure – is the derivative operator ∇a,
but its compatibility condition ensures that ∇agbc = 0, that is, the metric is
unchangingwithin a model. This is because the derivative operator just extends
the notion of change that the metric itself provides. The metric cannot be
dynamical merely because the metric is not a fixed field, as is the case in special
relativity or Newtonian spacetime, because auxiliary spacetime structure, such
as orientation fields, are not fixed but are clearly nonmaterial. In any case, there
is no logical implication from being dynamical to being material: The British
monarchy, for instance, obeys its own peculiar dynamical rules of succession,
but not even the staunchest royalists consider it thereby a material entity.
The rhetoric of action and reaction here is also unclear. It is true that, as

discussed in the previous subsection, the metric and matter typically depend
upon one another. But this dependence, however it is interpreted, need not
entail material interaction, just as the dependence between any sort of properties
across events need not, as the example of the monarchy just discussed attests.
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It is also true that the metric typically appears in the equations of motion for
material fields, but that is not sufficient to conclude that they interact, as any
such equations invoking auxiliary spacetime structure, such as an orientation,
attest. Moreover, material fields “act” on each other typically in virtue of
energy–momentum exchange or conversion as represented by contributions
to Tab, but the metric has no such energy to give, or so I will argue in
Sections 4.3–4.4, even for gravitational waves. (In those sections, I will
consider attributing to the metric a kind of energy relative to a frame field
that defines a local flat metric, but that relative energy is not the sort invoked
in the criterion for material interaction, as the local flat metric can be chosen
conventionally and independently of the behavior of matter.)
I conclude against gravitation requiring – really, permitting – a separate

material entity, a gravitational field, which rules out both Field and
Egalitarian, the latter because it requires postulating a material gravitational
field in addition to (or identical with) spacetime geometry. The spacetime
metric and the structures it determines just do not have the necessary properties
to be regarded as material fields. Still, I emphasize that the “spacetime
geometry” in Geometric is just a codification of the structure of durations,
lengths, and so on – gravitation reduces to, or is nothing more than that.
Finally, I return to the question with which I started this subsection:

Does spacetime and its structure exist independently from material things
(substantivalism) or are spacetime and its structure just abstractions of or
derivative from relations between material things, and perhaps their parts
(relationalism)? I have established twofold criteria for material fields and
spacetime structure and argued that the two are disjoint in GR: gab and χ (and
perhaps Λ) represent spacetime structure, while Φ represents material fields.
So one can answer the question by considering whether GR permits spacetime
events (or whole spacetimes more generally) with only spacetime structure and
no material things. Pure gravitational models and those whose material fields
all vanish at some event are therefore those that the relationalist must extirpate
from the theory or explain away. Extirpation is costly, for these models play
important (and not clearly eliminable) explanatory roles in the application of
GR. There is a general strategy for explaining away, however: Affirm that
the spacetime models in question are merely abstractions from models with
nonvanishing matter fields (perhaps including test matter) at every event. In
this case, events still represent the partlike coincidences of material things, but
some of those things might not be represented in the spacetime model. The
cost of relationalism without culling some of the models of GR is therefore the
theory’s representational incompleteness.
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Subtanativalists pay a different cost for these models. They do not need
to hold that they are representationally incomplete, but to do so they must
slightly change the interpretation of events themselves. In light of the models
in question, events cannot in general be the actual partlike coincidences of
material fields; they are rather the possible such coincidences. The cost of
substantivalism is therefore introducing an intrinsically modal interpretation
of some of the basic posits of GR. Perhaps one way of reducing that cost is a
variant of substantivalism called supersubstantivalism. In the context of GR,
this position maintains that matter fields are in fact properties of spacetime
events rather than things (substances) with independent existence (Lehmkuhl
2018). This suggests interpreting the mathematical points of spacetime not as
events at all, but as a sui generis substance of hyperregions that may or may
not have nonvanishing material field strengths. The cost that this version pays
in exchange for the modality of events is a more unfamiliar basic ontology.

3.4 Determinism and the Hole Argument
In the previous subsection, I did not uphold either relationalism or (super)
substantivalism: Each has its own costs and benefits and is tenable given the
other interpretative commitments I do uphold. But there is an argument, the
(so-called) “hole argument,” which purports to expose a hidden cost of any
substantival interpretation. The argument asks us to consider two isometric
relativistic spacetimes, (M,g,Λ) and (M, g̃,Λ), such that the diffeomorphism
ψ :M→M giving rise to the witnessing isometry is the identity exactly
outside of an open set (the “hole”) O ⊂M with compact closure. A proponent
of substantivalism (the argument continues) must maintain that (M,g,Λ)
and (M, g̃,Λ) represent distinct spacetimes because in general they assign
different metrical values to points p ∈O. Yet the laws of GR do not
uniquely determine whether (M,g,Λ) or (M, g̃,Λ) develops from any proper
initial data hypersurface outside of O, if there is one. Thus, the argument
concludes, the substantivalist is committed to an untoward and pernicious
form of indeterminism. It is untoward in the face of a norm that physics,
not metaphysics, should decide substantive questions of determinism; it is
pernicious because it applies to all local properties in O.
As John Stachel first discussed in 1980, the contours of the hole argument

originate with Einstein’s labors to find the EFE. Earman and Norton (1987)
then redrew those contours towards the ontological conclusion against
substantivalism. The vast majority of attempts to defuse the argument
employ some metaphysical maneuvering in reformulating substantivalism
or determinism. (The scholarly literature on the hole argument is now too
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enormous to canvas here, but see Norton et al. [2023] and Pooley [2021]
for further introduction and references.) By contrast, following the general
argumentative strategy of Weatherall (2018), in this subsection I will elaborate
why one can defuse the argument by considering only the representational
principles of GR. (The argument I give is different in particulars from the one
in Weatherall [2018]; I comment on some of those differences in my responses
to skeptics of representational responses later in this subsection.)
Before I do so, consider the notion of determinism invoked in the hole

argument. It is a version of Laplacian determinism (Hoefer 2016), the rough
idea of which is that for any time and state of the universe at that time, there
is a unique way the universe could be for all times: Any instantaneous state
determines all. This is what the initial data hypersurface and the question of a
unique spacetime development in the argument refer to.
However it’s made precise, determinism for a theory is a doctrine about

certain determination relations, much in the sense of those discussed in
Section 3.2, but with two important differences (cf. Butterfield 1989,
Doboszewski 2019). First, they have different relata. Instead of, for instance,
the (global) metric determining the (global) affine connection, one considers
certain fields on, for instance, an achronal region of spacetime determining
certain fields on the rest of spacetime. This is significant for GR because the
relevant analogue of a “state at a time” may not exist for all general relativistic
models. Consequently one can adopt a determinism “schema” with the relevant
region, structure thereon, and structure determined thereby as open variables. In
the case of the hole argument, one can then take advantage of the fact that every
point of every spacetime has a neighborhood which, considered as a spacetime
in its own right, is globally hyperbolic. For various standard matter fields,
including electromagnetic fields and many perfect fluids, every initial dataset
for this neighborhood has a (maximal) development in this neighborhood,
unique up to isomorphism (Hawking & Ellis 1973, Ch. 7.7), in which one can
select O to lie.
This uniqueness only up to isomorphism is the second difference that

determinism’s notion of determination demands. There is a conceptual reason
for this that finds widespread implementation in practice. That reason is that the
question of determinism is only interesting regarding properties that a theory
represents, which are those invariant under the isomorphisms of the theory’s
models. Otherwise, even the simplest theories fail to be deterministic. For
instance, the usual dynamics of balls rolling down ramps would be radically
indeterministic because the initial conditions don’t determine the color of the
ball at any other time. In the case of GR, no property or structure variant under
isometry is represented. One sees this in practice among general relativists,
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for example, in work on the initial value problem and in debates about the
Cosmic Censorship Hypothesis, the claim (roughly) that globally hyperbolic
spacetimes are generic among the “physically reasonable” spacetimes, the ones
that represent genuine physical possibilities. (See, e.g., Smeenk and Wüthrich
[2021] for a recent review.) The significance of this is that if there are properties
of the target of the spacetime models not represented in the models and not
determined by an initial data surface, then the sort of indeterminism involved,
such as it would be, is not at all untoward (cf. Norton 2020, Weatherall
2020b, §3).
The chestnut at the heart of these observations, that scientific models

