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The method of moments is employed to extend the validity of continuum-
hydrodynamic models into the transition-flow regime. An evaluation of the regularized
13 moment equations for two confined flow problems, planar Couette and Poiseuille
flows, indicates some important limitations. For planar Couette flow at a Knudsen
number of 0.25, they fail to reproduce the Knudsen-layer velocity profile observed
using a direct simulation Monte Carlo approach, and the higher-order moments are
not captured particularly well. Moreover, for Poiseuille flow, this system of equations
creates a large slip velocity leading to significant overprediction of the mass flow rate
for Knudsen numbers above 0.4. To overcome some of these difficulties, the theory of
regularized moment equations is extended to 26 moment equations. This new set
of equations highlights the importance of both gradient and non-gradient transport
mechanisms and is shown to overcome many of the limitations observed in the
regularized 13 moment equations. In particular, for planar Couette flow, they can
successfully capture the observed Knudsen-layer velocity profile well into the transition
regime. Moreover, this new set of equations can correctly predict the Knudsen layer,
the velocity profile and the mass flow rate of pressure-driven Poiseuille flow for
Knudsen numbers up to 1.0 and captures the bimodal temperature profile in force-
driven Poiseuille flow. Above this value, the 26 moment equations are not able to
accurately capture the velocity profile in the centre of the channel. However, they are
able to capture the basic trends and successfully predict a Knudsen minimum at the
correct value of the Knudsen number.

1. Introduction
The behaviour of a rarefied gas can readily be described by kinetic theory and

the Boltzmann equation (Cercignani 1988). However, the theoretical treatment of
the Boltzmann equation for practical applications remains formidable due to the
complicated structure of the collision term and its high dimensionality. In recent
years, there has been some advancement in the numerical simulation of several
rarefied gasdynamics problems through solving the linearized Boltzmann equation
directly, but these are often for simplified test cases, such as Kramers’s problem
(Siewert 2003), planar Couette flow (Sone, Takata & Ohwada 1990), cylindrical
Couette flow (Aoki et al. 2003) and channel/Poiseuille flows involving small pressure
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and temperature gradients (Ohwada, Sone & Aoki 1989; Sharipov 1999). The direct
simulation Monte Carlo (DSMC) method (Bird 1994) is an excellent alternative
approach for solving high-speed rarefied gas flows, but the computational cost for
low-speed flows in the slip- and transition-flow regime is too high for anything but
very simplified problems. The recently developed lattice Boltzmann method (LBM) is
constructed from simplified kinetic models that incorporate the essential physics of
microscopic processes so that the macroscopic-averaged property obeys the desired
macroscopic equations (Chen & Doolen 1998; Succi 2001). Unlike the solution of
the Boltzmann equation, the LBM utilizes a minimal set of velocities in phase space
so that the averaging process is greatly simplified. However, additional efforts are
required when the conventional LBM is used to simulate gas flows under rarefied
conditions (Chikatamarla, Ansumali & Karlin 2006; Zhang et al. 2007). The ability
of the LBM to capture non-equilibrium phenomena in rarefied gas flows largely
depends on the lattice model (Shan, Yuan & Chen 2006). For many years, alternative
macroscopic modelling and simulation strategies have been developed (Chapman &
Cowling 1970; Muller & Ruggeri 1993; Levermore 1996; Xu 2001; Shen, Fan &
Xie 2003; Sun & Boyd 2004; Baker & Hadjiconstantinou 2005; Struchtrup 2005).
However, with the advent of micro-electro-mechanical systems (MEMS) (Harley et al.
1995; Gad-el-Hak 1999; Reese, Gallis & Lockerby 2003), there has been a renewed
impetus in the development of new and efficient approaches for modelling low-
speed slip and transitional flows that can capture non-intuitive phenomena, such as
Knudsen layers, and provide an accurate description of a gas that is not too far from
thermodynamic equilibrium.

A macroscopic or hydrodynamic model of a dilute gas can be built up from its
microscopic expression – the Boltzmann equation. The conventional hydrodynamic
model of a gas is the Navier–Stokes–Fourier (NSF) equations, which govern the first
five lowest moments of the molecular distribution function f : density, momentum
and energy. The constitutive models for stresses and heat fluxes in the momentum
and energy equations can be related to hydrodynamic quantities by a Chapman–
Enskog (CE) expansion of the molecular distribution function in powers of the
Knudsen number Kn (Chapman & Cowling 1970). The Knudsen number, which is
the ratio of the mean free path of the gas molecules, λ, to a characteristic length
scale, measures the degree of non-equilibrium of the gas. When the value of Kn is less
than 0.1, the NSF equations, in association with velocity-slip and temperature-jump
wall-boundary conditions (WBCs), can predict the velocity profile in a micro-channel
fairly accurately (Gad-el-Hak 1999). The first-order CE expansion is consistent with
the ‘gradient transport mechanism’ (GTM) for flow velocity ui and temperature T

in continuum mechanics, i.e. the Navier–Stokes equations and Fourier’s law. As the
value of Kn increases, because of either low-pressure or low-density conditions, or
the size of a typical dimension of a device decreases, the gradient transport model
no longer remains accurate due to an insufficient number of molecular collisions
occurring to reach an equilibrium state. The NSF approach can be improved by
introducing higher-order terms through a CE expansion of the molecular distribution
function. The series can then be truncated at any power of Knudsen number, but if
the power series in Kn is continued, the approach leads to the Burnett (second-order)
(Chapman & Cowling 1970) or super-Burnett (third-order) equations (Shavaliyev
1993). However, Grad (1963) has argued that no matter how high the expansion
order is, the resulting system will only describe flows that are already very close to
the continuum solution. Recently, Karlin & Gorban (2002) have pointed out that the
Burnett equations violate the underlying physics behind the Boltzmann equation, and
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the super-Burnett approximation does not improve the situation. This phenomenon is
known as ‘Bobylev’s instability’ (Bobylev 1982). However, Uribe, Velasco & Garcı́a-
Colı́n (2000) have argued that the Burnett equations are valid when the Knudsen
number is small and that the hydrodynamic instability only arises when the Burnett
equations are applied beyond their range of validity. A review of the problems and
successes of Burnett hydrodynamics has been given by Garcı́a-Colı́n, Velaso & Uribe
(2008).

Grad (1949b) proposed an approximate solution procedure for the Boltzmann
equation via the moment method. In the method of moments, a set of N moments
ρi1 i2........iN are defined to describe the state of the gas by

ρi1 i2...iN =

∫
ci1ci2 . . . ciN f dξ , (1)

where ξ represents the molecule’s velocity and ci( = ξi − ui) is the intrinsic or peculiar
velocity. Grad (1949b) expanded f in Hermite polynomials, the coefficients of which
are linear combinations of the moments of the molecular distribution function. An
infinite set of Hermite coefficients is equivalent to the molecular distribution function
itself, and no kinetic information is lost in such a system. In practice, the molecular
distribution function has to be truncated, and the specific problem to be addressed will
determine the order of the truncation. It is expected that as Kn increases, the order of
the truncated Hermite polynomials would increase to provide an accurate description
of the flow conditions. By choosing a sufficient number of Hermite coefficients, a
general solution of the Boltzmann equation can be approximated. The governing
equations of the moments involved in the Hermite coefficients can be derived from
the Boltzmann equation. However, the set of equations are not closed, since the fluxes
and the collision terms are unknown. The truncated distribution function is used to
calculate the collision terms and higher moments in the fluxes as functions of the
chosen moments to close the equation set. All the moments included in the truncated
distribution function construct the ‘Grad moment manifold’ (GMM). These moments
relax to the equilibrium state at a rate governed by their corresponding governing
equations. The remaining higher moments outside the GMM, as calculated from the
truncated distribution function, approach the GMM (not the equilibrium state) at a
fast finite rate and then relax to the equilibrium state along with the GMM (Gorban,
Karlin & Zinovyev 2004). In this sense, the moments outside the GMM are referred
to as ‘fast’ moments, and those in the GMM are ‘slow’ moments (Gorban et al.
2004). However, it should be noted that the overall relaxation time for the moments
both inside and outside the GMM to relax to the equilibrium state is of the same
order.

In his seminal paper, Grad (1949b) truncated the distribution function at the third
order in Hermite polynomials, which includes the five lowest moments of the collision
invariants, stresses and heat fluxes. The governing equations of stresses and heat fluxes
were derived from the Boltzmann equation in addition to the conservation laws for
mass, momentum and energy. This governing set of 13 moment equations essentially
constitutes an ‘extended thermodynamic’ or ‘extended hydrodynamic’ model which
can describe flows that depart from local equilibrium. In the original set of 13
moment equations, all the higher moments outside the GMM are not allowed to
deviate from the GMM. In other words, they approach the GMM at an infinite
rate, which results in Grad’s well-known 13 moment equations (G13). Karlin et al.
(1998) treated the truncated Hermite polynomial distribution function as a pseudo-
equilibrium distribution, instead of the Maxwellian, and applied a CE expansion to
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allow some of the higher moments outside the GMM to approach this manifold
with a faster but finite rate. However, they only considered the linearized Boltzmann
equation and did not compute the various transport coefficients. More recently,
Struchtrup & Torrilhon (2003) and Struchtrup (2005) obtained a regularized set
of G13 equations by applying a CE-like expansion and an order-of-magnitude
approach to the governing equations of the moments higher than second order.
The constitutive models established for the third and higher moments were then
used to regularize the 13 moment equations (R13). An alternative approach has been
proposed by Jin & Slemrod (2001) who used a visco-elastic regularization procedure
to develop a relaxed Burnett system through a relaxation of the pressure deviator
and heat flux. This leads to a stable set of 13 governing equations that are weakly
parabolic, and a detailed comparison between the R13 and the regularization of Jin &
Slemrod (2001) has been performed by Struchtrup (2005). In the present study, the
distribution function is truncated at the fourth order in Hermite polynomials, and a
set of 26 moment equations are employed, which are regularized by the procedure
used by Struchtrup & Torrilhon (2003) for the 13 moment equations.

The moment method is well known in kinetic theory and provides an alternative
solution procedure to the Boltzmann equation (Kogan 1969). Previous studies by
Reitebuch & Weiss (1999) and Marques & Kremer (2001) have used the 13 and 26
moment field equations, respectively, to investigate planar Couette flow. In addition,
Struchtrup (2003) used the linearized form of Grad’s 13 and 26 moment equations
to study one-dimensional heat transfer in a micro-scale channel. However, moment
methods are not well known in the field of continuum fluid dynamics. There are
two important reasons why this could be the case. Firstly, moments higher than
second-order have no clear intuitive physical meaning. Secondly, the original Grad’s
moment equations are a set of the first-order partial differential equations (PDEs)
with hyperbolic characteristics, and the regularized moment equations are a mixed
system of the first- and second-order PDEs. Traditionally these equations are used
to study hyperbolic flows (Grad 1952, 1963; Torrilhon & Struchtrup 2004; Torrilhon
2006).

