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Switched server systems are mathematical models of manufacturing, traffic and queueing systems
that have being studied since the early 1990s. In particular, it is known that typically the dynamics
of such systems is asymptotically periodic: each orbit of the system converges to one of its finitely
many limit cycles. In this article, we provide an explicit example of a switched server system with
exotic behaviour: each orbit of the system converges to the same Cantor attractor. To accomplish
this goal, we bring together recent advances in the understanding of the topological dynamics of
piecewise contractions and interval exchange transformations (IETs) with flips. The ultimate result
is a switched server system whose Poincaré map is semiconjugate to a minimal and uniquely ergodic
IET with flips.
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1 Introduction

Certain aspects of manufacturing, traffic or queueing systems are captured by the mathemati-
cal model named switched server system, which was introduced by Chase et al. in [4, Section
II.B, p. 72]. It is a continuous-time system discretely controlled via a switched state-feedback,
also referred to as a hybrid dynamical system (see [21]). It can also be considered a pseudo-
billiard (see [1]). In this article, we provide an example of a switched server system with atypical
non-trivial dynamics. Our approach benefits from recent advances in the understanding of the
topological dynamics of piecewise contractions (see [18]).

The switched server system we consider here consists of three buffers (tanks) numbered 1, 2,
3, and a server. It is very convenient to think of each buffer i as a tank partially filled in with
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a fluid (work). At each time t ≥ 0, a fluid is delivered to each tank i at the constant rate ρi = 1
3

(i = 1, 2, 3) and is removed from a selected tank i ∈ {1, 2, 3} by the server at the constant rate
ρ = 1. The volume of fluid in the tank i at the time t is denoted by vi(t). When the tank i is emptied
by the server at the time t, the server changes its location to the tank j �= i with the largest scaled
volume dijvj(t), where {dij : 1 ≤ i, j ≤ 3, i �= j} are the parameters of the system. We assume that∑3

i=1 vi(0) = 1. Since the system is closed (ρ1 + ρ2 + ρ3 = ρ), we have that
∑3

i=1 vi(t) = 1 for
every t ≥ 0. Hence, the state v(t) = (v1(t), v2(t), v3(t)) of the system at the time t is a probability
vector and the phase space is the set � = {v = (v1, v2, v3) : vi ≥ 0, ∀i and v1 + v2 + v3 = 1}. Let
l(t) denote the position of the server at the time t. We assume that t �→ l(t) is right-continuous.
Figure 1(a) shows a switched server system with the server located at the position l = 1.

The trajectory t ∈ [0, ∞) �→ v(t) ∈ � describes the position of a particle that moves with
constant velocity inside � and changes its velocity when the particle hits the boundary ∂�

according to a non-specular reflection. Hence, the system is a pseudo-billiard (see [1]). The
times 0 ≤ t1 < t2 < t3 · · · at which any of the tanks is empty are called the switching times. At
the initial time t = 0, the server is supposed to be connected to a non-empty tank. Notice that
v(t) ∈ ∂� (the boundary of the phase space) if and only if t ∈ {t1, t2, . . .} (i.e. if t is a switching
time). In other words, at the switching times, the pseudo billiard trajectory hits the boundary
∂�. By sampling the system at the switching times, we obtain a map F : ∂� → ∂� called the
Poincaré map or first-return map induced by the switched server system (see Figure 1(b)). The
frequency with which the server is connected to the tank i is defined by

freq (i) = lim
n→∞

1

n
#{1 ≤ k ≤ n : l(tk) = i},

whenever the limit exists.
The dynamics of a switched server system with parameters {dij > 0 : 1 ≤ i, j ≤ 3, i �= j} depends

only on the proportionality between pairs of parameters. More specifically, switched server sys-
tems sharing the same ratios d13/d12, d21/d23 and d32/d31 have the same dynamics. In this way,
we assume that if (d1, d2, d3) is a vector with positive entries, then the system parameters dij are
chosen according to the following conditions:

d13

d12
= d1,

d21

d23
= d2,

d32

d31
= d3. (1.1)

