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Oscillatory and steady streaming flow in the
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We study the flow induced by eye rotations in the anterior chamber (AC) of the eye,
the region between the cornea and the iris. We model the geometry of the AC as
a thin domain sitting on the surface of a sphere, and study both the simpler case
of a constant-height domain as well as a more realistic AC shape. We model eye
rotations as harmonic in time with prescribed frequency ωf and amplitude β, and use
lubrication theory to simplify the governing equations. We write the equations in a
reference frame moving with the domain and show that fluid motion is governed by
three dimensionless parameters: the aspect ratio ε of the AC, the angular amplitude
β and the Womersley number α. We simplify the equations under the physiologically
realistic assumptions that ε is small and α large, leading to a linear system that can be
decomposed into three harmonics: a dominant frequency component, with frequency
ωf , and a steady streaming component and a third component with frequency 2ωf .
We solve the problem analytically for the constant-height domain and numerically as
the solution of ordinary differential equations in the more realistic geometry. Both the
primary flow and the steady streaming are shown to have a highly three-dimensional
structure, which has not been highlighted in previous numerical works. We show
that the steady streaming is particularly relevant from the clinical point of view, as
it induces fluid mixing in the AC. Furthermore, the steady flow component is the
dominant mixing mechanism during the night, when the thermal flow induced by
temperature variations across the AC is suppressed.

Key words: biomedical flows, biological fluid dynamics, lubrication theory

1. Introduction
Pure frequency oscillations of a fluid are known to lead to a primary flow that

oscillates with the same frequency as the driver and to secondary flows that are
typically smaller and occur due to nonlinear interactions, oscillating at integer
multiples of the driving frequency. The steady streaming component is the contribution
to the flow that has frequency zero. In a biological context the component oscillating
at the driving frequency typically has primary influence on the stresses generated,
since it is the largest component, while the steady streaming component is of interest
since it has primary importance for mass transport.

† Email address for correspondence: mariia.dvoriashyna@edu.unige.it
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FIGURE 1. (Colour online) Sketch of a cross-section of the human eye.

In the present work we study the oscillatory and steady streaming flow in the
anterior chamber (AC) of the eye generated during eye rotations. The bulk of
the eye is filled with two main fluids: the vitreous and aqueous humours (see
figure 1). The rheology of the vitreous humour is that of a gel with both viscous
and elastic properties that are thought to contribute to its dynamics (David et al.
1998; Meskauskas, Repetto & Siggers 2011, 2012), while the aqueous humour is
well characterised as a Newtonian fluid with rheological properties similar to those of
water. Aqueous humour is produced by the ciliary processes at a rate of approximately
3 µl min−1 (Brubaker 1991) per eye, from where it flows in the posterior chamber,
enters the AC through the pupil and is eventually drained through the trabecular
meshwork and out of the eye.

In spite of being slow, aqueous flow has important functions, since the balance
between the rate of production and resistance to drainage determines the intraocular
pressure. This is particularly relevant clinically, as an elevated intraocular pressure is
correlated with the occurrence of open angle glaucoma (Sommer et al. 1991). The
flow of aqueous humour is also important in the supply of nutrients to the avascular
tissues of the lens and the cornea. Drugs placed on the surface of the eye are mainly
drained into the AC, and their transport through the AC is strongly dependent on the
flow of the aqueous humour (Urtti 2006). Furthermore, elevated shear stress on the
cornea due to the flow of aqueous humour could lead to the detachment of endothelial
cells from the cornea (Kaji et al. 2005).

Various mechanisms produce fluid flow in the AC of the eye, which have been
fairly well studied from the mechanical point of view. The main mechanisms include:
(i) aqueous secretion and drainage (Friedland 1978; Silver & Quigley 2004; Fitt &
Gonzalez 2006; Villamarin et al. 2012; Repetto et al. 2015; Dvoriashyna et al. 2017);
(ii) flow driven by buoyancy effects due to a temperature gradient across the AC
(Canning et al. 2002; Heys & Barocas 2002; Fitt & Gonzalez 2006; Villamarin et al.
2012; Repetto et al. 2015); (iii) eye rotations (Abouali et al. 2012; Modarreszadeh
et al. 2014; Repetto et al. 2015; Boushehrian et al. 2016); and (iv) flow due to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

88
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.889


906 M. Dvoriashyna, R. Repetto and J. H. Tweedy

deformation of the shape of the AC, such as occurs during lens accommodation,
accidents or if the eye is rubbed.

Repetto et al. (2015) showed that, of the first three mechanisms listed in the
previous paragraph, rotations of the eye produce the most intense flow in the AC,
and thus contribute to the majority of the wall shear stress (WSS) on the cornea.
Moreover, Abouali et al. (2012) showed that periodic rotations of the eye can produce
a steady streaming flow that is intense enough to contribute to mixing at least as
much as the thermally driven flow. When the eyes are closed during sleep, almost
no thermal flow occurs in the AC, meaning that most of the mixing happens due to
rapid eye movements (REM).

Analytical approaches based on lubrication theory have been extensively used to
study the flow induced by aqueous secretion and the buoyancy-driven flow in the
AC, after the seminal work by Canning et al. (2002). On the other hand, all previous
investigations of the flow induced by eye rotations are based on fully numerical
solutions of the Navier–Stokes equations. Although numerical simulations allow one
to consider complex and very realistic geometries, they require large computational
efforts, especially for time-dependent simulations, and make it difficult to obtain
a clear picture of the dependency of the results on the controlling parameters. In
this work we propose an analytical approach to study aqueous humour flow in the
eye, which takes advantage of the small thickness of the AC, and use our results to
investigate the parameter space more thoroughly than was previously possible.

Movements of the eye are routine and take a variety of different forms. Some
rotations are close to periodic oscillations, and approximating them as a pure
frequency oscillation has been a popular simplification in the literature, in both
experimental works (Repetto, Stocchino & Cafferata 2005; Bonfiglio et al. 2013,
2015) and theoretical works (David et al. 1998; Repetto, Siggers & Stocchino 2010;
Abouali et al. 2012; Modarreszadeh et al. 2014). In this work we also make use of
this assumption.