In the moment system, the higher moments provide the transport mechanism for
the moments one order lower. For a gas flow close to the equilibrium state, a sufficient
number of molecular isotropic collisions cause the flow to behave as a continuum
so that the GTM prevails. As the value of Kn increases, a non-gradient transport
mechanism (NGTM) occurs in addition to the GTM. In fact, both the GTM and
the NGTM coexist in the transition regime. In this paper, the moments are explicitly
decomposed into their GTM and NGTM components, as proposed by Gu & Emerson
(2007) in their study of the R13 equations. As the value of the gradient transport
component of a moment can be calculated from the value of the relevant moment one
order lower, the governing equations for the non-gradient components of the moments
are readily obtained from the moment equations. As a result, a system of second-order
PDEs can be constructed with characteristics determined by the flow conditions.
Developing unique boundary conditions is quite challenging: a previous study by
Liu & Rincon (2004) used the minimal principle to minimize entropy production,
whereas Gu & Emerson (2007) obtained a set of WBCs for the R13 equations using
Maxwell’s kinetic WBC and DSMC data. However, Torrilhon & Struchtrup (2008)
found that Gu & Emerson (2007) had over-subscribed the boundary conditions for
the R13 equations, which caused irregularities in the shear stress and temperature
profiles near the wall. In the present study, this issue is resolved by using boundary
conditions equivalent to those of Torrilhon & Struchtrup (2008).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

76
8X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200900768X


A high-order moment approach for capturing non-equilibrium phenomena 181

The purpose of this paper is to bridge kinetic theory and conventional fluid
dynamics in the transition regime. In the next section, the process of extending the
moment equation set from 5 to 26 moments is described following the basis of the
GMM extension. Both the GTM and the NGTM are emphasized. The WBCs for
the system are presented in § 3. A moment realizability criterion and H -theorem
are briefly described in § 4 and provide a guide to ensuring that the numerical
solutions are physical. In § 5, the moments are decomposed into their GTM and
NGTM components. The governing equations for the non-gradient components are
obtained from the 26 moment equations, and the numerical procedure for solving
the newly derived equations are briefly discussed. Planar Couette flow and Poiseuille
flow are then studied in § 6 for Kn around unity. The computed results from the
moment equations are compared with either DSMC data or solutions of the linearized
Boltzmann equation (Ohwada et al. 1989). Concluding remarks are presented in § 7.

2. Extended thermodynamic governing equations
2.1. Conventional hydrodynamic model – the NSF equations

The traditional hydrodynamic quantities of density ρ, velocity ui and temperature
T correspond to the first five lowest order moments of the molecular distribution
function. The governing equations of these hydrodynamic quantities for a dilute gas
can be obtained from the Boltzmann equation and represent mass, momentum and
energy conservation laws, respectively (Struchtrup 2005):

∂ρ

∂t
+

∂ρui

∂xi

= 0, (2)

∂ρ ui

∂t
+

∂ρ uiuj

∂xj

+
∂σij

∂xj

= − ∂p

∂xi

+ ρai (3)

and

∂ρT

∂t
+

∂ρuiT

∂xi

+
2

3R

∂qi

∂xi

= − 2

3R

(
p

∂ui

∂xi

+ σij

∂uj

∂xi

)
, (4)

where t and xi are temporal and spatial coordinates, respectively, and any suffix
i, j, k represents the usual summation convention. The external acceleration is
denoted by ai and the pressure p is related to the temperature and density by the
ideal gas law p = ρRT , where R is the specific gas constant. However, the stress term
σij and heat flux term qi given in (3) and (4) are unknown. The classical way to
close this set of equations is through a CE expansion of the molecular distribution
function in terms of Kn around the Maxwellian, which is first order in Hermite
polynomials. The zeroth-order CE expansion yields the Euler equations, and the
first-order approximation of σij and qi , for Maxwell molecules, gives (Chapman &
Cowling 1970; Struchtrup 2005)

σG
ij = −2μ

∂u〈i

∂xj〉
and qG

i = −15

4
Rμ

∂T

∂xi

, (5)

in which μ is the viscosity and the angular brackets denote the traceless part of a
symmetric tensor. Equation (5) expresses an import transport mechanism for ui and
T , the GTM, and the superscript G is used to emphasize the importance of this
mechanism. If we let

σij = σG
ij and qi = qG

i (6)
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and insert (5) and (6) into (3) and (4), the result is the traditional hydrodynamic
equations, i.e. the NSF equations. In the NSF system, the moments included in the
GMM are {ρ, ui, T }. This is an equilibrium manifold, which is a subset in any
extended GMM. The CE expansion allows the higher moments σij and qi outside
the manifold to deviate from the GMM. The second-order CE expansion adds the
NGTM components to σij and qi and results in the Burnett equations.

2.2. An extended hydrodynamic model – the R13 equations

As the value of Kn increases, more moments need to be included in the GMM to
accurately describe any non-equilibrium phenomenon. Grad (1949b) truncated the
distribution function to the incomplete third order in Hermite polynomials (fG13) and
extended the GMM from {ρ, ui, T } to {ρ, ui, T , σij , qi}. Grad was one of the
pioneers to introduce σij and qi as extended variables and derived a set of governing
equations for them from the Boltzmann equation. For Maxwell molecules, the stress
and heat flux equations are (Struchtrup 2005)

∂σij

∂t
+

∂ukσij

∂xk

+
∂mijk

∂xk

= −p

μ
σij − 2p

∂u〈i

∂xj〉
+ Σij (7)

and
∂qi

∂t
+

∂ujqi

∂xj

+
1

2

∂Rij

∂xj

= −2

3

p

μ
qi − 5

2
pR

∂T

∂xi

+ Qi, (8)

in which

Σij = −4

5

∂q〈 i

∂xj〉
− 2σk〈 i

∂uj〉

∂xk

(9)

and

Qi = −7σikR

2

∂T

∂xk

− RT
∂σik

∂xk

+
σij

ρ

(
∂p

∂xj

+
∂σjk

∂xk

)

− 2

5

(
7

2
qk

∂ui

∂xk

+ qk

∂uk

∂xi

+qi

∂uk

∂xk

)
− 1

6

∂�

∂xi

− mijk

∂uj

∂xk

. (10)

Here, mijk , Rij and � represent the difference between the true value of the higher
moments (ρ〈ijk〉, ρ〈ij〉rr and ρrrss) and their approximated value with fG13, respectively
(Struchtrup & Torrilhon 2003), i.e.

mijk = ρ〈ijk〉 − ρ〈ijk〉|fG13
= ρ〈ijk〉,

Rij = ρ〈ij〉rr − ρ〈ij〉rr |fG13
= ρ〈ij〉rr − 7RT σij ,

� = ρrrss − ρrrss |fG13
= ρrrss − 15pRT .

⎫⎪⎬
⎪⎭ (11)

In Grad’s original method, such deviations were omitted, so that mijk = Rij =�= 0.
This results in the well-known G13 equations. To close the set of equations (2)–(4),
(7) and (8), Struchtrup & Torrilhon (2003) and Struchtrup (2005) regularized the G13
equations and obtained the following closures:

mijk = −2μ
∂(σ〈ij /ρ)

∂xk〉
− 8μ

5p
q〈i

∂uj

∂xk〉
, (12)

Rij = − 24

5
μ

∂(q〈i/ρ)

∂xj〉
− 24

5

μ

p
q〈i

∂RT

∂xj〉
− 24

7

μ

ρ

×
(

σk〈i
∂uj〉

∂xk

+ σk〈i
∂uk

∂xj〉
− 2

3
σij

∂uk

∂xk

)
− 4

7

σk〈iσj〉k

ρ
(13)
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and

� = − 12μ
∂(qk/ρ)

∂xk

− 20
μ

p
qk

∂RT

∂xk

− 12
μ

ρ
σij

∂ui

∂xj

− σijσij

ρ
. (14)

Struchtrup (2005) denoted this set of 13 moment equations with the above closure as
the R13 equations. The underlined terms on the right-hand sides of (12)–(14) provide
the GTM for σij and qi and help to stabilize the R13 equations. It is convenient to
explicitly describe the gradient transport components by

mG
ijk = −2μ

∂(σ〈ij /ρ)

∂xk〉
, RG

ij = −24

5
μ

∂(q〈i/ρ)

∂xj〉
and �G = −12μ

∂(qk/ρ)

∂xk

. (15)

The rest of the terms in (12)–(14) represent the NGTM components of the
corresponding moments. It is clear that the GTM not only exists for lower-rank
moments, such as velocity and temperature, but also for high-rank moments, such as
stress and heat flux.

2.3. Extending the hydrodynamic model – the R26 equations

In a recent study of planar Couette flow, Gu, Barber & Emerson (2007) and Gu
& Emerson (2007) found that the R13 equations improved Grad’s original closure
significantly, but they were not able to capture the Knudsen-layer velocity profile
accurately. Since (12) and (13) are constitutive relationships for mijk and Rij, they
can only provide a mechanism to produce a boundary layer for the lower-order
moments σij and qi but have no mechanism to produce their own boundary layer
near the wall (Torrilhon & Structrup 2008). As the Knudsen layer is a linear
superposition of many exponential layers (Struchtrup 2008), the R13 equations
only resolve one such contribution. Mizzi et al. (2008) introduced mijk into the
governing equations to alleviate this problem. In the present approach, the GTMs
for mijk and Rij near the wall are provided by extending the GMM from 13 to 26
moments, which includes the moments mijk, Rij and � as extended hydrodynamic
variables. The distribution function is truncated to the incomplete fourth order in
Hermite polynomials (fG26), and the GMM is extended from {ρ, ui, T ,σij , qi} to
{ρ, ui, T , σij , qi, mijk, Rij , �}. From the Boltzmann equation, it is possible to
obtain governing equations for mijk , Rij and � for Maxwell molecules as follows
(Struchtrup 2005):

∂mijk

∂t
+

∂ulmijk

∂xl

+
∂φijkl

∂xl

= −3

2

p

μ
mijk − 3p

∂(σ〈ij /ρ)

∂xk〉
+ Mijk, (16)

∂Rij

∂t
+

∂ukRij

∂xk

+
∂ψijk

∂xk

= −7

6

p

μ
Rij − 28

5
p

∂(q〈i/ρ)

∂xj〉
+ �ij (17)

and

∂�

∂t
+

∂�ui

∂xi

+
∂Ωi

∂xi

= −2

3

p

μ
� − 8p

∂(qi/ρ)

∂xi

+ ℵ, (18)
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in which

Mijk = 3
σ〈ij

ρ

∂σk〉l

∂xl

− 12

5
q〈i

∂uj

∂xk〉
− 3ml〈ij

∂uk〉

∂xl

− 3

7

∂R〈ij

∂xk〉
, (19)

�ij = −2

3

p

μ

σk〈iσj〉k

ρ
− 28

5
q〈i

∂RT

∂xj〉
+

28

5

q〈i

ρ

∂σj〉k

∂xk

+
14

3

σij

ρ

(
∂qk

∂xk

+ σkl

∂uk

∂xl

)

− 4RT

(
σk〈i

∂uk

∂xj〉
+ σk〈i

∂uj〉

∂xk

− 2

3
σij

∂uk

∂xk

)
− 2RT

∂mijk

∂xk

− 9mijk

∂RT

∂xk

− 2φijkl

∂uk

∂xl

+ 2
mijk

ρ

(
∂p

∂xk

+
∂σkl

∂xl

)
−
(

6

7
R〈ij

∂uk〉

∂xk

+
4

5
Rk〈i

∂uk

∂xj〉
+ 2Rk〈i

∂uj〉

∂xk

)

− 14

15
�

∂u〈i

∂xj〉
− 2

5

∂Ω〈i

∂xj〉
(20)

and

ℵ = −2

3

p

μ

σijσij

ρ
− 4(2RT σij + Rij )

∂ui

∂xj

+ 8
qi

ρ

∂σij

∂xj

− 20qi

∂RT

∂xi

− 4

3
�

∂ui

∂xi

. (21)

Here, φijkl , ψijk and Ωi are the difference between the true value of the higher moments
(ρ〈ijkl〉, ρrr〈ijk〉 and ρrrssi) and their corresponding value approximated with fG26, i.e.