By [15, Theorem 1.4], we have that for Lebesgue almost every vector (d1, d2, d3) with pos-
itive entries, any switched server system with parameters dij satisfying (1.1) is structurally
stable and admits finitely many limit cycles that attract all the orbits. The same result was
obtained in [4, Theorem 4.1] under the additional restrictions: d21 = d31, d12 = d32 and d13 = d23.
Figure 1(b) shows the case in which d1 = d2 = d3 = 1 and dij = 1 for all i �= j. In this case,{(

0, 2
3 , 1

3

)
,
(

1
3 , 0, 2

3

)
,
(

2
3 , 1

3 , 0
)}

is a limit cycle of the system.
In this article, we are interested in constructing switched server systems with complex dynam-

ics, i.e., with no periodic orbit and therefore with no limit cycle. In the light of what was discussed
in the previous paragraph, it necessary to search for the appropriate parameters in a Lebesgue
negligible set of parameters (d1, d2, d3). Moreover, the example we provide presents stochas-
tic regularity in the sense that it is possible to compute the frequency with which the server is
connected to the tank i at the switching times.
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(a) (b) (c)

FIGURE 1. The switched server system, the pseudo billiard and the Poincaré map.

The strategy we use to tackle the problem is the following. The dynamics of a switched
server system is completely determined by the Poincaré map F : ∂� → ∂� induced by the
system on the boundary ∂� of the phase space. The Poincaré map F is topologically conju-
gate to the piecewise smooth interval map f : [0, 1] → [0, 1] defined by f = ϕ−1 ◦ F ◦ ϕ, where
ϕ : [0, 1] → ∂� denotes the anticlockwise arc-length parametrisation of ∂� with ϕ(0) = e2 =
(0, 1, 0). Conversely, the following lemma is provided in this article:

Lemma 1.1 Given d1, d2, d3 > 0, let fd1,d2,d3 : [0, 1] → [0, 1] be the map defined by

fd1,d2,d3 (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

2
z + 1

2
if z ∈ [z0, z1)

−1

2
z + 1 if z ∈ [z1, z2)

−1

2
z + 1

2
if z ∈ [z2, z3)

−1

2
z + 1 if z ∈ [z3, z4],

(1.2)

where

z0 = 0, z1 = 1

3(1 + d1)
, z2 = 1

3(1 + d2)
+ 1

3
, z3 = 1

3(1 + d3)
+ 2

3
, z4 = 1. (1.3)

Then the Poincaré map F : ∂� → ∂� of any switched server system with parameters dij

satisfying (1.1) is topologically conjugate to fd1,d2,d3 .

In Figure 1(c), the map f = f1,1,1 is plotted considering d1 = d2 = d3 = 1. In general, for any
d1, d2, d3 > 0, the map fd1,d2,d3 is a piecewise λ-affine contraction, where λ = 1

2 (see [15]). We
say that an infinite word w = i0i1 . . . over the alphabet A= {1, 2, 3, 4} is a symbolic itinerary or
natural coding of f = fd1,d2,d3 if there exists z ∈ [0, 1] such that, for each k ≥ 0,

f k(z) ∈
{

[zik−1, zik ) if ik < 4

[z3, z4] if ik = 4.

A symbolic itinerary w (i.e. an infinite word over the alphabet A) is ultimately periodic if there
exist finite words u and v over the alphabet A such that w = uvv . . . For instance, the symbolic
itinerary w = 311 432 432 432 . . . is ultimately periodic with u = 311 and v = 432.

https://doi.org/10.1017/S095679251900024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679251900024X


A switched server system 685

The problem we want to solve translates into the following question.

(Q) Does the family of piecewise contractions {fd1,d2,d3 : d1 > 0, d2 > 0, d3 > 0} contain a map
having no ultimately periodic symbolic itinerary (and therefore no periodic orbit and no limit
cycle) ?

