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Grid turbulence of polyethylene oxide (PEO) solutions (Polyox WSR-301 in H2O) has
been investigated experimentally for three concentrations of 25, 50 and 100 weight
ppm, at a turbulence Reynolds number based on a Taylor microscale of Reλ ≈ 100.
For the first time, time sequences of turbulence spectra have been acquired at a rate
of 0.005 Hz to reveal the spectral evolution due to mechanical degradation of the
polymers. In contrast to spectra averaged over the entire degradation process, the
sequence of spectra reveals a clear but time-dependent Lumley scale at which the
energy spectrum changes abruptly from the Kolmogorov κ−5/3 inertial range to a κ−3

elastic range, in which the rate of strain is maintained constant by the polymers. The
scaling of the initial Lumley length with Kolmogorov dissipation rate ε0 and molecular
weight is determined, and a cascade model for the temporal decrease of molecular
weight, i.e. for the breaking of polymer chains is presented. Finally, a heuristic model
spectrum is developed which covers the cases of both maximum and partial turbulence
reduction by polymers.

Key words: homogeneous turbulence, viscoelasticity

1. Introduction
The Toms effect (Toms 1948) describes a phenomenon where the addition of minute

amounts of polymer, of the order of a few parts per million by weight (wppm), of
high molar mass allows the skin friction to be lowered significantly in wall-bounded
turbulent flows. In addition to their obvious industrial relevance, these drag-reducing
flows also present a fundamental interest (see e.g. Lumley 1969; Virk 1975; Hinch &
Elata 1979; Sellin et al. 1982; Sureshkumar, Beris & Handler 1997; Sreenivasan &
White 2000; Balkovsky, Fouxon & Lebedev 2001; De Angelis, Casciola & Piva 2002;
Fouxon & Lebedev 2003; Benzi et al. 2003; De Angelis et al. 2005; Berti et al. 2006;
Brostow 2008; Ouellette, Xu & Bodenschatz 2009). We emphasize immediately that
the present study is concerned exclusively with high-Reynolds-number turbulence and
not with the low-Reynolds-number structural turbulence (McComb 1990), also called
elastic turbulence (Groisman & Steinberg 2000, 2004).

Since Toms’ discovery, a vast number of experimental, numerical and analytical
efforts have been made to understand and model the interaction between turbulence
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Grid turbulence in dilute polymer solutions: PEO in water 77

and polymers, with only partial success so far. In this study we limit ourselves to the
study of dilute solutions of polyethylene oxide (PEO; Polyox WSR-301 with nominal
molar weight of 4 × 106 g mol−1) in water, where ‘dilute’ means that there is no
or insignificant entanglement between individual polymer chains, even when extended.
In the present experiments the size of extended polymer chains is about an order
of magnitude smaller than the Kolmogorov scale characterizing the smallest turbulent
eddies. Hence, there are of the order of 103 polymer molecules in the smallest eddy,
even at the lowest PEO concentration of 25 wppm, so that the effect of polymers
can be modelled by modified bulk properties of the working fluid. In this regime, the
interaction between turbulence and individual polymer chains is conceptually simple. It
has been very well-summarized by Balkovsky et al. (2001) so that we just quote here
from page 056301-8 of their paper:

‘Whereas in a pure solvent, typical gradients of the velocity grow unlimited as the
Reynolds number increases, in polymer solutions the balance of inertial and elastic
degrees of freedom fixes the characteristic value of the gradient at 1/τ . [τ represents
the polymer relaxation time.] Indeed, if the instantaneous velocity gradient exceeds 1/τ ,
it extends the polymers, so that the elastic stress grows and damps the gradient. On the
other hand, if the velocity gradient is much smaller than 1/τ , the molecules contract and
do not produce any effect on the flow. Then the velocity gradients tend to grow to the
value characteristic of the pure solvent, which is larger than 1/τ above the transition’.

The majority of existing experimental studies on turbulence in polymer solutions
were carried out in pipe flows (see, e.g., Virk et al. 1967; Patterson, Zakin &
Rodrigue 1969; Den Toonder et al. 1997; Escudier, Presti & Smith 1999; Warholic,
Massah & Hanratty 1999; Kim & Sirviente 2007), with only a few investigations
in grid-generated turbulence (Gadd 1965; Barnard & Sellin 1969; Friehe & Schwarz
1970; McComb, Allan & Greated 1977; van Doorn, White & Sreenivasan 1999)
or other ‘washing-machine-like’ configurations producing nearly homogeneous and
isotropic turbulence (Liberzon et al. 2006, 2009). The difference between the effect
of polymers on turbulence without and with mean shear is that in the former
case the polymers can only provoke additional local energy dissipation, while in
the latter case they can in addition modify the mean shear and with it long-range
energy exchange by instabilities. While the early investigations of grid turbulence or
similar arrangements showed a smooth gradual reduction of spectral energy density
at increasing wavenumbers, Berti et al. (2006) appears to have been the first to find
in his numerical simulation a distinct scale beyond which turbulent energy is reduced
by the polymers. As this behaviour has been anticipated by Lumley (1964) (see also
Lumley 1969, 1973; Hinch 1977; Hinch & Elata 1979, and others), this scale will
be called here the ‘Lumley scale’. The reason why this Lumley scale has not been
clearly evident from previous experimental turbulence spectra was spectral averaging
over times that were too long compared with the characteristic time for significant
mechanical degradation (scission) of polymer molecules. This is demonstrated by the
present investigation in which the averaging time of turbulence spectra has been
reduced to a minimum in order to obtain 10 consecutive spectra over the duration
of an experimental run (∼34 min) which clearly reveal the nature of ‘instantaneous’
turbulence spectra minimally affected by polymer degradation.

The paper is organized as follows. In § 2 we describe the experimental and particle
image velocimetry (PIV) set-ups used to acquire turbulence spectra. It also includes a
detailed description of the PIV data processing, crucial for the quality of the results,
and a description of how the turbulence was characterized. The following § 3 is
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devoted to the characterization of the PEO solutions, in particular their molar weight
and viscosities. This leads to the presentation of the central results: the construction
of a model spectrum in § 4 to match our measurements, the experimental turbulence
spectra in § 5 and the extraction of the time-dependent Lumley length and other global
turbulence characteristics from the data in § 6. The latter section also includes the
formulation of a ‘cascade model’ for the temporal decrease of molar weight due to
mechanical breakage of PEO molecules. The paper concludes with an outlook in § 7.

