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Cell viability, autolysis and lipolysis were studied in Cheddar cheese made using Lactococcus
lactis subsp. cremoris AM2 or Lactococcus lactis subsp. cremoris HP. Cheddar cheese was
made in triplicate over a 3 month period and ripened for 238 days at 8 8C. Cell viability in
cheese was lower for AM2 (a non-bitter strain) than for strain HP (a bitter strain). Autolysis,
monitored by the level of the intracellular marker enzyme, lactate dehydrogenase (EC 1.1.1.27)
in cheese ‘ juice’ extracted by hydraulic pressure, was much greater in the cheese made using
AM2 than that made with HP. Lipolysis was determined by the increase during ripening of
individual free fatty acids (FFA) from butyric (C4 : 0) to linolenic acid (C18 : 3) measured using a
high performance liquid chromatographic technique. Levels of individual FFA from butyric
(C4 : 0) to linolenic (C18 : 3) acids increased significantly (P<0.05) during ripening in cheeses
made with either starter culture. Palmitic (C16 : 0) and oleic (C18 : 1) acids were the most abundant
FFA throughout ripening in all cheeses. Levels of caprylic (C8 : 0), myristic (C14 : 0), palmitic
(C16 : 0) and stearic (C18 : 0) acids were significantly higher (P<0.05) in cheeses manufactured
with Lc. lactis subsp. cremoris AM2 than in cheeses manufactured with Lc. lactis subsp.
cremoris HP. Differences in levels of lipolysis between strains was not due to differences in the
specific lipolytic or esterolytic activities in cell free extracts of the strains as measured by
activity on triolein (lipase) and p-nitrophenylbutyrate (esterase) substrates. Therefore, evidence is
provided for a relationship between the extent of starter cell autolysis and the level of lipolysis
during Cheddar cheese ripening.
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Lipolysis makes an important contribution to overall flavour
development in cheese during ripening, especially in
varieties such as Blue and hard Italian types and is mediated
by lipases originating from milk, starter, non-starter and
secondary starter bacteria (Anderson et al. 1991). While
milk contains a very potent indigenous lipoprotein lipase
(LPL), it normally never reaches its full activity in milk (Fox
& Stepaniak, 1993; Fox et al. 1993) and high-temperature
short-time (HTST) treatment (72 8C for 15 s), very exten-
sively inactivates the enzyme (Deeth & Fitz-Gerald, 1983).
However, it is still thought to contribute to lipolysis in
pasteurized-milk cheese as a time and temperature com-
bination of 78 8C for 10 s is required for its complete
inactivation (Driessen, 1989). Lipases (triacylglycerol
acylhydrolases; E.C. 3.1.1.3) are an ubiquitous group of

enzymes that catalyse the hydrolysis of triacylglycerols to
diacylglycerols, monoacylglycerols, fatty acids and glycerol
(Deeth & Fitz-Gerald, 1995; Thomson et al. 1999) having
maximum activity at water–oil interfaces (Louwrier et al.
1996; Verger, 1997) and many also exhibit positional
specificity (Marangoni & Rousseau, 1995; Ramamurthi &
McCurdy, 1995) for the esters at the sn-1 and sn-3 positions
of the triacylglycerol molecule (Olivecrona & Bengtsson-
Olivecrona, 1991; Fox et al. 1996a). Lipase activity can be
measured by hydrolysis of emulsified triacylglycerols of
long chain fatty acids with the most common substrates
being tributyrin and triolein (Peled & Krenz, 1981; Jensen,
1983; Papaparaskevas et al. 1992).

Lipolytic degradation of triglycerides of milk fat during
cheese ripening results in the release of free fatty acids (FFA)
which are further catabolized to highly flavoured com-
pounds including methyl ketones, thioesters and lactones.
FFA, particularly short chain fatty acids, are highly*For correspondence; e-mail : martin.wilkinson@ul.ie
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flavoured and, at high levels, butyric acid and other short
chain fatty acids have been associated with the lipolysed
flavour defect or rancidity in Cheddar cheese (Deeth &
Touch, 2000).