As long as the shape of the AC does not change during an eye movement, the
motion can be decomposed into a translational motion and an instantaneous rotational
motion about an axis. In the case of pure translational motion, there would be no fluid
motion relative to the domain, and the acceleration is balanced by a pressure gradient
within the fluid. In this paper we simplify the problem to the case of rotational motion,
and, furthermore, we assume the axis of rotations remains fixed. Thus, in principle,
our work can be generalised to any motion of the eye, by adding a pressure gradient
onto our solutions.

We model the AC as a thin domain sitting on the surface of a sphere that has either
a constant height (in which case we can solve the problem analytically) or a more
realistic shape (in which case we reduce the problem to a set of ordinary differential
equations). We investigate both the primary oscillatory flow and the steady streaming,
showing that both have a three-dimensional structure, the full details of which have
not been highlighted by previous authors.

This paper is organised as follows. In § 2 the problem is formulated mathematically
and simplified, and in § 3 the solution procedure is described. In § 4 we present the
results, both in the constant height domain (§ 4.1) and for the more realistic geometry
(§ 4.2). In § 5 we discuss the physiological and clinical relevance of the results.

2. Formulation of the problem
In this study we develop a model to find the motion of the aqueous humour during

rotations of the eyeball. As discussed in the Introduction, the AC is relatively narrow
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FIGURE 2. (a) Sketch of the eye, showing the eyeball (large sphere) and the domain
representing the AC attached to the sphere on the right. Sketch of the coordinate systems
C and C ′. Cross-sections of the domains considered: (b) idealised constant-height domain;
(c) more realistic representation of the AC geometry.

Maximum height, hmax 2.62 mm (ISO-11979-3 Helmholtz 1909)
Average height, h̄ 1.3 mm
Diameter of the AC ≈6.2 mm
Radius of the eyeball, R ≈12 mm
Zenital boundary of the AC, θ0 31.1◦

Aqueous humour kinematic viscosity, ν 0.75× 10−6 m2 s−1 (Beswick & McCulloch 1956)
Aqueous humour density, ρ 1000 kg m−3

TABLE 1. Geometrical characteristics of the domain and fluid properties.

in the anterior–posterior direction, and is delimited anteriorly by the cornea and
posteriorly by the iris and lens (see figure 1 and the parameters given in table 1).
In this model, we describe the iris and lens as a single continuous surface, thus
neglecting the passage of the aqueous humour through the iris–lens channel, and
hence also the turnover of the aqueous humour due to secretion and drainage. We
justify this by comparing the flows found in the present model with those that would
be expected due to aqueous humour turnover (e.g. Repetto et al. 2015), and noting
that the flows found in the present model are much larger.

2.1. Geometry of the domain
To describe the eye rotations and the shape of the domain, it is convenient to introduce
a set of Cartesian coordinates and two sets of spherical polar coordinates, which will
be used interchangeably through the paper, and which are all illustrated in figure 2(a).
The z-axis of the Cartesian coordinates is the axis of rotation and the x-axis points
through the centre of the pupil. The set C = (r∗, θ, φ) of spherical polar coordinates
is convenient for describing the rotations, and has origin at the centre of the eye,
θ = 0 along the axis of rotation and the centre of the pupil along the line θ = π/2,
φ = 0. Finally the set C ′ = (r∗, θ ′, φ′) of spherical polar coordinates is convenient for
describing the geometry of the AC, and is obtained by rotating C through π/2 about
the y-axis using right-handed rule of rotations. Thus it has the same origin, with the
line θ ′ = 0 through the centre of the pupil and the axis of rotation of the domain
along θ ′ = π/2, φ′ = 0, π. The transformation from C to C ′ can be performed using
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the following formulae (e.g. Meskauskas et al. 2011):

cos θ =−sinθ ′ cos φ′, cos θ ′ = sin θ cos φ,
tan φ = tan θ ′ sin φ′, tan φ′ =−tanθ sin φ.

}
(2.1)

To a good approximation, the AC is axisymmetric about the anterior–posterior axis
(θ ′ = 0), and thus its geometry is independent of φ′. We also assume for simplicity
that its posterior surface (the iris and the lens) is a region of a spherical surface of
radius R centred on the centre of the eye (see figure 2a). In particular we neglect the
thickness of the inner boundary of the iris at the iris–lens channel, which is about
0.4 mm in reality. In addition, the assumption that the centre of the posterior spherical
surface and the centre of the eye coincide is not necessary (in reality the radius of
curvature of the lens is around 1 cm and that of the eye is 1.2 cm), but this allows us
to find an analytical solution in the case of constant height. We denote the thickness
of the AC as h(θ ′). We consider two cases: first, the case of uniform h, in which we
set h equal to the maximum height h= hmax, see figure 2(b), which allows us to find a
completely analytical solution for the fluid flow; second, we consider a more realistic
shape in which the domain is defined as R 6 r∗ 6 R + h(θ ′) for 0 6 θ ′ 6 θ0, where
h(θ ′) is a smooth monotonic decreasing function with h(0)= hmax. In order to avoid
numerical difficulties, we do not allow h to reach zero at the outer boundary, and
we arbitrarily set h(θ0) to the small value hmin = hmax/50. We adopted the following
expression for h:

h= hmax cos θ ′ +
hmin − hmax cos θ0

1− cos θ0
(1− cos θ ′), (2.2)

which is illustrated in figure 2(c). We typically use the parameter values given in
table 1, except where otherwise stated, in which case the aspect ratio of the AC is
ε = h/R≈ 0.11, where h is the average height of the AC (volume of the AC divided
by posterior surface area), defined below.

2.2. Eye rotations
In this work we consider harmonic rotational oscillations of the domain, with
amplitude β and angular frequency ωf . Since we wish to apply our results to the flow
in the AC during eye rotations, we adopt values representative of real eye movements
and, in particular, of saccadic eye rotations and REM during sleep.