2. Experimental set-up
2.1. Facility

The facility for the present investigation is a closed-loop hydraulic tunnel with a
centreline length of 11.4 m and a capacity of roughly 3600 l (see figure 1). Part of
the return section of 600 mm × 600 mm cross-section has an open surface to allow
the in situ mixing of PEO with water. The leg containing the test section contains
a 600 mm × 600 mm honeycomb followed by 600 mm of straight section, a 12:1
contraction and the turbulence grid. The square grid with a mesh size of M = 16 mm
is made of 3 mm round rods. Tethered beads of 12 mm diameter are attached at each
grid node and approximately double the turbulence production relative to the bare grid.
This enhanced turbulence grid is the ‘ETG’ grid described in detail in Vonlanthen
& Monkewitz (2011). Downstream of the grid is the closed test section of 900 mm
length with a 200 mm × 150 mm cross-section (see figure 1 for details). Note that
the test section is straight, without a secondary contraction sometimes used in grid
turbulence experiments (see again Vonlanthen & Monkewitz 2011).

A homemade bladeless disc pump, also called a Tesla pump, similar to that
described by Den Toonder et al. (1995) is located downstream of the test section.
The fluid enters the pump axially through a honeycomb which avoids transmitting
fluid rotation upstream into the test section and is entrained by friction on a stack
of smooth rotating annular discs oriented normal to the axis. This pump minimizes
the mechanical destruction of polymer chains and is capable of producing a mean
velocity U0 (equal to the volume flow rate, monitored by the pressure drop across
the contraction, divided by the cross-sectional area) of up to 103 cm s−1. However, all
experiments presented here have been carried out at a fixed U0 = 120 ± 5 cm s−1 in
order to limit the rate of polymer degradation. This mean velocity corresponds to a
grid mesh Reynolds number U0M/ν of approximately 2× 104. For more details on the
flow facility the reader is referred to the theses of Pipe (2005) and Vonlanthen (2010).

2.2. PIV set-up
Velocity measurements in the PEO solutions were carried out with PIV (see e.g. Raffel
et al. 2007). Illumination was provided by a twin Nd:YAG laser (15 mJ per pulse at
532 nm, Quantel Brilliant Twins B). A standard stereo set-up with two 11 megapixel
(4008 × 2672 pixels) double-buffer cameras (TSI PowerView Plus) with 60 mm f /2.8
lenses was used but the quality of the out-of-plane velocity component u3 finally
turned out to be unsatisfactory in comparison with the in-plane components u1 and u2

due to illumination problems that could not be resolved in the available time (for more
details see Vonlanthen (2010)). Because the two-dimensional data presented here were
acquired with a three-dimensional set-up (cameras at 30◦ to the normal in the x1–x3

plane) the data quality is slightly better for u2 than for u1.
For the main measurements in PEO solutions, the field of view was located in the

vertical centre plane x3 = 0 and centred at x1 = 30M = 48 cm, 30 mesh widths (M)
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FIGURE 1. (a) Top view of the hydraulic tunnel (all dimensions in mm) with the ‘Tesla’
disc pump in the lower right corner downstream of the test section. (b) Side view of the
200 mm × 150 mm test section (all dimensions in mm); ¬, 12:1 contraction; , upstream
and downstream sections with pressure taps; ®, turbulence grid; ¯, bottom window; °,
removable top window; ±, ‘chimney’ with free surface for easy access; ², PIV field of
view.

downstream of the grid, and x2 = 0. The choice of the downstream measurement
location of 30M was found to be the best compromise between high turbulence
intensity and sufficient distance from the grid. In particular, at this location the
variation of the turbulent energy dissipation rate across the field of view was less than
30 % for the pure solvent (see Vonlanthen & Monkewitz 2011). The size of the field
of view was 64 × 41 mm2 with the long dimension in the mean streamwise direction.
Note that the field of view did not cover the entire CCD due to the stereoscopic set-up.
Calibration was carried out in situ with a 10× 10 cm two-plane target aligned with the
laser sheet. A final calibration adjustment was made by requiring that the mean stream
wise velocity U1 be constant over the field of view (the increase of U1 over 64 mm
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due to boundary layer growth on the test section walls was only 0.3 %, well within the
error bar) and U2 be zero.

The flow was seeded with 9 g of polyamide tracer particles (Dantec), with an
average diameter of dp = 5 µm and a density of ρp = 1.03 g cm−3. To avoid clumping
of the seeding in the polymer solutions, it was added to the moderately agitated fluid
shortly before the measurements with a small amount of detergent to lower the surface
tension. The ability of the seeding to follow the small-scale structures of the flow is
characterized by the Stokes number d2

p/(12βη2
0) ≈ 2 × 10−4, with the solvent-particle

density ratio β ≡ 3ρs/(ρs + 2ρp) ≈ 1 and ρs ≈ 1 g cm−1, and by the particle volume
fraction which was roughly 2.5 × 10−6. According to Elghobashi (1994), the present
seeding and turbulence parameters are approaching the regime where the particles
enhance the turbulence energy dissipation, but this effect is still negligible compared
with other experimental uncertainties.

The optimum time delay between laser pulses was found to be ∼200 µs, resulting
in a mean particle displacement of roughly 10 pixels in the x1 direction with an
uncertainty of ∼0.06 pixels. These choices resulted in a root mean square (r.m.s.)
turbulent particle displacement of ∼0.5 pixels. Hence, the small-scale motions of
the flow were affected by measurement noise. The method to recover small-scale
turbulence data from these noisy data is now described.

2.3. PIV data processing
TSI’s Insight 3G software was used to process the stereoscopic PIV captures.
Although this code supports deformation of the interrogation window (IW) to optimize
correlations, it does not provide spatial velocity derivatives. Therefore, additional
errors are introduced due to the subsequent differentiation of the velocity field. A
multipass algorithm starting with an IW size of 128 × 128 pixels2 and finishing
with 32 × 32 pixels2 was used together with a 50 % IW overlap. After each pass,
a validation procedure was applied to the vector field and spurious vectors were
replaced by interpolating between valid neighbours. The outlier detection was based
on a normalized median filter, which is well-adapted to velocity fields with strong
gradients (Westerweel & Scarano 2005). Since the number of outliers was generally
below 1 % of all vectors, their influence on the power spectra was negligible, as shown
by Poelma, Westerweel & Ooms (2006).

For each experiment, a total of 500 velocity fields were acquired with a sampling
rate of 0.25 Hz, owing to the very large CCD array. Considering that the integral time
scale was of the order of 10 ms, the recorded samples were statistically independent.
After subtracting time averages from the velocity fields, the r.m.s. of uraw

1 and uraw
2

were determined, where the superscript ‘raw’ indicates measurements not corrected for
the effect of PIV windowing. Corresponding longitudinal and transverse power spectra
along x1, Eraw

11 (κ1) and Eraw
22 (κ1) were computed with a standard fast Fourier transform

(FFT). Owing to the homogeneity of the turbulence in the x2 direction, spectra could
be averaged within each sample over lines x2 = constant which were separated by two
integral length scales or more, i.e. which were statistically independent.