(including those of GR) are often abstracted, is also the core insight assuaging
certain problem examples for the foregoing understanding of determinism.
These examples involve an indeterministic symmetry-breaking process, such
as a beam buckling to one side or other, radioactive decay products emanating
at some angle or other, or a particle swerving in one direction or another (e.g.,
Belot 1995, Melia 1999). One would like to say that there is more than one
direction in which the process could have happened, yet all the models that
represent these processes are putatively isomorphic, hence would count them
as deterministic. But if one does not represent the different directions explicitly
in the model, such as with an orientation field, it is no surprise that the models
give unwelcome answers to questions pertaining to those directions, just as the
question of the color of a rolling ball did above in classical mechanics. Using
models to reason about properties they don’t represent can easily drive one
into error. But once one adds a representation of these properties, say through
an orientation field, the models are no longer isomorphic: Some processes go in
one direction, others in another. (See Fletcher [2020b] for further elaboration
on representational capacities, especially in the context of the hole argument.)
Now return to the hole argument. It highlights a formal property, g |p, of

a spacetime model that is variant across isometric spacetimes: g |p , g̃ |p =
ψ∗(g) |p. However, the very fact that this property is variant across isometric
spacetimes shows that spacetimemodels cannot represent anythingwith it – it is
not even implicitly definable in the models of the theory. So, either really there
is no physical property to represent – just as no number-theoretic property is
represented by the particular construction of the integers in set theory – or there
is such a property, which has been abstracted from the models. In the former
case, there are no undetermined properties. In the latter case, this entails not an
untoward but a totally benign sort of indeterminism, as the foregoing discussion
established.
One could, of course, augment the model by adding auxiliary spacetime

structure – say, a distinguished point p or open region O of the manifold –
to represent properties assigned to the hole. But in this case determinism
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still holds, for then by construction ψ witnesses that (ψ(M),ψ∗(g),Λ,ψ(O)) =
(M, g̃,Λ,ψ(O)) is isomorphic to (M,g,Λ,O). ψ provides a kind of “counterpart”
relation, a means to compare the structures and properties that the two
spacetime models represent, and according to it they represent the same
properties. Relative to other maps implementing such a relation, such as the
identity 1M : M→M, the models therefore represent different properties. There
is no ambiguity about what each model represents together once one specifies
the map relative to which they are compared.
There have been several objections to representational responses to the

hole argument. Landsman (2022, §§1.10, 7.8) appears to focus on seeming
controversies about the sense in which ψ and 1M are counterpart relations,
asserting that one avoids invoking them and “reopens” the hole argument
by reformulating the scenario to which it appeals in terms of the initial
value problem. However, that I also formulated it in this way in my own
representational response shows that the focus on these maps as essential
to the core representational response is a red herring. Pooley (2021, 154)
insists that without metaphysical commitments, the representational response
does not succeed in blocking the hole argument: “[I]f there are pluralities
of merely haecceististically distinct possibilities, the mathematical formalism
of GR, correctly interpreted, is necessarily indifferent to differences between
them. . . .And that, of course, is just to admit that, according to any
metaphysical view committed to such pluralities, GR is indeterministic.” But as
I emphasized earlier in this subsection, this is a benign indeterminism because
it involves properties not represented at all in the models. My statement of its
harmlessness is not a metaphysical thesis but one about how scientific models
represent. Moreover, the representational response is agnostic on the existence
of these possibilities because they arise only in the conditional reasoning of one
branch of the response’s constructive dilemma.
Roberts (2020, 255) objects that some pairs of isometric Lorentzian

manifolds “cannot be concretely interpreted to represent the same physical
situation at once” as would be required by the general doctrine, employed in
the representational response, that isomorphic models (M, g̃,Λ) and (M,g,Λ)
could represent one and the same state of affairs. The example he uses is a two-
dimensional half-planeM = R×(0,∞)with the Minkowski metric restricted to
it, and submanifold M̃ = R × (s,∞), with s > 0, also with the Minkowski
metric restricted to it. These two models, (M,g) and (M̃, g̃), are isometric,
but because M̃ ⊂M, “one cannot use them both to represent the same thing
at once, on pain of paradoxes of multiple denotation” (Roberts 2020, 263).
What are these paradoxes? Roberts illustrates with an informal example: It is
a convention whether we label one side of Manhattan “East” and the other
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“West.” Consequently, using maps with each convention together would permit
one to assert that “The New York Public Library is located on the East side and
on the West side (not on the East side)” (Roberts 2020, 252).
As this example illustrates, however, seeming contradiction arises only by

leaving tacit how each cardinal direction ascription is relative to a particular
convention. Once those conventions are made explicit again – for example,
“The New York Public Library is located on the East1 side and on the West2
side” – no contradiction arises. In practice, these conventions are shared or
context provides enough information about which is intended, as is generically
the case with indexical words. The same moral applies to GR: In the example
of Roberts, relative to the identity inclusion i : M̃ → M, (M̃, g̃) represents a
proper part of (M,g) and the two would not represent the same state of affairs;
indeed, i is not even a diffeomorphism. But relative to the diffeomorphism
ψs : M → M̃, they can well represent the same state of affairs at once. Once
again, there is no ambiguity about what each model represents together once
one specifies the map relative to which they are compared. In a word, there
are no relevant paradoxes of multiple denotation, either in natural language or
in GR.

4 Energy
4.1 The Functions of Energy–Momentum

and the Nature of Test Matter
Energy and momentum have several functions in GR. One is to constrain
spacetime curvature via the EFE (Eq. (1)). Considering this equation as a partial
differential equation in which manifold points are the independent variable
and spacetime metrics are the dependent variable, energy and momentum act
as a source for gravitational phenomena (solutions to the equation). But, as
discussed in Section 3.2, one should not infer that this technical notion of
“source” is that of a cause without acknowledging the substantive additional
interpretational commitment this incurs.
Another function of energy andmomentum, common to field andmechanical

theories, is to aid in the description and explanation of matter dynamics. For
instance, given a Lagrangian density for a matter theory, its energy–momentum
tensor T ab is defined by an algebraic combination of the Lagrangian,
its derivatives and independent variables, and the spacetime metric
(Hawking & Ellis 1973, Ch. 3.3, Wald 1984, Ch. E.1). In fact, the field
equations arising as the Euler–Lagrange equations for the matter fields alone
then guarantee that the total energy–momentum so defined will be divergence-
free, that is, satisfy conservation ∇aT ab = 0 (Hawking & Ellis 1973, 67,
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Weatherall 2019, §3).18 (There is some controversy about whether “∇aT ab = 0”
really expresses a conservation law, which I address in Section 4.2.) But
even if the matter theory’s dynamics are not given by a Lagrangian, energy
and momentum assignments facilitate the dynamical analysis of material
behavior, often through conservation laws. Conservation is so important to
the function of energy and momentum in the analysis of physical theories that
Hawking and Ellis (1973, 61) require that any adequate matter theory must
assign energy–momentum so that ∇aT ab = 0.
Notably, in GR, the same tensor field performs both functions: T ab is both

the source in the EFE and facilitates the description and explanation of matter
dynamics, especially through its conservation. This substantial functional
unification is part of the sense in which GR explains the coincidence, in
Newtonian gravitation, of the proportionality of inertial and gravitational mass:
There is only one (fundamental) mass concept, the inertial mass, which is a
component of or contributes to energy and momentum (Weatherall 2011).
Aside from conservation, so-called energy conditions constitute another

class of constraints commonly imposed on adequate matter theories, although
enthusiasm for them has dwindled over the decades (Barcelo & Visser 2002).
Such conditions are inequalities concerning Tab in relation to ideal observers or
reference frames – see Curiel (2017) for a comprehensive review. For instance,
I mentioned the DEC in Section 2.2, which holds at an event when the flux
density of energy–momentum at that event be the sort that one could associate
with a massive test particle or light ray (according to Histories and Light). In
Section 5.2, I discuss how notions of relativistic causality – how, if at all, events
in spacetime affect one another – implicates DEC.
Another kind of constraint on adequate matter theories concerns exclusively

the energetic effects of vanishing fields. Hawking and Ellis (1973, 61–62)
propose that “T ab vanishes on an open set U [ofM ] if and only if all the matter
fields vanish on U ,” which “expresses the principle that all fields have energy.”
Clearly this requirement assumes that matter fields can “vanish,” that is, they
are values in a bundle that has a “zero” section. Hawking and Ellis (1973,
62) also acknowledge that one might object to the “only if” direction of the
biconditional with the example of two matter fields whose contributions to Tab
cancel each other exactly on U . Reformulating the constraint on a field-by-field
basis alleviates this problem:

18 Noether’s first theorem guarantees a conservation law for the “canonical” energy–momentum
if the Lagrangian is invariant under the flow induced by the subgroup of translations of the
Poincaré group, but the canonical energy–momentum is not always the same as that defined
through the Lagrangian directly (Wald 1984, 456–459). See, e.g., Baker et al. (2022) for a
discussion of this issue.
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All Fields Have Energy (AFHE) For any matter field ϕ, its contribution to
T ab vanishes on an open set U ⊆ M if and only if ϕ vanishes on U .
At least in the case of Lagrangian theories, one can make the notion of
“contribution” more precise and even prove AFHE, subject to the assumption
that the Lagrangian density for a field (and its interactions) vanishes only when
the field vanishes (Weatherall 2019, §3).
There are, however, still two complications for AFHE. One arises for

quantum fields. For these, a “zero section” most plausibly refers to a ground
state. Although the most general frameworks for quantum theory do not require
such a state, it is a typical and well-motivated enough assumption. More
problematically, ground states commonly have nonvanishing contributions to
energy, which challenges the “if” direction of AFHE. That said, this energy is
typically proportional to some power of Planck’s constant h, meaning that its
classical limit is plausibly zero. In these cases,AFHEmight still hold of matter
fields that can be treated classically.
The other complication arises for test matter. As I discussed in Sections 1

and 2.2, test matter – including test particles – is matter whose dynamics
depends on the metric and the notion of change it determines, but which does
not contribute to the energy–momentum that sources the EFE. There is no
question of test matter conflicting with any of the energy conditions, but it does
violate the “only if” part of AFHE. I see at least fourmutually exclusive options
one can take with respect to this conflict.