Saccadic rotations are performed to redirect the sight from one target to another,
and they tend to be fast and of short duration. Becker (1989) proposed empirical
relationships relating saccadic amplitude A, duration D, maximum angular velocity
and acceleration time. We relate β and ωf using the fact that for saccadic rotations
D=D0+dA, which is approximately valid in the range 5◦/A/50◦, with D measured
in seconds and A in degrees, d ≈ 0.0025 s deg−1 and 0.02 / D0 / 0.03 (Becker
1989). To be able to model the eye rotations as saccadic movements, we assume
that a period of rotation consists of two successive saccadic movements, each with
amplitude A and duration D, and thus model the saccade as a harmonic rotation with
amplitude β = A/2 and angular frequency ωf = 2π/(2D) = π/(D0 + 2dβ). Note that
this approach to model periodic saccades differs from the one in Abouali et al. (2012),
where those authors considered four saccadic movements per period instead of two.
We non-dimensionalise this relationship by converting β to radians and also working
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FIGURE 3. (Colour online) Relationship between the Womersley number α and the
amplitude of rotations β for saccadic eye rotations (curve), average REM (circle) and
maximum amplitude REM (triangle) (Modarreszadeh et al. 2014).

in terms of the Womersley number α=
√
ρωf R2/µ, where ρ is the fluid density and

µ its shear viscosity (see table 1). This leads to the relationship shown by the curve
in figure 3. REM is a normal feature of a particular phase of sleep, and consists of
repeated side-to-side rotations that can have a wide range of amplitudes (Takahashi &
Atsumi 1997). For our model we adopt the same parameters as Modarreszadeh et al.
(2014) and consider two cases: (i) ‘average REM’ with β = 6.27◦ and ωf = 58.73 ◦s−1,
corresponding to the average of the experimental data of Takahashi & Atsumi (1997),
and (ii) ‘maximum amplitude REM’ with β= 61.5◦ and ωf = 491.98 ◦s−1, which is the
highest amplitude reported in the measurements, and these points are also reported in
figure 3.

2.3. Derivation of the governing equations
In the following we work in a reference frame that rotates with the domain, and
use superscript stars to denote dimensional variables that will be made dimensionless.
Neglecting gravity, the continuity and Navier–Stokes equations become (e.g. Batchelor
1967)

∇
∗
· u∗ = 0, (2.3a)

ρ

(
Du∗

Dt∗
+ ω̇∗ × x∗ + 2ω∗ × u∗ + (ω∗ · x∗)ω∗ −ω∗2x∗

)
=−∇

∗p∗ +µ∇2u∗, (2.3b)

where u∗ is fluid velocity relative to the reference frame, p∗ is the departure of the
pressure from the hydrostatic profile (thus we omit the gravitational acceleration), ω∗

is the prescribed angular velocity of the domain (and ω∗ = |ω∗|), x∗ is the position
vector, ∇∗ is spatial gradient and Du∗/Dt∗ denotes a dimensional material derivative.
Recalling the utilised coordinate system C= (r∗, θ, φ), we consider sinusoidal rotations
with prescribed angular displacement β sin ωf t∗ about the axis θ = 0 (z = 0), giving
the angular velocity ω∗ =ω∗(cos θ,−sinθ, 0) with magnitude ω∗ = βωf cosωf t∗.
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A characteristic depth of the AC may be obtained by calculating the volume of
the AC divided by inner surface area, which, assuming h� R, is approximately h=∫ θ0

0 h(θ ′) sin(θ ′) dθ ′/(1 − cos(θ0)). Dividing by the length of the chamber gives the
aspect ratio of the AC ε = h/(2Rθ0).

We introduce the following scales for non-dimensionalisation:

r∗ = R+ hr, t∗ =
t
ωf
, u∗φ =Uuφ, u∗θ =Uuθ , u∗r = εUur,

p∗ = P0p, ω∗ = βωfω.

 (2.4)

We choose U = hβωf as the velocity scale and P0 = R2ω2
f βρ as the pressure

scale (chosen so that the pressure gradient in the φ direction balances the angular
acceleration term), and let ε = h/R be the approximate aspect ratio of the domain.

With the above scales, the dimensionless continuity and Navier–Stokes equations
(2.3) read

∂ur

∂r
+

1
sin θ

∂

∂θ
(uθ sin θ)+

1
sin θ

∂uφ
∂φ
+ ε

(
r
∂ur

∂r
+ 2ur

)
= 0, (2.5a)

ε3 ∂ur

∂t
+ ε4βu · ∇ur − ε

3β
u2
φ + u2

θ

1+ εr
− 2βε2ωuφ sin θ − εβω2(1+ εr) sin2 θ

=−
∂p
∂r
+
ε

α2

(
∇

2ur − ε
2 2ur

(1+ εr)2
−

2ε
(1+ εr)2 sin θ

(
∂(uθ sin θ)

∂θ
+ ε

∂uφ
∂φ

))
,

(2.5b)

ε
∂uθ
∂t
+ ε2βu · ∇uθ + ε3β

uruθ
1+ εr

− ε2β
u2
φ cot θ
1+ εr

− 2εβω cos θuφ − βω2(1+ εr) cos θ sin θ

=−
1

1+ εr
∂p
∂θ
+

1
εα2

(
∇

2uθ +
2ε3

(1+ εr)2
∂ur

∂θ
−

ε2

r2 sin2 θ

(
uθ + 2 cos θ

∂uφ
∂φ

))
,

(2.5c)

ε
∂uφ
∂t
+ ε2βu · ∇uφ + ε3β

uφur

r
+ ε2β

uθuφ cot θ
r

+ (1+ εr)ω̇ sin θ

+ 2εβω(uθ cos θ + εur sin θ)=−
1

(1+ εr) sin θ
∂p
∂φ

+
1
εα2

(
∇

2uφ +
2ε2

(1+ εr)2 sin θ

(
∂ur

∂φ
+ cot θ

∂uφ
∂φ

)
− ε3 uφ

(1+ εr)2 sin2 θ

)
, (2.5d)

with ω= cos t and ω̇=−sint, and

∇
2f =

∂2f
∂r2
+

2ε
1+ εr

∂f
∂r
+

ε2

(1+ εr)2 sin θ
∂

∂θ

(
sin θ

∂f
∂θ

)
+

ε2

sin2 θ(1+ εr)2
∂2f
∂φ2

=
∂2f
∂r2
+ 2ε

∂f
∂r
+O(ε2), (2.6)

for any function f .
Using the geometrical values from table 1, we estimate

ε ≈ 0.11, ε2
≈ 0.012, (2.7a,b)
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Type A (deg.) β ωf (s−1) α εβ 1/α2 1/εα2

Small saccades 5 0.04 96.7 136.2 0.0048 5.4× 10−5 4.8× 10−4

Large saccades 50 0.43 21.7 64.5 0.049 2.4× 10−4 2.1× 10−3

Average REM 12.54 0.11 1.03 14 0.012 5.1× 10−3 4.6× 10−2

Maximum amplitude REM 123 1.07 8.58 40.6 0.12 6.1× 10−4 5.4× 10−3

TABLE 2. Typical values of the dimensionless parameters, with ε ≈ 0.11 in all cases.

and in table 2 we report the remaining dimensionless parameters appearing in the
governing equations (2.5) in four cases (taken from the data in figure 3): small
and large saccadic rotations (amplitude 5◦ and 50◦, respectively), average REM and
maximum amplitude REM.