To improve convergence, the spectra were further averaged over several velocity
fields. Since the properties of PEO solutions changed during the experiment due to
rupture of polymer chains, separate averages were taken over consecutive periods
of 200 s corresponding to 50 velocity fields. During each of the 200 s periods, the
fluid completed about two laps around the hydraulic tunnel, i.e. passed twice through
grid and pump. This averaging time proved to be the best compromise between the
requirements of stable fluid properties and convergence of spectral estimates: for the
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chosen averaging period, the 95 % confidence interval still converged to within 20 % of
the averaged spectra.

A systematic attenuation arises from the spatial and the temporal sampling of the
PIV technique, similar to the filtering effect of finite length hot wires identified by
Wyngaard (1968). Following Lavoie et al. (2007), the filter function χ for an IW of
width w1, height w2 and depth w3 is

χ(κ)= sinc
(

1
2
κ1U11t

) 3∏
i=1

ξi with ξi ≡ sinc
(

1
2
κiwi

)
, (2.1)

where κi is the wavenumber in the ith direction, 1t the time delay between
consecutive frames of a PIV image pair, U1 the local mean flow in the x1

direction (U2 is negligible near the centreline) and sinc(z) ≡ sin(z)/z the cardinal
sine function. For all of the data presented in this paper, the time delay 1t
was 180 µs for the 50 wppm PEO solution and 160 µs for the 25 and 100 wppm
solutions. The IW dimensions for all of the runs with PEO solutions were
(w1,w2,w3)= (0.671 mm, 0.671 mm, 0.5 mm).

As the PIV measurements were relatively noisy, the high wavenumber end of the
spectra was significantly affected. According to Foucaut, Carlier & Stanislas (2004),
for streamwise power spectra Eraw

ii (κ1) the noise consists of a white noise N (1)
ii

modulated by the spectral function ξ 2
1 defined in (2.1). An additional unfiltered low-

level white noise N (2)
ii was found to produce a smoother steepening of spectra in the

viscous dissipation range without affecting the lower wavenumbers. The uncorrected
one-dimensional spectra are therefore related to the true velocity spectrum tensor
Φij(κ) and the wavenumber vector κ by

Eraw
ii (κ1)= Efil

ii + ξ 2
1 N (1)

ii +N (2)
ii (2.2)

with

Efil
ii = 2

∫∫ ∞
−∞
Φii(κ)χ

2(κ) dκ2 dκ3. (2.3)

The true one-dimensional spectra, on the other hand, are related to Φij(κ) by

Eii(κ1)= 2
∫∫ ∞

−∞
Φii(κ) dκ2 dκ3. (2.4)

The implicit problem (2.2)–(2.4) for Eii(κ1) is solved approximately by using the
spectral tensor for isotropic turbulence

Φij(κ)= E(κ)

4πκ4
(κ2δij − κiκj), (2.5)

and replacing the true three-dimensional spectrum E(κ), which depends only on the
magnitude of κ , i.e. κ ≡√κiκi, by a fitted model spectrum EM with the superscript ‘M’
standing for model. Denoting the modelled integrals (2.3) and (2.4) by EM−fil

ii and EM
ii ,

respectively, the correction scheme reduces to

Eii(κ1)= EM
ii (κ1)[Eraw

ii (κ1)− ξ 2
1 N (1)

ii −N (2)
ii ]

EM−fil
ii (κ1)

= EM
ii (κ1)E

M−fil
ii (κ1)

Eraw
ii (κ1)− ξ 2

1 N (1)
ii −N (2)

ii

. (2.6)

The model spectrum EM, a generalization of the model spectrum given by Pope
(2008, § 6.5.3), will be developed in § 4 (equation (4.9)). Suffice to say here that it has
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νa
s Ua

0 Λa
1 λa Rea

λ εa
0,decay ε0,PIV

(cm2 s−1) (cm s−1) (cm) (cm) — (cm2 s−3) (cm2 s−3)

0.00941 120± 5 1.3 0.17 100 152 145

TABLE 1. Summary of turbulence parameters at x1/M = 30 in pure water: viscosity
νs, bulk flow velocity U0, streamwise integral length scale Λ1, Taylor microscale λ,
corresponding turbulence Reynolds number Reλ, dissipation rates ε0,decay from streamwise
turbulence decay and ε0,PIV directly from PIV. (a From Vonlanthen & Monkewitz 2011.)

the same general structure of an inertial/elastic spectrum multiplied by F M
Λ defining

the spectral shape at the integral scale, and by a viscous cutoff function F M
η . The

correction steps for Eii(κ1) are summarized as follows.

(i) First, the white noise level N (1)
ii is estimated directly from the measured

turbulence spectra according to Foucaut et al. (2004). Since the noise contribution
to the raw spectrum was in all cases much larger than the turbulence contribution
at the wavenumber κ−3db

1 = 2.8/w1 where the filter function ξ 2
1 (κ
−3db
1 ) = 1/2, one

can estimate N (1)
ii ≈ 2Eraw

ii (κ
−3db
1 ). In practice, the factor 2 had to be adapted

to equalize the two right-hand sides of (2.6). For the present spectra, this factor
varied between 2.16 and 2.2 for N (1)

11 and 1.84 and 1.9 for N (1)
22 , confirming that

u2 is of somewhat better quality than u1. The additional unfiltered white noise
N (2)

ii never exceeded 10 % of N (1)
11 .

(ii) A first approximation of the model spectrum EM in (2.5) is obtained by matching
the associated EM

ii (2.4) to the measured Efil
ii = Eraw

ii (κ1) − ξ 2
1 N (1)

ii − N (2)
ii . For

this, the dissipation rate ε0 in the Kolmogorov inertial range and the Lumley
scale κL (cf. §§ 4 and 6) are chosen to match the two spectra beyond the integral
scale. The low-κ part of EM which is governed by F M

Λ is then adjusted to fit
Eraw

ii (κ1) − ξ 2
1 N (1)

ii −N (2)
ii under the additional constraint of matching as closely

as possible the variances 〈u2
i 〉 determined directly from the velocity fields (in most

cases within 10 %). Owing to the large-scale non-isotropy of our grid turbulence,
it was necessary to determine individual functions F M

Λ,i to fit key features of the
measured spectra at low κ1, such as the crossing point of E11 and E22, and the
variance of both velocity components.

(iii) In a last step, all of the parameters of EM affecting the high-κ end of the spectra
are fine-tuned such as to obtain the best match between Eraw

ii (κ1)− ξ 2
1 N (1)

ii −N (2)
ii

and EM−fil
ii defined by (2.3).