On the one hand, as already mentioned, recent advances (see [14, 15]) in the understanding of
the topological dynamics of piecewise contractions show that generically piecewise contractions
have finitely many limit cycles that attract all orbits. Hence, an affirmative answer to (Q) is very
unlikely. On the other hand, as it was shown very recently (see [18, Theorem 2.2]), there exist
piecewise 1

2 -affine contractions with only one gap having no periodic orbit and no ultimately
periodic symbolic itinerary. In order to adapt the proof of [18, Theorem 2.2] to our framework, it
is necessary to find an isometric model for fd1,d2,d3 , that is, a minimal and uniquely ergodic inter-
val exchange transformation (IET) T with four flips and three discontinuities 0 < x1 < x2 < x3

satisfying T(x2) < T(0) < T(x3) < T(x1) (see Section 2). Surprisingly, as we show in this article,
(Q) has an affirmative answer.

The use of IETs as isometric models of complex dynamics is quite standard. Lots of piecewise
smooth aperiodic interval maps are topologically semiconjugate to IETs (see [3, 5, 6, 17, 18]).
Moreover, IETs are the simplest discontinuous interval maps preserving Lebesgue measure
(see [9]).

2 Statement of the results

Throughout this article, let P and Q be the integer matrices defined by

P =

⎛⎜⎜⎝
3 3 5 4
1 2 3 3
1 1 2 1
2 3 5 5

⎞⎟⎟⎠ , Q =

⎛⎜⎜⎝
1 0 0 0
0 1 1 0
0 0 1 1
0 1 0 0

⎞⎟⎟⎠ .

By the Perron–Frobenius Theorem (see [20, Theorem 5.12]), since P has positive entries, the
eigenvalue of P of maximum modulus (called Perron–Frobenius eigenvalue and denoted by η)
is unique, real, greater than zero and simple. Moreover, there is a unique probability eigenvector
with positive entries associated with η.

Let ν be the probability eigenvector with positive entries associated with the Perron–Frobenius
eigenvalue η of P. Let λ = (λ1, λ2, λ3, λ4) be the vector defined by λ = Qν whose norm is |λ| =
λ1 + λ2 + λ3 + λ4 > 1. Consider the partition of the interval [0, |λ|]:

I1 = [0, λ1), I2 = [λ1, λ1 + λ2), I3 = [λ1 + λ2, λ1 + λ2 + λ3),

I4 = [λ1 + λ2 + λ3, λ1 + λ2 + λ3 + λ4].

Let T : [0, |λ|] → [0, |λ|] be the map (called isometric model) defined by

T(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−x + λ1 + λ3 if x ∈ I1

−x + λ1 + |λ| if x ∈ I2

−x + λ1 + λ2 + λ3 if x ∈ I3

−x + λ1 + λ3 + |λ| if x ∈ I4.

(2.1)
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According to the definition given in [7], we have that T is a 4-IET with flips (4-IET with flips). In
fact, it can be easily verified that T is one-to-one on (0, |λ|], T |Ii is an isometry (i = 1, 2, 3, 4) and
T reverts the orientation of one (in fact, all) of the intervals I1, I2, I3, I4. We denote by OT (x) =
{x, T(x), T2(x), . . .} the T-orbit of x ∈ [0, |λ|]. We say that T is topologically transitive if it has
a dense orbit; minimal if every T-orbit is dense; uniquely ergodic if the (normalised) Lebesgue
measure on [0, |λ|] is the only T-invariant Borel probability measure.

Our first result is the following.

Theorem 2.1 The map T defined in (2.1) is minimal and uniquely ergodic.

The example given in Theorem 2.1 is rare. Typically, an n-IET with flips has an interval
formed by periodic orbits and, therefore, is not minimal (see [13]). This situation is completely
different in the case of IETs without flips, also called standard IETs. The simplest example is the
rotation of the circle Rα : [0, 1) → [0, 1) defined by Rα(x) = {x + α}, where 0 < α < 1. It can be
written as the standard 2-IET Tα : [0, 1] → [0, 1] defined by Tα(x) = x + 1 − α if x ∈ [0, α) and
Tα(x) = x − α if x ∈ [α, 1]. It is widely known that when α is irrational, Rα and Tα are minimal
and uniquely ergodic. Concerning standard irreducible n-IETs with n ≥ 2, Keane’s conjecture,
answered in the affirmative by many authors (see [2, 10, 12, 19, 22]), states that such maps are
typically minimal and uniquely ergodic.