1. Decline to attribute energy and momentum to test matter.

However, in practice, one does ineliminably refer to and describe the energy
and momentum of test particles and fields to facilitate the description
and explanation of its dynamics, which is inconsistent with this option’s
understanding of test matter.

2. Decline the “only if ” part of AFHE.

This option weakensAFHE by assuming that test matter does contribute to Tab.
In other words, it gives up on there being any distinction between test matter
and ordinary matter. It’s possible to restore this division by introducing an old
distinction sometimes found in discussions of mass in Newtonian gravitation.

3. Subdivide energy–momentum into two types, active and passive, and restrict
AFHE to active energy–momentum. Test matter then is a sort of matter with
vanishing active energy–momentum; its passive energy–momentum is just
that invoked in relation to its dynamics.

Passive energy–momentum plays an inertial role and helps describe how
matter is affected by gravitational phenomena, while active energy–momentum
describes how matter affects gravitational phenomena (through the EFE).
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In its disunification of energy–momentum, this option thus contravenes the
conclusion I had drawn earlier in this subsection, that the same tensor field
performs both functions for energy–momentum (a source in the EFE and its
role in describing and explaining dynamics). By the same token, it also raises
difficult questions about what, exactly, test matter represents according to this
option. There are no known matter fields – real test fields – for which active
and passive energy–momentum would truly differ.19 Rather, one introduces
test fields only to model matter whose sourcing effects are negligible relative
to a modeling purpose.
For these reasons, over these first three options, I prefer a fourth:20

4. Deny that test matter is a type of matter field at all. Instead, affirm that the
“test” attribute denotes that one is approximating a matter field’s source
contribution to the EFE as zero.

This options relies on a distinction between idealizations and approximations
inspired by that of Norton (2012). For present purposes, an idealization is
a model of GR that is less representationally accurate than another, while
an approximation is a property attribution (e.g., to a matter field) that is
less representationally accurate than another. The property attributions in
approximations need not be possible according to the models of GR; they are
therefore introduced only for pragmatic convenience.
The third option would therefore take GR models with test fields to be

idealizations of GR models with nontest fields replacing the test fields. The
present, fourth option rather does not admit test fields as components of
models of GR, but as denoting an approximation of the intended field’s
energy–momentum. The worldlines of test particles, accordingly, are
themselves approximations of highly localized field distributions. (Indeed,
as I will discuss in more detail in Section 5.2, this option also coheres
best with work on the relation between energy conditions and relativistic
causality.) This solves the problems of compatibility with applications that
the previous options had. It also retains a functionally unified account of
energy–momentum, is compatible with AFHE, and explains further why I
take Histories, Freedom, and Light not to be fundamental representational
principles of GR – they concern the interpretation of mere approximations. The
cost of this option is acknowledging that the inferences one makes in using the

19 More precisely, if they do differ, their difference is by a constant of proportionality that can be
conventionally set to one.

20 Another problem with options 2 and 3 is that they would also seem to require representing
pointlike test matter with distributions; see Weatherall (2020a, §2.1) for some of the delicate
mathematical issues with this.
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test matter approximation may be fallible to the degree that the approximation
is substantial, and accepting the responsibility to confirm, when necessary, that
the error incurred is not too large.

4.2 Conservation of Energy–Momentum
In the previous section, I asserted that “∇aT ab = 0” expresses a conservation
law for the energy–momentum T ab. On the one hand, this is common enough
in physics-oriented presentations that it rarely engenders further comment or
justification. On the other hand, some authors deny it, many even going so
far as to reject that energy–momentum is generally conserved at all in GR
(Hoefer 2000, Lam 2011, Dürr 2019). Although they give various reasons for
this, the central one is that Eq. (10) (“∇aT ab = 0”) “cannot be used to write an
integral conservation law . . .. Intuitively, if energy–momentum is really being
conserved locally, then when one integrates [it] up it should be conserved over
regions as well” (Hoefer 2000, 191).
This objection refers to the following procedure. As discussed in connection

with the DEC, for any p ∈M and any unit timelike ξa ∈ TpM, T abξb represents
the energy–momentum flux density at p relative to a frame at p with timelike
component ξa. If one extends ξa to a C1 timelike vector field on an oriented
hypersurface S ⊂M, then one can integrate T abξb over S to calculate the net
energy–momentum flux through that surface:

∫
S T

abξbdaσ, where σ is the
(oriented) volume form on M. (The sign of the orientation merely determines
the sign of the flux.) In particular, if S is the boundary of a precompact
n-dimensional submanifold U and one extends ξa to U , then by Gauss’s
theorem,∫

S
T abξbdaσ =

∫
U
∇a(T abξb)σ. (14)

This states that the net energy–momentum flux through S is equal to the integral
of the energy–momentum source density ∇a(T abξb) over U . (So, pace Hoefer
[2000], it is not the energy–momentum itself that one integrates – after all,
T ab is a two-index tensor field for which in general direct integration is not
well-defined – but either its flux, through a hypersurface, or its source density,
over a compact four-dimensional region.21) Conservation holds if either side
of Eq. (14) vanishes for all choices of U and any suitable choice of ξa.
But what makes a choice of ξa suitable? Not just any is. It is well-known that

choosing ξa as a field with nonvanishing acceleration prevents these integrals

21 Lam (2011, 1016) also misleadingly describes expressions like the left-hand side of Eq. (14)
as “the quantity of nongravitational energy in a spatial (three-dimensional) region” rather than
the net flux through that region.
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from vanishing – even in mundane, classical mechanical cases – because
such fields can only well represent frames that generate noninertial coordinate
systems, whose fictitious forces can appear to do work on a system whose
energy–momentum are clearly conserved (Duerr 2019, 4). Lam (2011) and
Dürr (2019) suggest that the only suitable ξa is a timelike Killing vector field
(KVF), that is, one that satisfies Killing’s equation, ∇(aξb) = 0.22 For in this
case, the source density vanishes: ∇a(T abξb) = (∇aT ab)ξb + T ab(∇aξb), where
the first term vanishes because of Eq. (10) and the second term vanishes because
of Killing’s equation and the symmetry of T ab. A special case of this occurs
when a spacetime is flat, so that the Levi-Civita derivative operator ∇a is
just a coordinate derivative operator ∂a. In any case, not all spacetimes are
stationary – that is, admit of a timelike KVF – which is why (the objection
goes) conservation of energy–momentum holds only in such special cases.23

The authors of this sort of objection seem to assume that stationarity is
necessary for conservation, in addition to it being sufficient (which is only
what I maintain). Some examples show that this can’t be right. Another
sufficient condition for energy–momentum conservation is that energy–
momentum vanishes: T ab = 0. But such vacuum spacetimes in general will not
be stationary. One could then retreat to the position that not stationarity, but the
vanishing of either side of Eq. (14) in some way or other is what is necessary.
However, yet another sufficient condition for energy–momentum conservation
is that energy–momentum is covariantly constant: ∇cT ab = 0. Note that the
index on the derivative operator is not contracted with any of the energy–
momentum tensor; since the former determines the notion of change in a GR
model, this condition literally states that energy–momentum is not changing.
Spacetimes with a covariantly constant but nonvanishing energy–momentum
need not be stationary.
I suggest a different necessary and sufficient condition for conservation: For

each p ∈M and timelike geodesic through p with tangent vector field ξa, the
source density vanishes,∇a(T abξb) |p = 0. The motivation behind this condition
is twofold. First, the geodesics through p are the timelike components of the
frames most analogous to the inertial ones familiar from flat spacetime (cf.
Duerr 2019, 2). Second, while the exact value of the source density at p may
vary from frame to frame, a true source cannot be made to vanish in a given
frame. An analogy with electromagnetism is instructive: Although the charge

22 In fact, when the spacetime in question is asymptotically flat, an asymptotically timelike KVF
will do, but this extension makes no difference in the arguments that follow.