The correction scheme (2.1)–(2.6) is illustrated in figure 5 of § 4 for one spectrum
in the pure solvent and one polymer spectrum, demonstrating that the noise subtraction
is by far the most important correction step. The principal fitting parameters for the
spectra of § 5 are given in table 3.

The complete PIV processing has been validated in water against the data gathered
by laser Doppler and hot-film anemometry reported in Vonlanthen (2010) and
Vonlanthen & Monkewitz (2011). For comparison with PEO turbulence, the key
parameters of our grid turbulence in pure water are compiled in table 1.
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3. Characterization of PEO solutions
The working fluids for the present study were low-concentration aqueous solutions

of PEO WSR-301 supplied by Dow. Here, we concentrate on the main properties
which are relevant for the interpretation of the experiments, namely the ‘viscosity
averaged-molecular weight’ Mµ and the time constant τ on which stretched PEO
molecules contract into a ‘ball’. For the detailed rheometry, the reader is referred to
Vonlanthen (2010).

The viscosity-averaged or effective molecular weight Mµ is obtained from the
intrinsic viscosity [µ] via the Mark–Houwink relation with the parameters determined
by Tirtaatmadja, McKinley & Cooper-White (2006) for aqueous Polyox solutions with
8× 103 6Mµ 6 5× 106 g mol−1:

[µ] = K(Mµ/Mu)
3β−1 = 0.072(Mµ/Mu)

0.65, (3.1)

where the prefactor K is given in units of cm3 g−1 and Mu = 1 g mol−1 is the molar
mass constant. The exponent 3β − 1 = 0.65 yields a solvent quality parameter of
β = 0.55, indicating that water is a relatively good solvent of PEO. The limiting values
of β are 0.5 for a theta solvent and 0.6 for a good solvent, corresponding to weak and
strong polymer–solvent interaction, respectively.

The zero-shear intrinsic viscosity [µ] characterizes the contribution of the polymer
to the solution viscosity as the polymer concentration c approaches zero. It is defined
as (see e.g. Morrison 2001)

[µ] = lim
c→0

µred = lim
c→0

µinh (3.2a)

with

µred = µ− µs

cµs
and µinh = ln(µ/µs)

c
, (3.2b)

where µs is the solvent viscosity. The PEO concentration c will be specified
throughout the paper in wppm, i.e. weight of PEO per weight of solvent, but
note that dimensional homogeneity of the equations containing c requires c to
be in units of g cm−3. For water as a solvent the conversion is with sufficient
accuracy 1 wppm = 10−6 g cm−3. To determine [µ], the viscosity of solutions with
PEO concentrations between 20 and 500 wppm was measured with an Ubbelohde
capillary viscometer (solutions with more than 500 wppm were strongly affected by
shear thinning). The viscometer was placed in a water bath maintained at constant
temperature of 24 ± 0.1 ◦C. Each measurement was repeated nine times to attain an
estimated uncertainty of 2 % (viscosities determined for distilled water were within
0.5 % of published values). The resulting µred and µinh are shown in figure 2.

Despite the large error bars obtained by standard error propagation, the data in
figure 2 are very consistent and show a distinctly different behaviour below and above
100 wppm. A similar behaviour has been reported by Sylvester & Tyler (1970) who
speculated that the sudden change is due to polymer entanglements which start to form
around 100 wppm. This is also consistent with the clear break in the characteristics
of an impinging turbulent jet between 50 and 100 wppm observed by Mejia-Alvarez
& Christensen (2011). We adhere to the view that the change of properties between
50 and 100 wppm corresponds to the transition between truly dilute solutions where
there is essentially no interaction between PEO molecules and a regime where polymer
entanglement is significant even though the critical coil overlap concentration c∗ is
0.77/[µ] ≈ 500 wppm, according to standard wisdom (see, e.g., Graessley 1980). The
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FIGURE 2. Linear extrapolations of the reduced (•) and the inherent viscosity (�) to find the
two intrinsic viscosities for c6 50 wppm (—) and c> 100 wppm (– –).

change in fluid properties between 50 and 100 wppm is also reflected in a qualitative
change of pressure drop across the grid (see figure 5.1 in Vonlanthen 2010).

The two extrapolations in figure 2 yield the intrinsic viscosities [µ](c6 50 wppm)=
1360 ± 350 cm3 g−1 and [µ](c > 100 wppm) = 1630 ± 55 cm3 g−1. These values are
in line with published values (see, e.g., Kalashnikov & Vlasov 1978; Tirtaatmadja
et al. 2006), although 1360 cm3 g−1 is at the lower end of the spectrum. Using
the Mark–Houwink relation (3.1) the measured [µ] yield Mµ of 3.8 × 106 and
5× 106 g mol−1, respectively. Both values are well within the distribution of molecular
weights in Polyox WSR-301 reported for instance by Morgan & Pike (1972).

The other quantity relevant to the interaction of polymer molecules with turbulence
is the time constant τ for the contraction of stretched molecules into a ball. Widely
different models exist to estimate τ and only the Maxwell model for a continuum, the
Rouse–Zimm molecular model and the Rozhkov correlation (Rozhkov, Prunet-Foch &
Vignes-Adler 2003) are mentioned here.

The N-mode Maxwell model (see, e.g., Ferry 1980) yields

τM = (µ0 − µs)
Mµ

cRT

N∑
j=1

τ̂j (3.3a)

with

µ0/µs = 1+ 1.05(c[µ])+ 0.46(c[µ])2 + 0.24(c[µ])3, (3.3b)

where τ̂j is the rescaled non-dimensional relaxation time of the jth dashpot-spring
element, µs = 0.00911 g cm−1 s−1 at T = 297 K and R = 8.3145 × 107 erg mol−1 K−1

the universal gas constant. The solution viscosity at zero shear, µ0, was fitted to the
viscometer and rotational rheometer measurements (Bohlin C-VOR 150 with double-
gap sample holder) using [µ] = 1630 cm3 g−1.

The mode relaxation times were deduced from the storage and loss moduli obtained
with oscillatory shear experiments in the rotational rheometer with a cone-and-plate
set-up. Owing to the limited sensitivity of the rheometer, the storage and loss moduli
could only be determined for concentrated solutions of 3000 and 5000 wppm and
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Maxwell

Rozhkov

Zimm

10–2

10–1

10–3
101 102 103

FIGURE 3. Polymer relaxation times τ : Maxwell for Mµ = 3.8 × 106 g mol−1 (−−) and
Mµ = 5×106 g mol−1 (—); Rouse–Zimm (equation (3.4)) for Mµ = 5×106 g mol−1; Rozhkov
(equation (3.5)) for [µ] = 1630 cm3 g−1; ©, τL deduced from the fitted initial Lumley lengths
(see § 6), including 50 % error bars.

the model had to be limited to two modes (N = 2). The resulting (τ̂1 + τ̂2) = 12.3
yielded the surprisingly reasonable τM shown in figure 3, considering the extrapolation
to 100 wppm and below. For more detail, see Vonlanthen (2010).