In the remainder of this work we drop from (2.5) any terms of orders ε2, εβ and
1/α2, which can be seen to be small from table 2, as well as smaller terms. This
leaves terms of order 1, β, ε and 1/(εα2). Despite the fact that 1/(εα2) is typically
smaller than both ε2 and εβ we choose to keep terms with this coefficient, as they are
not negligible within the boundary layer. The same approach was used by Blondeaux
& Vittori (1994) for a different problem, who showed that it leads to the same results
as formal boundary layer analysis. Note also that for maximum amplitude REM, terms
of order εβ are comparable to those of order ε, implying that the model might not
be very accurate in this case.

With the above simplifications we obtain the following system:

∂p
∂r
= 0, (2.8a)

ε
∂uθ
∂t
− βω2 cos θ sin θ =−(1− εr)

∂p
∂θ
+

1
εα2

∂2uθ
∂r2

, (2.8b)

ε
∂uφ
∂t
+ (1+ εr)ω̇ sin θ =−

1− εr
sin θ

∂p
∂φ
+

1
εα2

∂2uφ
∂r2

, (2.8c)

coupled to the continuity equation (2.5a), which remains in full. Equations (2.8)
should be solved subject to no-penetration and no-slip boundary conditions at r = 0
and r = h(θ, φ)/h̄ and zero flux at θ ′ = θ0. We note that the latter does not imply
no-slip condition at the boundary θ ′ = θ0 and is a consequence of the application of
lubrication theory. Therefore, the solution close to θ ′ = θ0 is not accurate. We also
require the solution to be regular at θ ′ = 0.

3. Solution
3.1. Decomposition of the solution

As is usual in lubrication theory, (2.8a) shows that the pressure does not depend on
the r-coordinate. The motion is forced by the term proportional to ω2 in (2.8b) and
that proportional to ω̇ in (2.8c). Recalling that ω = cos t = eit/2 + c.c., where c.c.
denotes the complex conjugate, we note that three frequencies are effectively forced,
0, 1 and 2, corresponding to the terms proportional to e0it, eit and e2it. In other words,
harmonic oscillations of the domain with dimensionless frequency 1 force a steady
streaming component, a flow with the same frequency as the forcing and also flow

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

88
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.889


912 M. Dvoriashyna, R. Repetto and J. H. Tweedy

at twice that frequency. Thus, we seek a solution for the velocity and the pressure in
the form

u(x, t)= u(0)(x)+ u(1)(x)eit
+ u(2)(x)e2it

+ c.c., (3.1)
p(x, t)= p(0)(x)+ p(1)(x)eit

+ p(2)(x)e2it
+ c.c. (3.2)

Substituting into (2.8a-c) we obtain the following set of equations for k = 0, 1, 2,
respectively:

∂p(k)

∂r
= 0, (3.3a)

ikεu(k)θ −
1
εα2

∂2u(k)θ
∂r2
=−(1− εr)

∂p(k)

∂θ
+Θ (k), (3.3b)

ikεu(k)φ −
1
εα2

∂2u(k)φ
∂r2
=−

1− εr
sin θ

∂p(k)

∂φ
+Φ(k), (3.3c)

where Θ (0)
=Θ (2)

= (β/8) sin(2θ), Φ(1)
=−(i/2)(1+ εr) sin θ and Θ (1)

=Φ(0)
=Φ(2)

=

0. Equations (3.3) are coupled with the continuity equation for each harmonic.

3.2. Derivation of the equation for the pressure
Following the standard approach in lubrication theory, we solve (3.3b) and (3.3c) to
find the r-dependence of u(k)θ and u(k)φ , respectively, which, when combined with the
no-slip boundary conditions, gives

u(k)h = Ak(r, h)∇hp(k) + Bk(r, h)vk, (3.4)

for k= 0, 1, 2, where v0= v2= sin 2θeθ , v1= sin θeφ and the functions Ak and Bk are
reported in appendix A. The unit vectors eθ and eφ point in the directions of increasing
θ and φ, respectively, and a subscript h on a vector indicates that the projection of
the vector on the θ and φ directions is taken.

It is convenient from now on to work in the coordinate system C ′ defined in § 2.1,
so that we can make use of the fact that the domain is axisymmetric with respect to
θ ′ = 0 (see figure 2a). In this coordinate system (3.4) takes the form

u(k)h = Ak(r, h)∇′hp(k) + Bk(r, h)v′k, (3.5)

where v′0= v′2=−sin2θ ′ cos2 φ′eθ ′ + sin 2φ′ sin θ ′eφ′ , v′1= sinφ′eθ ′ + cos θ ′ cosφ′eφ′ and
∇
′ are vectors vk, k= 0, 1, 2 and ∇ expressed in C ′ coordinate system. Substituting

(3.5) into the continuity equation (2.5a) and integrating it over r, we obtain a partial
differential equation for p(k) for k= 0, 1, 2:

A(γk)p(k) +Bk(δk)= 0, (3.6)

where

γk(h)=
∫ h

0
(1+ εr)Ak(r, h) dr, δk(h)=

∫ h

0
(1+ εr)Bk(r, h) dr (3.7a,b)
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(explicit expressions for γk and δk appear in appendix A) and A(γk) is a linear
differential operator given by

A(γk)=
1

sin θ ′

(
∂

∂θ ′

(
sin θ ′γk

∂

∂θ ′

)
+

γk

sin θ ′
∂2

∂φ′2

)
, (3.8)

with

B0(δ0)= 2
(
3 sin2 θ ′ cos2 φ′ − 1

)
δ0(h)− 2 cos2 φ′ sin θ ′ cos θ ′

dδ0(h)
dθ ′

, (3.9a)

B1(δ1)= sin φ′
∂δ1

∂θ ′
, (3.9b)

B2(δ2)=B0(δ2). (3.9c)

The r-integrated velocity, or flux per unit length, reads

q(k)h =

∫ h

0
(1+ εr)u(k)h dr= γk∇

′

hp(k) + δkv
′

k, (3.10)

where ∇′h is computed on the spherical surface r= 1.
The no-flux condition at the boundary θ ′ = θ0 can then be written as

q(k)h · eθ ′ = 0 ⇒ γk
∂p(k)

∂θ ′
+ δkv

′

k · eθ ′ = 0, (3.11)

and we also require the solution p(k) to be regular (in this case, continuous and with
continuous derivative) at θ ′ = 0. Note that each p(k) is uniquely defined up to the
addition of an arbitrary constant. Thus, in what follows, without loss of generality,
we assume that p(k) = 0 at θ ′ = 0.