Lipolysis in mould or smear ripened cheeses has been
studied in most detail and has been shown to originate from
the lipolytic action of enzymes from the mould or other
secondary cultures (Anderson & Day, 1966; Dartey &
Kinsella, 1973; King & Clegg, 1979; Gripon, 1993; Reps,
1993; Tomasini et al. 1993; Molimard & Spinnler, 1996).
However, in the case of Cheddar cheese, information on
the contribution of lipolysis to flavour development and
whether or not it is influenced by the degree of starter
autolysis is quite limited. Previously, it has been shown
that starters with enhanced autolytic abilities can accel-
erate proteolysis and hence ripening of cheese through an
early release of intracellular enzymes (Crow et al. 1993,
1995; Chapot-Chartier, 1994; Wilkinson et al. 1994a,b ;
O’Donovan et al. 1996). Lemee et al. (1994) proposed that
autolysis of Propionibacterium freudenreichii could con-
tribute to lipolysis in Swiss cheese, based on the earlier
identification of intracellular esterase activities in Prop.
freudenreichii by Dupuis et al. (1993), however lipolysis
was not monitored in the former study. The effect of starter
autolysis on lipolysis in cheese has received relatively little
attention.

The objectives of this study were to quantify lipolysis
during Cheddar cheese ripening and to establish whether
a relationship exists between the degree of starter cell
autolysis and levels of lipolysis in cheese.

Materials and Methods

Starter cultures for cheesemaking

Lactococcus lactis subsp. cremoris AM2 and Lactococcus
lactis subsp. cremoris HP were obtained from the culture
collection of the Dairy Products Research Centre, Moore-
park, Fermoy, Co. Cork. The cultures were maintained
in reconstituted skim milk (RSM, 100 g/l) at –80 8C and
transferred twice in RSM prior to cheesemaking.

Estimation of lipolytic and esterolytic activities of the
cell free extracts (CFE ) of starter cultures used for
cheesemaking

The starters used for cheesemaking (AM2 and HP) were
propagated at 30 8C for ca. 7 h in 450 ml RSM which had
been centrifuged at 5000 g at 4 8C for 20 min and the
supernatant buffered to pH 7.1 with 3 M b-glycerol phos-
phate (2.5 ml/100 ml). Propagation was terminated at
pH 5.2 (exponential phase of growth). CFE were prepared
in triplicate following the method of Bouchier (1999) with
the following modifications; after washing the pellets, cells
re-suspended in 8 ml Tris-HCl buffer (pH 7.5) were dis-
rupted by beating for a total of 6 min in a bead beater

(Biospec Products Inc., Bartlesville, OK 74005-0788, USA),
using 0.1 mm zirconia/silica beads (Biospec Products Inc.).
CFE was finally centrifuged at 14 000 g for 20 min to re-
move cell debris. Total nitrogen contents of CFE were
estimated according to the Kjeldahl method (International
Dairy Federation, 1986a).

Lipase activity of fresh CFE from the individual growth
experiments was determined in triplicate using triolein
emulsion as substrate according to the method of Tanaka
et al. (1999). The following variations were used, triolein
(2.5 ml) was emulsified with 7.5 ml polyvinyl alcohol sol-
ution (20 g/l) in a bench-top valve homogenizer type
134-930500 (Mecam, Sweden). Homogenization was car-
ried out at 20 8C and at a pressure of 40 bar. Following the
lipase reaction and addition of 5 ml chloroform-methanol
(2 : 1, v/v) solution, which destroyed the emulsion, an ali-
quot (100 ml) was transferred to a new tube and heated
at 50 8C for 20 min to evaporate the chloroform and
methanol. Results were expressed as mmol oleic acid/l
and 1 unit of lipase activity was defined as the amount
of enzyme activity necessary to release 1 mEq oleic acid
per min.