φijkl = ρ〈ijkl〉 − ρ〈ijkl〉|fG26
= ρ〈ijkl〉,

ψijk = ρrr〈ijk〉 − ρrr〈ijk〉|fG26
= ρrr〈ijk〉 − 9RT mijk,

Ωi = ρrrssi − ρrrssi|fG26
= ρrrssi − 28RT qi.

⎫⎪⎬
⎪⎭ (22)

If deviations are not allowed for the higher moments away from the GMM, the above
equations become a Grad-type 26 moment set of equations. In the present study, these
equations are regularized following the procedure used by Struchtrup & Torrilhon
(2003). The governing equations for φijkl , ψijk and Ωi are derived from the Boltzmann
equation, and a CE-like expansion (Struchtrup & Torrilhon 2003) is applied to them.
However, when the nonlinear collision terms are included in these equations, care
must be taken to ensure that the CE expansion only allows φijkl, ψijk and Ωi to
approach the GMM (not directly the equilibrium state) at a fast rate and then follow
the GMM towards the equilibrium state, as detailed in appendix A. Combining (A8)
and (A9), the 26 moment field equations are closed by

φijkl = − 4μ

C1

∂(m〈ijk/ρ)

∂xl〉
+ φR

ijkl, ψijk = − 27μ

7Y1

∂(R〈ij /ρ)

∂xk〉
+ ψR

ijk

and Ωi = − 7μ

3

∂(�/ρ)

∂xi

+ ΩR
i . (23)
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Here φR
ijkl, ψR

ijk and ΩR
i are the remaining terms of φijkl, ψijk and Ωi , respectively,

and are expressed by

φR
ijkl = − 12

C1

μ

ρ
σ〈ij

∂uk

∂xl〉
+

4μ

C1pρ
m〈ijk

∂σl〉m

∂xm

− 12

7

μR〈ij

C1p

∂uk

∂xl〉
− C2

C1

σ〈ij σkl〉

ρ
, (24)

ψR
ijk = −27

7

μ

Y1p
(R〈ij + 7RT σ〈ij )

∂RT

∂xk〉
− 108

5Y1

μ

ρ
q〈i

∂uj

∂xk〉
+

27μ

7Y1

R〈ij

pρ

∂σk〉m

∂xm

+
6μ

Y1p

mijk

ρ

×
(

∂qm

∂xm

+ σml

∂um

∂xl

)
− μ

Y1ρ

(
54

7
mm〈ij

∂um

∂xk〉
+ 8m〈ijk

∂um〉

∂xm

− 6mijk

∂um

∂xm

)

−
(

Y2

Y1

σ〈limjkl〉

ρ
+

Y3

Y1

q〈iσjk〉

ρ

)
(25)

and

ΩR
i = −4μ

∂(Rij/ρ)

∂xj

− 56

5

μ

ρ

(
qj

∂ui

∂xj

+ qj

∂uj

∂xi

)
− 8

μ

ρ
mijk

∂uj

∂xk

− 14
μ

p
(2RT σij + Rij )

× ∂RT

∂xj

+
56

3

μ

p

qi

ρ

(
∂qj

∂xj

+ σjk

∂uj

∂xk

)
+ 4

μ

p

Rij

ρ

∂σjk

∂xk

+
7

3

μ

p
�

(
∂σij

ρ∂xj

− 2
∂RT

∂xi

)

− 2

15

(
5mijkσjk + 14qjσij

ρ

)
, (26)

in which C1, C2, Y1, Y2 and Y3 are collision term constants, and their values are given
in appendix A. The underlined terms on the right-hand side of (23) provide the GTM
for mijk, Rij and � and play an important role in the region close to the wall. Again,
the GTM can be explicitly expressed by

φG
ijkl = −4μ

C1

∂(m〈ijk/ρ)

∂xl〉
, ψG

ijk = −27μ

7Y1

∂(R〈ij /ρ)

∂xk〉
and ΩG

i = −7μ

3

∂(�/ρ)

∂xi

. (27)

Following the convention of Struchtrup (2005), the above closed set of 26 moment
equations are denoted as the R26 equations, which is a mixed system of first- and
second-order PDEs.

An alternative approach to close the moment equations is the order-of-magnitude
method proposed by Struchtrup (2004, 2005). This method relates the importance
of the moments to the Knudsen number and gives an order of accuracy to the
moment equation system. Struchtrup (2004) showed that the NSF equations are first
order in Kn; Grad’s 13 moment system is of second order; and the R13 moment
equations are of third order. Assigning the corresponding order to the moments in
the R26 moment equations indicates that they are of fifth-order accuracy, as stated by
Struchtrup (2005). Although the order of magnitude analysis may not be applicable
in the Knudsen layer (Struchtrup 2008), it does provide valuable insight into the role
of the moments and their governing equations.

3. Wall boundary conditions
To apply any of the foregoing models to flows in confined geometries, appropriate

WBCs are required to determine a unique solution. One of the difficulties encountered
in any investigation of WBCs is a limited understanding of the structure of surface
layers of solid bodies and of the effective interaction potential of the gas molecules
with the wall. A scattering kernel represents a fundamental concept in gas-surface
interactions, by means of which other quantities should be defined (Cercignani 2000).
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Gu & Emerson (2007) obtained a set of WBCs for the R13 moment equations
based on Maxwell’s kinetic wall boundary model (Maxwell 1879) and a fourth-order
approximation of the molecular distribution function in Hermite polynomials. To
construct WBCs for the R26 equations, a fifth-order approximation of the molecular
distribution function, f (5), is required. With the Hermite polynomials and their
coefficients listed in appendix B, it is expressed by

f (5) = fM (1 + ϕ) , (28)

in which

ϕ =

[
σij cicj

2pRT
+

ciqi

pRT

(
c2

5RT
−1

)
+

mijkcicj ck

6p(RT )2
+

Rijcicj

4p(RT )2

(
c2

7RT
− 1

)
+

�

8pRT

×
(

c4

15(RT )2
− 2c2

3RT
+ 1

)
+

φijklcicj ckcl

24p (RT )3
+

ψijkcicj ck

12p (RT )3

(
c2

9RT
− 1

)

+
ciΩi

40p(RT )2

(
c4

7(RT )2
− 2c2

RT
+ 5

)]
, (29)

where c2 = ckck . It should be noted that the higher moments involved in the underlined
terms in (29) are not part of the GMM so that f (5) is not a Grad-type distribution
function but a regularized fG26 and is used to construct the WBCs to increase the
accuracy near the wall.

Maxwell’s kinetic boundary condition (Maxwell 1879) is a rather simple model, and
it states that a fraction (1−α) of gas molecules will undergo ‘specular’ reflection, while
the remaining fraction α will be ‘diffusely’ reflected with a Maxwellian distribution f w

M

at the temperature of the wall Tw. In a frame in which the coordinates are attached
to the wall, with ni the normal vector of the wall pointing towards the gas and τi the
tangential vector of the wall, such that all molecules with ξini < 0 are incident upon
the wall and molecules with ξini � 0 are emitted by the wall, Maxwell’s boundary
condition can be expressed by (Struchtrup 2005)

f w =

{
αf w

M + (1 − α) f (−ξini), ξini � 0,

f (ξini), ξini < 0.
(30)

By definition, the value of any moment at the wall can be obtained from∫
ξini�0

ci1ci2 . . . cinf (ξini)dξ =

∫
ξini�0

ci1ci2 . . . cin

[
αf w

M + (1 − α) f (−ξini)
]
dξ . (31)

Grad (1949b) considered the special case of α =0 and concluded that only moments
that are odd functions of cini can be used to construct WBCs. Furthermore,
Torrilhon & Struchtrup (2008) determined that only the moments representing
fluxes can be used in the boundary conditions. This limits the choice of moments
to ψ = (cn, cτ cn, c

2cn, c
2
τ cn, c

3
n, c

2cτ cn, c
3
τ cn, cτ c

3
n, c

3
τ c

3
n, c

4
τ cn, c

5
n, c

4cn), in which cn = cini

and cτ = ciτi . The details of the construction procedure of the WBCs for the R26
equations are the same as for the R13 equations (Gu & Emerson 2007; Torrilhon &
Struchtrup 2008) and are not repeated here. The slip velocity parallel to the wall uτ

and temperature jump conditions are

uτ = −2 − α

α

√
πRT

2

σnτ

pα

− 5mnnτ + 2qτ

10pα

+
9Ωτ + 70ψnnτ

2520pαRT
(32)
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and

RT − RTw = −2 − α

α

√
πRT

2

qn

2pα

− RT σnn

4pα

+
u2

τ

4
− 75Rnn + 28�

840pα

+
φnnnn

24pα

, (33)

where

pα = p +
σnn

2
− 30Rnn + 7�

840RT
− φnnnn

24RT
. (34)

Here σnn = σijninj , σnτ = σijniτj , qτ = qiτi, mnnτ =mijkninj τk, mnnn =mijkninjnk, Rnn =
Rijninj , ψnnτ =ψijkninj τk, Ωτ = Ωiτi and φnnnn = φijklninjnknl are the tangential
and normal components of σij , qi, mijk, Rij , ψijk, Ωi and φijkl relative to the
wall. It should be noted that the normal velocity at the wall un = 0, since there
is no gas flow through the wall. Equations (32) and (33) are similar to the slip
velocity and temperature jump conditions for the NSF equations (Cercignani 1988;
Gad-el-Hak 1999) with the underlined terms on the right-hand side providing
higher-order moment corrections. These underlined terms can be related to second-
or higher-order velocity slip and temperature jump boundary conditions (Struchtrup
& Torrilhon 2008). With a normalized slip velocity ûτ = uτ/

√
RT and a normalized

wall temperature T̂w = Tw/T the rest of the WBCs are listed in appendix C. Equations
(C1)–(C3) without the higher-order moments φnnττ , φnnnn, ψnnτ and Ωτ together
with (32)–(34) are boundary conditions for the R13 equations, equivalent to those
used by Torrilhon & Struchtrup (2008).

4. Moment realizability and H -theorem
Two important features of solutions to the Boltzmann equation is that the

distribution function f is non-negative and that the solution must satisfy the H -
theorem (Cercinani 1988). However, a solution obtained from the moment equations
as an approximation to f may not satisfy these constraints. Struchtrup & Torrilhon
(2007) have shown that the linearized R13 equations naturally fulfil the H -theorem.
A full detailed analysis of the mathematical properties of the 26 moment equations is
beyond the scope of the present study. However, this section will briefly explore the
moment realizability criteria, and expressions for a generalized entropy and its flux
will be given, which can be used to assess the validity of the numerical solution.