In the following subsections, we simplify the problem for each harmonic k= 0, 1, 2
by separating the θ ′- and φ′-dependence, and we derive an analytical solution for each
in the case of constant h.

3.3. Separation of variables and solution for the case of constant h
3.3.1. Dominant frequency component (k= 1)

For the case k=1 we note the φ′-dependence in (3.6) and (3.11) and seek a solution
of the form

p(1)(θ ′, φ′)= g(θ ′) sin φ′. (3.12)

This leads to

1
sin θ ′

d
dθ ′

(
sin θ ′γ1

dg
dθ ′

)
−

γ1

sin2 θ ′
g+

dδ1

dθ ′
= 0, (3.13a)

with boundary condition

dg
dθ ′
=−

δ1

γ1
at θ ′ = θ0 (3.13b)

and the regularity condition at θ ′ = 0.
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In the general case (3.13) must be solved numerically. We use a second-order finite-
difference method to solve the system (3.13), imposing g= 0 at θ = 0 to satisfy the
regularity condition.

In the special case of constant h, γ1 and δ1 are both constant, and we obtain

p(1) =−
δ1

γ1

sin2 θ0

1− cos θ0

1− cos θ ′

sin θ ′
sin φ′, (3.14a)

u(1)r = 0, (3.14b)

u(1)θ =
(

B1(r)− A1(r)
δ1

γ1

sin2 θ0

1− cos θ0

1− cos θ ′

sin2 θ ′

)
sin φ′, (3.14c)

u(1)φ =
(

B1(r) cos θ ′ − A1(r)
δ1

γ1

sin2 θ0

1− cos θ0

1− cos θ ′

sin2 θ ′

)
cos φ′, (3.14d)

where we have set the arbitrary constant of integration to zero in the expression for
p(1), u(1)h was obtained from (3.5) and u(1)r was found from the continuity equation
(2.5a). The expressions for the r-integrated velocity are reported in appendix A.

3.3.2. Steady streaming (k= 0) and double frequency (k= 2) components
For the cases k= 0 and k= 2 the procedure is similar, and we derive the solutions

together in this section. Noting the φ′-dependence in (3.6) and (3.11), we seek a
solution of the form

p(k)(θ ′, φ′)= f (k)0 (θ ′)+ f (k)1 (θ ′) cos 2φ′, (3.15)

which leads to

1
sin θ ′

d
dθ ′

(
γk sin θ ′

df (k)0

dθ ′

)
− sin θ ′ cos θ ′

dδk

dθ ′
+ (3 sin2 θ ′ − 2)δk = 0, (3.16a)

1
sin θ ′

d
dθ ′

(
γk sin θ ′

df (k)1

dθ ′

)
−

4γkf
(k)
1

sin2 θ ′
− sin θ ′ cos θ ′

dδk

dθ ′
+ 3 sin2 θ ′δk = 0, (3.16b)

with boundary conditions

df (k)0,1

dθ ′
=
δk

2γk
sin 2θ ′ at θ ′ = θ0. (3.16c)

As for the harmonic k= 1, in the general case (3.16c) must be solved numerically
and, to this end, we use a second-order finite-difference method. The regularity
condition now imposes df0/dθ ′ = 0 and f1 = 0 at θ ′ = 0.

In the case of constant h we obtain the following analytical solution:

p(k) =−
δk

2γk

(
1− 2 cos2 φ′ sin2 θ ′

)
, (3.17a)

u(k)r =−

(
δkγ̂k(r)
γk
− δ̂k(r)

)
(1+ 3 cos 2θ ′) cos2 φ′ − 2 cos 2φ′

(1+ εr)2
, (3.17b)

u(k)θ =
(

Ak(r)
δk

γk
− Bk(r)

)
sin 2θ ′ cos2 φ′, (3.17c)
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u(k)φ =−
(

Ak(r)
δk

γk
− Bk(r)

)
sin 2φ′ sin θ ′, (3.17d)

where we have set the arbitrary constant to zero in the expression for p(k), u(k)h
was obtained from (3.5), u(k)r was found from the continuity equation, γ̂k(r) =∫ r

0 (1+ εs)Ak(s) ds and δ̂k =
∫ r

0 (1+ εs)Bk(s) ds. It is straightforward to check that the
r-integrated velocity q(k)h is zero for k= 0, 2.

4. Results
4.1. Constant-height domain

We start with the special case of constant h. In figure 4 we show the flow component
with frequency 1 (k = 1), which we expect to be much larger than the other two
components (k= 0, 2). We show the flow and pressure via snapshots at four different
times in the different rows. The first row (t = 0) corresponds to the time when the
angular velocity is maximum and the domain is moving in the direction of the positive
y-axis, and the subsequent rows correspond to subsequent times spaced 1/8 period
apart.

In figure 4(a,d,g,j), we show the velocity on the horizontal midplane z = 0 and
y > 0. In each case the fluid close to the inner wall moves in the same direction
as the rotation and that near the outer wall moves in the opposite direction (with
the exception of t = π/2 when the domain is not moving; figure 4g). Note that the
fact that the velocity does not go to zero at the boundary θ ′ = θ0 (as can be seen in
(a,d,g,j) and (b,e,h,k)) is because, due to the simplification of lubrication theory, we
can only impose zero flux there rather than a full no-slip condition. Close to θ ′ = θ0
the assumptions of lubrication theory do not hold, and the radial velocity component
would be comparable to the other components.

In figure 4(b,e,h,k), we show the r-integrated velocity field obtained from (3.10) and
the pressure distribution on the surface r= 1, both projected onto a plane of constant
x. At t=0 the angular acceleration is zero, and thus the pressure is almost constant on
the surface r=0 (figure 4b), but the pressure gradient is much larger at the other three
times, especially at t=π/2 when the angular acceleration peaks (figure 4h). Each plot
shows two circulations that are reflections of one another, which indicates that the
instantaneous flow has a highly three-dimensional structure.