Esterolytic activity of fresh CFE from each growth ex-
periment was measured in triplicate using the chromogenic
substrate, p-nitrophenylbutyrate (PNPB) (Sigma-Aldrich
Company Ltd., Dorset, BH12 4QH, UK). CFE (100 ml) was
equilibrated with 900 ml phosphate buffer pH 7 (con-
sisting of 100 mM-NaH2PO4–150 mM-NaCl and 5 ml Triton
X-100/l) at 37 8C for 10 min. Substrate was then added
(10 ml) and the assay mixture was incubated at 37 8C for
30 min. Hydrolysis of PNPB and concomitant release of
the p-NP compound was indicated by an increase in
absorbance at 400 nm. Samples were read against both
sample and substrate blanks. Results were expressed as a
change in absorbance per min and 1 unit of esterase ac-
tivity was defined as the amount of enzyme necessary to
release 1 nmol p-nitrophenol per min from PNPB at 37 8C
and pH 7.

Cheddar cheese manufacture

Milk was separated at 63 8C, standardized to a protein : fat
ratio of 0.9 : 1, pasteurized at 72 8C for 15 s and cooled to
31 8C. Cheese was manufactured in triplicate according to
the method of Wilkinson et al. (1994b) and subsequently
ripened at 8 8C for 238 d.

Extraction of cheese juice

Over a 238 d ripening period cheese juice and fat were
extracted from grated cheese (300 g) mixed with sand
(600 g) using hydraulic pressure (pressure was increased to
32 MPa over 1 h and expressed liquid was collected over
the next 3 h at room temperature; Wilkinson et al. 1994b).
Juice and fat were extracted in duplicate from cheese
samples of three trials and frozen in 500 ml aliquots at
–20 8C.
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Starter viability and lysis in cheese

Viability of starter lactococci in cheese was measured in
duplicate, taking two independent samples from cheese
from each of the three trials, on lactose M17 agar (Terzaghi
& Sandine, 1975), incubated at 30 8C for 3 d, results were
expressed as cfu/g cheese. Non-starter lactic acid bacteria
(NSLAB) were enumerated in duplicate on Lactobacillus-
selective agar (LBS) (Rogosa et al. 1951), incubated for 5 d
at 30 8C under anaerobic conditions.

Autolysis was monitored by the release of lactate de-
hydrogenase (LDH, E.C. 1.1.1.27) in fresh cheese juice;
activity was determined by the method of Wittenberger &
Angelo (1970). Activity was expressed as units/ml press
juice where 1 unit was defined as the amount of enzyme
that catalysed the transformation of 1 mmol NADH/min
per ml juice.

Cheese composition

Grated cheese samples obtained from each of the three
cheese trials were analysed in duplicate for salt (Inter-
national Dairy Federation, 1979), fat (International Dairy
Federation, 1986b), total nitrogen (International Dairy
Federation, 1986a) and moisture by drying to a constant
weight at 102 8C (International Dairy Federation, 1982). pH
of a paste, prepared by blending 12 ml H2O at 40 8C with
20 g grated cheese, was measured using a pH meter (model
26, Radiometer, Copenhagen DK-2400, Denmark).

Monitoring of lipolysis in cheese

FFA from butyric (C4 : 0) to linolenic (C18 : 3) were quantified
by resolution of p-bromophenacyl (PBP) derivatives of the
FFA by RP-HPLC (Kilcawley et al. 2001). Samples of
cheese from the three trials were assayed in duplicate at
each sampling point. To enable better separation of fat,
0.2 ml of a 9.5 M solution of sulphuric acid was added to
each 2.5 g sample of grated cheese. FFA were separated
from the cheese by solvent extraction using diethyl ether
and centrifuged, pellets were re-extracted twice as de-
scribed by Kilcawley et al. (2001), however, the three in-
dividual solvent extracts were not pooled, but were treated
as separate samples to facilitate easier identification of
FFA peaks on the chromatogram. The quantified FFA in
each extract were summed to give the total of individual
FFA in the cheese sample. An internal standard, nonanoic
acid (C9 : 0; 0.1 mol/l (v/v)), was added to each solvent
extract. Results were expressed as mg individual FFA/kg
cheese.

Statistical analysis of FFA data

A split plot design with three replicates (trials) was used to
analyse the effects of the three treatments, i.e., the starter
strain, days of ripening, and the interaction between starter

strain and days of ripening on the response variables (levels
FFA). The main plot factor was starter strain and the sub-plot
factor was days of ripening. The procedure used was a
general linear model (GLM; Sas1 Inc., Cary, NC 27513,
USA) for analysis of variance of a split plot design. Fisher’s
least significant difference test was used to determine
whether statistically significant differences had occurred
among means. All differences considered as significant had
P values <0.05.

