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Abstract
Carbon reduction is an important process for Earth-like origins of life events and of great interest to the astrobiol-
ogy community. In this paper, we have collected experimental results, field work and modelling data on CO and
CO2 reduction in order to summarize the research that has been carried out particularly in relation to the early Earth
and Mars. By having a database of this work, researchers will be able to clearly survey the parameters tested and
find knowledge gaps wherein more experimentation would be most beneficial. We focused on reviewing the mod-
elling parameters, field work and laboratory conditions relevant to Mars and the early Earth. We highlight import-
ant areas addressed as well as suggest future work needed, including identifying relevant parameters to test in both
laboratory and modelling work. We also discuss the utility of organizing research results in such a database in
astrobiology.
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Introduction

Significance of databases in research

When conducting experimental investigations, the feasibility of the procedure (whether it be due to
financial, spatial, equipment or time constraints), the reaction conditions required, as well as the rep-
licability of the experimental model are all major considerations. These choices need to be made as
the experiment is being designed, and it could be inefficient if one has to rely solely on the text of
current literature to assist them due to time. A database is useful for experimental planning because
it concisely summarizes the information of a multitude of experimental designs, reagent/reaction
condition combinations, and has utility to current researchers whether the motive is the replication of a
past experiment, orfilling in the gaps of current research. Large databases that are sortable by experimental
parameters can also facilitate the field’s ability to discern bigger pictures and larger chemical trends as
evidenced by Barbier et al. (2020) using the data set published by Huang et al. (2020).
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In the context of carbon reduction, there are many prebiotic conditions that have not been tested and/
or modelled, and there is a plethora of parameters which need be accounted for, as they all have the
potential to affect the outcomes of the investigations conducted. This generally makes carbon reduction
experiments extremely difficult to conduct, as the equipment needed to recreate hydrothermal condi-
tions, prepare the minerals to be used, and analyse the products (which are often in trace concentra-
tions) can be expensive to obtain and use. In addition, there is field work that has been performed
on analogue sites that could be relevant for experimental and modelled tests. Thus, knowing conditions
that have and have not been tested and typical experimental setups and product yields to expect is
imperative for facilitating efforts of new researchers looking to experimentally explore the field of
carbon reduction, particularly in the origin of life field. While the work done by Huang et al. (2020)
includes 30 papers related to serpentinization, we aimed to design a data set related to experimental,
field work, and modelled results within the field of carbon reduction.

The importance of carbon reduction

Carbon is a necessary element for life on Earth and can exist in various oxidized and reduced forms.
Abiotically, the movement of carbon through oxidized and reduced phases constitutes the foundational
carbon cycle on Earth. A dominant form of carbon on early Earth was carbon dioxide gas (CO2), as it
made up the majority of the Hadean atmosphere (Kasting, 1993; Kasting and Catling, 2003; Trail et al.,
2011; Armstrong et al., 2019). CO2 is an oxidized form of carbon as is carbon monoxide (CO), which
was also likely present in the early atmosphere, albeit in lower amounts/over shorter time scales
(Kasting, 1990; DiSanti et al., 1999; Zahnle et al., 2020). However, biomass is composed of organic
molecules; therefore, if these oxidized gases were important prebiotic carbon sources they would have
first had to have been reduced prior to the synthesis of prebiotic molecules like amino acids and nucleo-
bases. Given this, reduction/fixation of CO2 and CO may have served as a significant source of organic
molecules on the prebiotic Earth through a variety of mechanisms. The resulting reduced carbon mate-
rials (including methane, formaldehyde, methanol, formic acid, acetate and pyruvate) could then have
served as starting materials for prebiotic reactions, and their synthesis may have thus been an important
process for the origins of life (Butlerov, 1861; Miller, 1953; Nuevo et al., 2008; Cleaves, 2011;
Kopetzki and Antonietti, 2011; McCollom, 2013; Becker et al., 2016; Stubbs et al., 2020; Ruiz
et al., 2021).

Because of this, the fixation or reduction of CO and CO2 has been the focus of a broad body of
research in several fields, including planetary science and the origins of life, over the past 50 years.
This work spans a significant amount of interdisciplinary research that includes theoretical modelling,
laboratory experimentation, field work and analysis of mission data that relates to the origins of life on
early Earth or a Martian environment. Modelling is often the focus of this research, and there are lim-
ited experimental results due to the challenges related to such work (e.g. high pressures require special
reactors, isotopically labelled materials are expensive, and synthesizing pure/contaminant-free minerals
is difficult). Experimental research also relies heavily on modelling to deduce which conditions are
most promising to explore. In regards to these reactions, there are a number of parameters to investigate
(temperature, pressure, pH, mineral source). In order to deduce plausible carbon reduction reactions
that could have taken place on early Earth or Mars, it is important that both modelling and experimental
work aim to constrain the conditions under which carbon reduction takes place.