The Rouse–Zimm model (Rodd et al. 2007) can, similarly to the Maxwell model, be
expressed in terms of bulk properties as

τZ = 0.47
µs[µ]Mµ

RT
= 0.0338

µsMu

RT

(
Mµ

Mu

)1.65

, (3.4)

where the prefactor has been evaluated for the solvent quality parameter of β = 0.55
and (3.1) has been used to find the second expression. Finally, the Rozhkov correlation
for the relaxation time τR (Rozhkov et al. 2003) is

τR = 0.0305 (c[µ])0.688, (3.5)

where the prefactor corresponds to [µ] = 1630 cm3 g−1.
All three relaxation times are shown in figure 3 for the Mµ determined from

figure 2. As already mentioned, in the range 25–100 wppm only the Maxwell model
based on the rheometry of our PEO solutions yields relaxation times of the order
of the times deduced from the Lumley scales of § 6. The difference between τL

or τM and τR for the concentrations used in the present experiments is likely due
to the strongly nonlinear uncoiling of polymer chains (see, e.g., Hinch 1994) and
the difference between the flows in which the relaxation times were identified,
i.e. turbulence, rotational rheometer and steady laminar extensional flow. Finally, τZ

of the Rouse–Zimm model is similar to τR for truly dilute solutions, but does not take
into account the effect of increasing concentration.

The relevant fluid properties for the three PEO concentrations considered in this
investigation are given in table 2.
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c mPEO T νs ν [µ] Mµ

(wppm) (g) (◦C) (cm2 s−1) (cm2 s−1) (cm3 g−1) (g mol−1)

25 180 22.2 0.0095 0.0099 1360 3.8×106

50 360 21.1 0.0098 0.0104 1360 3.8×106

100 720 22.2 0.0095 0.0107 1630 5.0×106

TABLE 2. Summary of fluid properties for the three PEO concentrations investigated: mPEO,
mass of dry PEO powder; νs and ν, kinematic viscosities of the pure solvent and the
solution, respectively; [µ], zero-shear intrinsic viscosity; Mµ, viscosity-averaged molecular
weight.

4. Model spectrum
Owing to the limited scaling ranges of our experimental spectra, it is not possible

to reliably fit power laws. Therefore, it is imperative to develop a complete model
spectrum that can be fitted to the data as a whole.

As is evident from the spectra in the next § 5, there is a clear break away from
the Kolmogorov inertial −5/3 range, which is not affected by the polymers, into an
‘elastic’ subrange. This new spectral region is separated from the inertial cascade by
the Lumley scale `L ≡ 1/κL (in analogy to the definition of the Kolmogorov length η0,
the factor 2π is omitted in the definition of `L), determined by the elastic properties
of the fluid and the turbulence dissipation rate (cf. § 6 where the time dependence of
`L is related to polymer degradation). In the elastic subrange, the turbulence kinetic
energy cascading down from the inertial subrange is partly converted into elastic
energy of the extended polymer coils and partly dissipated as solvent friction required
to extend the polymer chains. As the polymer chains coil up again, a part of the
stored elastic energy is also dissipated due to viscous drag opposing the contraction
and to interactions between monomers of a single polymer (Ouellette et al. 2009).
The residual part of the elastic energy is transformed back to turbulent kinetic energy
(this has been termed ‘back reaction’ by Balkovsky et al. 2001) and passed on to
smaller eddies. The process, henceforth called ‘elastic dissipation’, continues until
either viscous dissipation takes over or the turbulent ‘eddies’ become smaller than the
stretched polymer molecules, a case that requires a much higher Reynolds number
than in the present experiments.

Hinch (1977) was to the best of the authors’ knowledge the first to speculate that
the bulk effect of polymer chains very much shorter than the flow scales was to
maintain the local instantaneous rate of strain below a critical rate of strain, directly
related to the time constant of the polymer (see § 6). From the estimate of the rate
of strain (Eκ3)

1/2 in terms of energy spectral density E(κ) and wavenumber κ it
follows immediately that a constant rate of strain in the elastic subrange corresponds
to E ∝ κ−3 seen for instance by Warholic et al. (1999) and in the numerical study
of Berti et al. (2006). It also implies that the energy cascade down this −3 slope is
self-regulating: if the energy falls below, the rate of strain becomes subcritical and the
polymer inactive. Hence, the decay reverts to the −5/3 slope until the critical strain
rate is again attained. If the energy deviates above the critical κ−3 decay, the polymers
‘work harder’ to dissipate the excess energy, provided of course their concentration
is sufficient. Fouxon & Lebedev (2003), on the other hand, argued for an energy
decay steeper than κ−3 based on the convergence of certain integrals in the limit
of infinite Reynolds number. However, their argument may not be conclusive as the
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physics changes when flow scales become smaller than the polymer chain length. Our
data support a scaling E(κ) ∝ κ−3, but the limited scaling ranges do not allow to
argue about small differences in the scaling exponent. Therefore, the exponents of the
inertial and elastic subranges are fixed in the following to κ−5/3 and κ−3, respectively.

The energy flux ε corresponding to a spectrum E ∝ κ−3 beyond the Lumley
wavenumber κL is

ε(κ)/ε0 = κ̃−2 for κ̃ ≡ κ/κL > 1, (4.1)

where ε0 is the constant energy flux in the Kolmogorov inertial range κ 6 κL. In
the ‘strong back reaction regime’ (Balkovsky et al. 2001) the Lumley wavenumber
depends on Mµ, ε0 and the polymer type, but not on concentration. Relation (4.1)
corresponds to an elastic dissipation at the scale κ of dε/dκ =−2(ε0/κL) κ̃

−3. The fact
that this elastic dissipation is proportional to the eddy volume for all κ > κL suggests a
generalized ansatz where the dissipation is reduced by the same factor Γ at all scales
in the case where the polymer concentration is insufficient to maintain the strain rate
below the critical rate. Hence, we model the elastic dissipation as

dε
dκ
=−2Γ (c;Mµ; c/c∗;Polymer type)

ε0

κL
κ̃−3, (4.2)

where 0 6 Γ 6 1 depends on the concentration, molecular weight, degree of dilution
and polymer type. For a given polymer type and low concentration c/c∗ � 1, the
strong back reaction regime is reached at a critical concentration ccrit defined by
Γ (ccrit;Mµ)= 1.