Instead of directly evaluating the value of the approximate distribution functionf (5),
the moment realizability criteria advocated by Levermore, Morokoff & Nadiga
(1998) can be used to examine whether a numerical solution is realizable. From
the elementary observation that if an approximate distribution function F is non-
negative, then so is

∫
ψ2Fdξ for any function ψ = ψ(ξ ), Levermore et al. (1998)

derived a simple validity matrix V which includes all the densities and fluxes of the
conservation laws. For these fluxes to be realizable, the eigenvalues of the validity
matrix must be non-negative. With the approximate distribution function f (5) in (28),
the elements of the matrix V can be expressed by

Vij = δij +
σij

p
− 2

3

qiqj

p2RT

(
1 +

�

6pRT

)−1

. (35)

The quantity H defined by

H = −
∫

f ln f dξ (36)
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plays a significant role in the theory of the Boltzmann equation (Cercignani 1988).
For equilibrium flow, the value of H can be evaluated with the Maxwellian so that

Heq = −
∫

f M ln f Mdξ =
ρ

R
η + ρ eo, (37)

where η is the thermodynamic or equilibrium entropy given by (Grad 1949b)

η =
3

2
R ln

(
p

ρ5/3

)
(38)

and eo is an entropy constant equal to (3/2)(ln 2π + 1). The quantity H can therefore
be regarded as having properties of entropy (Grad 1949b; Cercignani 1988). Replacing
f with f (5), an approximate value of H can be evaluated from

H = −
∫

f (5) ln f (5)dξ = −
∫

f M (1 + ϕ) ln[f M (1 + ϕ)]dξ . (39)

For flow not far from equilibrium, i.e. |ϕ| < 1, ln(1 + ϕ) can be approximated as
ϕ − ϕ2/2, and (39) becomes

H = Heq − 1

4p

(
σijσij

RT
+

4qiqi

5 (RT )2
+

mijkmijk

3 (RT )2
+

RijRij

14 (RT )3
+

�2

60(RT )3

+
φijklφijkl

12 (RT )3
+

ψijkψijk

54 (RT )4
+

ΩiΩi

140 (RT )4

)
. (40)

Similarly, the flux of H in the direction of xm, given by Jm = −
∫

ξmf ln f dξ , can
be obtained from the distribution function f (5) as

Jm = umH +
qm

RT
− 1

2p

(
4

5

qiσmi

RT
+

σijmijm

RT
+

2qiRim

5 (RT )2
+

Rijmijm

7 (RT )2
+

2�qm

15 (RT )2

)

− 1

2p

(
Rijψijm

14 (RT )3
+

ΩiRim

35 (RT )3
+

23

840

�Ωm

(RT )3
+

mijkφijkm

3(RT )2
+

ψijkφijkm

27 (RT )3

)
. (41)

In terms of H and Jm, the H -theorem of the Boltzmann equation can be expressed
by (Cercignani 1988; Struchtrup 2005)

∂H
∂t

+
∂Jm

∂xm

� 0. (42)

This inequality is an essential feature of rarefied gasdynamics. It states the following:
(i) for a homogenous system, the generalized entropy H never decreases with time;
(ii) for a steady-state flow, the divergence of the flux of H is non-negative. The
eigenvalues of matrix V and the inequality (42) can be readily evaluated numerically
at any grid point to check whether a non-physical solution of the moment equations
is obtained.

5. Numerical method
The moment equations have often been used to study shock structures in which the

flows are hyperbolic in nature (Grad 1952; Jin, Pareshi & Slemrod 2002; Torrilhon &
Struchtrup 2004). In the case of low-speed rarefied gas flow, such as those found
in micro-devices, the system is parabolic or elliptic. Using a hyperbolic flow solver
to solve elliptic flows is inefficient and expensive. In the present study, a primitive
variable transformation is introduced in terms of the GTM and NGTM embedded
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in the moment equation system. The moment equations are recast in a form in which
conventional computational fluid dynamics techniques for low-speed flow can be
employed.

5.1. Primitive variable transformation

In the theory of differential equations, variable substitutions or transformations are
often used to show that certain classes of equations are equivalent to a standard
form (Debnath 1997). Primitive variables of the governing equations for moments
have been transformed during the development of the moment method. The full
tensorial moments have been decomposed into their trace and traceless parts and
further decomposed into their values on the GMM and their corresponding deviations
(Grad 1949b; Truesdell & Muncaster 1980; Struchtrup 2005). These decompositions
are local, and the resultant governing equations are always of a hyperbolic nature
regardless of the flow conditions. This is inherited from the streaming part of the
Boltzmann equation. However, the collisions at the microscopic level cause the
macroscopic quantities of the flow to diffuse. As indicated in the previous section,
the GTM exists for all the moments considered in the GMM up to 26 moments.
The GTM of the low moments are embedded in the moments one order higher. For
example, the diffusion of ui is included in σij , and the diffusion of σij is included in
mijk , and so on, as expressed by (5), (15) and (27). Equations (7), (8) and (16)–(18)
can therefore be recast in terms of the GTM as

∂σij

∂t
+

∂ukσij

∂xk

+
∂mijk

∂xk

= − p

μ

(
σij − σG

ij

)
+ Σij , (43)

∂qi

∂t
+

∂ujqi

∂xj

+
1

2

∂Rij

∂xj

= − 2

3

p

μ

(
qi − qG

i

)
+ Qi, (44)

∂mijk

∂t
+

∂ulmijk

∂xl

+
∂φijkl

∂xl

= − 3

2

p

μ

(
mijk − mG

ijk

)
+ Mijk, (45)

∂Rij

∂t
+

∂ukRij

∂xk

+
∂ψijk

∂xk

= − 7

6

p

μ

(
Rij − RG

ij

)
+ �ij (46)

and
∂�

∂t
+

∂�ui

∂xi

+
∂Ωi

∂xi

= − 2

3

p

μ

(
� − �G

)
+ ℵ. (47)

It is interesting to note that the above set of equations have a common feature in
that these moments tend to relax towards the equilibrium state via the values which
provide the gradient transport for the moments one order lower, as expressed by the
underlined terms on the right-hand sides of (43)–(47). This phenomenon is clearly
caused by the collisions between the molecules. To make full use of the physical
aspect of this phenomenon for computation, the moments are decomposed into their
GTM and NGTM components defined by

σij = σG
ij + ρgij , qi = qG

i +ρhi, mijk=mG
ijk+ρωijk, Rij = RG

ij +ργij

and � = �G + ρχ, (48)

where ρgij , ρhi, ρωijk, ργij and ρχ are the NGTM components for σij , qi , mijk, Rij

and �, respectively. This decomposition, which was originally proposed by Gu &
Emerson (2007) in their study of the R13 equations, is non-local and symmetric.
This approach to the decomposition is analogous to the visco-elastic stress-splitting
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technique used in non-Newtonian fluid modelling (Rajagopalan, Armstrong & Brown
1990; Guénette & Fortin 1995; Renardy 2000). In terms of the gradients of ui, T , gij ,
ωijk hi, γij and χ , (48) can be rewritten as

σij = −μ
∂ui

∂xj

− μ
∂uj

∂xi

+
2

3
μ

∂ul

∂xl

δij + ρgij , (49)

qi = − 15

4
Rμ

∂T

∂xi

+ ρhi, (50)

mijk = −2

3
μ

∂gij

∂xk

− 2

3
μ

∂
(
σG

ij /ρ
)

∂xk

− 2

3
μ

(
∂(σik/ρ)

∂xj

+
∂(σjk/ρ)

∂xi

)

+
4

15
μ

(
∂(σir/ρ)

∂xr

δjk +
∂(σjr/ρ)

∂xr

δik +
∂(σkr/ρ)

∂xr

δij

)
+ ρωijk, (51)

Rij = −12

5
μ

∂hi

∂xj

− 12

5
μ

∂
(
qG

i /ρ
)

∂xj

− 12

5
μ

∂(qj/ρ)

∂xi

+
8

5
μ

∂(ql/ρ)

∂xl

δij + ργij , (52)

φijkl = − μ

C1

∂ωijk

∂xl

− μ

C1

∂
(
mG

ijk/ρ
)

∂xl

− μ

C1

(
∂(mijl/ρ)

∂xk

+
∂(mjkl/ρ)

∂xi

+
∂(mikl/ρ)

∂xj

)

+
2μ

7C1

(
∂(mklr/ρ)

∂xr

δij +
∂(mjlr/ρ)

∂xr

δik +
∂(milr/ρ)

∂xr

δjk

)

+
2μ

7C1

(
∂(mjkr/ρ)

∂xr

δil +
∂(mikr/ρ)

∂xr

δjl +
∂(mijr/ρ)

∂xr

δkl

)
+ φR

ijkl, (53)

ψijk = − 9μ

7Y1

∂γij

∂xk

− 9μ

7Y1

∂
(
RG

ij

/
ρ
)

∂xk

− 9μ

7Y1

(
∂(Rik/ρ)

∂xj

+
∂(Rjk/ρ)

∂xi

)

+
18μ

35Y1

(
∂(Rir/ρ)

∂xr

δjk +
∂(Rjr/ρ)

∂xr

δik +
∂(Rkr/ρ)

∂xr

δij

)
+ ψR

ijk (54)

and

Ωi = − 7μ

3

∂χ

∂xi

− 7μ

3

∂(�G/ρ)

∂xi

+ ΩR
i . (55)

Inserting (49)–(55) into (3), (4) and (43)–(47), the governing equations for the new
variables are obtained after mathematical manipulation:

∂ρ ui

∂t
+

∂ρ ului

∂xl

− ∂

∂xl

(
μ

∂ui

∂xl

)
= − ∂p

∂xi

+
∂

∂xl

(
μ

∂ul

∂xi

)
−2

3

∂

∂xi

(
μ

∂ul

∂xl

)
+ρai−

∂ρgil

∂xl

,

(56)

∂ρT

∂t
+

∂ρulT

∂xl

− 5

2

∂

∂xl

(
μ

∂T

∂xl

)
= − 2

3R

(
p

∂ui

∂xi

+ σij

∂uj

∂xi

)
− 2

3R

∂ρhi

∂xi

, (57)
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∂ρgij

∂t
+

∂ρulgij

∂xl

− 2
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∂

∂xl

(
μ

∂gij

∂xl

)
= −p

μ
ρgij + Σij − ∂ρωijk

∂xk

+
2

3

∂

∂xk

(
μ

∂(σik/ρ)

∂xj

)

+
2

3

∂

∂xk

(
μ

∂(σjk/ρ)

∂xi

)
− 4

15

∂

∂xj

(
μ

∂(σir/ρ)

∂xr

)

− 4

15

∂

∂xi

(
μ

∂(σjr/ρ)
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)
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∂

∂xk

(
μ

∂(σkr/ρ)

∂xr
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× δij −
{

∂σG
ij

∂t
+

∂ukσ
G
ij

∂xk

−2

3

∂

∂xk

[
μ

∂
(
σG

ij

/
ρ
)

∂xk

]}
,

(58)

∂ρhi

∂t
+

∂ρujhi

∂xj

− 6

5

∂

∂xj

(
μ

∂hi

∂xj

)
= −2

3

p

μ
ρhi − 1

2

∂ργij

∂xj

+ Qi +
6

5

∂

∂xj

(
μ

∂(qj/ρ)

∂xi

)

−4

5

∂

∂xi

(
μ

∂(ql/ρ)

∂xl

)
−
{

∂qG
i

∂t
+

∂ujq
G
i

∂xj

− 6

5

∂

∂xj

×
(

μ
∂
(
qG

i

/
ρ
)

∂xj

)}
, (59)

∂ρωijk

∂t
+

∂ρulωijk

∂xl

− ∂

∂xl

(
μ

C1

∂ωijk

∂xl

)

= −3

2

p

μ
ρωijk −

∂φR
ijkl

∂xl

+ Mijk +
∂

∂xl

(
μ

C1

∂(mijl/ρ)

∂xk

)
+

∂

∂xl

(
μ
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∂(mjkl/ρ)

∂xi
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+
∂

∂xl

(
μ

C1

∂(mikl/ρ)

∂xj

)
− ∂

∂xl

(
2μ

7C1

∂(mklr/ρ)

∂xr

)
δij − ∂

∂xl

(
2μ

7C1

∂(mjlr/ρ)

∂xr

)