We report on a summary of work explored on the reduction of CO and CO2 under geological con-
texts relevant to Mars and the early Earth. These results are aimed at experimental researchers who are
looking for modelled reactions that have not yet been tested in a laboratory setting. However, this table
includes modelled results, field work, theoretical studies, data from missions and experimental work
and is therefore useful, across a variety of research techniques. In addition, we highlight gaps within
the modelling literature that would be fruitful areas for future work. The experimental conditions
under which observations took place can be applied to models and modified to different planetary con-
ditions relevant to the search for life by altering the parameters, such as temperature, pressure, phase of
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the reaction, depth from surface, catalysts used and partial pressure of relevant atmospheric gases to
better simulate worlds/environments of interest.

Mechanisms and locations of interest

CO2 has a variety of possible mechanisms for reduction and those mechanisms often depend on the
environmental conditions. On the early Earth, atmospheric CO2 would have readily dissolved in the
near neutral to mildly acidic oceans (Morse and Mackenzie, 1998; Sleep et al., 2001; Holland and
Turekian, 2006; Halevy and Bachan, 2017; Krissansen-Totton et al., 2018; MacLeod et al., 1994)
and existed as a mixture of dissolved CO2 gas, bicarbonate (HCO3

−) and carbonate (CO3
2−) ions. H

sources for reducing CO2 to organic molecules could have been derived from atmospheric H2

(predicted to have been at least ∼1% of the Hadean atmosphere; Kasting and Catling, 2003; Tian
et al., 2005; Liggins et al., 2020), water/water vapour, trace gases such as H2S, NH4

+ and/or CH4.
In general, CO2 reduction requires an electron source, an energy source to drive the reaction (typically
thermal, electrochemical, radiation or electrical), and often a catalyst or mediator (e.g. Fe0; dissolved
metals, iron/zinc minerals, certain organics, etc.); although, large amounts of energy (e.g. electric dis-
charges) can sufficiently drive CO2 reduction in the absence of a catalyst (i.e. Miller–Urey chemistry;
Cleaves et al., 2008; Rodriguez et al., 2019). There are various mechanisms by which CO2 or CO can
be reduced, but the ones of focus for origins of life research include reverse water–gas shift reactions
(forms CO), hydrogenation (forms CH4, CH3OH) or a series of gas-phase reactions such as Miller–
Urey chemistry, Fischer Tropsch (FT) reactions, and free radical chain reactions (forms CO, CH4

and hydrocarbons) (Pirronello et al., 1982; Riedel et al., 2001; Jiang et al., 2018; Cleaves et al.,
2008; Porosoff et al., 2016; Miyakawa et al., 2002).

Early Earth atmospheric CO2 could have been reduced via lightning (i.e. Miller–Urey chemistry;
Cleaves et al., 2008; Rodriguez et al., 2019) or impact events involving catalytic metals within the
impactor (Kasting, 1990; DiSanti et al., 1999; Sekine et al., 2003; Kress and McKay, 2004; Zahnle
et al., 2020); CO2 adsorbed onto catalytic minerals at Earth’s surface could have also been reduced
if it were subjected to radiation, thermal or electrochemical energy sources (Hudson et al., 2020; Li
et al., 2020; Tsiotsias et al., 2020). CO2 reduction in aqueous solutions is more limited as water
often poisons metal catalysts (Porosoff et al., 2016). Carbon reduction in the deep sea (e.g. at deep-sea
vents) and deep subsurface sediments is even more restricted considering the lack of sunlight. Thus, at
these locales CO2 reduction is driven by either thermal (e.g. via Fischer Tropsch Type reactions; FTT)
or electrochemical energy. It is debated to what extent the early Earth would have had land above sea
level (Mojzsis et al., 2001; Wilde et al., 2001; Kemp et al., 2010; Reimink et al., 2016; Hawkesworth
et al., 2020; Rosas and Korenaga, 2021), so CO2 reduction in the deep sea may have been critical for
facilitating abiogenesis events. Of the deep-sea environments, hydrothermal vents are the most prom-
ising given that FTT reactions require high temperatures and pressures such as those found at vents;
vents also generate strong electrochemical gradients (redox / pH) which, depending on the conditions,
can drive CO2 reduction (Martin and Russell, 2007; Martin et al., 2008; Sojo et al., 2016).
Accordingly, there is a plethora of work which has demonstrated how hydrothermal vents, particularly
black smokers and alkaline vents, could generate conditions conducive for CO2 reduction and the for-
mation of biologically relevant compounds including amino acids (Russell et al., 1994; Russell and
Hall, 1997; Braun and Libchaber, 2004; Kelley et al., 2005; Russell et al., 2014; Li et al., 2018;
Barge et al., 2019, 2020; Hudson et al., 2020). Consequently, hydrothermal sites have been argued
as potentially conducive for abiogenesis on early Earth (Baross and Hoffman, 1985; Russell and
Hall, 1997; Weiss et al., 2016). Indeed, the Iron Sulphur World hypothesis posits that the iron sulphide
minerals at black smoker vents were critical for the origins of life as they not only reduce CO2, but have
coordination structures reminiscent of Fe-S clusters in biological metalloenzymes (Wächtershauser,
1990; McGlynn et al., 2009; Nitschke et al., 2013; White et al., 2015; Goldford et al., 2017). In add-
ition, alkaline vents have been invoked as potentially relevant for the origins of life given that these
systems can generate high temperature and alkaline, H2-rich fluids that are in disequilibrium with
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the surrounding near-neutral waters; the resulting pH gradients have been invoked as a mechanism for
driving CO2 reduction akin to how organisms today produce adenosine triphosphate (ATP) via proton
gradients (Russell and Hall, 1997; Kelley et al., 2002; Martin et al., 2008; Tivey, 2007; Sojo et al.,
2016; Hudson et al., 2020). Notably, black smoker vents are significantly more acidic (pH 3–5) and
hot (up to 350 °C) compared to alkaline vents (pH ∼11; temperature 40–75 °C) (Kelley et al., 2001,
2005) and as such it has been suggested that organics would be more stable at alkaline than black
smoker vents; though, metal-sulphide mineral precipitates that are abundant at black smokers may
have higher electrochemical reactivity with CO2 (Roldan et al., 2015; Li et al., 2018).