Integrating (4.2) and matching to the Kolmogorov inertial range yields for κ̃ > 1

ε(κ)/ε0 = 1− Γ + Γ κ̃−2 (4.3)

and

E/EL = κ̃−5/3[1− Γ + Γ κ̃−2]2/3, (4.4)

where EL ≡ αε2/3
0 κ

−5/3
L is the energy spectral density at the Lumley scale and α = 3/2

the standard Kolmogorov constant.
From (4.3) the new viscous scale η ≡ 1/κη = ν3/4

s ε−1/4 is obtained as usual by
setting the turbulence Reynolds number equal to one. This results in a cubic equation
for η with the approximate solution

η ∼= η0[1− Γ + Γ Re−1
L ]−1/4

with ReL ≡ ε1/3
0 κ

−4/3
L ν−1

s = (η0κL)
−4/3 (4.5)

the characteristic turbulence Reynolds number at the Lumley scale and η0 ≡ ν3/4
s ε

−1/4
0

the Kolmogorov scale without polymers. This approximate solution is exact in the
limits Γ = 0 and Γ = 1, and deviates from the exact solution by less than 1 % for ReL

as low as 50. From (4.4) and (4.5) one obtains easily that

η(Γ = 1)/η0 = Re1/4
L and

E(κ = η−1;Γ = 1)

E(κ = η−1
0 ;Γ = 0)

= Re−1/4
L . (4.6)

The energy spectrum E(κ) (equation (4.4)) still needs to be complemented by a
viscous cut-off function Fη. Following the approximate approach of Corrsin, described
by Tennekes & Lumley (1972, § 8.4), the energy flux equation is augmented by the
elastic flux to read

dε
dκ
∼=−2Γ

ε0

κL
κ̃−3Fη − 2νsκ

2EFη, (4.7)
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where E is given by (4.4). Writing the energy flux ε = α−3/2κEFησ with the strain
rate σ = κ3/2E1/2 (without Fη !) yields a linear first-order equation for Fη with the
approximate solution

ln Fη =−3
2
α(κη0)

4/3 [1− Γ + Γ κ̃−2]2/3

1− Γ + 3
2
Γ κ̃−2

for κ̃ > 1. (4.8)

The result (4.8) is again exact (within the limitations of the approach) for Γ = 0
and Γ = 1 and a very good approximation in between. For the case of Γ = 0, the
viscous damping function Fη of (4.8) is known to produce a departure of E from
κ−5/3 which is too gradual. The best fits to our spectra were obtained by replacing
the ‘solvent factor’ (3/2)α(κη0)

4/3 in (4.8) by Pope’s expression (cf. § 6.5.3 of Pope
2008). Furthermore, to avoid having to use separate fits for κ < κL and κ > κL, all
of the terms Γ κ̃−2 are modified to Γ (1+ κ̃γ )−2/γ , where γ controls the rounding of
the corner between the inertial and elastic parts of the spectrum (γ →∞ corresponds
to a sharp corner; a constant γ = 20 has proven adequate for all of the fits in this
study). With the usual factor FΛ describing the energy injection scales, the complete
three-dimensional model spectrum EM, with superscript ‘M’ for model, is finally

EM(κ)= αε2/3
0 κ−5/3[1− Γ + Γ (1+ κ̃γ )−2/γ ]2/3F M

Λ (κ/κmax)F
M
η (κη0; κ̃) (4.9a)

with

F M
Λ = {(κ/κmax)[(κ/κmax)2β + 5

12 ]
−1/(2β)}17/3

(4.9b)

and

ln F M
η =−{5.2[(κη0)

4 + 0.44]1/4 − 2.08} [1− Γ + Γ (1+ κ̃
γ )
−2/γ ]2/3

1− Γ + 3
2
Γ (1+ κ̃γ )−2/γ

. (4.9c)

The above F M
Λ is essentially Pope’s expression (cf. § 6.5.3 of Pope 2008), rewritten

in terms of κ/κmax , with κmax the wavenumber where E is maximum, and slightly
generalized by the introduction of a variable exponent β. This provides more flexibility
to take into account the (moderate) non-isotropy of large-scale energy injection by
our grid (cf. Vonlanthen & Monkewitz 2011). Note also that the Saffman form of the
spectrum, i.e. E(κ) ∝ κ2 for κ → 0, is used throughout this study as it has proven
superior for all the fits. Specifically, it provided a better match of r.m.s. velocities after
fitting the high-κ end of the spectra.

Examples of the model spectra (4.9) for different Γ are shown in figure 4
which reveals a most interesting feature of the model spectrum: for 0 < Γ < 1 and
sufficiently high Reynolds number, the spectrum, beyond a limited wavenumber range
with elastic dissipation, reverts back to a second K41 inertial range at a lower ε1 < ε0.
Such spectra have yet to be seen experimentally, but resemble the spectra obtained by
Benzi et al. (2003) (see also § 7). The inset in figure 4 also shows the one-dimensional
spectra Eii(κ1) deduced from EM(κ;Γ = 1), together with a method to determine κL

directly from one-dimensional spectra. With a reasoning similar to the one relating the
Kolmogorov coefficient α = 3/2 in the three-dimensional spectrum to the coefficients
α1 = (18/55)α and α2 = (24/55)α of the one-dimensional longitudinal and transverse
inertial spectra, the three-dimensional Lumley length `L for Γ = 1 is found to be
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Viscous Viscous

Elastic

Inertial

103

102

101

101

100

100

10 –1 10 –1

10 –2

10 –3

10 –4

10 –5

10 –6
10310210110010 –1

0.2 0.4 0.6 0.81.0 2.0

FIGURE 4. Model spectra (4.9) for ReL = 103, indicating the inertial, elastic and viscous
ranges. The line width indicates the PEO concentration, ranging from Γ = 0 (no PEO) with
inertial range EM ∝ κ−5/3, to Γ = 1 (enough PEO to limit the strain rate) with elastic range
E ∝ κ−3. Intermediate values are Γ = 0.95, 0.8 and 0.5; •, corresponding dissipation scales
according to (4.5). Inset: close-up view of EM(κ;Γ = 1) at infinite Reynolds number with the
associated normalized one-dimensional spectra E11 and E22; ©, corresponding intersections
κL,i of the −5/3 and −3 power laws (equation (4.10)).

related to the intersections κL,i between the κ−5/3
1 and κ−3

1 fits to Eii by

`L(Γ = 1)= (11/27)3/4κ−1
L,1 = (11/18)3/4κ−1

L,2. (4.10)

It is evident that this method to determine `L is reliable only if both the inertial
and elastic scaling ranges are sufficiently long which is not the case in the present
experiments. As seen in figures 6 and 7, at early times the inertial range is virtually
non-existent and at late times the elastic range merges into the dissipation range.