23 Hoefer (2000) seems to demand the stronger condition that one be able to replace ∇a with
a coordinate derivative operator in the right-hand side of Eq. (14), but I do not see any
justification for this aside from a syntactic analogy with prerelativistic physics.
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density of an electromagnetic sourcewill vary from frame to frame, it will never
vanish in any frame unless it vanishes in all frames.
In any case, this condition is always satisfied in GR. The tangent vector fields

ξa to the timelike geodesics through a point p are in fact approximate KVFs at
p, meaning that (∇(aξb)) |p = 0, with the left-hand side varying smoothly in a
neighborhood of p (Fletcher & Weatherall 2023a). Thus for such ξa, ∇a(T abξb)
vanishes at p if and only if ∇aT ab vanishes at p. This comports with the fact
that

∫
U ∇a(T abξb)σ can be made as small as one likes by selecting a sufficiently

small neighborhood U of p (Hawking & Ellis 1973, 63) and suggests that this
holds even if one normalized this integral by the volume of U : The source
density at p is truly zero.

4.3 Gravitational Energy
It is natural for students of elementary Newtonian gravitation to ask what the
analogue of gravitational potential energy could be in GR. But, as one can
gather from Sections 1 and 3.3, if gravitation in GR is just about the structure
of space and time and gravity is not a matter field itself, then it should carry
no associated energy–momentum, either as a source for the EFE or as a source
of exchange for matter fields.24 Nevertheless, it is instructive to consider some
independent reasons for this conclusion.
Curiel (2019, §2) reviews the common argument pattern against there

being a local concept of gravitational energy – one representable by a field
on spacetime, such that the field values (or components of them) represent
the energy content or density. This pattern invokes Einstein’s principle
of equivalence that gravitational effects are represented by the connection
coefficients (Christoffel symbols) in some coordinate system. Because one can
always select a coordinate system in which they vanish at a point, any energy
attributable to them must vary similarly, but then it cannot be represented by a
field, which does not so vary.
This argument assumes that the connection coefficients represent the

gravitational field, which an advocate of gravitational energy may well reject
in light of the argument (cf. Read 2020, 211). Curiel also relatedly and rightly
objects that the argument assumes that whatever gravitational energy in GR
could be, it must depend on the first derivatives of the metric (with respect
to a flat coordinate derivative operator). Because gravitational phenomena are
associated with the second derivatives through the Riemann curvature tensor,

24 In fact, it is not often appreciated that gravitational energy encounters many of the same fraught
issues in the Newtonian context (Dewar & Weatherall 2018).
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the connection coefficients seem to be the wrong sort of mathematical object
for the representational job.
Curiel (2019, §§6–7) provides a different argument that he interprets as

proving the nonexistence of a gravitational energy–momentum tensor. In order
for such a tensor to source the EFE, it must be a twice covariant symmetric
tensor field. Further, it must be expressible as a sum of fields definable from
the Riemann tensor, Ricci tensor, and the metric, such that it vanishes only
if the Riemann tensor vanishes and is divergence-free in vacuum regions of
spacetime. Finally, he requires that the tensor be invariant under any homothety
gab 7→ λgab for constant λ > 0, suggesting that this mapping represents a mere
change in units. He then proves a theorem with a corollary stating that there is
no tensor field satisfying all these constraints.
The theorem is in fact similar to one stated by Aldersley (1977) and later

elaborated by Navarro and Sancho (2008) about the uniqueness of the EFE
as a field equation. As Fletcher et al. (2018, §6.1) point out in the context
of the discussion of these results, homothetic transformations represent scale
transformations, not just changes in units. If the cosmological constant Λ , 0
or one considers any matter theories with intrinsic timescales or length scales,
then onewouldn’t expect such transformations to be symmetries as these results
assume.25 Accordingly, Curiel’s argument is not as definitive as it might at first
seem.
There is a different, simple argument against gravitational energy–

momentum, due to Geroch and Malament in its original form (Dewar &
Weatherall 2018, §1). (What follows is a slight variation on this form.) Recall
that the two functions for energy–momentum, unified in GR, are to be the
source for the EFE and to facilitate the description and explanation of the local
dynamics of matter. First, suppose that gravity contributes as a source to the
EFE. It must then be representable as a twice covariant tensor field. Then, in
Ricci-flat, vacuum spacetimes (ones where Rab = 0 and matter fields vanish),
the gravitational energy–momentum is just Λgab (cf. Baker 2005). But this
expression does not covary with the gravitational phenomena possible in such
spacetimes, such as the presence of gravitational waves of various amplitudes.
(I analyze the case of gravitational waves in more detail in the next subsection.)

25 Curiel (2019) does acknowledge at least the point about the cosmological constant,
countering that one must take Λgab to be simply the energy–momentum content of spacetime
itself. (Aldersley [1977] and Navarro and Sancho [2008] counsel the same.) He does not
acknowledge, however, the tension between affirming spacetime energy–momentum while
denying gravitational energy–momentum. I discuss this option further in the remainder of
this section.
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So, if gravitational energy–momentum serves as a source in the EFE, it cannot
in general satisfy its descriptive and explanatory functions for local dynamics.
Second, suppose that it does not serve as a source in the EFE. Could it still

fulfill its local dynamical role? Since by assumption it is not a source in the
EFE, while the energy–momentum T ab of matter fields is, the latter by itself
satisfies the conservation condition ∇aT ab = 0. Because (as argued in the
previous subsection) this is a legitimate expression of conservation, there is
no energy–momentum exchange between matter and gravitation. Thus, if one
aims for coordinate-free, frame-free descriptions and explanations of the local
dynamics of matter, gravitational energy would play no role. One therefore
reaches this same conclusion regardless of whether any putative gravitational
energy–momentum is a source in the EFE.
This simple argument however leaves open the possibility that there are

coordinate- or frame-relative (etc.) notions of gravitational energy–momentum.
To see how these arise, suppose that one has committed to analyzing the local
dynamics of a system in terms of some specific coordinate system or frame
of reference. It could be the “laboratory” frame for a specific experiment or
another constructed for some convenience or other. With respect to this local
frame or coordinate system, there is a flat derivative operator, ∂a, which is also
the Levi-Civita derivative operator for any of a variety of only locally defined
flat spacetime metrics. With respect to this operator, one may well find that
∂aT ab , 0, that is, when one constructs a notion of change for some more
or less arbitrary coordinate system or frame, one may find with respect to it
that the matter energy–momentum tensor is not divergence-free. The situation
is analogous to the analysis of a classical mechanical material system in a
noninertial frame or accelerating coordinate system:With respect to these, there
are yet unaccounted-for coordinate accelerations, hence transfers of coordinate-
based energy–momentum (Duerr 2019, 4). To restore coordinate-based energy
conservation, one can describe the work done on the system through (fictitious)
forces like the Coriolis force. In the context of GR, one can restore energy
conservation with respect to the chosen coordinate system by describing a
coordinate-dependent gravitational energy–momentum pseudotensor, tαβ , so
that ∂α(

√
|g|(Tαβ + tαβ)) = 0. The exchange between Tαβ and tαβ expresses

how the matter fields’ behavior differs from that which would be expected if
the metric were rather a flat metric to which the coordinate system or frame in
question was adapted.
Notoriously, rather than there being a unique viable candidate for tαβ , there is

a proliferation of options, but there is some order to them: Each corresponds to
a Lagrangian for gravity with respect to the aforementioned fixed flat metric,
or alternatively, a certain expression of Sparling’s form on the linear frame
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bundle on the spacetime manifold (Szabados 1992, 2009). In the latter case, the
coordinate-dependence of tαβ results from pulling back Sparling’s form along
a particular coordinate section of the linear frame bundle; different coordinate
sections are like different choices of gauge for a gauge theory. Thus, just
as the energy–momentum tensor T ab for matter is not a property of matter
fields alone but in general depends also on the metric gab (Lehmkuhl 2011),
any particular gravitational energy–momentum pseudotensor is relational –
indeed, doubly so: first, to either a particular gravitational Lagrangian or
a choice of the expression of Sparling’s form, and second, to a particular
coordinate system or frame field. This is exactly as one expects: With respect
to a reference flat metric, the exact coordinate-dependent energetic properties
of gravity will depend on its Lagrangian and the coordinates chart chosen.
Descriptions and explanations ofmatter dynamics using this takesmotion along
coordinates adapted to the reference metric as default and assigns gravitational
energy–momentum to capture departure from it.
Does tαβ represent a real property? There are at least three issues that bear