Alkaline serpentinite-hosted vents such as Lost City form via serpentinization whereupon oceanic
fluids oxidize the iron of minerals, namely olivine and pyroxene, within ultramafic-mafic rocks
(i.e. enriched with Mg/Fe and depleted in SiO2 (<45 wt%)) producing a range of secondary mineral
phases including magnetite and serpentine (Schulte et al., 2006; Shibuya et al., 2015), and magnesite
which can be produced by mineral carbonation in CO2-containing systems (Klein and McCollom,
2013). In addition to being reactive, these materials can mediate organic transformations and are
capable of preserving organics through a variety of mechanisms. For example, minerals can preserve
organics within sheet structures that traps the organics effectively or organics can adsorb onto the
surface of minerals (Farmer and Des Marais, 1999; Bonaccorsi, 2011).

Perhaps even more important for the habitability on early terrestrial bodies, serpentinization also
generates molecular hydrogen (H2) which could have served as an energy source to organisms that
may have been present (Schulte et al., 2006). The serpentinization reaction generates heat and hydrox-
ide anions, which can trigger subsequent hydrothermal alteration and precipitation reactions, including
the precipitation of brucite, carbonates and iron oxyhydroxides.

Importantly, serpentinization occurs wherever there is ultramafic rock subjected to aqueous alter-
ation – on early Earth such rocks were likely prevalent in the oceanic crust, especially the deep sub-
surface, given that hotter, younger mantles are more conducive towards generating ultramafic melts as
evidenced by Archaean rocks and Martian meteorites, respectively (Griffin et al., 2014; Shibuya et al.,
2015; Santosh et al., 2017; Drabon et al., 2021). While mafic rocks, namely basalt, have substantially
less ferrous mineral content (e.g. pyroxene and olivine) compared to ultramafic rocks, serpentinization
and the generation of H2 of mafic rocks can still occur (Stevens and McKinley, 2000; Xiong et al.,
2017). Studying these reactions via computer modelling and laboratory experiments provides critical
analogues for early habitable systems on both Earth and Mars. While serpentinization does not reduce
CO2, the resulting high temperatures, H2, and pH gradients from the reaction can drive CO2 reduction
(Sleep et al., 2004); thus, serpentinizing systems may have been conducive for origins of life events
(Russell et al., 2010). Serpentinization is suggested to occur in the Martian subsurface (Hand, 2009;
Brown et al., 2016; Tarnas et al., 2018a, 2018b) and other worlds hosting water:rock interactions
including Ceres, Europa, and Enceladus (Glein et al., 2015; Vance et al., 2016; Castillo-Rogez
et al., 2020).

The primordial Martian environment can be considered an analogue to early Earth in some ways: it
once had a magnetic field (Langlais et al., 2004), an atmosphere dominated by CO2 with transient per-
iods of no O2 (Sholes et al., 2017), and water flowing over a basaltic crust (Bibring et al., 2006; Carr,
2012). Notably, large portions of the Martian surface that are older than 3.7 Ga (i.e. rocks from the
Noachian eon) have been preserved (Bibring et al., 2006). Given the preservation potential by minerals
present on both the early Martian crust and the early Earth, the Martian surface may provide a window
to observe abiotic chemistry unimpacted by a biosphere. This could be especially interesting to explore
reactions involving CO and CO2 reduction given that organics and minerals that catalyse such reactions
have been identified (Michalski et al., 2018; Liu et al., 2021).