Results

Lipolytic and esterolytic activities of CFE of the
starter cultures

Specific lipolytic, esterolytic and LDH activities of the CFE
of the cultures Lc. lactis subsp. cremoris AM2 and Lc. lactis
subsp. cremoris HP grown in RSM at 30 8C to pH 5.2 are
presented in Table 1. Specific activity of LDH (units /mg
protein) was highest in the CFE of Lc. lactis subsp. cremoris
HP. Specific esterolytic activity was similar in CFE of Lc.
lactis subsp. cremoris AM2 and Lc. lactis subsp. cremoris
HP, while specific lipolytic activity was higher in the CFE of
Lc. lactis subsp. cremoris HP.

Viability in cheese of starter and non-starter bacteria

Viabilities of the different starter strains in Trials 1, 2
and 3, detected on LM17 agar, are shown in Figs. 1a, b & c,
respectively. Viable cell populations were generally higher
for Lc. lactis subsp. cremoris HP on day 1 of ripening
(y108 cfu/g) compared with Lc. lactis subsp. cremoris AM2
(y106 cfu/g) for all trials. However, over the first 8 weeks
of ripening, viability of AM2 was lower than HP with po-
pulations of AM2 falling to y104 cfu/g compared with
y106 cfu/g for strain HP.

In contrast to the decline in starter populations over the
first 8 weeks of ripening, counts of NSLAB increased during
ripening in all cheeses up to 238 d (Figs. 2a, b & c). Gen-
erally, NSLAB populations increased from y102 cfu/g on
day 1 to reach y107 cfu/g at the end of the ripening period
in cheeses from all three trials.

Table 1. Presence and specific activities of intracellular lipase,
esterase and lactate dehydrogenase (LDH) in Lactococcus lactis
subsp. cremoris AM2 and Lc. lactis subsp. cremoris HP grown
in buffered reconstituted skim milk at 30 8C

Values are means±SD for n=3

AM2 HP

Lipase, mEq oleic acid
released/min/mg protein

0.022±0.009 0.071±0.012

Esterase, abs/min/mg
protein

0.013±0.002 0.013±0.003

LDH, units/mg
protein

0.022±0.032 2.984±1.869

Autolysis and lipolysis in Cheddar cheese 107

https://doi.org/10.1017/S0022029902005915 Published online by Cambridge University Press

https://doi.org/10.1017/S0022029902005915


Cell autolysis as measured by the release of the marker
enzyme, LDH

LDH activity was detected in cheese juice extracted from
both cheeses during ripening and results for trials 1, 2 and 3
are presented in Figs. 3a, b & c, respectively. At all sampling
points during the 238 d ripening period in all three trials,
activity of LDH in cheese juice was higher in cheese made
with Lc. lactis subsp. cremoris AM2 than in cheese made
with Lc. lactis subsp. cremoris HP.

Cheese composition

Compositional analyses at 14 d for cheeses made with Lc.
lactis subsp. cremoris AM2 or Lc. lactis subsp. cremoris HP
for the three trials are presented in Table 2. Compositions
of cheese were similar in all three trials.

FFA levels in cheese during ripening

Levels of individual FFA from butyric (C4 : 0) to linolenic
(C18 : 3) acids in cheeses made with Lc. lactis subsp. cremoris

Table 2. Composition of experimental Cheddar cheeses of Trials 1, 2 and 3 made with Lactococcus lactis subsp. cremoris AM2 or
Lc. lactis subsp. cremoris HP as starter after 14 d of ripening

Values are means of duplicates

Starter Trial Fat (%) Protein (%) Moisture (%) T.S.† (%) pH Salt (%) S/M‡ (%) F.D.M.· (%)

AM2 1 30.797 25.56 38.09 61.91 5.22 2.01 5.277 49.745
2 31.925 25.92 38.58 61.42 5.12 1.77 4.588 51.978
3 30.546 25.28 38.21 61.79 5.21 1.93 5.051 49.435