To state our main result, we need some more definitions. Let

p1 = 0, p2 = T(λ1 + λ2), p3 = T(λ1 + λ2 + λ3), p4 = |λ|.
For i, j ∈ {1, 2, 3, 4}, let

Kij = {k ≥ 0 : Tk(pj) ∈ Ii}, cij =
∑
k∈Kij

1

2k
. (2.2)

Let

M =
⎛⎝c11 − c14 c12 − c14 c13 − c14

c21 − c24 c22 − c24 c23 − c24

c31 − c34 c32 − c34 c33 − c34

⎞⎠.

Let u4 = 1 − u1 − u2 − u3 > 0, where u1, u2, u3 > 0 is the unique solution of the linear system⎛⎝u1

u2

u3

⎞⎠= 1

2
M

⎛⎝−1 −1 −1
0 1 0
0 0 1

⎞⎠⎛⎝u1

u2

u3

⎞⎠+ 1

2
M

⎛⎝1
0
0

⎞⎠+ 1

2

⎛⎝c14

c24

c34

⎞⎠.

Let

z1 = u1, z2 = u1 + u2, z3 = u1 + u2 + u3. (2.3)

In what follows, we say that a map f : [0, 1] → [0, 1] is topologically semiconjugate to the
isometric model T : [0, |λ|] → [0, |λ|] if there exists a continuous, surjective, nondecreasing map
h : [0, 1] → [0, |λ|] such that h ◦ f = T ◦ h. We denote by S the topological closure of a set S and
by ωF(v) =⋂

n≥0

⋃
k≥n{Fk(v)}, the ω-limit set of v ∈ ∂� by F : ∂� → ∂�.

Now we state our main result.
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Theorem 2.2 Let z1, z2 and z3 be the solution of (2.3) and let d1, d2, d3 > 0 be defined by

d1 = 1

3z1
− 1 = 0.213841 . . . , d2 = 2 − 3z2

3z2 − 1
= 4.036935 . . . , d3 = 3 − 3z3

3z3 − 2
= 1.428826 . . .

Then for any switched server system with parameters dij satisfying (1.1) the following statements
are true:

(a) The switched server system has no periodic orbit;
(b) The Poincaré map F : ∂� → ∂� of the system is topologically semiconjugate to T;
(c) ωF(v) is a Cantor set for every v ∈ ∂�;
(d) The frequency freq (i) with which the server is connected to the tank i at the switching times

is

freq (1) = λ3

|λ|
∼= 34.44%, freq (2) = λ1 + λ4

|λ|
∼= 41.82%, freq (3) = λ2

|λ|
∼= 23.72%.

In Theorem 2.2, the item (d) follows from the item (b), from Theorem 2.1 and from the ver-
sion of Birkhoff’s Ergodic Theorem for uniquely ergodic transformations (see [7, Proposition
4.1.13]). The items (a) and (d) are also confirmed by numerical simulations using the R program-
ming language. It is also worth mentioning that the matrices P and Q were obtained by using
Rauzy induction (see [13]).

A few words are necessary to understand the implications of Theorem 2.2. Let d1, d2, d3 be the
real numbers defined in Theorem 2.2 and consider a switched server system with parameters dij

satisfying (1). Then, by Theorem 2.2, the system has a Cantor attractor, no periodic orbit and no
limit cycle. Moreover, the system is Li-Yorke chaotic (see [11]). On the other hand, the system
presents stochastic regularity in the sense that, regardless the initial state, the server stays 34.44%
connected to the tank 1, 41.82% connected to the tank 2 and 23.72% connected to the tank 3. In
the real world or in computational simulations, one has to deal with inaccuracies in parameters
and rounding errors, then it is natural to wonder whether the theoretical prediction remains valid
in such cases. As already discussed, it is known from other previous works that for Lebesgue
almost every vector