The importance of carbon cycling on other terrestrial planets beyond Earth, and the implications of
that putative carbon cycle for the habitability of those worlds, is still an open question. For at least por-
tions of its history, Mars possessed liquid water, photo and chemical energy sources to power potential
microbial metabolisms, water of amenable pH and salinity, and the biogenic elements (carbon, hydro-
gen, oxygen, nitrogen, phosphorus and sulphur; i.e. CHONPS; Knoll and Grotzinger, 2006). Indeed,
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Mars’ atmosphere is currently dominated by CO2 (Franz et al., 2017), making reduction in the atmos-
phere a possible pathway relevant to abiogenesis (Heinrich et al., 2007; Franz et al., 2020).
Furthermore, organic carbon has been detected on the Martian surface as evidenced by the organic con-
tent in Martian meteorites and the Sample Analysis at Mars (SAM) instrument (Callahan et al., 2013;
Eigenbrode et al., 2018; Steele et al., 2018). By providing a source of organics, this could have
sustained extant life on the planet.

Methane was first detected in the Martian atmosphere by Mars Express (Formisano et al., 2004;
Webster et al., 2018; Yung et al., 2018) at levels near the instrumental detection limit. The
Curiosity rover recently observed methane in the vicinity of Gale Crater on Mars (Webster et al.,
2015; Eigenbrode et al., 2018; Giuranna et al., 2019). However, the Trace Gas Orbiter has not detected
any atmospheric methane despite having a much lower detection limit, leading to an inconsistency yet
to be resolved (Korablev et al., 2019). While methane detections remain hotly debated, the SAM
instrument aboard Curiosity has detected a suite of other organics, as well, including chlorinated organ-
ics (e.g. chloromethane, dichloromethane, chlorobenzene) and S-bearing organics (both aliphatic and
aromatic) (Mahaffy et al., 2012, Glavin et al., 2013, Williams et al., 2019; Millan et al., 2021). The
mechanism by which all these Martian organics were generated remains uncertain (Miller et al.,
2016; Szopa et al., 2020). One possibility is that they were derived from reduced gases, such as H2

and CH4, which have been hypothesized to have originated from various sources including serpentin-
ization of ultramafic minerals such as olivine, subsurface hydrothermal environments, photocatalysis
and volcanic activity (Sherwood Lollar et al., 2006; Amador et al., 2018; Tarnas et al., 2018a,
2018b). Methane on Mars can be hypothetically produced by biological reactions (Boston et al.,
1992; Weiss et al., 2000) or produced abiotically by water-rock reactions (Wallendahl and
Treimann, 1999; Max and Clifford, 2000), volcanic outgassing (Wong et al., 2003) or even exogenous
delivery such as comets (Kress and McKay, 2004). Further complicating this, methane is easily trapped
in the subsurface, persisting in minerals or gas pockets through geologic time (Max and Clifford,
2000). On Mars, methane could have been produced recently or trapped in the ice-bearing subsurface
in the Noachian or Hesperian as the planet cooled (Kerr, 2004). The non-uniform atmospheric detec-
tions of methane in the Martian atmosphere are indicative of localized sources and/or localized sinks
(Formisano et al., 2004), emphasizing the need for more precise constraints on the reactions creating or
uptaking Martian methane (Fig. 1).

The source and production of reduced carbon on Earth and its availability on other worlds are not
well constrained. Carbon reduction can give a variety of reduced products depending on the complex
geological context (Schrenk et al., 2013). In addition, there is limited access to extraterrestrial samples,
which would help constrain the geologic context as well as provide insight to the chemical reactions
occurring. CO and CO2 could both be sources for reduced carbon via several reaction pathways as both
gases would have been available in the atmosphere and are more stable in comparison to methane
(Kasting et al., 1983; Kasting, 1993; Kasting and Catling, 2003; Sherwood Lollar et al., 2006).

Methods

We have generated a detailed dataset enumerating the research performed in the field of CO and CO2

reduction. We mainly focus on mineral catalysis of CO2 reduction in the context of early Earth and
methane production on Mars, including serpentinization. Papers were identified via Google Scholar
searches, using search phrases such as ‘carbon fixation,’ ‘methane on Mars,’ ‘organics on Mars,’
‘serpentinization on Mars,’ ‘carbon monoxide reduction on early Earth,’ etc. The works reviewed
span as early as 1979, however most of them are concentrated in the beginning of the 21st century
until present. The table was primarily organized by the relevant mineral/catalyst for the reaction and
to be sortable by individual minerals; therefore, papers discussing multiple minerals will occupy mul-
tiple rows in the table. We considered the carbon starting material, the reaction that occurred (primarily
reduction), the end products that ensued, whether the research of relevance was experimental or model-
based, as well as the relevance to Mars and early Earth. As more information was gathered, we added in
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fields pertaining to reaction conditions, such as temperature and pressure, the phase of the reactants, the
source of the mineral, the type of reaction occurring, involvement of spectroscopic measurements and
isotopic analysis, and if the reaction was low yielding or not – although in many papers, the aforemen-
tioned categories were not relevant and/or specified. If the entry did not apply to one of the columns or
if the information was not specified, N/A was put in that slot.