× δik− ∂

∂xl

(
2μ

7C1

∂(milr/ρ)

∂xr

)
δjk− ∂

∂xi

(
2μ

7C1

∂(mjkr/ρ)

∂xr

)
− ∂

∂xj

(
2μ

7C1

∂(mikr/ρ)

∂xr

)

− ∂

∂xk

(
2μ

7C1

∂(mijr/ρ)

∂xr

)
−
{

∂mG
ijk

∂t
+

∂ulm
G
ijk

∂xl

− ∂

∂xl

(
μ

C1

∂
(
mG

ijk

/
ρ
)

∂xl

)}
, (60)

∂ργij

∂t
+

∂ρulγij

∂xl

− 9

7

∂

∂xl

(
μ

Y1

∂γij

∂xl

)

= −7

6

p

μ
ργij −

∂ψR
ijk

∂xk

+ �ij +
9

7

∂

∂xk

(
μ

Y1

∂(Rik/ρ)

∂xj

)
+

9

7

∂

∂xk

(
μ

Y1

∂(Rjk/ρ)

∂xi

)

−18

35

∂

∂xj

(
μ

Y1

∂(Rir/ρ)

∂xr

)
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35

∂

∂xi

(
μ

Y1

∂(Rjr/ρ)

∂xr

)
− 18

35

∂

∂xk

(
μ

Y1

∂(Rkr/ρ)

∂xr

)
δij

−
{

∂RG
ij

∂t
+

∂ukR
G
ij

∂xk

− ∂

∂xk

(
9μ

7Y1

∂
(
RG

ij

/
ρ
)

∂xk

)}
(61)
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and

∂ρχ

∂t
+

∂ρuiχ

∂xi

− 7

3

∂

∂xi

(
μ

∂χ

∂xi

)
= −2

3

p

μ
ρχ − ∂ΩR

i

∂xi

+ ℵ

−
{

∂�G

∂t
+

∂ui�
G

∂xi

− ∂

∂xi

(
7μ

3

∂(�G/ρ)

∂xi

)}
. (62)

The primitive variables of the moment equations have been transformed from
{ρ, ui, T , σij , qi, mijk, Rij , �} to {ρ, ui, T , gij , hi, ωijk, γij , χ}. The resultant equations
(56)–(62) now have the following general convection–diffusion form:

∂ρΦ

∂t
transition

+

∂ρulΦ

∂xl

convection
−

∂

∂xl

(
μ

ΓΦ

∂Φ

∂xl

)
diffusion

=
SΦ

source
, (63)

in which Φ = (ui, T , gij , hi, ωijk, γij , χ); ΓΦ = (1, 2/5, 3/2, 5/6,C1, 7Y1/9, 3/7); and
SΦ = (Sui

, ST , Sgij
, Shi

, Sωijk
, Sγij

, Sχ ) corresponds to the right-hand terms of (56)–(62).
These equations form a set of second-order PDEs. The mathematical characteristics
of the system is determined by the flow conditions. They are of a hyperbolic nature
for high-speed flows and parabolic or elliptic when the flow velocity is low or the flow
is recirculating.

5.2. Numerical solution procedure

The moment method results in a set of equations in a conventional convection–
diffusion format, with appropriate source terms, which can be used to capture non-
equilibrium phenomena. In most situations, there are no analytical solutions for this
complex set of PDEs, and a numerical procedure is therefore required. Numerical
methods for solving the convective and diffusion equations are well documented
for both high- and low-speed flows (Ferziger & Peri 1999; Toro 1999). Equations
(56) and (57) are similar to the NSF equations but with extra terms underlined on
the right-hand side that account for any non-equilibrium effects, and these can be
determined from the rest of the equation set. An NSF solver can be modified to solve
the 26 moment equations by adding the extra source terms to the momentum and
energy equations and treating the individual components of the remaining variables
as scalars. In the present study, the finite-volume approach has been employed,
and the diffusive and source terms are discretized by a central difference scheme.
For the convective terms, a range of upwind schemes including QUICK (Leonard
1979), SMART (Gaskell & Lau 1988) and CUBISTA (Alves, Oliveira, & Pinho
2003) are described in the literature, and the CUBISTA scheme was selected for
the present study. The coupling of the velocity and pressure fields is through the
SIMPLE algorithm (Patankar 1980). A collocated grid arrangement is used, and the
interpolation scheme of Rhie & Chow (1983) is employed to eliminate any non-
physical pressure oscillations. For steady-state flow, the system of equations can be
solved iteratively, and the solution procedure is summarized as follows:

(i) Solve ui at iteration n + 1 using the values of other variables at the previous
iteration n.

(ii) Solve the pressure correction equation using the SIMPLE algorithm to update
p and ui at iteration n + 1.

(iii) Solve T , gij , hi, ωijk, γij , χ at iteration n + 1 using updated pressure and
velocity fields.

(iv) Calculate values of the moments σij , qi , mijk, Rij , � from (48).
(v) Update the boundary conditions according to (32), (33) and (C1)–(C8).
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(vi) Return to step 1 and repeat until residuals of each governing equation reach a
specified convergence criterion.

Computationally, it is more expensive to solve the R26 equations than the NSF
equations, but this cost is necessary to capture non-equilibrium phenomena. However,
the advanced computational and numerical techniques developed over the years
for conventional computational fluid dynamics can be readily adopted so that the
moment method can be applied for engineering applications in which non-equilibrium
effects are important, in particular, in the low-speed, low-Reynolds-number regime in
which it can be costly and difficult to get meaningful statistical data from stochastic
methods.

6. Results and discussion
The R26 equations, along with the NSF equations and the regularized 13 moment

equations (R13), have been used to compute both planar Couette and Poiseuille flows
for argon gas. The first-order velocity-slip and temperature-jump boundary conditions
for the NSF equations have been taken from Cercignani (1988). The viscosity was
obtained from Sutherland’s law (White 1991):

μ = μo

(
T

To

)1.5
To + S

T + S
, (64)

where the reference viscosity and temperature are μo = 21.25 × 10−6 Pa s and
To = 273 K, respectively. The specific gas constant and Sutherland’s constant for
argon are R = 208 J (kg K)−1 and S =144 K. The molecular mean free path is given
by (Cercignani 1988)

λ =
μ

p

√
πRT

2
. (65)

In the present study, the coordinates are chosen such that the walls are parallel to
the x-direction and y is the direction perpendicular to the plates. The distance between
the two parallel plates is H , and the two plates have been set at y = ± H/2. The
Knudsen number is given by Kn= λ/H . The accommodation coefficient α is assigned
a value of unity; i.e. fully diffuse reflection has been assumed for both walls. In the
case of planar Couette flow, the upper and lower plates move with a constant velocity
uw = ±50 m s−1, in opposite directions, and the external acceleration ax = ay = 0. The
flow is solved with a one-dimensional grid using 200 equispaced grid points across the
domain. Data obtained from DSMC calculations (Bird 1994) are used to assess the
capability and limitations of the hydrodynamic models, particularly in the transition
regime. In the case of pressure-driven Poiseuille flow, both plates are stationary and
a pressure gradient is applied in the x-direction. Using the centreline as a symmetry,
only half of the flow is solved. The flow is solved using a two-dimensional grid
with 10 × 100 uniformly spaced grid points. For this case, the hydrodynamic results
are compared with the data obtained by Ohwada et al. (1989) using the Boltzmann
equation. In all cases, the wall temperature is fixed at Tw = 273 K.

6.1. Planar Couette flow in the transition regime

Figure 1 shows the computed velocity profiles for planar Couette flow. Results are
presented for Knudsen numbers Kn= 0.1, 0.2, 0.5, 0.75 and 1.0. At the upper limit of
the slip regime, Kn= 0.1, and early transition regime, Kn= 0.25, the velocity profile
predicted by the NSF and R13 equations is linear, as indicated in figure 1(a, b). In
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Figure 1. Predicted velocity profiles at a range of Knudsen numbers for Couette flow with
initial conditions, Tw = 273 K and uw = ± 50 m s−1: �, DSMC; ——, R26; −−·−−·, R13;
- - - - -, NSF.

the core part of the flow (i.e. outside of the Knudsen layer), all three models are in
agreement with the DSMC data. However, in the region close to the wall, the DSMC
results indicate a Knudsen-layer velocity profile, as shown in the enlarged part in
figure 1(a, b). Neither the NSF nor the R13 equations follow this behaviour, whilst
the R26 equations are in excellent agreement with the DSMC data. At Kn= 0.5 and
above, well into the transition regime, the DSMC data clearly show the expected
Knudsen-layer velocity profile with substantial velocity slip at the surface due to
strong rarefaction effects. Both the R13 and NSF equations fail to capture this aspect
of the velocity profile, and both methods overpredict the amount of velocity slip,
although the value predicted by the R13 equations is in better agreement with the
DSMC data than the NSF results, as illustrated in figure 1(c). In contrast, the results
from the R26 equations are in very good agreement with the DSMC data, and the
new model not only predicts the correct velocity slip but also, and more importantly,
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Figure 2. Predicted temperature profiles at a range of Knudsen numbers for Couette flow
with initial conditions, Tw = 273 K and uw = ± 50 m s−1: �, DSMC; ——, R26; −−·−−·, R13;
- - - - -, NSF.

captures the power-law behaviour of the velocity profile in the Knudsen layer (Lilley &
Sader 2007, 2008), even up to Kn= 1.0, as indicated in figure 1(d, e). The improved
predictive capability of the R26 equations arises from their fifth-order accuracy in Kn,
whilst the R13 equations are only third order. As highlighted by Struchtrup (2008),
Knudsen layers in the moment method appear as superpositions of exponentials of
different width. The R13 system is the lowest moment system to describe both the
GTM and the NGTM in the transition regime and therefore produces only one
such contribution (Struchtrup & Torrilhon 2008). The R26 equations can model
the Knudsen-layer velocity profile more accurately due to the extra boundary-layer
contribution from mijk .

Figure 2 shows the temperature profiles at the five different Knudsen numbers.
The NSF equations consistently underpredict the temperature field in the transition
regime and particularly at larger values of Kn. The R13 equations are only in good
agreement with the DSMC data at Kn= 0.1 and overpredict the temperature field
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Figure 3. Profiles of tangential and normal heat fluxes qx and qy for Couette flow with initial

conditions, Tw = 273 K and uw = ± 50 m s−1: �, �, DSMC; ——, R26; −−·−−·, R13; - - - - -,
NSF.

significantly for Kn above 0.25, as shown in figure 2(b–e), whereas the temperature
fields predicted by the R26 equations are close to the DSMC data up to Kn= 0.75.

At Kn= 1.0, the R26 model is in good agreement for the value of the temperature
jump but slightly underpredicts the temperature in the central region of the flow. The
improved prediction of temperature by the R26 equations is clearly very significant.

The profiles of the second-moment variables are presented in figures 3 and 4. An
interesting non-equilibrium phenomenon that occurs in planar Couette flow is the
appearance of a heat flux without the presence of a temperature gradient, i.e. non-
gradient transport, and this is illustrated in figure 3, which shows both the normal
and tangential heat fluxes. As indicated by the DSMC data, a significant amount of
tangential heat flux qx is generated at the upper limit of the slip regime. This is shown
in figure 3(a) in which both the R13 and R26 models are in good agreement with
the DSMC data. However, the NSF equations are not able to predict this aspect of
the flow. In particular, the values of qx obtained from the R13 and R26 equations
follow the DSMC data right up to the near-wall region for Knudsen numbers up to
1.0, as shown in figure 3(b–e). However, the normal heat flux qy is captured by all
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Figure 4. Computed profiles of normal stresses σxx and σyy for Couette flow with initial

conditions, Tw = 273 K and uw = ± 50 m s−1: �, �, DSMC; ——, R26; −−·−−·, R13; - - - - -,
NSF.

of the continuum-based schemes and particularly well by the R13 and R26 models
when Kn � 0.25. Only the R26 equations follow the DSMC data at larger Knudsen
numbers.