Figure 4(c,f,i,l) shows the velocity component uθ ′ along the line θ ′ = 0, which is a
region of the positive x-axis with x= 1+ εr. Each line corresponds to a different value
of the Womersley number α. Inspection of the plots shows that, as the Womersley
number increases, a progressively thinner oscillatory Stokes boundary layer forms at
both walls, as expected.

In figure 5(a) we show the steady streaming flow on the vertical plane y= 0. We
only plot the upper half of the domain since the flow is symmetric in the x-axis,
as can be seen by inspecting equations (3.17b) and (3.17c). In the outer part of the
domain fluid particles move towards the midplane z = 0 and in the inner part of
the domain they move away from z = 0. This is consistent with what is found for
a periodically rotating sphere (Repetto, Siggers & Stocchino 2008; Colombini 2014),
where a circulation with the same sense of rotation is found, and also with the
numerical findings of Abouali et al. (2012), relative to the flow in the AC. Since the
model does not capture the behaviour of the oscillatory flow close to the boundary
of the domain (at θ ′ = θ0), we cannot rule out the possibility that boundary effects
could produce a steady streaming in the core of the domain. The flows on the planes
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FIGURE 4. (Colour online) The flow of the dominant harmonic component (k = 1) in
the special case of h constant. The four rows show four equally spaced times through
the first half-period (those during the second half-period are the reflections of these):
t= 0, π/4, π/2 and 3π/4, respectively. (a,d,g,j) Arrows indicate fluid velocity relative to
the domain u(1) and shading indicates its dimensionless magnitude on half of the midplane
z=0 (the other half is an antisymmetric reflection). (b,e,h,k) Dimensionless pressure p(1) at
r= 0 (shading) and r-integrated velocity q(1)h (arrows), projected onto a plane of constant
x. (c,f,i,l) Profiles of the relative velocity component uθ ′ along the axis θ ′ = 0. For all
plots we used β = 6.5◦ and ε = 0.11, and in the first two columns we used α= 100. The
velocity vectors in the first two columns are normalised so that their maximum length is
the same in all plots.

r= 0.2 and r= 0.8 are shown in figure 5(b,c). The velocity profile is almost vertical
in both cases and there is very little transversal flow. Moreover, we recall that in the
case of the constant-thickness domain the r-integrated velocity qh is equal to zero.
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symmetric reflection), (b) on the plane r= 0.2 and (c) on the plane r= 0.8. The arrows
indicate the relative velocity u(0) and colours indicate its magnitude. The parameter values
are α = 100, β = 6.5◦, ε = 0.11.
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FIGURE 6. (Colour online) Velocity magnitudes over a range of frequencies in the special
case of a constant-height domain. Maximum value (over both time and space) attained by
the magnitude of the velocity as a function of the Womersley number α. The different
line styles denote the different harmonics: k = 0 (solid); k = 1 (dot-dashed); and k = 2
(dashed); and the thickness and colour show the values of ε: ε ≈ 0.15 (thick green); ε ≈
0.11 (medium red); and ε ≈ 0.06 (thin blue). The amplitude is fixed at β = 6.5◦ in each
case.

In figure 6 we show the maximum dimensional value over time and space attained
by the velocity for each of the harmonics as a function of the Womersley number α.
As expected, the magnitude of the dominant harmonic k = 1 velocity is much larger
than those of the others. Moreover, the steady streaming velocity has a significantly
larger magnitude than that of the harmonic k= 2 for large values of α.

4.2. More realistic eye geometry
In this section we report the results obtained using the more realistic shape of the AC
of the eye, shown in figure 2(c). Figure 7 is the analogy of figure 4 for this case, and
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FIGURE 7. (Colour online) As for figure 4, but for the case of the more realistic eye
shape described in the introduction of § 2.1.

mostly shows qualitatively similar findings. However, in the case of the more realistic
domain shape, the velocity decreases near the periphery of the domain (θ ′ near to
θ0), since the domain is thinner there. It is interesting to note that the circulations in
the r-integrated velocity fields that were observed in the case of the constant-height
domain are still present in this case, suggesting that the flow induced by eye rotations
is highly three-dimensional.

In figure 8 we plot the maximum dimensional value over space and time of the
WSS on the cornea as a function of the eye rotation amplitude in the case of both
saccades and REM. We compared the results for three different values of maximum
thickness of the AC, within the physiological range (e.g. Jivrajka et al. 2008). The
maximum WSS increases with the height of the domain, and, for a given domain,
peaks for saccade amplitudes of around 0.15 rad or 8.6◦.

Figure 9 shows the steady streaming, which indicates similar behaviour to the
constant-height case (figure 5), but in this case a closed circulation is visible

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

88
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.889


Flow in the anterior chamber of the moving eye 919

0

0.05

0.10

0.15

0.20

0.25

W
al

l s
he

ar
 st

re
ss

 o
n 

th
e 

co
rn

ea
 (P

a)

10010-1

ı (rad)
10-2

FIGURE 8. (Colour online) Maximum dimensional value over space and time of the wall
shear stress on the cornea as a function of the angular amplitude of the saccadic eye
rotation β in the case of the more realistic eye shape. For each value of β the curve
for saccades in figure 3 was used to find the corresponding value of α. The lines with
different thickness and colour correspond to different values of hmax: medium red: hmax =

2.62 mm (ε ≈ 0.11); thin blue: hmax = 1.5 mm (ε ≈ 0.06); thick green: hmax = 3.5 mm
(ε ≈ 0.15). The symbols refer to REM: triangles represent maximum amplitude REM and
circles average REM, with their thickness and colour corresponding to maximum height
of the domain considered. The three symbols for average REM cannot be distinguished
as they are approximately on top of one another.
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FIGURE 9. (Colour online) The steady streaming flow for the more realistic domain
shape. (a) Relative velocity u(0) on the vertical cross-section y = 0. (b) The r-integrated
velocity, projected onto the (y, z)-plane. Colours indicate velocity magnitude and arrows
show magnitude and direction. The parameters are α = 100, β = 6.5◦, ε = 0.11.