Fig. 1. Plausible mechanisms for CO2 reduction on early Earth or Mars. (A) General CO2 reduction
reaction requires a H source (likely H2 or H2O), energy (e.g. thermal, radiation, electric discharge or
redox gradient), and some sort of catalyst or mediator (e.g. Fe0, Ni2+, magnetite). Common products of
this reaction include CO (which can be further reduced) and CH4 (unstable to photolytic degradation)
with organics usually produced in lower amounts (methanol, formaldehyde, formic acid and acetic
acid are generally produced and are shown). (B) Locations of interest for CO2 reduction on early
Earth or Mars: reduction via Miller–Urey chemistry with (1) H2 as a H donor or (2) H2O as a H
donor generates a range of organics (Cleaves, 2008); (3) impactors containing catalytic transition
metals can facilitate CO2 reduction (e.g. Civiš et al., 2016; Steele et al., 2018); (4) CO2 dissolution
via precipitation or with equilibrium with bodies of water produces carbonic acid, bicarbonate and
carbonate ions; (5) reduction of CO2 adsorbed onto catalytic minerals such as anatase (which con-
tains TiO2) via photolysis (e.g. Knížek et al., 2020); (6) UV irradiation of CO2 generates reduced C
species; (7) black smoker hydrothermal vents, (8) alkaline vents such as those at Lost City, (e.g.
Hudson et al., 2020; Preiner et al., 2020). (9) serpentinization in the deep subsurface can generate
conditions conducive for CO2 reduction (e.g. Etiope et al., 2011; Preiner et al., 2018). *CO2 indicates
a mixture of dissolved CO2 gas or bicarbonate/carbonate anions.
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The preliminary literature review performed here included 40 papers (Calvert and Steacie, 1951;
Kelley, 1996; Heinen and Lauwers, 1997; Horita and Berndt, 1999; Guan et al., 2003; McCollom
and Seewald, 2003; Foustoukos and Seyfried, 2004; Lyons et al., 2005; Oze and Sharma, 2005;
Seyfried et al., 2007; Cleaves, 2008; Ji et al., 2008; Mulkidjanian, 2009; He et al., 2010; Lang
et al., 2010; Etiope et al., 2011; Lindgren et al., 2011; Steele et al., 2012; Barge et al., 2016;
Etiope et al., 2013; Schouten et al., 2013; Yamaguchi et al., 2014; Batalha et al., 2015; Civiš
et al., 2016; Civiš et al., 2017; Miller et al., 2017; Neto-Lima et al., 2017; Santos-Carballal et al.,
2017; Ueda et al., 2017; Eigenbrode et al., 2018; Preiner et al., 2018; Steele et al., 2018; Tosca
et al., 2018; Varma et al., 2018; Yung et al., 2018; Civiš et al., 2019; Knížek et al., 2020; Preiner
et al., 2020; Liu et al., 2021; Ruiz et al., 2021), particularly in the area of carbon phases and fixation
processes. We realize this database is not perfectly comprehensive. Rather, our goal was to develop a
downloadable resource of maximum utility to current researchers that could be appended and expanded
as new findings emerge in the field. In addition, we specifically excluded papers without geological
context (i.e. papers focused on catalysis for industrial, material or pharmaceutical purposes) and instead
focused on papers that were relevant for Mars or the early Earth. CO2 reduction is certainly important
in other fields (e.g. industrial processes). While some of these papers also utilize mineral material, (Wei
et al., 2017), we have chosen to focus on papers with a direct planetary context. We believe as such that
this dataset presents the highlights of this area, as well as important directions for future research.