HP 1 30.467 24.90 39.84 60.16 5.04 1.89 4.744 50.564
2 31.613 25.47 38.75 61.25 5.07 1.91 4.929 51.613
3 30.465 25.51 38.35 61.65 5.11 2.00 5.215 49.416

† Total solids

‡ Salt in moisture

· Fat in dry matter
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Fig. 1. Viable starter cell populations, expressed as log cfu/g
cheese, enumerated on LM17 agar in Cheddar cheese manu-
factured with Lc. lactis subsp. cremoris AM2 ($) or Lc.
lactis subsp. cremoris HP (�) as starter in Trials 1 (a), 2 (b) and
3 (c).
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Fig. 2. Viable counts of Non-Starter Lactic Acid Bacteria
(NSLAB), expressed as log cfu/g cheese, enumerated on LBS
agar in Cheddar cheeses manufactured with Lc. lactis subsp.
cremoris AM2 ($) or Lc. lactis subsp. cremoris HP (�) as starter
in Trials 1 (a), 2 (b) and 3 (c).
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Table 3. Free fatty acid (FFA) levels, expressed as mg/kg cheese, in cheeses of Trial 1 manufactured with Lactococcus lactis subsp. cremoris AM2 or Lc. lactis subsp. cremoris
HP as starter

Values are means and (SD) for n=2

FFA

Day 1 Day 35 Day 70 Day 126 Day 182 Day 238

AM2 HP AM2 HP AM2 HP AM2 HP AM2 HP AM2 HP

C4 : 0 151 (41) 70 (25) 28 (0) 30 (1) 101 (40) 73 (18) 40 (8) 32 (2) 114 (18) 58 (7) 93 (11) 54 (4)
C6 : 0 59 (13) 87 (10) 46 (3) 44 (1) 79 (18) 108 (22) 55 (4) 54 (0) 65 (3) 57 (0) 80 (1) 79 (3)
C8 : 0† 60 (17) 68 (7) 46 (12) 41 (2) 79 (4) 62 (14) 48 (4) 42 (3) 76 (7) 61 (0) 91 (17) 76 (15)
C10 : 0 72 (1) 71 (1) 58 (10) 56 (8) 98 (2) 63 (12) 71 (12) 55 (7) 87 (7) 72 (9) 116 (18) 96 (22)
C12 : 0 67 (3) 66 (2) 54 (5) 60 (3) 101 (1) 77 (6) 69 (6) 60 (5) 87 (3) 75 (4) 117 (19) 106 (20)
C14 : 0† 127 (1) 138 (0) 109 (5) 112 (2) 181 (2) 159 (0) 135 (8) 119 (23) 158 (2) 144 (1) 200 (22) 181 (17)
C16 : 0† 423 (25) 426 (3) 380 (76) 354 (48) 684 (1) 424 (82) 452 (79) 353 (53) 602 (32) 484 (64) 817 (148) 643 (114)
C18 : 0† 214 (20) 207 (0) 188 (43) 165 (11) 287 (7) 208 (30) 189 (26) 158 (18) 255 (9) 216 (17) 330 (55) 280 (40)
C18 : 1 726 (37) 695 (15) 580 (73) 567 (82) 1106 (38) 635 (123) 708 (135) 541 (80) 931 (64) 617 (64) 1313 (247) 1042 (211)
C18 : 2 121 (5) 102 (4) 111 (32) 122 (2) 189 (3) 144 (1) 153 (18) 129 (12) 171 (32) 124 (16) 204 (39) 159 (40)
C18 : 3 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Total 2020 (86) 1929 (18) 1599 (253) 1552 (156) 2904 (156) 1953 (257) 1919 (300) 1542 (203) 2546 (136) 1907 (53) 3362 (577) 2716 (479)

†Denotes FFA significantly higher (P<0.05) in cheeses manufactured using Lc. lactis subsp. cremoris AM2 than in cheeses made using Lc. lactis subsp. cremoris HP