in figure 9(a), which forms since the domain gets thin close to the periphery
θ ′ = θ0. Furthermore, the r-integrated velocity is non-zero (figure 9b), unlike in
the constant-height case, meaning that the streaming flow is fully three-dimensional
and there is a formation of four symmetrically arranged circulations. The flow on four
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FIGURE 10. (Colour online) Steady streaming flow u(0) for the case of realistic shape
at the planes: (a) r= 0.2h/h̄, (b) r= 0.4h/h̄, (c) r= 0.6h/h̄ and (d) r= 0.8h/h̄. Colours
indicate velocity magnitude and arrows show magnitude and direction. The parameters are
α = 100, β = 6.5◦, ε = 0.11.

equally distributed surfaces along the thickness of the domain is shown in figure 10.
Close to the inner boundary of the AC, the flow has characteristics similar to those
in the case of constant thickness. The steady streaming has a complicated structure,
which is highly variable in the radial direction, and the flow reversal observed on the
plane y= 0 in figure 9(a) does not occur everywhere in the domain. The magnitude
of the transversal flow is smaller than that on the midplane shown in figure 9(a), but
it is likely to have physiological importance, as they lead to transverse mixing in
the AC.

Figure 11 shows the dependence of the maximum dimensional steady streaming
velocity on the saccade amplitude, with the colours corresponding to different
thicknesses of the domain. Maximum steady streaming velocity increases with the
saccade amplitude. The steady streaming velocity of maximum amplitude REM is
also similar, whereas that of average REM is much lower. Increasing the thickness
of the AC leads to higher steady streaming velocities in each case.

The results of the model are based on various assumptions, which have been
discussed in § 2. In particular, we neglected the terms of order εβ, compared with
terms of order ε, but also discussed cases in which the amplitude of oscillations
β is quite large, such as large saccades and maximum amplitude REM, which is
formally out of the range of validity of our asymptotic approach. In order to verify
the accuracy of our results, we have run a series of three-dimensional unsteady
simulations using the commercial software COMSOL Multiphysicsr. In particular,
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FIGURE 11. (Colour online) Maximum over space and time of the magnitude of the
steady streaming flow as a function of the angular amplitude of the eye rotation. The
solid curves and symbols are as in figure 8. The thermal flow due to body heating is
also shown (as horizontal dashed lines since they do not correspond to a particular value
of β), calculated based on Canning et al. (2002) (see § 5 for details), coloured and having
width representing thickness of the domain (as in figure 8).

we focused on the oscillatory component of the flow and did not consider the
steady streaming. We compared our theoretical results with the numerics in terms
of the uθ ′ velocity component along the line θ ′ = 0 and computed the corresponding
time-averaged normalised L2 error between our model and the numerical predictions.
We performed several numerical simulations varying both ε and β. We find that the
error is of order ε and weakly depends on β for values of β up to 1. These results
are reassuring concerning the validity of the theory for values of β of order 1, such
as large saccades or REM.

5. Discussion
We have studied the flow in a thin domain performing harmonic rotations about

a fixed axis, in order to investigate the flow in the AC of the eye induced by eye
rotations. As mentioned in the Introduction, this is relevant to the study of nutrient
and drug delivery to the tissues of the eye, and allows us to estimate the shear stresses
on the cornea, which could lead to the detachment of endothelial cells.

We worked in a reference frame moving with the domain, and assumed that the
aspect ratio of the AC is small, the Womersley number α is large and the angular
amplitude β < 1 rad, which allowed us to reduce the governing equations to a linear
system forced by the angular and the centrifugal accelerations. We considered both
the case of a domain with constant thickness, for which we found a fully analytical
solution, and a more realistic approximation of the AC geometry. The flow has three
components: the largest oscillates with the forcing frequency, and the other two
are a steady streaming component and a component that has twice the fundamental
frequency.

In the cases of both a constant-height chamber and the more realistic shape, we find
that the dominant frequency component of the flow has a complex three-dimensional
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Saccade 6◦ Saccade 30◦ Average REM Maximum amplitude REM

This work 0.094 0.1 0.2× 10−3 0.074
Previous works 0.12 0.147 0.248× 10−3 0.06

TABLE 3. Comparison of the maximum WSS (in Pa) on the cornea calculated with the
present model with the results from numerical works of Abouali et al. (2012) (saccades)
and Modarreszadeh et al. (2014) (REM).

structure, which has not been observed in previous numerical simulations of the
flow in the AC (Abouali et al. 2012; Modarreszadeh et al. 2014). This is because
in our analysis we work in a frame moving with the domain, making some of the
details of the flow easier to observe, since they are not disguised by the velocities
of the chamber itself. The dominant frequency component of the flow is associated
with much higher velocities than the other components, and therefore contributes
the majority of the WSS on the cornea. The WSS is larger for higher Womersley
numbers as boundary layers develop, and it is also larger for thicker chambers. We
found that WSS is maximised in the centre of the cornea (see also Abouali et al.
2012), and reaches a maximum value of around 0.15 Pa for β ≈ 8.6◦ and α= 124. A
direct comparison of our results with those of Abouali et al. (2012) is not possible,
since we model the saccades differently: in that previous work, four saccades per
period were used, whereas in our model we use two. We therefore adapted our
model to use the same saccadic motion, and present the results in table 3, which
show good agreement between our model and the work of both Abouali et al. (2012)
and Modarreszadeh et al. (2014). The WSS values predicted by both our model
and the models of Abouali et al. (2012) and also Repetto et al. (2015) are of a
similar order of magnitude to those found to cause detachment (∼ 0.1 Pa) by Kaji
et al. (2005), who studied corneal endothelial cells in vitro. This suggests that higher
values of WSS would be required in vivo for the corneal cells to detach. Note that
the values of the WSS due to eye rotations are much larger than those produced by
the buoyancy-driven flow due to temperature differences in the AC, which are about
0.0016 Pa (e.g Repetto et al. 2015).

The steady streaming flow is forced by the centrifugal acceleration, and its velocity
is much smaller than that of the flow oscillating with the forcing frequency, but
nevertheless can have a key role in mixing processes, as it is time independent.
The steady streaming flow has a complicated three-dimensional structure, which
was not fully highlighted in the numerical simulations of Abouali et al. (2012) and
Modarreszadeh et al. (2014), and has a non-zero r-integrated velocity for a realistic
shape of the domain. We note that Modarreszadeh et al. (2014) also observed smaller
vortices close to the pupil boundary and next to the trabecular meshwork, which
we cannot capture with our model due to our geometrical simplifications and use of
lubrication theory.