We categorized these papers by columns that are searchable (Table 1). Importantly, we distinguished
between experimental and theoretical, mission based, modelled and field results. We also included rele-
vant field work in the table, including studies done on the Chimaera Seep to understand methane flux
(Etiope et al., 2011). Recognizing if the research was based on models or experiments helps identify
where further investigations could be conducted. Reaction conditions such as temperature, pH and pres-
sure help elucidate which geologic setting would be most relevant to the experiment (e.g. hydrothermal
vents, hydrothermal hot springs, the deep subsurface or past Martian environments). The database also
summarizes product yields for each of the reactions to facilitate comparisons between the various reac-
tions and to determine whether such chemistry could have generated significant or only trace amounts
of the reduced carbon products. The mineral source was also noted to identify whether the mineral was
synthetic or natural (thus having impurities, e.g. methane/hydrocarbons) which could contribute to
reduced carbon compounds identified in the reaction. Indeed, previous work using isotopically labelled
13CO2 found that the majority of methane and carbon compounds formed in reactions using natural
olivine samples were not derived from the starting 13CO2 but from methane/hydrocarbon contaminants
within the mineral (McCollom and Seewald, 2001; McCollom, 2016). Given that serpentinization may
not generate as much reduced carbon compounds as previously thought, we also noted whether reac-
tions used isotopically labelled reactants to rule out the role of contaminants. Furthermore, a field for
spectroscopic measurements was included to clarify how products were identified. The phase (liquid,
gas) of the reaction is also important as aqueous environments affect how substrates bind to catalysts,
consequently the products yielded, as well as the relevance to hydrothermal vents as a possible site for
the origins of life (e.g. Martin et al., 2008; Russell et al., 2010). Fields classifying the papers as rele-
vant to the discussions of Mars and Early Earth (or both) were also included so researchers using this
table can consolidate papers of reference, as we want this database to be searchable and sortable.
Miscellaneous notes were also added as each paper has exceptions and every single aspect of every
single paper cannot be compartmentalized into individual cells on a spreadsheet without it losing its
efficiency and a reasonable organization.

We have included an illustrative subset of the table as tables in this manuscript (Tables 1, 2 and 3).
The complete table is available for download as supplemental information.

Results

A summary of the reagents and minerals used in the papers we surveyed is detailed in Table 2. We
observed that iron minerals, iron-nickel-sulphides, iron-nickel alloys, titanium and magnesium
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Table 1. List of column categories that were used in the database and their purpose

Column category Reasoning Column category Reasoning

Mineral or catalyst
name

To identify mineral and/or
catalyst of relevance

Mineral source To determine if the mineral
is likely to have
impurities

Mineral structure To inform about the
chemical structure of the
mineral

Isotopic analysis To see if products have
been verified and if
contaminants could be
ruled out

Paper information
(year, DOI,
author, full
citation)

To sort efficiently; to easily
identify research article/
group

Research Performed
(Theoretical,
Modelled, Field, or
Lab Experiments)

To know the nature of the
experiment; to identify
further investigations

Starting material To identify the relevant
carbon molecule

Reaction conditions
(Reaction Phases,
Temperature, pH,
Pressure)

To know what conditions
have been tested; to
identify relevant
geologic or Martian
settings

Reaction Most often reduction, but to
inform the reaction of
relevance examined in the
paper

Analysis To see what analysis of the
minerals and/or
products have been
performed

Products To help identify what
proto-metabolic products/
organic molecules were
produced abiotically

Planetary relevance
(Mars, Early Earth)

To sort efficiently
consolidate papers
based off world of
relevance

Yield To compare various
reactions; identify trace or
significant amounts

Other Notes Include other factors,
exceptions, important
takeaways and
information not in the
other cells

Table 2. Common products, reactants and minerals identified within the database

Minerals utilized Carbon starting materials Products detected

Iron sulphide minerals (i.e. greigite)
Iron nickel alloys
Iron oxides
Zinc sulphide
Native metals (i.e. Fe)
Titanium oxides
Clay minerals
Serpentinized minerals
Chromium bearing minerals

CO2

CO
Formate
Acetate
Pyruvate
Methane
Methanol
Ethanol
Propanol
Hydrocarbons
Acetaldehyde
Formaldehyde
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Table 3. Row of database corresponding to Roldan et al. (2015)

Mineral/
Catalyst

Mineral
structure Paper title Author Year Full citation DOI

Starting
material

Greigite Fe3S4 Bio-inspired CO2

conversion by iron
sulphide catalysts
under sustainable
conditions

Roldan et al. 2015 Chem. Commun.,
2015, 51, 7501

10.1039/C5CC02078F CO2

Reaction Products Yield
Mineral
source

Isotopic
analysis Reaction phases

Research Performed
(Theoretical,
Modelled, Field or
Lab Experiments)
Experiments

Temperature
(°C)

Reduction Formic Acid 1.25-1.5 μM Synthetic No Aqueous Lab, with DFT
simulations

20

pH
Pressure
(mb) Analysis Mars Early Earth Key Words Other Notes

4.5-10.5 1013.25 NMR (¹H) Yes
(hydrothermal
vents)