(̃
d1, d̃2, d̃3

)
with positive entries, the system with the parameters d̃1, d̃2, d̃3 has

finitely many limit cycles that attract all orbits. This shows that the system with the parameters
d1, d2, d3 given in Theorem 2.2 is not structurally stable because arbitrarily close to it there are
other systems with a completely different qualitative behaviour: instead of Cantor attractors the
systems have attractive limit cycles. In spite of that, some properties of the theoretical system
still persist when we perturb its parameters. In our computational simulations using rational
parameters close to d1, d2, d3, we found no periodic orbit and no limit cycle. Hence, if the system
has periodic orbits, their period is extremely high. Besides that, the frequencies that we found in
our computational simulations are the same as those approximations given in Theorem 2.2.

3 Poincaré maps of switched server systems and the proof of Lemma 1.1

We keep all the notations given in the previous sections.

Proof of Lemma 1.1 Let d1, d2, d3 > 0 be given. Let the switched server system parameters dij

be chosen according to (1.1). Let 0 ≤ t1 < t2 . . . denote the switching times. If at the switching
time tm the server is connected to the tank j, then it keeps connected to the tank j during the
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time-interval [tm, tm+1). Moreover,

tm+1 − tm = vj(tm)

ρ − ρj
= vj(tm)

1 − 1
3

= 3

2
vj(tm). (3.1)

For every m ≥ 1 and tm ≤ t ≤ tm+1, the level vk(t) of any tank k ∈ {1, 2, 3} is determined by the
set of linear equations

vk(t) =

⎧⎪⎪⎨⎪⎪⎩
vk(tm) + 1

3
(t − tm) if k �= j

vj(tm) − 2

3
(t − tm) if k = j,

(3.2)

where j is the position of the server at the time tm.
Equation (3.2) shows that the state v(t) = (

v1(t), v2(t), v3(t)
)

of the system at any time t ∈
[tm, tm+1) describes the position of a particle that moves with constant velocity. More pre-
cisely, when the particle hits ∂� at the switching time tm, it takes the velocity v′(tm+) =
limε→0+ v(tm+ε)−v(tm)

ε
and moves with such velocity till it hits the boundary again, at the time

tm+1, when then the velocity changes to v′(tm+1+). In this way, t ∈ [0, ∞) �→ v(t) ∈ � is the
trajectory of a pseudo billiard. By sampling the system at the consecutive switching times t1
and t2, we obtain the Poincaré map F : ∂� → ∂� induced by the flow on the boundary ∂�

of �. More specifically, considering m = 1 in (3.1) and (3.2), t = t2 in (3.2), and (v1, v2, v3) =
(v1(t1), v2(t1), v3(t1)) ∈ ∂� yield

(
F(v1, v2, v3)

)
k
= vk(t2) =

⎧⎨⎩vk + 1

2
vj if k �= j

0 if k = j,
(3.3)

where j is the position of the server at the time t1. Notice that if i �= j denotes the empty tank
number at the time t1, then dijvj = max {dikvk : 1 ≤ k ≤ 3}, that is, at the time t1, the server begins
emptying the tank j with the largest scaled volume dijvj. Now we will find a piecewise-defined
formula for F. Let

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

Given p, q ∈R3, let the line segments [p, q], (p, q), [p, q) and (p, q] be defined as usual, for
instance,

[p, q] = {(1 − α)p + αq : 0 ≤ α ≤ 1}, (p, q) = {(1 − α)p + αq : 0 < α < 1}.

Notice that

∂� = [e2, e3] ∪ [e3, e1] ∪ [e1, e2].

Moreover, ⎧⎪⎪⎨⎪⎪⎩
(v1, v2, v3) ∈ [e2, e3] ⇐⇒ v1 = 0

(v1, v2, v3) ∈ [e3, e1] ⇐⇒ v2 = 0

(v1, v2, v3) ∈ [e1, e2] ⇐⇒ v3 = 0.