5. Experimental energy spectra
Energy spectra in PEO solutions of three different concentrations, 25, 50 and

100 wppm, were acquired at x1 = 30M = 48 cm downstream of the grid. At the
start of each experimental run the pump was accelerated quickly and the flow was
allowed to stabilize during the first 100 s before the PIV recordings were started.
As the approximate desired mean velocity was reached already after 10 s, the fluid
went around the facility about once during this start-up period of 100 s. Since this
first ‘lap’ (1 lap = 100 s) already contributed to the degradation of polymers, it will
be included in the lap count. As the polymers were degrading rather rapidly, the
spectra were averaged over consecutive periods of only 200 s, corresponding to two
laps, which represented a compromise between the convergence of the spectra and
the ability to follow their temporal evolution (see also § 2.3). The result is what we
believe to be the first ‘movie’ of the spectral evolution of grid turbulence in PEO
solutions. The present data (figures 6 and 7) lend strong support to a rather sharp
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100

10 –1

10 –2

10 –3
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101
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10 –1

10 –2

10 –3

10210110010 –1

10 –1 102101100

(a)

(b)

FIGURE 5. Examples of spectral correction steps for grid turbulence (a) in plain water and
(b) in a 50 wppm PEO solution after 4 circuits in the tunnel (data acquired between 300 and
500 s after start). Solid and broken lines represent model spectra pertaining to streamwise
and transverse velocity fluctuations, respectively: purple lines, fitted three-dimensional model
spectra EM(κ) (4.9) with individualized low-κ part and corresponding EM

ii (κ1) (blue lines).
The main fitting parameters are given in table 3. Streamwise (©) and transverse (•), raw
experimental spectra Eraw

ii (κ1); �, �, raw spectra minus noise Eraw
ii (κ1) − ξ 2

1 N (1)
ii − N (2)

ii ;
4, N, fully corrected spectra according to (2.6); − · −, cut-off wavenumber κ−3db

1 ; �, error
estimates near the Lumley and viscous scales (see the text for details).
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100 wppm

50 wppm

25 wppm

103

102

101

100

10 –1

10 –2

10 –3

10 6

10 5

10 4

102101100

FIGURE 6. Fully corrected streamwise velocity spectra (equation (2.6)) at x1/M = 30 in PEO
solutions after: ©, 2; �, 4; ♦, 6; O, 8; 4, 10; , 20 circuits in the tunnel; —, fitted model
spectra EM

ii (κ1); −−, cut-off wavenumber κ−3db
1 . The spectra in 50 and 25 wppm solutions are

shifted up by 102 and 104, respectively. Experimental parameters are given in tables 2 and 3.

transition in the three-dimensional spectrum from a Kolmogorov inertial range to an
energy decay E(κ) ∝ κ−3. Needless to say that long-time averaging of the spectra
would have completely washed out this sharp transition. It is useful to recall here that
a sharp corner in the three-dimensional spectra translates into rounded transitions in
the one-dimensional spectra, as seen in the inset of figures 4 and 5(b).

Before showing the corrected experimental spectra, it is useful to visualize in
figure 5 an example of the detailed correction procedure described in § 2.3. The
figure demonstrates that:
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PEO Time U0 ε0 η κL κmax,1 κmax,2 β1 β2 u1,rms
conc. after start u2,rms

(wppm) (laps) (cm s−1) (cm2 s−3) (cm) (cm−1) (cm−1) (cm−1)

0 — 122 120 0.011 — 12 15 2 1 1.26
25 2 127 199 0.024 5 1.3 1.95 2 1 1.42
25 6 126 172 0.019 10 1.5 1.8 2 1 1.23
25 10 125 164 0.018 13.5 1.55 1.85 2 1 1.22
25 14 125 157 0.017 16.5 1.8 1.85 2 1 1.15
25 18 125 137 0.016 19 1.6 1.9 2 1 1.22
50 2 123 208 0.025 4.3 1.3 1.5 3 1 1.30
50 6 122 208 0.019 10 1.2 1.55 2 1 1.27
50 10 122 189 0.017 13.5 1.5 1.6 2 1 1.17
50 14 122 180 0.016 16.5 1.45 1.85 2 1 1.25
50 18 122 150 0.016 18.5 1.45 1.6 2 1 1.18
100 2 123 257 0.025 3.5 1.1 1.5 4 1 1.44
100 6 122 232 0.020 7.5 1.15 1.35 4 1 1.28
100 10 121 220 0.018 10.5 1.3 1.35 4 1 1.21
100 14 122 220 0.017 12.5 1.25 1.35 3 1 1.21
100 18 120 209 0.016 14.5 1.35 1.45 3 1 1.20

TABLE 3. Summary of fitting parameters in the model spectrum EM(κ) (equation (4.9)) at
five times for each of the three investigated PEO concentrations. Here η0 is obtained with
the solvent viscosities νs of table 2 and η from equation (4.5). In all cases Γ = 1 and
γ = 20.

(i) the noise is by far the most dominant contributor to the spectral corrections;
(ii) the spectral fits made possible by (4.9) are of high quality, despite a marginal

inertial range in the polymer spectrum;
(iii) this high quality is only possible because the parameters in F M

Λ (4.9b) were
determined individually for E11 and E22 to account for the slight anisotropy of
‘our’ turbulence at low wavenumbers; in particular, the turbulence energy injected
into the flow by the beaded grid was consistently distributed over a broader range
of wavenumbers in the x2 direction than in the x1 direction;

(iv) beyond the injection scale the isotropy of the turbulence is excellent;
(v) the spectral region of primary interest, where the Kolmogorov inertial range gives

way to the elastic range, is only weakly affected by the spectral corrections,
except near the end of experimental runs.

Also included in figure 5(b) are estimates of the statistical error near the Lumley
and viscous scales. The widths of the error boxes represent the horizontal shift
between spectra corrected according to the first and the second right-hand side of (2.6).
The vertical extensions of the error boxes represent the 95 % confidence interval for
the average over 100 samples. This error measure was chosen because it closely
corresponds to the vertical spread of the independently averaged spectra in figures 6
and 7 below the respective Lumley scales.

The central results of the present study are collected in figures 6 and 7 which show
velocity spectra averaged over time intervals of 100–300 s (interval centred on 2 laps
after the start), 300–500 s (4 laps) and so forth. The principal fitting parameters for the
corresponding model spectra EM (equation (4.9)) fitted to the experimental spectra are
compiled in table 3. The parameter of most interest, the Lumley scale κL ≡ 1/`L, and
its time evolution are discussed in the following section.
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FIGURE 7. Fully corrected transverse velocity spectra. See the caption of figure 6 for the
legend.

6. Temporal evolution of the Lumley scale
To obtain a consistent time evolution of the break point between the −5/3 and
−3 ranges in the three-dimensional spectrum, i.e. the ‘Lumley’ wavenumber κL, two
approaches were used. The first was to directly use the fitted κL from the three-
dimensional model spectrum EM(κ) (4.9) used to correct the spectra Eii(κ1) (cf. § 2.3).
The second was to determine the intersection of −5/3 and −3 power laws fitted
individually to E11(κ1) and E22(κ1) and to use (4.10).