Greigite,
Hydrothermal
vents, Carbon
reduction

Other products: methanol, acetic acid,
pyruvic acid (highest yields at pH 6.5);
Other pHs also tested: 4.5, 10.5, they
yielded formic acid at reduced rates
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compounds were commonly invoked in these reactions. The majority of the aforementioned minerals
were synthetically sourced or not specified in the source when used in the experiments. There are larger
amounts of literature relating to CO2 reduction as opposed to CO reduction. Isotopic analysis of 13C
was often not mentioned or not conducted in the experimental designs of the included investigations.
In general, it has been found that the reduction of CO2 and CO under early Earth or Mars relevant con-
ditions has resulted in a variety of products, including formate, formaldehyde methanol, methane and
acetate (Table 2). In general, methane and formate are the most dominant products formed in the data-
base. Yields were not always reported or relevant but, in most cases, they range from the nanomolar to
millimolar. In addition, the yields reported were not always constrained in the context of the quantity of
the reactants, making it difficult to compare across different research papers. Often, the mechanisms are
only identified as reduction, but the Sabatier reaction (i.e. Etiope et al., 2011, 2013; Ruiz et al., 2021),
serpentinization (i.e. Preiner et al., 2018) and FTT synthesis (i.e. Etiope et al., 2011; Yung et al., 2018)
are also specifically identified. Papers discussing precipitation and adsorption are also included
(Santos-Carballal et al., 2017; Tosca et al., 2018).

The table also includes work that shows reduced organics that could have been products of carbon
fixation have been detected on Mars along with reactive minerals. Experimental procedures included
methods such as gas chromatography mass spectrometry (GC-MS), cross-track infrared sounder
(CRIS) and nuclear magnetic resonance (NMR), as well as viewing terrestrial analogues, often com-
bined with modelling and computational chemistry simulations. Most of the spectroscopic methods uti-
lized were in the context of analysis of the mineral used for catalysis or involved in serpentinization as
opposed to analysis of the product. Spectroscopic methods were more likely to be applied to minerals
of natural source such as Martian meteorites or montmorillonites as opposed to synthetic ones. Many
papers rarely noted other environmental factors and their effects on the yields of different products in
detail, such as salinity and fugacity. These papers identify possible mechanisms for the emergence of
methane (including volcanic outgassing and photocatalysis) and hydrogen on Mars (including
serpentinization).

Shown in Table 3 is an example row included in the database. This paper used greigite as the min-
eral of study, an iron sulphide often cited in the context of hydrothermal vents (Roldan et al., 2015).
Therefore, this paper is very relevant to carbon fixation on the early Earth and is marked as such in the
database. In this paper, Roldan et al. (2015) performed both a lab experiment as well as some model-
ling through Density Functional Theory (DFT) simulations. The starting material used was CO2 and the
primary product of the reduction reaction was formic acid. The reaction was tested at pH 4.5, 6.5 and
10.5 at room temperature and pressure. It took place in an aqueous environment and the mineral was
synthetic. Other reduced products identified included methanol, acetic acid and pyruvic acid, all of
which were formed in the highest quantities at a pH of 6.5, similar to formic acid. The reactions
were analysed with NMR to determine the organic products. By having the reactions of different miner-
als laid out in a database, these reaction conditions, analysis techniques, and yields can be directly com-
pared to other works and can be fit into a broader context within the other studies that have been done
in this area.

A variety of the minerals, including iron sulphides, that have been shown in the research examined
to catalyse carbon reduction are relevant to hydrothermal vent systems which are of particular interest
to the origins of life community. Hydrothermal vents are high-pressure, sometimes high-temperature
environments that are composed of metal sulphides (for black smokers, e.g. greigite) and hydroxides
(in both black smokers and alkaline vents), which can be reactive sites. Some minerals such as greigite
resemble structures in modern carbon dehydrogenase (CODH) enzymes found in archaeabacteria and
other iron-sulphur cluster enzymes (Russell and Hall, 1997; Russell and Martin, 2004; Nitschke et al.,
2013; Roldan et al., 2015), which could make them especially relevant to the development of proto-
metabolic or metabolic cycles (Kitadai et al., 2019; Zhao et al., 2020). Similar in structure to the Fe-S
minerals, iron-nickel-sulphide minerals (such as violarite) were also seen as effective mediators in
laboratory experiments (i.e. Yamaguchi et al., 2014; Roldan et al., 2015; Santos-Carballal et al.,
2017; Hudson et al., 2020). Pressures and temperatures varied as experiments were carried out in
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simulated hydrothermal conditions, sometimes influencing the yield of various products (Neto-Lima
et al., 2017).

Discussion and implications for future research

This dataset was designed to be useful for both experimentalists and modellers. It gives a general over-
view of carbon reduction research in relation to Mars and the origins of life on Earth and indicates what
conditions have already been tested or modelled. The table also allows for easy identification of con-
ditions that have been modelled but not experimentally explored, which could be a place for expanded
research. The table identifies reactive minerals of interest within the field, and these minerals can be
explored in reactions including a form of carbon reduction.