Another important non-equilibrium phenomenon that appears in planar Couette
flow is the non-zero values of the normal components of stress σxx and σyy. As
indicated in figure 4, the NSF equations produce a value of zero for both normal
stresses at all values of Kn, whilst the DSMC results demonstrate that both σxx

and σyy are no longer zero when the flow is in the transition regime. This effect is
due to the impact of the NGTM. Both higher-order models are able to capture this
departure from equilibrium reasonably well up to Kn= 0.5, as shown in figure 4(a–c).
However, as the Knudsen number increases, both the R13 and R26 equations start to
deviate from the values of σxx and σyy predicted by DSMC, as shown in figure 4(d, e),
but are still able to follow the basic trend.

One particular feature of planar Couette flow is having a constant shear stress
throughout the domain. Shown in figure 5 is the shear stress σxy predicted by the
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Figure 5. Computed profiles of shear stress σxy for Couette flow with initial conditions,

Tw =273 K and uw = ± 50 m s−1: �, DSMC; ——, R26; −−·−−·, R13; - - - - -, NSF.

moment equations in comparison with the DSMC results for four different Knudsen
numbers. All three models predict a value of σxy close to the DSMC data apart from
the R13 equations which overpredict the value of σxy by about 5 % at Kn= 0.5 and
7% at Kn= 1.0. The predicted values of σxy from the NSF equations appear to be in
good agreement with the DSMC data, but it must be remembered that the values of
σxy predicted by the NSF equations are evaluated from incorrect velocity profiles, as
illustrated in figure 1. The R26 equations clearly provide a significant improvement in
the prediction of the shear stress when compared to the R13 equations, particularly in
the transition regime, because of the extra contribution to the Knudsen-layer velocity
profile from the boundary layer generated by mxyy , which will be discussed next.

The profiles of the higher moments mijk are presented in figure 6. When Kn � 0.5,
both the R13 and R26 models predict mxxy quite well in comparison to the DSMC
data, with the R26 model slightly better than the R13 equations, as shown in
figure 6(a–c). At Kn= 0.75 and 1.0, the profiles of mxxy predicted by the R26
equations still capture the basic trend but are clearly not as close to the DSMC
data as the results at lower values of Knudsen number. However, the prediction of
mxyy is improved significantly by the R26 equations, as indicated in figure 6. The
predictions for mxyy produced by the R13 equations are close to zero in the transition
regime and are unable to follow the trend of the DSMC data, which leads to their
failure to predict the velocity profile correctly in the Knudsen layer. However, the
R26 equations follow the DSMC data closely, but the agreement starts to deteriorate
when Kn � 0.5, as shown in figure 6(c–e). In addition to a constant shear stress σxy

in steady-state planar Couette flow, the value of p2 = p + σyy is also constant. From
(7) the velocity is readily expressed as

u = − p

p2

σxy

μ
y − 1

p2

(
mxyy +

2

5
qx

)
+ boundary conditions. (66)

It is obvious that the velocity consists of the contributions from σxy, qx and mxyy.

As in the R13 equations, there is no mechanism for mxyy to produce a boundary
layer; so the Knudsen-layer contribution is solely from qx , whilst the Knudsen-layer
contribution in the R26 system is from both qx and mxyy . Furthermore, comparing
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Figure 6. Profiles mxxy and mxyy for Couette flow with Tw = 273 K and uw = ± 50 m s−1:
�, �, DSMC; ——, R26; −−·−−·, R13.

the magnitude of qx and mxyy in figures 3 and 6 indicates that the impact of mxyy on
the Knudsen-layer velocity is greater than that of qx . An accurate prediction of mxyy

is clearly essential to correctly describe the Knudsen-layer velocity profile.
To ensure that no unphysical solutions are obtained in the above results, the

eigenvalues of the validity matrix (35) and the production of the entropy are calculated
for the R26 moment equations. The eigenvalues of the matrix (35), λ1 (positive square
root) and λ2 (negative square root), for one-dimensional planar Couette flow are

λ1,2 =
1

2

[
(Vxx + Vyy) ±

√
(Vxx − Vyy)2 + 4V2

xy

]
, (67)

in which Vxx = 1 + (σxx/p) − (2q2
x/p(3pRT + �/2)), Vyy = 1 + (σyy/p) −

(2q2
y/p(3pRT + �/2)) and Vxy =(σxy/p) − (2qxqy/p(3pRT + �/2)).

Both eigenvalues are larger than zero for the above cases as shown in figure 7(a),
which means the stresses and heat fluxes predicted by the R26 model are realizable. As
Kn increases, the values of both λ1 and λ2 depart from unity, with λ2 decreasing whilst
λ1 increases. The deviation of the eigenvalues from unity is an indication of the flow
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Figure 7. The computed values of (a) eigenvalues of matrix (35) and (b) entropy production
for planar Couette flow with Tw = 273 K and uw = ± 50 m s−1 from the R26 model results.

departing from the equilibrium state (Levermore et al. 1998). The entropy production
for the one-dimensional planar Couette flow ∂Jy/∂y is positive, as indicated in
figure 7(b), and the Boltzmann inequality (42) is therefore satisfied.

6.2. Poiseuille flow in the transition regime: pressure driven

In our analysis of the flow between two parallel plates driven by a pressure gradient,
with ax = ay =0, only half of the channel is computed, and a symmetry boundary
condition is employed at y =0. The second-order velocity-slip boundary condition
from Hadjiconstantinou (2005) is used in the Poiseuille flow study for comparison.
For consistency with the conditions used by Ohwada et al. (1989), the applied pressure
gradient is small enough that the computed temperature field is uniform. The velocity
u is non-dimensionalized by uo = ζ

√
2RT (Xu & Li 2004), where ζ is related to the

pressure gradient in the channel by p =po(1 − ζx/H ). The mass flow rate Q has
been non-dimensionalized by Qo = ρo uoH , where ρo and po are the inlet density and
pressure, respectively.

The velocity profile at a range of Knudsen numbers is presented in figure 8.
At Kn= 0.113, which is just beyond the slip-flow regime, the three hydrodynamic
models predict similar values of velocity and are all close to the solution obtained
from the Boltzmann equation. The NSF equations with both first- and second-
order boundary conditions slightly overpredict the velocity slip and underpredict the
maximum velocity at the centre of the channel, as shown in figure 8(a). The R13
equations predict a velocity slip close to that of the NSF equations with a first-order
boundary condition and a maximum velocity close to that by the NSF equations with
the second-order boundary condition. The R26 equations are close to that predicted
by the Boltzmann equation, but slightly overpredict the maximum velocity. However,
as the value of Kn increases and the flow enters the transition regime, the NSF
equations fail to predict the value of the velocity at the wall as well as in the bulk
flow region, as illustrated in figure 8(b–f ). They either underpredict the maximum
velocity with the first-order boundary condition or overpredict the velocity slip with
the second-order boundary condition. The velocity profile obtained from the R13
equations lies close to the NSF equations using the second-order boundary condition.
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Figure 8. Comparison of predicted velocity profiles of pressure-driven Poiseuille flow at
different values of Knudsen number: �, Boltzmann equation solution (Ohwada et al. 1989);
——, R26; −−·−−·, R13; - - - - -, NSF (first-order boundary conditions or BCs); – – – –, NSF
(second-order BCs).

In contrast, the velocity fields predicted by the R26 equations compare very well
to the solution obtained from the Boltzmann equation for both Kn= 0.226 and
0.451, as shown in figure 8(b, c). The velocity slip predicted by the R26 equations is
in reasonable agreement with the value predicted by the Boltzmann equation, but
discrepancies in the bulk flow begin to show at Kn= 0.903 (figure 8e) and differ at
Kn= 1.128, as shown in figure 8(f ).

In the present study, the pressure gradient is very small, and (3) can be reduced to

∂σxy

∂y
= − ∂p

∂x
and

∂σyy

∂y
= −∂p

∂y
; (68)
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Figure 9. Predicted bulk contribution to the velocity profile by three hydrodynamic models
at different values of Knudsen number for pressure-driven Poiseuille flow: ——, R26; −−·−−·,
R13; - - - -, NSF (first-order BCs); – – – –, NSF (second-order BCs).

hence,

σxy = −∂p

∂x
y and p + σyy = p2 = constant. (69)

The stress equation (7) can also be reduced to

∂mxyy

∂y
= −p

μ
σxy − p2

∂u

∂y
− 2

5

∂qx

∂y
. (70)

For convenience, it is assumed that p/μ does not vary across the channel section and
that p/p2 ≈ 1, so that the velocity can be approximated from (70) by

u ≈ uslip − 1

p2

(
mxyy +

2

5
qx − mw

xyy − 2

5
qw

x

)
︸ ︷︷ ︸

uKlayer

− H 2

2μ

∂p

∂x

(
1

4
− y2

H 2

)
︸ ︷︷ ︸

u∗

. (71)

Here, uslip is the velocity slip at the wall and mw
xyy and qw

x are the values of mxyy and
qx at the wall, respectively, which can be determined from the boundary conditions.
The terms on the right-hand side of (71) can be categorized into three groups
uslip, uKlayer and u∗ to account for contributions to the velocity profile from velocity
slip, the Knudsen layer and the bulk flow, respectively. The bulk contribution can be
expressed in a normalized form as

u∗

uo

= −H 2

2μ

∂p

∂x

1

uo

[
1

4
−
( y

H

)2
]

=
1

4

√
π

Kn

[
1

4
−
( y

H

)2
]

. (72)

The profiles of u∗/uo for Kn= 0.113, 0.451 and 0.677 are plotted in figure 9.
As expected, the three hydrodynamic models produce identical values for each
corresponding Knudsen number. As the value of Kn increases, the maximum value
of u∗/uo decreases, inversely proportional to Kn. This is not surprising, since u∗/uo

essentially describes the equilibrium component of the flow and is naturally embedded
in all three hydrodynamic models. The stronger the rarefaction effects become, the
less u∗/uo will contribute to the total velocity profile.
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Figure 11. Predicted Knudsen-layer contribution to the velocity profile by R26 equations at
different values of Kn: (a) Kn< 0.25; (b)Kn> 0.25.

The superposition of the Knudsen-layer contributions from qx and mxyy is clearly
expressed by (71). The profiles of uKlayer/uo for Kn= 0.451 are plotted in figure 10.
For the NSF model, uKlayer = 0 for all values of Kn, since there is no mechanism in
the NSF equations to produce a Knudsen layer. The contribution to the Knudsen
layer by the R13 model is much less than that by the R26 model due to the fact that
there is no mechanism in the R13 model to produce a boundary layer for mxyy. In
contrast, the R26 equations produce a smooth rise for uKlayer/uo which results in the
smooth velocity profile shown in figure 8(c), in good agreement with the data from
the Boltzmann equation. The effect of the Knudsen number on uKlayer/uo is illustrated
in figure 11(a, b) for Kn< 0.25 and Kn> 0.25, respectively. The Knudsen layer at
Kn= 0.01 is a thin region close to the wall, as indicated by the rising of uKlayer/uo

from zero to a constant positive value within a normalized thickness around 0.05. As
the value of Kn steadily increases up to 0.226, the Knudsen layer becomes thicker and
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Figure 12. Predicted slip and maximum velocities at different values of Kn for pressure-driven
Poiseuille flow: symbol, Boltzmann equation solution (Ohwada et al. 1989); ——, R26; −−·−−·,
R13; - - - - -, NSF (first-order BCs); – – – – –, NSF (second-order BCs).

the maximum value of uKlayer/uo increases, as shown in figure 11(a). For Kn � 0.338,
the influence of the Knudsen layer spreads throughout the channel, as indicated in
figure 11(b), and the maximum value of uKlayer/uo begins to decrease as Kn increases
beyond 0.338. The precise extent of the Knudsen layer is not known, but a reasonable
estimation is 1.5λ (Hadjiconstantinou 2006), which is in good agreement with the
R26 prediction. Due to the contribution from the Knudsen layer, the velocity profiles
presented in figure 10 are no longer parabolic.