on this question: (i) the dependence on a coordinate system or reference frame,
(ii) the dependence on the gravitational Lagrangian or expression of Sparling’s
form, and (iii) the function towhich tαβ is put. Coordinate or frame-dependence
evinces a failure of definability unless the coordinate system or frame is given
already from other fields, such as the comoving frame of certain matter fields,
or added explicitly as auxiliary spacetime structure. A failure of definability
does not necessarily entail meaninglessness, but at least it entails that the
putative corresponding property is not represented in the spacetime model
(cf. the haecceities involved in the hole argument discussed in Section 3.4).
One way to ameliorate this is to consider at once all coordinate systems, as
Pitts (2010) suggests, but it is unclear how the resulting object with uncountably
infinitely many components will aid in the description and explanation of local
matter dynamics without selecting a single component. But in applications
where tαβ really facilitates description and explanation, the relevant frame is
indeed determined from matter fields or added explicitly as a highly abstracted
representation of a laboratory or other regions with measurement devices.
The second two issues (ii) and (iii) are, inmy view,more serious threats to the

reality of gravitational energy–momentum. Different equivalent Lagrangians
for gravitation or expressions of one and the same Sparling’s form on the frame
bundle yield different tαβs. The gravitational energy–momentum realist would
need to select one and thereby reify distinctions which are not otherwise of
theoretical importance (much less being of any empirical significance). Further
(and regarding the last issue (iii)), the sort of descriptions and explanations
given are with respect to a representation of change (∂a) that in general does
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not agree with the fundamental representation of change (∇a), much in the way
that straight-linemotion in an accelerating frame of referencewill not in general
agree with straight-line motion in an inertial frame of reference. Read (2020,
§3.3.3) suggests that one can reify tαβ because one can do so for any structure
that plays a useful role in explanations, but in classical mechanics one does not
reify fictitious forces just because they figure in descriptions and explanations
from ballistics to meteorology.
Quantities or structures that depend on some frame determined by spacetime

or matter structure and which avoid these issues (ii) and (iii) thus have
more of a claim to represent a real property of spacetime. For example,
Goswami and Ellis (2018) show that in spacetimes with certain symmetries,
one can define a “square-root” of the Bel–Robinson tensor, which functions
as a kind of energy–momentum tensor for “free gravity,” the components
of curvature represented in the Weyl tensor. Another example is that
asymptotically flat spacetimes implicitly define a Minkowski metric to which
the spacetime metric converges at infinity, in a sense that can be made
precise (Wald 1984, Ch. 11). For such spacetimes, one can define an energy–
momentum contained in entire spacelike slices. I discuss these latter examples
more in the following subsection, after a longer case study of gravitational
waves. (For more examples, see Szabados [2009].)

4.4 Gravitational Waves and Isolated Systems
If gravitational energy–momentum in GR has a status much like a fictitious
force, as I argued in the previous subsection, how does one explain the manifest
and measured effects of gravitational waves radiated from distant sources?
In the first direct observation of gravitational waves, the Advanced LIGO
experiment in 2015 detected the cataclysmic merger of a pair of black holes
through its wave signal (Abbott et al. 2016).Much before then, in 1974, Russell
Hulse and Joseph Taylor discovered a binary star system (now known as the
Hulse–Taylor binary) consisting of a neutron star and a pulsar, the radio pulses
of the latter fortuitously pointed towards Earth. GR predicts that the system
slowly inspirals as it emits gravitational waves, equally slowly decreasing its
orbital period. That’s exactly what they observed, earning them the 1993 Nobel
Prize in Physics. Data over several decades continues to fit the GR prediction
well (Weisberg & Taylor 2005).
The modern theory of gravitational waves is vast and much of it subtle,

but only a qualitative review is needed here. (For a standard presentation,
see, e.g., Misner et al. [1973, Part VIII] or Wald [1984, Ch. 4.3b], which are
briefer, while D’Ambrosio et al. [2022] is more thorough but pedagogical.)
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Figure 2 h+ and h× are the two dimensions of gravitational plane-wave
polarizations at a given frequency. t depicts the portion of the period T. So,
each row depicts stages in the evolution of a ring of test particles in a plane at
the indicated polarization, as a gravitational wave passes in the direction

normal to the ring.

There are at least two related sorts of approaches to gravitational waves and
their radiative sources. The first approach decomposes the metric into a fixed
part and a “perturbation” that, in some desired coordinate system, one takes to
be small. One then linearizes the EFE to show that certain initial conditions for
this perturbation yield awave equation, with the quadrupolemoment of rotating
material bodies as the dominant source. The second, “shortwave” approach
“grafts” a portion of a known exact plane-wave spacetime solution with a
given wavelength onto a spacetime whose typical radius of curvature is much
larger, then approximates the nonlinear interaction. Both are approximation
(not idealization!) schemes that do not incur too much error in different overall
circumstances. Essentially, both sorts of plane waves, which idealize this
radiation far from its source, have a two-dimensional space of polarizations.
Figure 2 depicts the effects of gravitational waves with these polarizations
on a ring of test particles. It induces a periodic geodesic deviation in the
particles.
Aptly for the present discussion, in the early history of GR, there was

considerable controversy over whether gravitational waves exist and, if so,
whether they “carry energy” (Kennefick 2019). Early researchers (including
Einstein) were unclear about the distinction between wavelike phenomena
and wavelike representations, the latter of which could be of non-wavelike
phenomena. For instance, by a suitable choice of coordinates, even a massive
test particle with a geodesic worldline in Minkowski spacetime can appear
to follow a waving trajectory in those coordinates. Describing their effects
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Figure 3 Comparison of the “sticky bead” and “falling bar” thought
experiments.

in terms of frame-independent features, such as the geodesic deviation they
induce, resolves this problem.
Felix Pirani was the first to explain this in 1956. Historically, though, the

relativity community was focused on the energy question and so was convinced
by a different sort of argument due to Richard Feynman and elaborated by
Herman Bondi a couple of years later. Known as the “sticky bead” thought
experiment, depicted in Figure 3(a), it asks one to consider a rigid rod with two
ringlike beads that can slide with friction on the rod. As a gravitational wave
front passes through, the beads will slide back and forth on the bar, and through
the action of friction heat up the bar. Surely, the argument concludes, the bar can
only heat up if the gravitational waves transfer energy to it. (Cf. the quotation
from Rovelli [1997] about the rock of Gibralter in Section 3.3.) If this energy
transfer is indispensable to this explanation, then it – hence local gravitational
energy, fungible with thermodynamic energy – has a claim to reality. All this
from the vacuum, naught but the unvanishing Weyl tensor.
The thought experiment may discomfit a skeptic of gravitational energy–

momentum, but they may take a first step towards recovery by recognizing that
its dramatis personae are distractingly specialized. First, and most importantly,
one can realize the relevant sliding motion of the beads through any geodesic
deviation. In Figure 3(b), the same bar and beads fall towards the center of a
spherically symmetric planet. In the exterior Schwarzschild metric, the beads’
inward geodesic deviation is a course in their natural motion towards the center
of the planet. (If there is anything special about the waves, it is their especially
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long range, deriving from the exact plane-wave solution’s Petrov type [N],
compared with other effects.) Second, geodesic deviation does not require
a nonvanishing Weyl tensor; to achieve the same result, one can replace
the external Schwarzschild spacetime with one that is conformally flat, such
as an expanding Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime.
Third, the frictional mechanism of temperature change is inessential: One can
replace the bar and beads with a more thermodynamically familiar double-
pistoned tube of gas. Instead of the beads sliding frictionally, the pistons
compress or expand the gas.
One can analyze each of these thought experiments from at least two points

of view in the theater of the mind. The first is that within a selected frame,
which determines a flat derivative operator. According to it, one can assign
a pseudotensor of energy–momentum to the gravitational wave or the gravity
of the planet or the cosmos. Gravity then does work on beads, some of which
converts to heat, or on the pistons, which adiabatically heat or cool the gas.
Indeed, thermodynamics since Joule has been tempted to define work and heat
through the equivalent ability to raise or lower a weight against a “uniform
gravitational force,” presupposing the notions provided only through a flat
derivative operator. As descriptively convenient and useful as it is, however,
the work done is as fictitious as the force from which it derives.
The second point of view stands in no frame. According to it, the bar does

work on the beads, impeding their natural motion, some of which converts to
heat; similarly, the gas does work on the pistons, impeding their natural inward
motion. Gravitation, including gravitation waves, can facilitate real changes
in motion and transformations of local thermodynamic quantities without the
local addition or subtraction of energy encoded in Tab.26 That point of view sees
no local gravitational energy, hence annuls the latter’s claim to reality through
explanatory indispensability.
Morals similar in some respects apply to the binary inspiral. The inspiral

and the emission of gravitational waves are predictions of the EFE alone,
confirmed through numerical simulation (cf. Dürr 2019, §3.3); no energy-
based explanation is needed, hence no indispensability claim is substantiated.
However, if one models the binary system as isolated, in an asymptotically flat
spacetime, then this asymptotic flatness itself defines a flat derivative operator
(or, rather, a class that are asymptotically equivalent) and a boundary at
infinity. One can then integrate pseudotensorial energy–momentum quantities