Table 4. Free fatty acid levels, expressed as mg/kg cheese, in cheeses of Trial 2 manufactured with Lactococcus lactis subsp. cremoris AM2 or Lc. lactis subsp. cremoris HP
as starter

Values are means and (SD) for n=2

FFA

Day 1 Day 35 Day 70 Day 126 Day 182 Day 238

AM2 HP AM2 HP AM2 HP AM2 HP AM2 HP AM2 HP

C4 : 0 138 (13) 110 (1) 26 (4) 25 (1) 51 (13) 36 (40) 42 (10) 48 (10) 29 (1) 33 (2) 102 (11) 57 (7)
C6 : 0 125 (11) 106 (10) 47 (9) 52 (3) 48 (2) 32 (1) 62 (7) 70 (7) 49 (1) 40 (4) 87 (7) 76 (14)
C8 : 0† 68 (9) 70 (0) 37 (2) 39 (2) 47 (4) 26 (3) 54 (7) 64 (13) 49 (3) 33 (5) 88 (4) 73 (18)
C10 : 0 53 (2) 64 (8) 42 (1) 45 (4) 56 (13) 33 (6) 62 (19) 74 (17) 61 (2) 43 (7) 110 (8) 85 (23)
C12 : 0 60 (5) 113 (8) 50 (3) 45 (12) 54 (5) 37 (3) 64 (11) 71 (9) 52 (1) 44 (2) 99 (6) 74 (12)
C14 : 0† 146 (6) 153 (6) 109 (9) 108 (2) 113 (1) 81 (6) 140 (14) 153 (11) 101 (1) 91 (3) 173 (8) 157 (18)
C16 : 0† 368 (1) 463 (20) 298 (5) 306 (29) 371 (86) 229 (36) 428 (131) 535 (117) 387 (26) 303 (50) 741 (53) 579 (140)
C18 : 0† 178 (8) 215 (24) 136 (7) 147 (8) 149 (19) 96 (9) 173 (34) 200 (23) 143 (7) 122 (18) 272 (17) 227 (47)
C18 : 1 526 (8) 649 (21) 414 (21) 443 (43) 529 (75) 349 (63) 701 (235) 856 (204) 672 (29) 513 (76) 1316 (84) 979 (200)
C18 : 2 130 (3) 137 (12) 100 (8) 99 (3) 110 (6) 75 (8) 128 (25) 147 (15) 108 (7) 92 (8) 180 (8) 160 (28)
C18 : 3 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Total 1793 (50) 2079 (76) 1259 (69) 1309 (107) 1528 (196) 996 (132) 1855 (493) 2217 (426) 1653 (75) 1315 (175) 3168 (205) 2469 (506)

†Denotes FFA significantly higher (P<0.05) in cheeses manufactured using Lc. lactis subsp. cremoris AM2 than in cheeses made using Lc. lactis subsp. cremoris HP
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AM2 or Lc. lactis subsp. cremoris HP up to 238 d of
ripening in trials 1, 2 and 3 are presented in Tables 3, 4 & 5,
respectively. Throughout the ripening period, palmitic and
oleic acids were the most abundant FFA in all cheeses and
consequently the most pronounced increase over time was
observed for these FFA. Levels of each FFA increased as
ripening progressed up to 238 d in all cheeses, except for
linolenic acid (C18 : 3) which was not detected in any cheese
and also butyric and caproic acids which did not show a
considerable increase during ripening. Consistently lower
levels of FFA during ripening were noted in the cheese from
trial 3 compared with trials 1 and 2. Generally, over the
three trials, as ripening progressed beyond day 70, the lev-
els of individual FFA in the range C4 : 0 to C14 : 0 were
somewhat higher in cheese made using Lc. lactis subsp.
cremoris AM2 compared with those made with Lc. lactis
subsp. cremoris HP. However, in the case of the longer
chain FFA, palmitic (C16 : 0) and oleic acid (C18 : 1), from day
70 of ripening onwards, differences became quite large
with highest levels found in cheeses made with Lc. lactis
subsp. cremoris AM2.