The values for uslip/uo predicted by the NSF, R13 and R26 equations are plotted
against Kn in figure 12(a) and are compared to data obtained from the Boltzmann
equation (Ohwada et al. 1989), which indicates that the slip velocity rises slightly as
the value of Kn increases. The values of uslip/uo predicted by the NSF equations
with the first-order boundary condition are constant and predict a higher velocity
slip when Kn< 1 but underpredict the velocity slip when Kn> 1. Both the NSF
model with the second-order boundary condition and the R13 model overpredict
the velocity slip significantly, particularly at large Knudsen numbers. In comparison,
the results obtained from the R26 model are close to the solution of the Boltzmann
equation when the Knudsen number is less than unity. Figure 12(b) illustrates how
the maximum velocity varies against Knudsen number. The NSF equations with the
first-order boundary condition are only able to follow the Boltzmann solution when
Kn< 0.1, i.e. in the slip regime, whilst the R26 equations are in good agreement with
the Boltzmann equation up to Kn ≈ 4.0. The maximum velocity predicted by the NSF
equations with the second-order boundary condition and the R13 equations follows
the Boltzmann solution up to Kn ≈ 0.4. Above this value, it increases dramatically
due to the overprediction of the slip velocity.

The accurate prediction of the flow rate in a micro-channel is important in the
design of micro-devices. To get the flow rate correct, it is essential that the predicted
velocity profile is correct. In contrast, the correct prediction of the flow rate cannot
guarantee the correct velocity profile. Figure 12 clearly demonstrates that in the
transition regime, non-equilibrium effects are no longer confined to the near wall
and increasingly enter into the core flow region. Simply using a second-order slip
boundary condition (Maurer et al. 2003) with a modified accommodation coefficient
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Figure 13. Predicted mass flow rate against Knudsen number for pressure-driven Poiseuille
flow: symbol, Boltzmann equation solution (Ohwada et al. 1989); ——, R26; −−·−−·, R13;
- - - - -, NSF (first-order BCs); – – – – –, NSF (second-order BCs).

will not enhance the predictive capability of the NSF equations in the transition
regime. Figure 13 shows the predicted mass flow rates by the NSF, R13 and R26
equations in comparison to the solution obtained from the Boltzmann equation by
Ohwada et al. (1989). When Kn< 0.1 in the slip regime, the flow rates predicted by
all models are close to the solution obtained from the Boltzmann equation. As the
value of Kn increases, however, non-equilibrium effects gradually enter the central
flow region, and the NSF equations with the first-order boundary condition begin
to underpredict the mass flow rate, whilst the R26 equations follow the solution
obtained from the Boltzmann equation reasonably well until Kn reaches about 2.0.
As shown in figure 13, the R26 equations predict a Knudsen minimum at the value
of Kn predicted by the Boltzmann equation. The mass flow rate from the NSF
equations with a second-order boundary condition and the R13 equations are close
to the Boltzmann solution up to Kn ≈ 0.4. They can also predict a Knudsen minimum
but at a value of Kn smaller than that observed by the Boltzmann equation. The
Knudsen minimum is the combination of two opposite effects from the rarefaction
of the flow interacting in the centre and near the walls, as indicated in figure 12. As
the Knudsen number increases, and before it reaches some critical value, the rate of
decrease of the maximum velocity in the centre is greater than the rate of increase of
the velocity slip. The net result is a reduction in the non-dimensionalized flow rate.
As the Knudsen number exceeds this critical value, the increasing contribution of the
velocity slip dominates and causes the total flow rate to increase. This is more clearly
observed in figure 14 in which the contributions to the total mass flow rate arising
from the equilibrium flow component Q∗, the Knudsen layer QKlayer and velocity slip
Qslip are presented for the R26 equations. At Kn= 0.1, approximately 50 % of the
flow rate is from the bulk flow, and the non-equilibrium contribution of the Knudsen
layer is ∼ 10 % with wall effects making up the difference. As the Knudsen number
increases, the percentage of equilibrium flow decreases dramatically. At Kn= 0.5, less
than 20 % of the flow is from the bulk flow contribution, whereas the percentage of
the flow due to velocity slip increases rapidly with increasing Knudsen number. The
contribution from the Knudsen layer to the total flow rate increases up to Kn= 0.5
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Figure 14. Percentages of mass flow rate contribution to the total mass flow rate from bulk
flow, Knudsen layer and slip velocity.

and then gradually decreases. For Poiseuille flow, the maximum contribution from
the Knudsen layer to the mass flow rate never exceeds 20 %.

6.3. Rarefied force-driven Poiseuille flow

When the gas is rarefied, planar force-driven Poiseuille flow exhibits anomalous
features, such as a non-constant pressure profile and a bimodal temperature
distribution, with a local minimum lying at the centre of the channel. These features
were originally predicted by Tij & Santos (1994) using a perturbative solution to the
Bhatnagar–Gross–Krook (BGK) model and further confirmed by Mansour, Baras &
Garcia (1997) using DSMC. These phenomena were subsequently investigated by Tij,
Sabbane & Santos (1998) and Aoki, Takata & Nakanishi (2002) using kinetic theory.
However, both the NSF and Burnett equations are unable to capture the observed
bimodal temperature profile, even in the slip regime, although the Burnett equations
do recover the non-constant pressure profile (Uribe & Garcia 1999). It is recognized
that the bimodal effect is of super-Burnett order, and only a theory comparable to this
order will be able to capture such a phenomena. Recently, Struchtrup & Torrilhon
(2008) predicted the dip of the temperature profile with the linearized R13 equations,
which are of third-order accuracy. In the present study, the 10 and the 20 mean free
path cases of Mansour et al. (1997) are studied with both the full R13 and R26
equations, and the computed results are compared with DSMC data (Uribe & Garcia
1999). More recently, Xu, Liu & Jiang (2007) captured the bimodal temperature
profile using a multiple-temperature kinetic model and a first-order expansion to the
Navier–Stokes order.

To facilitate the comparison with DSMC data, the gas has the same properties as
those specified by Mansour et al. (1997), i.e. m = d = TR = 1 and k = 1/2, where m

is the molecular weight in kilograms; d is the molecular diameter in metres; TR is
the reference temperature in Kelvin; and k is the Boltzmann constant, with the gas
constant R = k/m. The DSMC data were for a hard sphere gas with a number density
of 1.21 × 10−3, which yields a mean free path λ=186 m. For the case of H =10λ, the
acceleration is ax = 1.6 × 10−4(2kTR/md) and Kn= 0.1. For the second case, H =20λ
and ax =4.0 × 10−5(2kTR/md), with Kn= 0.05 (Uribe & Garcia 1999).
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Figure 15. Predicted characteristics of force-driven Poiseuille flow: �, DSMC data (Uribe &
Garcia 1999); ——, R26; −−·−−·, R13. (a) Temperature; (b) velocity; (c) pressure; (d ) shear
stress; (e) tangential heat flux; and (f ) normal heat flux.

The essential characteristics of force-driven Poiseuille flow are shown in figure 15.
Both the R13 and R26 equations are able to reproduce the anomalous features
predicted in the DSMC simulations (Uribe & Garcia 1999), such as the bimodal
temperature profile, non-constant pressure profile and non-gradient heat flux, fairly
accurately. In comparison to the DSMC data, the temperature at the centre of the
channel is underpredicted by the R13 equations and slightly overpredicted by the
R26 equations. As discussed by Struchtrup & Torrilhon (2008), the characteristic
dip is caused by the competition between the positive hydrodynamic term and the
negative higher-order correction from higher moments. The temperature shown in
figure 15(a) includes energy components in the three spatial dimensions. A separate
temperature field in each individual direction can also be defined (Bird 1994). For
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Figure 16. Multiple-temperature profiles in force-driven Poiseuille flow: �, DSMC data
(Zheng et al. 2002); ——, R26; −−·−−·, multiple-temperature model (Xu et al. 2007).

example temperatures Tx and Ty in the x- and y-direction, respectively, are defined by

ρ
k

m
Tx =

∫
c2
xf dξ and ρ

k

m
Ty =

∫
c2
yf dξ . (73)

From the definitions in (73), it is straightforward to obtain the following relationships:

Tx = T +
σxx

ρ R
and Ty = T +

σyy

ρ R
. (74)

The computed multiple temperature profiles from the R26 equations are shown in
figure 16 along with the results from the multiple-temperature model (Xu et al. 2007)
for the 10 mean free path case with ax = 6.868 × 10−5(2kTR/md) (Zheng, Garcia &
Alder 2002). The values of the temperature in different directions from the moment
equations and the multiple-temperature model are in close agreement with each other,
which indicates that the multiple-temperature concept is well embedded in the R26
equations.

6.4. Gradient transport mechanism versus non-gradient transport mechanism

The GTM predominates in the continuum limit for the macroscopic quantities, which
is reflected in the NSF equations. As the gas flow departs from a local equilibrium
state, the NGTM starts to have an effect on transport processes for all macroscopic
quantities. One obvious example is the tangential heat flux qx in planar Couette flow,
as shown in figure 3. As there is no temperature gradient parallel to the wall, qx is
generated solely by the NGTM. Similarly, the anisotropic normal stresses σxx and σyy,

shown in figure 4, arise only from the NGTM. However, for the normal heat flux qy

and shear stress σxy, both the GTM and the NGTM coexist in Couette flow. Figure 17
shows values of qy and its GTM and NGTM components qG

y and ρhy, respectively,
for planar Couette flow in the slip and transition regimes. At Kn= 0.025, in the slip
regime, the normal heat flux qy follows its GTM component qG

y up to the region close
to the wall, and the NGTM contribution to the total transport in the bulk flow region
is negligible. In the slip limit and early transition regime, where Kn= 0.1 and 0.25,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

76
8X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200900768X


A high-order moment approach for capturing non-equilibrium phenomena 209

–1.8

–1.2

–0.6

0

q y
, 
q y

G
 a

nd
 ρ

h y
(W

/m
2
)

0.6

1.2

1.8

DSMC

qy
G

qy

ρhy

–0.50 –0.25 0

y/H

0.25 0.50 –0.50 –0.25 0

y/H

0.25 0.50 –0.50 –0.25 0

y/H

0.25 0.50

(a) Kn = 0.025 (b) Kn = 0.1 (c) Kn = 0.25

Figure 17. Normal heat flux and its GTM and NGMT components of planar Couette flows
in slip and transition regimes.

respectively, the GTM and NGTM components have the same order of magnitude
throughout the whole region. For planar Couette flow in the transition regime, the
temperature profile no longer has a parabolic profile. The normal heat flux calculated
according to the GTM qG

y clearly becomes nonlinear and overestimates the value
of the normal heat flux, particularly close to the wall, as demonstrated in figure 17.
However, the NGTM ρhy acts to compensate for the overestimated values of the
heat flux. It is therefore necessary to include the higher-order moments to successfully
capture any non-gradient transport phenomena in the transition regime.