26 Thermodynamics does not usually countenance changes of state in a systemwithout the system
exchanging some extensive quantity, such as energy or momentum, with its environment.
That thermodynamics without frames seems to demand this must await another occasion for
analysis.
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over a spacelike hypersurface extending to spatial infinity, and, incredibly,
the result is independent of the particular pseudotensor and coordinate system
used to express it. The resulting quantity, called the Arnowitt–Deser–Misner
(ADM) energy–momentum, is in fact independent of the particular spatial
hypersurface, as long as it extends to spatial infinity.27 This means that the
ADM energy–momentum is a global conserved quantity for isolated systems.
If one picks a different type of spacelike hypersurface, asymptotic to future
null infinity, one can arrive at a different quantity, the Bondi–Sachs energy–
momentum. If a central, isolated body emits gravitational waves to future
null infinity during an isolated period, one can sandwich this period between
two such hypersurfaces. One will then find that the Bondi–Sachs energy–
momentum decreases as a function of the gravitational wave flux (encoded
in a technical construction called the Bondi news function). It is tempting
to conclude from this that “gravitational radiation always carries positive
energy away from a radiating system” (Wald 1984, 292), but we should not get
carried awaywith interpreting this too literally: Gravitational radiation does not
carry away energy in the way that one retrieves a concentrated deliciousness
in curry from a takeaway. In the ordinary sense, the properties carried away
are localized, but Bondi–Sachs energy–momentum is a global quantity not
attributable to localized regions of spacetime. We can attribute this property
to the gravitational waves in space at a time (i.e., on a spatial hypersurface) but
not much more locally.
The conservation of ADM energy–momentum and its failure for Bondi–

Sachs energy–momentum is less surprising when one reflects on what they
represent. Each of them encodes how quickly curvature falls off as one reaches
towards infinity from an isolated body, just as the total mass of a swarm of
bodies in a Newtonian spacetime determines the falloff of their gravitational
force on distant massive bodies. The ADM version selects a spacelike
hypersurface that is guaranteed to slice through all persisting matter and
radiation, while the Bondi–Sachs version picks a slice that does not intersect
with radiation escaping to null infinity. For these reasons, they of course must
be global quantities only defined for asymptotically flat spacetimes. But for the
same reason, these global concepts of energy–momentum are not concepts of
purely gravitational energy–momentum, for they are insensitive to whether the
central body is material. Both a black hole and a material star with the same

27 Because of this, all that matters to the value of the ADM energy–momentum is how these
quantities fall off towards infinity. Thus, it is possible to express the ADM energy–momentum
as an integral over the spatial “boundary” at infinity, a set of ideal points defined by the
asymptotically flat structure.
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external Schwarzschild metric will yield the same global energy–momentum
even though one is purely gravitational and the other material. For Bondi–
Sachs energy–momentum, one can nevertheless distinguish the change due to
gravitational wave flux and material (e.g., electromagnetic) flux.
In sum, the analysis of phenomena involving gravitational waves invokes

two energy concepts, one local and the other global. The local one involves
the same sort of relational quantities relative to some preferred frame or
coordinate system discussed in Section 4.3, so what it represents will follow
what the frame or system represents, just as in the case of fictitious forces
in classical mechanics. It does not have any additional claim to reality in
virtue of explanatory indispensability, as – despite its immense utility – it is
in the end dispensable. The global concepts encode how curvature falls off to
zero for an isolated system along different sorts of spatial slices. It is not a
purely gravitational notion of energy, although the gravitational contribution
to its change can be distinguished from the material contribution in the Bondi–
Sachs case. The distribution of local, relational gravitational and material
energy–momentum make a difference to it, but it is not fungible with them.

5 Time and Causality
5.1 Time and Time Travel

In most of prerelativistic physics, time manifests many familiar properties. One
can locate every atomic event on a single timeline with a temporal metric. Thus,
the duration of any process or history is determined entirely by the atomic
events on its boundary. The timeline can be totally ordered, splitting all the rest,
with respect to any atomic event, into past and future. In GR, these properties
do not generally hold. As discussed in Section 1, the metric assigns a duration
to every timelike curve – a one-dimensional process or history – which is not
determined by the atomic events on the boundary of the curve. Consequently, it
is never possible to locate all atomic events on a single timeline. Many (though
not all) relativistic spacetimes still admit of a transitive ordering on their atomic
events, however. This ordering, called a time orientation, can be specified in
many ways (Minguzzi 2019, §1.7); perhaps the simplest is by a timelike vector
field. At the tangent space of each point of the manifold, this field determines
a vector in one of the two null cones, picking it out as the “future” direction:
all timelike and null vectors lying in the same cone – those co-oriented with
it – are said to be future-directed. (The rest are said to be past-directed.) One
atomic event, q, is then to the future of another, p, if and only if there is a
continuous timelike or null curve from p to q whose tangent vector field is
future-directed.
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There are some relativistic spacetimes that admit of structure with properties
more analogous to those of time familiar from prerelativistic physics. For
instance, a spacetime with manifold M admits of a time function when there
is a continuous scalar field t : M → R such that whenever q is to the future
of p, t(q) > t(p).28 (t is said to be a temporal function if moreover t is at least
once differentiable and is strictly increasing along all future directions.) Such
a function assigns a kind of “time” to every atomic event, one that mirrors
the temporal ordering of the orientation, thereby locating these events along
a timeline. However, the times thereby assigned do not reflect any temporal
metric; not all curves starting at p ∈M and ending in q ∈M have a duration
t(q) − t(p), and indeed it is possible that none do. Moreover, if a spacetime
admits of one time (temporal) function, then it admits of infinitely many with
different collections of level sets, the collections of atomic events assigned the
same “time.”
On occasion it is possible to select a unique time (temporal) function with

distinguished properties (cf. Lachièze-Rey 2014, §5.3). In realistic FLRW
models,29 for example, which are the standard cosmological models, one can
define the cosmic time function as that which assigns to any p ∈M the supremum
of the durations of all future-directed continuous timelike curves ending at p.
Cosmic time is always finite in such FLRWmodels (unlike, say, in Minkowski
spacetime) because these models have a big bang singularity, meaning that
all future-directed timelike curves with future endpoint have a finite duration.
Moreover, the cosmic time of an atomic event within an FLRWmodel is equal
to the duration of the worldline of a mote of eternal fluid ending in that event,
for in FLRW models, the matter content of the universe is a homogeneous,
isotropic perfect fluid. This fact undergirds empirical claims about the current
age of the universe: They are just claims about the cosmic time of current events
on Earth as if those events were occupied by such a mote. However, FLRW
models are clearly idealized: Thematerial content of the universe is not literally
a homogeneous, isotropic perfect fluid. In any case, because the worldlines
through the Earth never align with the geodesic congruence prescribed by the
FLRW models, cosmic time does not track the durations we experience. Nor
do the hypersurfaces of constant cosmic time match (except at a single atomic

28 Admitting a time function is one condition in the middle of a linear hierarchy of conditions
caused the “causal ladder” (Minguzzi 2019, §4), which characterize qualitatively how similar
the global structure of time in a relativistic spacetime is to that of prerelativistic physics. For
lack of space, I only discuss in this section the top (global hyperbolicity) and bottom couple of
rungs (nontotal viciousness and chronology) of the ladder in addition to the middle.

29 Here, “realistic” means that the perfect fluid source has everywhere positive density
and nonnegative pressure, and the cosmological constant is not too large and negative
(Hawking & Ellis 1973, 197).
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event) the hypersurfaces of standard simultaneity given by any observer, even
one comoving with the idealized perfect fluid.30

Just as some relativistic spacetimes admit of structure with properties
more analogous to those of time familiar from prerelativistic physics, others
have properties quite disanalogous. One of the most striking of these is the
existence of closed timelike curves (CTCs), which are piecewise C1 timelike
curves that are not injective – they “close” back on themselves so that two
distinct parameter values map to the same atomic event. A spacetime with
manifold M is said to violate/satisfy chronology if and only if it does/does
not contain a CTC. Clearly a spacetime violating chronology does not admit
of a time (temporal) function. Any spacetime’s chronology-violating region
is the set C ⊆ M through which a CTC passes. Spacetimes for which C =
M are said to be totally vicious. One can construct a simple example of a
totally vicious spacetime by rolling up 2-d Minkowski spacetime along an
adapted timelike coordinate. Not all CTCs arise from a nontrivial topology,
however.31 A famous early example is Gödel spacetime (Gödel 1949a, 2000)
(for more on which, see Ellis and Krasiński [2000] and Malament [2012,
Ch. 3.1]). Its spacetime manifold is diffeomorphic toR4. But not all spacetimes
violating chronology are totally vicious. Misner and Taub-NUT spacetimes
are so (Hawking & Ellis 1973, Ch. 5.8), as is the interior of Kerr spacetime
(Hawking & Ellis 1973, Ch. 5.6).
CTCs are widely taken to be examples of time travel, as they represent

processes or objects that loop back onto an atomic event in their past.
Indeed, many authors identify CTCs with time travel in a relativistic spacetime
(e.g., Visser 2003, Smeenk & Wüthrich 2011, 580). But this identification is
too facile. Time travel involves, somehow, a local way in which the time
experienced by the “traveler” is out of joint with the world around them.
Looping processes or objects are clearly one but not the only way for time
to be locally out of joint – consider, after all, the twins (“paradox”) thought
experiment (Smith 2021, §1): a traveler sets out from Earth for a round trip
on a powerful rocket ship. When they return after, say, a few months’ travel,
they arrive in Earth’s future 100 years hence, long after their twin has perished.
There is a legitimate sense in which the traveler has indeed arrived at Earth’s
future without traversing any CTCs.