Statistical analysis of FFA data

Data from 3 trials were analysed to determine whether
statistically significant relationships existed between, starter
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Fig. 3. LDH activity in cheese juice expressed from Cheddar
cheeses manufactured with Lc. lactis subsp. cremoris AM2 ($)
or Lc. lactis subsp. cremoris HP (�) as starter in Trials 1 (a),
2 (b) and 3 (c).
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strain used for cheese manufacture, days of ripening and the
interaction between starter culture and days of ripening, on
the release of FFA during ripening. Cheddar cheese manu-
factured using the highly autolytic strain Lc. lactis subsp.
cremoris AM2 had significantly higher levels (P<0.05) of
caprylic (C8 : 0), myristic (C14 : 0), palmitic (C16 : 0) and stearic
(C18 : 0) acids compared with the levels found in cheeses
made with poorly autolytic strain Lc. lactis subsp. cremoris
HP. However, while the overall effect of starter was sig-
nificant, levels of certain FFA were found to be numerically
lower for strain AM2 at some of the time points, particularly
those in the earlier stages of ripening, see Tables 3–5. A
similar significant effect (P<0.05) on FFA release was found
for days of ripening. In contrast, no effect was found for the
interaction between starter culture and days of ripening.

Discussion

Lipolysis is an important biochemical event in the devel-
opment of the final flavour of cheese and the ratios and
levels of individual FFA are considered to influence the
flavour of different cheese varieties (Woo et al. 1984), both
directly, particularly in some Italian varieties, and in-
directly, as precursors for other compounds such as methyl
ketones, thioesters and lactones. While the exact nature of
the contribution of FFA to the flavour of Cheddar cheese
remains unclear, they have been suggested as being the
backbone of Cheddar flavour (Patton, 1963) and have been
reported to contribute to aroma of Cheddar flavour (Forss &
Patton, 1966; Forss, 1979). It is generally agreed that FFA,
at appropriate concentrations, contribute to desirable
flavours in Cheddar cheese (Reddy & Marth, 1993),
while excessive lipolysis leads to undesirable or ‘rancid’
off-flavours.

In this study, the levels of individual FFA from butyric to
linoleic acids increased significantly (P<0.05) throughout
the 238 day ripening period. The most notable increases
were in palmitic and oleic acids, which in two of the three
trials, increased approximately twofold over the ripening
period in cheese made with the starter Lc. lactis subsp.
cremoris AM2. A steady increase in the concentrations of
individual FFA during Cheddar cheese ripening has been
reported previously (Dulley & Grieve, 1974; McNeill &
Connolly, 1989; Reddy & Marth, 1993). Marsili (1985)
found the best predictors of lipolytic age in Cheddar cheese
to be capric, lauric, myristic and palmtic acids; in our study
these FFA were also found to increase during ripening.
Linolenic acid was not detected in any of the cheeses in
the three trials, however this FFA may have been present
below the detection level of the analytical method.

At all ripening times, lower levels of individual FFA were
found in cheeses from trial 3 than in cheeses from trials 1
or 2. Cheeses of trials 1, 2 and 3 were manufactured in
October, November and January, respectively, and it is
possible that differences in susceptibility to lipolysis may
have occurred as a result of changes in MFGM structure.

Indeed previous workers have shown that the pattern of
synthesis of fatty acids changes with lactation and that
a marked change in MFGM composition occurs during
the transition from colostrum to normal milk. (Bauman
& Davis, 1974; Eastridge & Palmquist, 1988; Lynch
et al. 1992). The influence of seasonality on the FFA
composition of cheese was also reported by Macedo &
Malcata (1996).