7. Conclusions
The paper has presented an analysis of the method of moments for low-speed

confined flows involving planar Couette flow and pressure- and force-driven Poiseuille
flows, and we have successfully extended these models into the transition regime.
Limitations were observed in the R13 equations, and a set of regularized 26 moment
equations were developed by introducing the third moments into the hydrodynamic
system to overcome these problems. The results show that the R13 equations are not
able to accurately describe the velocity profile in the Knudsen layers found in planar
Couette flow. However, the R26 system can reproduce the Knudsen-layer velocity
field and also produce a more accurate description of the shear stress and heat flux
in the transition regime. The R13 equations can be used for the Poiseuille flow for
a Knudsen number less than 0.4. However, using the R26 equations significantly
improves the prediction of both the velocity profile and the mass flow rate up to
a Knudsen number of 1.0, and the results are in very good agreement with data
obtained from the linearized Boltzmann equation. Above 1.0, the R26 equations
start to underpredict the velocity profile at the centre of the channel, but they are
able to capture the well-known Knudsen minimum at the correct value of Knudsen
number. In addition, the R13 and R26 equations are both able to capture the bimodal
temperature profile observed in force-driven Poiseuille flow.

The importance of the GTM and the NGTM has been demonstrated. In addition,
the paper has shown it is necessary to include the higher-order moments to successfully
capture any non-gradient transport phenomena, particularly in the transition regime.
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Currently, there is no precise way to determine the penetration depth of the Knudsen
layer. However, it is generally accepted that the layer extends to a distance of ∼ 1.5λ.
For a confined-flow problem, we would therefore expect these wall layers to overlap
when the channel height is around 3λ, i.e. when Kn ∼ 0.33. The results from the R26
equations are in good agreement with this intuitive hypothesis.

The paper has benefited from discussions with Professor S. Stefanov (Bulgarian
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Laboratory, UK) and Dr Y. H. Zhang (University of Strathclyde). The authors would
like to thank the Engineering and Physical Sciences Research Council (EPSRC) for
their support of Collaborative Computational Project 12 (CCP12).

Appendix A. Derivation of approximations for φijkl, ψijk and Ωi

To allow some of the higher moments outside the GMM to approach the GMM
at a finite fast rate for the 26 moment system, the approximations for φijkl, ψijk and
Ωi are required in § 2. For the rest of the higher moments outside of the GMM for
the 26 moment system, it is assumed that they approach the GMM instantly so that
they can be calculated with fG26. From the general governing equation for moments
(Struchtrup 2005), the governing equations for φijkl, ψijk and Ωi are

∂φijkl

∂t
+

∂umφijkl

∂xm

+
4

9

∂ψ〈ijk

∂xl〉
− 4

m〈ijk

ρ

(
∂σl〉m

∂xm

+
∂p

∂xl〉

)
+ 4RT

∂m〈ijk

∂xl〉
+ 4m〈ijk

∂RT

∂xl〉

+ 4φm〈ijk

∂ul〉

∂xm

+
12

7
(R〈ij + 7RT σ〈ij )

∂uk

∂xl〉
= −C1

p

μ
φijkl − C2

p

μ

σ〈ij σkl〉

ρ
, (A 1)

∂ψijk

∂t
+

∂ψijkum

∂xm

+
27

7
RT

∂R〈ij

∂xk〉
+

108

5
RT q〈i

∂uj

∂xk〉
+

27

7
(2R〈ij + 7RT σ〈ij )

∂RT

∂xk〉

+ 8RT m〈ijk

∂um〉

∂xm

+
54

7
RT mm〈ij

∂um

∂xk〉
− 6mijkRT

∂um

∂xm

− 6
mijk

ρ

(
∂qm

∂xm

+ σml

∂um

∂xl

)

− 27

7

R〈ij

ρ

(
∂σk〉m

∂xm

+
∂p

∂xk〉

)
+

8

9
ψ〈ijk

∂um〉

∂xm

+ 3ψm〈ij
∂uk〉

∂xm

+
6

7
ψm〈ij

∂um

∂xk〉

+
54

35
Ω〈i

∂uj

∂xk〉
− 9RT

∂φijkl

∂xl

− 2
φijkm

ρ

(
∂σml

∂xl

+
∂p

∂xm

)
= −Y1

p

μ
ψijk

− p

μ

(
Y2

σ〈limjkl〉

ρ
+Y3

q〈iσjk〉

ρ

)
, (A 2)

∂Ωi

∂t
+

∂Ωiuj

∂xj

+
7

3
RT

∂�

∂xi

+4RT
∂Rij

∂xj

−56

3

qi

ρ

(
∂qj

∂xj

+σjk

∂uj

∂xk

)
−4

Rij

ρ

(
∂p

∂xj

+
∂σjk

∂xk

)

+ 7�
∂RT

∂xi

− 7

3

�

ρ

(
∂p

∂xi

+
∂σij

∂xj

)
+ 2(9Rij + 14RT σij )

∂RT

∂xj

+
56

5
RT

(
qj

∂ui

∂xj

+ qj

∂uj

∂xi

)
+ 4ψijk

∂uj

∂xk

+ 8RT mijk

∂uj

∂xk

+

(
5

4
Ωi

∂uj

∂xj

+
9

5
Ωj

∂ui

∂xj

+
4

5
Ωj

∂uj

∂xi

)
= −p

μ
Ωi − 2

15

p

μ

(
5mijkσjk + 14qjσij

ρ

)
. (A 3)
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The collision production terms on the right are for Maxwell molecules (Truesdell
& Muncaster 1980), in which C1 = 2.097, C2 = 0.291, Y1 = 1.698, Y2 = 1.203
and Y3 = 0.854 are collision constants. Whilst the moments in the GMM relax
at a time scale of order τ towards the equilibrium state, the higher moments
outside the GMM are assumed to change at a time scale order of ετ (ε < 1)
towards the GMM and then follow the GMM to relax to the equilibrium state.
However, it should be emphasized that the higher moments outside the GMM do not
relax at the time scale ετ directly towards the equilibrium state. In other words,
the expanded distribution function f M (1 + {GMM} + {terms outside the GMM})
approaches f M (1 + {GMM}) at a rate of ετ , whilst f M (1 + {GMM}) relaxes to f M at
a time scale of order τ. As ε is a small parameter, the overall relaxation time towards
the equilibrium state for the moments both inside and outside the GMM is of the same
order. The relaxation of f M (1 + {GMM}) towards f M is governed by the moment
equations, and the relaxation of f M (1 + {GMM} + {terms outside the GMM})
towards f M (1 + {GMM}) is obtained through the following expansion. With the
above assumptions and following the procedure of Struchtrup & Torrilhon (2003),
(A 1)–(A 3) can be written as

∂φijkl

∂t
+ {. . . space derivatives of moments . . .} = −1

ε
C1

p

μ
φijkl − C2

p

μ

σ〈ij σkl〉

ρ
, (A 4)

∂ψijk

∂t
+ {. . . space derivatives of moments . . .} = −1

ε
Y1

p

μ
ψijk − p

μ

×
(

Y2

σ〈limjkl〉

ρ
+ Y3

q〈iσjk〉

ρ

)
, (A 5)

∂Ωi

∂t
+ {. . . space derivatives of moments . . .} = −1

ε

p

μ
Ωi−

2

15

p

μ

(
5mijkσjk+14qjσij

ρ

)
.

(A 6)

Equations (A 4)–(A 6) are expanded in terms of the small parameter ε as

φijkl = φ
(0)
ijkl + εφ

(1)
ijkl + ε2φ

(2)
ijkl + · · · ,

ψijk = ψ
(0)
ijk + εψ

(1)
ijk + ε2ψ

(2)
ijk + · · · ,

Ωi = Ω
(0)
i + εΩ

(1)
i + ε2Ω

(2)
i + · · · .

⎫⎬
⎭ (A 7)

Inserting (A 7) into (A 4)–(A 6), we obtain the zeroth-order approximations of
φijkl ψijk and Ωi ,

φ
(0)
ijkl = 0, ψ

(0)
ijk = 0 and Ω

(0)
i = 0, (A 8)

and their first-order approximations:

φ
(1)
ijkl = −4μ

C1

∂(m〈ijk/ρ)

∂xl〉
− 12

C1

μ

ρ
σ〈ij

∂uk

∂xl〉
+

4μ

C1pρ
m〈ijk

∂σl〉m

∂xm

− 12

7

μR〈ij

C1p

∂uk

∂xl〉
− C2

C1

σ〈ij σkl〉

ρ
,

(A 9a)
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ψ
(1)
ijk = −27
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∂(R〈ij /ρ)
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Y1ρ
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∂RT
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q〈iσjk〉
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∂RT

∂xj

− 18
μ

p
Rij

∂RT

∂xj

− 4
μ

ρ

∂Rij

∂xj

+
56

3

μ

p

qi

ρ

(
∂qj

∂xj

+ σjk
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Rij
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∂σjk
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∂uj

∂xk

− 2

15

(
5mijkσjk + 14qjσij

ρ
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. (A 9c)

The first-order approximations of the above moments are used to regularize the 26
moment equations and construct the WBCs in § 2 and 3, respectively.

Appendix B. Coefficients for a fifth-order molecular distribution function in
Hermite polynomials

Grad (1949b) expanded f in Hermite polynomials as

f = fM

∞∑
n=0

1

n!
a

(n)
A H

(n)
A = fM

(
a(0)H (0) + a

(1)
i H

(1)
i +

1

2!
a

(2)
ij H

(2)
ij +

1

3!
a

(3)
ijkH

(3)
ijk + · · ·

)
,

(B 1)
where H

(n)
A is the Hermite function; a

(n)
A are the coefficients; and fM is the local

Maxwellian distribution function given by

fM =
ρ√

(2πRT )3
exp

(
− c2

2RT

)
.

The expressions of the polynomials and their associated coefficients used in the § 3 to
derive the fifth-order approximation of the molecular distribution function f (5) are
(Grad 1949a, b)

H (0) = 1, H
(1)
i =

ci√
RT

, H
(2)
ij =

cicj

RT
− δij , H

(3)
ijk =

cicj ck

RT
√

RT
− ciδjk + cj δik + ckδij√

RT
,

H
(4)
ijkl =

cicj ckcl

(RT )2
− cicj δkl + cickδjl + ciclδjk + cj ckδil + cj clδik + ckclδij

RT
+ Dijkl,

H
(5)
ijklm =

cicj ckclcm

RT 2
√

RT
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
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and
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p
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(B 3)
where Dijkl = δij δkl + δikδjl + δilδjk .

Appendix C. WBCs for the R26 equations
The remaining WBCs for the R26 equations obtained in § 3 are listed below:
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and

� = −35

4

2 − α

α

√
πRT

2

(
qn +

Ωn

28RT

)
− 5

4
pαRT

(
6 − 6T̂ 2

w− û4
τ

4
−3û2

τ T̂w

)
−15

4
RT σnn

− 15

8
Rnn +

35

48
φnnnn. (C 8)

Here σττ , σnn, στn, qτ , qn, mτττ , mnττ , mnnτ , mnnn, Rττ , Rnτ and Rnn are the
tangential and normal components of σij , qi, mijk , Rij relative to the wall. The
values of gij , hi , ωijkγij and χ at the wall can be calculated from the above list.
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