30 These distinct types of spacelike hypersurfaces are sometimes known as public space
(determined by cosmic time) and private space (determined by an individual worldline’s
standard simultaneity) (Malament 2007, 251). These various ways in which cosmic time does
not capture the time of our experience play a role in my criticism of Lewis’s definition of time
travel, in the remainder of this section.

31 In certain cases, some CTCs must arise: If M is compact, then C , ∅ (Hawking & Ellis 1973,
Prop. 6.4.2).
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Perhaps a clearheaded definition of time travel will encompass CTCs and
the twins. The most popular definition is due to David Lewis (1976, 145–
146): One is a time traveler when one’s personal time does not match external,
objective time. In particular, one travels to the future on a journey when one’s
personal duration is shorter than the external duration of the journey; one
travels to the past when one arrives at an external time earlier than when one
started. But as I reviewed previously in this section, relativistic spacetimes
do not generally admit of anything like an external time that determines the
time elapsed between two atomic events. To overcome this, Fano and Macchia
(2020) appeal to the best-case scenario of a cosmological FLRW model with
cosmic time and suggest somehow embedding any local model with time
travel, such as the interior Kerr metric, as a separate model into the FLRW
model. Mathematically, this is not possible while preserving a well-defined
cosmic time. But they affirm that this superposition is contradictory “only if
the following metaphysical principle, which we can call property transmission
from whole to parts, holds: If one object O has the property A and o is a proper
part of O and A is incompatible with the property B, then o could not have B”
(Fano & Macchia 2020, 4863–4864). They reject this principle; but it is rather
sufficient, not necessary for contradiction, as they insist. Contradiction here
arises not from principles metaphysical, but mathematical. Even if this could be
assuaged somehow, because the Earth’s time does not match cosmic time – it is
in motion relative to the average motion of matter in the universe – anything on
Earth will always count as a time traveler, for the usual time dilation reasons.
Cosmic time as Lewisian external time thus yields the wrong verdicts about
what and who are time travelers.
Daniels (2014, 339, 343) has made a different proposal for adapting Lewis’s

definition to the relativistic context: “An object, O, is a time traveller iff
there is another frame wherein an object would have a different proper
time from s to e than O,” where s and e are the starting and ending
achronal hypersurfaces, respectively, for O. Unfortunately this proposal is
not conceptually or mathematically consistent: The presupposed achronal
hypersurfaces may not exist (e.g., in Gödel spacetime) and there is a conflation
of properties of proper time with properties of frame-based coordinate time
assignments. Proper times are not frame-dependent, so presumably Daniels
intends to refer to frame-based temporal coordinate assignments, which differ
from an object’s proper time. But there will always be such frames, so
whenever s and e exist, an object with a worldline through them will be a time
traveller. Daniels (2014, 339–341) acknowledges this, affirming that not all
time travelers will be “philosophically interesting,” an analysis of which he
declines. The issue, however, is that the proposed definition of time travel is
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trivial: It is extensionally equivalent (where it applies) to other trivial properties
such as being self-identical, so it is difficult to see how it provides insight into
the phenomenon of time travel.
Arntzenius (2006, 603) proposed a variation on this idea restricted to

backwards time travel:

Suppose there is some (connected, 4-dimensional) sub-region R of space-
timewhich one can slice up into time-slices, so that one can define an external
time confined to R. Now suppose that there is a person whose world-line W
partially lies in R. Then we can say that person P travels back in time if there
are events A and B such that according to P’s personal time A occurs before
B while according to R’s external time B occurs before A.

The “slic[ing] up into time-slices” is essentially just the assignment of a
time function to the region R. This proposal, as far as it goes, does not
have the disadvantages of Daniels’s, but its scope is limited in two ways: It
does not capture time travel to the future, nor does it offer any quantitative
assessment of how far in time a time traveler has traveled. Arntzenius (2006,
605) acknowledges the former, but demurs that it would encounter the same
sort of triviality problem that afflicts Daniels’s:

According to (special and general) relativity two clocks that travel along
different world-lines from space-time point A to space-time point B will,
almost always, measure different time intervals between A and B no
matter what the structure the space-time has. . . . So, on a fairly natural
characterization of what it is for there to be forwards time travel, forwards
time travel would be ubiquitous, too ubiquitous to be interesting.

Arntzenius (2006, 605) admits that perhaps there is some way of capturing
a nontrivial sense of relativistic time travel to the future, but does not
pursue it.
It is worth pursuing briefly here by combining certain aspects of Arntzenius’s

and Daniels’s proposals. Abstracting from both, the essential idea in Lewis’s
invocation of “external” time is not that it is object- or frame-independent,
but rather that it can provide a normality standard for determining when some
personal time (along a worldline, say) is out of joint. From Arntzenius, I take
the idea that this normality standard should be a local time function, that is,
one defined on only a portion of spacetime. From Daniels, I take the idea
that there needn’t be a single, uniquely defined normality standard. The new
ingredient I add is some measure of how abnormally out of joint some personal
time is, attributing time travel only to those whose personal time is sufficiently
abnormal, which I allow to be contextually determined. With these inputs, I
arrive at the following schema:
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Let a relativistic spacetime with manifold M be given, as well as a timelike
worldline O : I → M parameterized by arc length (with I ⊆ R an interval),
a countable sequence of local time functions ti : Ui → R with Ui ⊆ M
and O[I ] ⊆ ∪

i Ui, a discrepancy measure d : R ×R→ R, which is a signed
distance function, and a real number ϵ ≥ 0. Further assume that the local time
functions are sequentially compatible, i.e., ti(p) = ti+1(p) where defined.
Then O time travels relative to t, d, and ϵ at p ∈O[I ] iff d(O−1[p], t(p)) > ϵ ,
where d(O−1[p], t(p)) gives the time discrepancy at p.

In a word, time travel occurs forO inUwhen the time experienced byO differs
from that given by ti by more than ϵ according to the discrepancy measure d.
Whether any instantiation and application of this scheme to a particular case is
interesting will depend on the relevance of the standard of temporal normality
(ti) and precision (d) to that case as well as the particular parameterization
I. In many cases of interest, there will be a single t generated by some local
congruence of timelike geodesics, I will in some way cohere with some of the
assignments of t, dwill be the difference function, and ϵ will be some threshold
of practical imperceptibility. For instance, in the case of the twins thought
experiment, t will be given by some local Newtonian model for a spacetime
tube surrounding the Earth, I will initially cohere with t before the traveling
twin’s journey, and d and ϵ will be as just indicated.
An interesting advantage of this definition of time travel is that it suggests a

classification thereof based on how time discrepancies arise. For instance, one
can select d so that time travel to the future/past arises as the (greater than ϵ)
time discrepancy is positive/negative, with the magnitude describing how “far”
the travel extends. Moreover, one can identify time travel arising because of
temporal loops by when the local time functions ti do not effectively piecewise
define a single local time function. Perhaps other fruitful classifications are
possible.
Most philosophical discussions of time travel’s implications for the nature

of time or matter, such as for the debate between presentists, who maintain that
only the present is real, and eternalists, who maintain that the past, present, and
future are equally real, do not draw from GR (Smith 2021, §4). Because time
travel in GR has typically been equated with CTCs, almost all of the discussion
of these specific implications has focused on the seeming causal circularity of
events thereon. Two exceptions to these trends have been Gödel’s argument for
the “ideality” of time, and an argument of my own concerning the ontology of
matter (Fletcher 2020c).32 For lack of space, I discuss only the former.