It has long been known that the type of starter strain used
for cheese manufacture has a major influence on the de-
velopment of cheese flavour (Lawrence et al. 1972; Lowrie
et al. 1972; Martley & Lawrence, 1972; Visser, 1977). More
recently, it has been established that differences in starter
cell autolysis influence the level of proteolysis in cheese
(Wilkinson et al. 1994a, b ; Crow et al. 1993, 1995; Chapot-
Chartier, 1994; O’Donovan et al. 1996). It would appear
that starter cell autolysis is a necessary prerequisite to the
release of intracellular proteolytic enzymes into cheese
curd which subsequently impacts on flavour development
and ripening (Crow et al. 1995; Fox et al. 1996b ; O’Do-
novan et al. 1996). Lactic acid bacteria (LAB) are generally
considered to be weakly lipolytic (Stadhouders & Veringa,
1973; Fox et al. 1993; Chich et al. 1997) and to date, it is
not known whether lipolytic activity is influenced by the
autolytic properties of the particular strain. In this study, a
statistically significant positive relationship was found be-
tween FFA levels developed in cheese during ripening and
the starter culture used for cheese manufacture. The starter
strains used for cheese manufacture were selected on the
basis of previously identified differences in their autolytic
properties (Wilkinson et al. 1994b ; 1995). Differences in
autolysis of AM2 or HP in cheese as measured by viable cell
counts and release of the intracellular marker enzyme LDH
agree with previous findings (Martley & Lawrence, 1972;
Wilkinson et al. 1994b ; Chapot-Chartier et al. 1994). Vi-
able cell counts of starter strains are most valid over the first
6–8 weeks of ripening and over this interval the viability of
AM2 was much lower than for HP (Crow et al. 1995;
O’Donovan et al. 1996). Levels of LDH were also shown to
be much higher for AM2 compared with HP confirming the
highly autolytic nature of Lc. lactis subsp. cremoris AM2.
FFA results indicated that this highly autolytic strain also
developed higher levels of lipolysis. In particular, levels
of caprylic (C8 : 0), myristic (C14 : 0), palmitic (C16 : 0) and
oleic (C18 : 0) acids were significantly higher (P<0.05) in
cheeses manufactured with Lc. lactis subsp. cremoris AM2
than in cheeses manufactured using Lc. lactis subsp. cre-
moris HP as starter. Assays of lipolytic and esterolytic ac-
tivities of CFE derived from Lc. lactis subsp. cremoris AM2
and Lc. lactis subsp. cremoris HP indicated that differ-
ences in lipolysis in cheeses made with these starters were
not due to the presence of higher lipolytic and esterolytic
activities in strain AM2. Therefore, we suggest that it is
likely that these differences in FFA result from a more ef-
ficient and extensive release of lipolytic and esterolytic
enzymes from the highly autolytic strain Lc. lactis subsp.
cremoris AM2.
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Differences in autolysis of AM2 or HP has been attribu-
ted to their differing response to the cooking temperatures
used in Cheddar cheese manufacture and results in differ-
ing viable populations, survival rates and release of intra-
cellular enzymes into cheese (Martley & Lawrence, 1972;
Lowrie et al. 1974; Wilkinson et al. 1995). To date, dif-
ferences in starter autolysis has been shown to result in
significant effects on proteolytic events during cheese ripen-
ing e.g. reduction in bitterness and increased amino acid
production by the highly autolytic starter AM2. Although
LAB are weakly lipolytic it appears from the data presented
in this study that lipolytic/esterolytic activity may also be
influenced by the general mechanism of autolytic release
of intracellular enzymes from the starter bacteria in cheese.
In an earlier study, which provides some evidence for the
effects of autolysis of AM2 on the formation of volatile fat-
derived aroma compounds, Walker & Keen (1974) com-
pared the formation of odd numbered (C : 3–C : 15) methyl
ketones during the ripening of Cheddar cheese made with
strain AM2 or HP. These workers found highest levels of
total and individual methyl ketones in cheese made with
AM2 compared with HP with differences varying over the
390 d of ripening. Hence, the influence of autolysis of
starter bacteria on cheese enzymology and biochemistry
may not be confined to proteolysis and differences in the
extent of starter autolysis may also affect other enzyme-
mediated flavour reactions including the formation of
volatile and non-volatile FFA and other important aroma
compounds. Future work will therefore concentrate on
further elucidation of the nature of the relationship between
autolysis and cheese flavour chemistry and the use of fast
autolysing starters to accelerate cheese ripening.

This research was partly funded by grant aid under the Food
Sub-Programme of the Operational Programme for Industrial
Development, which is administered by the Department of Agri-
culture, Food and Rural Development and supported by National
and EU funds. Yvonne Collins was a recipient of a Teagasc Walsh
Fellowship.
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