In order to estimate the effective importance of the steady streaming flow on mixing
in the AC, we compute the Péclet number, which measures the strength of advection
over diffusion, and is given by Pe = LU/D, where D is the diffusion coefficient,
L is the radius of the AC and U is characteristic velocity. With D = 10−9 m2 s−1

(Lide 1996), L= 6.2 mm and a typical value of the velocity of 5× 10−4 m s−1 (see
figure 11), we obtain Pe≈O(103). The r-integrated steady streaming is much smaller,
and the corresponding Péclet number is of order 102. In both cases it is clear that
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advection largely dominates over diffusion, and confirms that eye rotations have a key
role in governing transport processes in the AC. An effect that could be potentially
relevant for transport processes in the AC, and that has been neglected in the present
work, is shear-augmented diffusion via a ‘Taylor dispersion’ mechanism. We leave
the consideration of such an effect to possible future work.

Besides eye rotations, the other mechanism that is known to produce a flow that
significantly contributes to fluid mixing is the temperature gradient across the AC,
since it also leads to the generation of a steady flow. To compare the steady streaming
flow during saccades with the thermal flow we make use of the results of Canning
et al. (2002), who developed an idealised model in which the geometry of the AC
was approximated as a spherical cap to derive an analytical expression for the thermal
flow. This showed that the flow is directed along the vertical planes. The maximum
magnitude of the fluid velocity was found to be

uT,max =
1TρgαTh2

max

√
3

216ν
, (5.1)

where 1T is the temperature difference between the cornea and the iris, αT =

3 × 10−4 K−1 is the coefficient of thermal expansion, g is gravitational acceleration,
ρ and ν are fluid density and kinematic viscosity, respectively, and hmax is the
maximum thickness of the AC (see table 1). With 1T = 3 K, we estimate
uT,max = 6.47 × 10−4 m s−1. Tweedy et al. (2017) used a similar method and, using
their code with the same geometry as used here, they found a maximum velocity
of 6.84 × 10−4 m s−1, while Repetto et al. (2015) used a numerical method for a
slightly different geometry and found a maximum velocity of 5.92× 10−4 m s−1 for
1T = 3 K, which are both close to the value derived analytically from (5.1). We
therefore assume that (5.1) provides a sufficiently accurate estimate for our purposes.
We compare the thermal flow and the steady streaming flow induced by eye rotations
in figure 11, which shows that the steady flow induced by eye rotations has the same
order of magnitude for large saccades and REM. Thus the two flows both effectively
contribute to mixing in the AC.

During the night, thermally driven flow becomes insignificant, and, aside from shape
changes of the AC, the mechanisms driving flow are the REM and aqueous secretion.
The maximum magnitude of the latter is ≈5.89 × 10−5 m s−1 (Repetto et al. 2015)
at the pupil and its average velocity is ≈8× 10−6 m s−1, which are both significantly
smaller than the steady streaming flow found in the work. This provides confirming
evidence for the hypothesis of Maurice (1998), which is that REM could promote
mixing in the otherwise almost stagnant aqueous humour in order to maintain the
nutrient supply to the cornea.

This work neglects any interactions between the flow induced by eye rotations and
the other flow mechanisms in the AC. For small fluid velocities, due to linearity, the
total flow may be approximated as the sum of the flow due to saccades, that due to
secretion and drainage of the aqueous humour and the thermally driven flow. However,
any flow due to shape deformations in the AC would be fully interactive with the other
flows and would thus require a separate study.

To summarise, we find good agreement with previous numerical solutions and
highlight characterestics of the flow that were not previously described. We show
that the flow induced by eye rotations is a significant part of the aqueous humour
dynamics and an important player in mixing processes. Finally, we remark that the
model developed here could be useful for other applications involving oscillating thin
domains.
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Appendix A. Definitions of the functions introduced in § 3

We report functions appearing in the expressions used in § 3.

A.1. Harmonic k= 0

A0(r, h)=
εα2

2

(
r(r− h)−

εr
3
(r2
− h2)

)
, (A 1a)

B0(r, h)=
βεα2

16
(rh− r2), (A 1b)

γ0(h)=
∫ h

0
(1+ εr)A0(r, h) dr=

βεα2h3

180β
(4ε2h2

− 15), (A 1c)

δ0(h)=
∫ h

0
(1+ εr)B0(r, h) dr=

βεα2

96

(
εh4

2
+ h3

)
. (A 1d)

A.2. Harmonic k= 1

A1(r, h)=
i
ε

(
sin ar(εh+ cos ah− 1)

sin ah
− cos ar− (εr− 1)

)
, (A 2a)

B1(r, h)=
1
2ε

(
sin ar(εh− cos ah+ 1)

sin ah
+ cos ar− (εr+ 1)

)
, (A 2b)

γ1(h)=−i
(
εh3

3
−

h
ε
−
εh
a2
+

2− 2 cos ah+ ε2h2 cos ah
εa sin ah

)
, (A 2c)

δ1(h)=−
1
2

(
εh3

3
+ h2
+

h
ε
−

hε
a2
+
ε(εh2

+ 2h) cos ah− 2εh+ 2(cos ah− 1)
εa sin ah

)
, (A 2d)

where a=
√
−iεα =±(1− i)εα/

√
2.

The components of the r-integrated velocity are

q(1)θ = δ1(r)
(

1−
sin2 θ0

1− cos θ0

1− cos θ ′

sin2 θ ′

)
sin φ′, (A 3)

q(1)φ = δ1(r)
(

cos θ ′ −
sin2 θ0

1− cos θ0

1− cos θ ′

sin2 θ ′

)
cos φ′. (A 4)

A.3. Harmonic k= 2

A2(r, h)=
i

2ε

(
sin br(εh+ cos bh− 1)

sin bh
− cos br− (εr− 1)

)
, (A 5)
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γ2(r, h)=−
i
2

(
εh3

3
−

h
ε
−
εh
b2
+

2− 2 cos bh+ ε2h2 cos bh
εb sin bh

)
, (A 6)

B2(r, h)=
iβ

16ε

(
sin br

1− cos bh
sin bh

+ cos br− 1
)
, (A 7)

δ2(r, h)=−
iβ

16ε

(
(2+ εh)(cos bh− 1)

b sin bh
+ h+

εh2

2

)
, (A 8)

where b=
√
−2iεα =±(1− i)εα.
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