32 My argument interrogates the interpretation of test particles by showing that they generate
problems for Histories in spacetimes with closed timelike curves.
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Drawing from his solution to the EFE containing CTCs discussed earlier in
this section, Gödel (1949b, 562) argued:

The mere compatibility with the laws of nature of worlds in which there is
no distinguished absolute time, and, therefore, no objective lapse of time
can exist, throws some light on the meaning of time in those worlds in which
an absolute time can be defined. For, if someone asserts that this absolute
time is lapsing, he accepts as a consequence that whether or not an objective
lapse of time exists . . . depends on the particular way in which matter and its
motion are arranged in the world. This is not a straightforward contradiction;
nevertheless a philosophical view leading to such consequences can hardly
be considered as satisfactory.

To understand what Gödel might have had in mind here, note that a typical
model of GR does not contain as part of its auxiliary spacetime structure
a distinguished time slice representing the global present, and so does not
explicitly represent how that present could flow or change. Can one merely
add this auxiliary structure just as one might add, say, a temporal orientation?
A necessary condition for this is that a spacetime admit of a global time
function. Spacetimes with CTCs, like Gödel spacetime, show that it’s possible
for spacetime not to admit of a global time function, hence not have a global
objective time lapse. Finally, it is not “satisfactory” for this to be a contingent
feature of a universe.
The last, modal step of Gödel’s argument has been controversial, failing

to convince most readers: Why shouldn’t the global passage of time
be a contingent feature of the universe? (See Earman [1995, 194–200],
Smeenk and Wüthrich [2011, §4], and references therein for a detailed
discussion.) However, there is a two-part elaboration that restores the
argument’s force (setting aside whether it is what Gödel intended), whose
second part is original as far as I am aware. The first part relies on the concept
of (weak) observational indistinguishability. A spacetime with manifold M is
(weakly) observationally indistinguishable from a spacetime with manifold
M′ if for every p ∈M there is some p′ ∈M′ such that the pasts of p and
p′ are isometric. Call the spacetime with manifold M′ a nemesis for the
original spacetime with manifold M. Manchak (2016) proves that every
original has a nemesis with the same manifold that does not admit a global
time function, and that moreover the spacetime region in the nemesis that
obstructs the existence of the time function may be chosen to lie in the
future of any chosen point p of the original (rather than, say, being spacelike
related to p). This entails that there can be no unequivocal evidence from
physical experience for global objective time lapse. The second part marshals
a standard Occamist norm against postulating surplus physical or metaphysical
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structure, all else being equal. From the first part, it does seem that, at
least empirically, all else is equal regarding whether one postulates a global
objective lapse of time, so one should not postulate it. The Occamist norm
is not a conceptual truth, of course, so the defender of global objective time
lapse can reject it, but doing so can hardly be considered as satisfactory,
methodologically.33

5.2 Relativistic Causality
One of the first slogans one learns about relativity is that it prohibits
superluminal signals, or influences, or propagation of matter. It is natural to
read this as a sort of causality requirement or principle in the theory. What
exactly is the nature and status of this prohibition (if it is not just a restatement of
Histories, discussed in Section 1)? Consider the following definition of “local
causality” from Hawking and Ellis (1973, 60):

The equations governing the matter fields must be such that if U is a convex
normal neighborhood and p and q are points in U then a signal can be sent
in U between p and q if and only if p and q can be joined by a C1 curve
lying entirely in U , whose tangent vector is everywhere nonzero and is either
timelike or null;. . ..
A more precise statement of this postulate can be given in terms of

the Cauchy problem of the matter fields. Let p ∈U be such that every
[inextendible] non-spacelike curve through p intersects the spacelike surface
x4 = 0 within U . Let F be the set of points in the surface x4 = 0 which can
be reached by non-spacelike curves in U from p. Then we require that the
values of the matter fields at pmust be uniquely determined by the values of
the fields and their derivatives up to some finite order onF , and that they are
not uniquely determined by the values on any proper subset of F to which it
can be continuously retracted.

This passage is remarkable for its seemingly wild combination of ideas.
What should the ostensibly anthropocentric idea of “signals” have to do with
the structure of space, time, and matter? How could a local statement of
determinism for matter be a more precise expression of this idea?
The semantic connotation of “signal” perhaps misleads; it denotes here more

narrowly a propagating disturbance in a material medium. One way to make
this idea precise is in terms of counterfactual difference-making (Weinstein
2006): Given a difference in the initial conditions of the medium, find whether
these differences entail differences at events spacelike related from the initial

33 A local objective time lapse may nevertheless be compatible with the argument; see Aames
(2022) for a recent defense.
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conditions. And here the connection with the Cauchy problem is evident.
Earman (2014, 103) gives this a more precise formulation:34

For any initial value hypersurface S and any initial datum Φ0 on S
(1) there is an open neighborhood U of S and a solution Φ of the field equations

on U that agrees with Φ0, and
(2) for any point p ∈U if p belongs to the domain of dependence D(A) of a closed

subset A of S, then for any solutions Φ and Φ′ on U that agree with Φ0 on A,
Φ(p) = Φ′(p).

The domain of dependence of a set A is the points p of M such that all non-
spacelike inextendible curves through p intersect A. In causal terms, it is the set
of events that A determines, insofar as that determination follows timelike and
null curves.
When the matter fields satisfy wavelike equations of motion – in technical

terms, they are hyperbolic partial differential equations (Geroch 1996, Bär et al.
2007) – this characterization is equivalent to another in terms of those
equations’ characteristic cones. These are cones in the tangent space, much like
the null cones of the spacetime metric, that specify the possible directions in
spacetime for how a jump discontinuity in the fields governed by the equations
in question propagates.35 Consequently, if such a discontinuity in initial data
represents an induced difference in the field medium, then one can track
the characteristic surface it induces, which will always be in the domain of
dependence of the initial dataset if the characteristic cones always lie within
the null cones at all events in that domain (Weatherall 2014).36 Indeed, “The
requirement that the matter equations should be second order hyperbolic or first
order hyperbolic systems with their cones coinciding with or lying within that
of the space-time metric g, may be thought of as a more rigorous form of the
local causality postulate” (Hawking & Ellis 1973, 255).
One of the remarkable features of local causality is that it is not a

consequence of other assumptions of GR, and places no restrictions on
spatiotemporal structure. It is rather an assumption about matter fields (about
which Hawking and Ellis [1973, 60] are entirely forthcoming), one that ensures
that the structure of those fields’ causal dependence falls along relations of
timelike or null dependence. Matter fields that do not satisfy it are nevertheless
perfectly compatible with GR (Geroch 2011). For instance, Weatherall

34 See also Wald (1984, 244).
35 In fact, from a mathematical perspective, the null cones are also characteristic cones (Geroch

2011).
36 Weinstein (2006, §2) complained that it would not be productive in general to try to find the

worldline of a “signal” in trying to make relativistic causality precise, but this discussion shows
that for wavelike phenomena, it can be made precise.
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(2014, §5) shows how the characteristic cones for Maxwell equations for
electromagnetism lie outside the null cones when traveling through a medium
with (light frequency-independent) index of refraction n < 1. This does not of
coursemean that realistic matter can be foundwith this property. If one assumes
instead that n depends on frequency such that n → 1 as the frequency becomes
arbitrarily large, then light’s characteristic cones will lie inside the null cones.
And this, in turn, is usually justified heuristically by appeal to the atomic theory
of matter (Weatherall 2014, §6).
Sometimes one finds an alternative conception of relativistic causality for

classical matter fields. According to it, that a field F satisfies DEC means that
“the energy of F does not propagate with superluminal velocity” (Malament
2012, 144).37 There are two facts often cited in support of this conception.
First, as I stated before, since DEC entails that T abξb is non-spacelike for any
timelike ξa, it entails that according to any frame, the flux density of net energy–
momentum is non-spacelike. Second, Hawking and Ellis (1973, 94) prove a
(“conservation”) theorem that has as a consequence the fact that if the energy–
momentum tensor (or, really, any divergence-free tensor) satisfies DEC and
vanishes on a certain set A, then it also vanishes on D(A). For fields that satisfy
AFHE, “This result may be interpreted as saying that the dominant energy
condition implies that matter cannot travel faster than light” (Hawking & Ellis
1973, 94) – or, really, that it cannot encroach into the vacuum faster than light.
The DEC, however, does not characterize relativistic causality because,

while it is sufficient for the just mentioned consequences presented in favor
of this characterization, it is not necessary for those consequences, nor is
it necessary for the characterization endorsed before in this subsection. For
instance, the Klein–Gordon field with a negative potential satisfies a hyperbolic
equation of motion, but not the DEC (Earman 2014, 104). The failure of
the DEC does not therefore entail any superluminal propagation of matter
or energy, into the vacuum or otherwise. (In any case, the speed of vacuum
encroachment does not entail anything about the speed of propagation in a
nonvanishing medium – see Wong [2011] for examples and details.)

37 See also Wald (1984, 219).
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