More laboratory / experimental research should be designed, especially those to utilizing isotopic
labelling. This could be constrained by modelling studies which was significantly more covered at
least in the 39 studies we included in the preliminary database. For the laboratory studies, in many
cases either the mineral material is significantly analysed or only the organic material is analysed;
we recommend performing more mineralogy studies when exploring the carbon reactivity. Carbon
reduction at more extreme pH measurements is understudied. Also, connecting the field work to labora-
tory experiments would be helpful in expanding the understanding of carbon reduction for the early
Earth and Mars. CO2 reduction has also been better explored in this database in comparison to CO.
Similar to work by Barbier et al. (2020) on the Huang et al. (2020) dataset, a variety of machine learn-
ing techniques could be utilized to further analyse the dataset to identify general trends and important
factors.

As noted in our findings, the exact mechanism of carbon reduction in many cases is not well under-
stood or specified in the results (and often just written as ‘reduction’ in the database). Understanding
the different forms of reduction is critical and we recommend further models and experimental research
to improve the understanding of how the C material interacts with mineral species. Related to the reduc-
tion mechanism, the nature of how the carbon interfaces within hydrothermal vents is not well defined
(Martin et al., 2008). In addition, the effects of heterogeneous catalysts have not been fully examined
and this could be addressed with additional research of the mechanism.

Methane on Mars has been detected, but the origins of it and hydrogen are still debated, as photo-
catalysis, volcanic outgassing, serpentinization, magnetite authigenesis, silicate cataclasis, and other
processes are potential options (Webster et al., 2015; Eigenbrode et al., 2018; Yung et al., 2018).
However, spectroscopic measurements for the mineralogy of the planet, and modelling has been the
main source of information or prediction for the redox state of the Martian crust and mantle
(Batalha et al., 2015; Liu et al., 2021; Tosca et al., 2018). Serpentinization in the context of methane
production on Mars, the role of serpentinized minerals, and the Mars subsurface conditions need to be
further investigated. Future missions to Mars could be devoted to examining abiotic chemistry on early
Mars, possibly in the Northern lowlands which was once hypothesized to be an ancient ocean
(Liu et al., 2021). Such an investigation is not only beneficial to understanding the geologic history
and water inventory on early Mars, but it might provide a reasonable analogue to early Earth. The
nature of filling the geochemical gaps of the emergence of life, with limited access to relevant
environments and geology, sparks debate and conflicting evidence depending on the papers that
are read. We hope that tables of this format allow larger trends to be seen, and can be utilized in
conjunction with other datasets (e.g. Barbier et al., 2020; Huang et al., 2020).

Laboratory studies can help contextualize mission work by providing baseline information.
However, in situ subsurface and chemical measurements would help address open questions about
methane production on Mars. The summary table presented here helps identify established or hypothet-
ical conditions, including data that researchers report that they need. In addition to helping laboratory
researchers, this table can help direct the future and ongoing missions to Mars, including sampling
protocol and traverse routes that could answer critical open questions. For example, the
Perseverance rover is the first step in a proposed Mars Sample Return programme (Farley et al.,
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2020), and its proximity to Nili Fossae, a hypothesized exposed serpentinizing system (Ehlmann et al.,
2009, 2010), may provide future insight to how these processes occur on Mars. In addition, ESA’s
ExoMars rover will have a 2-meter drill that can retrieve subsurface sediment samples and analyse
them with GC-MS, Raman, and NIR spectroscopy (Vago et al., 2017). Information gathered by
ongoing and planned Martian missions will also direct lab studies in this area for the coming decade.

Collection of data in such an accessible format will make it more available for others. We propose
that those with relevant work should add their contributions to databases and similar data sets in order
to make their work accessible. We believe this format is not just helpful for the origins of life commu-
nity but would also be useful for other scientific fields that are highly collaborative and multidisciplin-
ary. This format is able to not only inform laboratory studies but can impact future mission studies. In
the context of confirming methane on these planetary bodies, different techniques in the lab have been
explored. The techniques used in these laboratory studies can also inform new technology for future
missions and provide different options for detection and quantification. We hope that our work can
organize different techniques used and identify gaps in flight technology for upcoming missions.

Conclusion

CO and CO2 reduction are important processes that are a focus of much active research in astrobiology.
We have tabulated experimental work relevant to CO and CO2 reduction under geological settings rele-
vant to Mars and early Earth. This table is useful both for those interested in the background of this
experimental and theoretical research area as well as those looking to test different theoretical condi-
tions experimentally. We posit that collecting data in such a manner will be beneficial for astrobiology
and help connect researchers interested in these worlds. We also suggest that other researchers add their
research to similar databases and tables.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/
S1473550422000052.
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