The Lumley lengths obtained from figures 6 and 7 are plotted in figure 8(a) versus
the number of laps, nlap, the fluid goes around the tunnel. This measure of time
indicates directly the number of times the fluid passes through the grid and the
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FIGURE 8. (a) Dimensional Lumley lengths `L ≡ 1/κL versus nlap (laps around the facility;
1 lap = 100 s) for 25 wppm (©, •), 50 wppm (�, �) and 100 wppm (♦, �). Determination
from longitudinal and transverse spectra (open symbols) according to (4.10); directly from the
fitted model profile (4.9) (solid symbols). (b) Plot normalized according to (6.3). The solid
lines illustrate the cascade model Mµ(nlap)/Mµ(0) ((6.1) and (6.2)) with, from bottom to top,
the contribution of the initial molecular weight Mµ, of Mµ and Mµ/2, of Mµ, Mµ/2 and Mµ/4,
and of the complete cascade.

pump which are mainly responsible for the mechanical degradation of the PEO. On
the grid bars, the rate of elongational strain near the upstream stagnation lines was
∼1.6 × 103 s−1, while the highest wall shear rate was ∼4 × 104 s−1, enough to cause
scission of the PEO molecules (see, e.g., Odell & Keller 1986; Sim, Khomami &
Sureshkumar 2007). For the honeycomb and the pump, we do not have the necessary
flow information to estimate shear rates, but it is safe to assume that they are locally at
least as high as on the grid bars.

To model the temporal decrease of `L from its initial value `L(nlap = 0) due to
mechanical polymer degradation, a cascade model is proposed here. Since Mµ is
an effective or average molecular weight, we assume that mechanical tearing of the
original molecules produces on average molecules with Mµ/2 which in turn are torn
into pieces of Mµ/4, etc. (see, e.g., Odell & Keller 1986). The mass fractions mi of
polymers with Mµ/2i are modelled by the cascade

mi =


exp(−0.45nlap) for i= 0[

1−
i−1∑
j=0

mj

]
exp(−0.45× 0.18inlap) for i> 0,

(6.1)

where the exponent −0.45 × 0.18i is the rate of depletion of mass fraction mi which
becomes progressively smaller with i. The resulting time-dependent average molecular
weight is then simply

Mµ(nlap)=Mµ(nlap = 0)
∞∑

i=0

mi

2i
. (6.2)

It is evident from figure 8(a) that the Lumley lengths `L(nlap) for 25 and 50 wppm
coincide within experimental error, while the `L for 100 wppm are larger. This
suggests a collapse of Lumley lengths in a way similar to the Rouse–Zimm model
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for the polymer time constant τ (see (3.4)):

`L(nlap)≡ α3/4ε
1/2
0 τ

3/2
L with τL(nlap)= 4.61× 104νs

Mµ(nlap)

RT
, (6.3)

where α = 3/2 is the Kolmogorov prefactor for the three-dimensional inertial range
spectrum. Note that, in order to match the present experimental evidence, the prefactor
in (6.3) has been made much larger than in (3.4) (see figure 3) and the dependence
of τL on Mµ made weaker than in the Rouse–Zimm model by replacing µs[µ] by the
kinematic viscosity of the solvent.

The Lumley time constants τL obtained from the `L of figure 8(a) and normalized
according to (6.3) with Mµ(nlap = 0) are displayed in figure 8(b). Tables 2 and 3 give
the initial Mµ and ε0 for the different concentrations, respectively (ε0(t = 100 s) was
used for ε0(t = 0)). While the collapse of the normalized τL is within the estimated
uncertainty of ±15 % the normalized time constant for 100 wppm still appears to be
lower than the τL for the lower concentrations. However, with the present data it is
not possible to determine whether this deviation is systematic or not. Nevertheless, the
cascade model ((6.1)–(6.3)) is shown in figure 8(b) to provide a good fit to the data.

7. Outlook
The present experiments have allowed a first look at the time evolution of turbulence

spectra in polymer solutions which reveal, we believe for the first time, a clear but
time-dependent Lumley scale beyond which elastic effects lead to an energy decay
E ∝ κ−3. The observed time dependence of the Lumley scale has been linked to
polymer degradation. These findings are in accord with the early speculation of Hinch
Hinch (1977) and Hinch & Elata (1979) that polymers act as a rate of strain limiter
as long as they are much shorter than the viscous scale. The findings also imply a
collective behaviour of individual polymer molecules, as noted by De Angelis et al.
(2002), which may be brought about by sharp flow accelerations on the scale of
turbulence ‘eddies’.

The experiments can and should of course be improved: a larger turbulence
Reynolds number, i.e. a larger dissipation rate ε0, would increase the different scaling
ranges and permit a more accurate determination of spectral slopes. However, this
would require a correspondingly larger dynamic range of the PIV equipment and
polymer degradation is likely to be aggravated. Note that the present set-up was
relatively well-matched to the Reynolds number, as the major spectral corrections did
not significantly affect the determination of the Lumley scale `L (see figure 5).

It would be even more important to continue the experiments with progressively
lower PEO concentrations to identify the critical concentration ccrit corresponding to
Γ = 1 (see the paragraph following equation (4.2)) which separates the strong back
reaction regime discussed for instance by Balkovsky et al. (2001) and Fouxon &
Lebedev (2003), in which the elastic range extends all of the way to the viscous
dissipation range, from the regime with c < ccrit . Such experiments would reveal the
parameter dependence of ccrit and, more importantly, test available models, including
our ansatz of equation (4.2) with the κ-independent factor Γ . Running experiments
with very low concentrations would in particular allow testing of the model feature of
two inertial ranges separated by an elastic range for 0 < Γ < 1. As already noted in
§ 4, such spectra strongly resemble the spectra of Benzi et al. (2003) obtained from
shell models. However, the Reynolds number of the present experiments is too low to
determine the conditions leading to a second −5/3 range after the elastic range.
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Answers to the above questions would likely advance the understanding of the
effect of polymers on wall-bounded turbulent flows, i.e. on polymer drag reduction
(see, e.g., Sreenivasan & White 2000). In particular it would become possible to
estimate the critical polymer concentration necessary for the maximum reduction of
the peak turbulent strain rate in the boundary layer. Furthermore, the present model
may provide a good estimate of the local effect of polymers and in turn allow
the separation of the local effect from the indirect effects on dynamic larger-scale
(instability) processes due to the modified mean flow profile. Finally, it may be
interesting to explore a numerical scheme which limits the instantaneous local rate
of strain with a body force, updated at every time step, to represent the bulk effect of
polymers.
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