(3.4)
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FIGURE 2. Partition of ∂�.

Now let us consider the decomposition of ∂� given by (see Figure 2):

∂� = [r1, e3] ∪ [e3, r2) ∪ [r2, e1] ∪ [e1, r3) ∪ [r3, e2] ∪ [e2, r1),

where

r1 = d13

d12 + d13
e2 + d12

d12 + d13
e3, r2 = d21

d23 + d21
e3 + d23

d23 + d21
e1,

r3 = d32

d31 + d32
e1 + d31

d31 + d32
e2.

Let (v1, v2, v3) ∈ (r1, e3], then v1 = 0, that is, i = 1. Moreover,

v3 >
d12

d12 + d13
, v2 <

d13

d12 + d13
and d13v3 >

d13d12

d12 + d13
= d12d13

d12 + d13
> d12v2,

implying that the tank 3 has the largest scaled volume, that is, j = 3. Proceeding likewise
with respect to [e3, r2), [r2, e1], etc., and using the convention that l is right-continuous (see
Introduction), we reach the following conclusion:⎧⎪⎪⎨⎪⎪⎩

(v1, v2, v3) ∈ [r1, e3] ∪ [e3, r2) ⇐⇒ j = 3

(v1, v2, v3) ∈ [r2, e1] ∪ [e1, r3) ⇐⇒ j = 1

(v1, v2, v3) ∈ [r3, e2] ∪ [e2, r1) ⇐⇒ j = 2.

(3.5)

Putting together (3.3)–(3.5), we reach

F(v1, v2, v3) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1
2v2, 0, v3 + 1

2v2
)

if (v1, v2, v3) ∈ [e2, r1)(
v1 + 1

2v3, v2 + 1
2v3, 0

)
if (v1, v2, v3) ∈ [r1, e3] ∪ [e3, r2)(

0, v2 + 1
2v1, v3 + 1

2v1
)

if (v1, v2, v3) ∈ [r2, e1] ∪ [e1, r3)(
v1 + 1

2v2, 0, 1
2v2

)
if (v1, v2, v3) ∈ [r3, e2].

(3.6)

Let ϕ : [0, 1] → ∂� be the anticlockwise arc-length parametrisation of ∂� (see Figure 3). More
precisely, let

ϕ(t) =

⎧⎪⎪⎨⎪⎪⎩
(1 − 3t)e2 + 3te3 if t ∈ [

0, 1
3

)
(2 − 3t)e3 + (3t − 1)e1 if t ∈ [

1
3 , 2

3

)
(3 − 3t)e1 + (3t − 2)e2 if t ∈ [

2
3 , 1

]
.

(3.7)
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FIGURE 3. The arc-length parametrisation of ∂�.

The inverse of ϕ is defined by

ϕ−1(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

3
√

2
‖p − e2‖ if p ∈ [e2, e3]

1

3
√

2
‖p − e3‖ + 1

3
if p ∈ [e3, e1]

1

3
√

2
‖p − e1‖ + 2

3
if p ∈ [e1, e2].

(3.8)

It follows from (3.6)–(3.8) that the map f = ϕ−1 ◦ F ◦ ϕ is given by

f (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

2
z + 1

2
if z ∈ [z0, z1)

−1

2
z + 1 if z ∈ [z1, z2)

−1

2
z + 1

2
if z ∈ [z2, z3)

−1

2
z + 1 if z ∈ [z3, z4],

where

z0 = 0, z1 = d12

3(d12 + d13)
, z2 = d23

3(d23 + d21)
+ 1

3
, z3 = d31

3(d31 + d32)
+ 2

3
, z4 = 1.

(3.9)
By (1.1), we have that (3.9) is equivalent to (1.3), hence f (z) = fd1,d2,d3 (z) for every z ∈ [0, 1].
This concludes the proof of Lemma 1.1.

4 Interval exchange transformations

In this section, we gather some results related to the construction of topologically transitive IETs.
We will use them in the next section in the proof of Theorem 2.1. Although Theorem 2.1 is by
itself an original and rare example of minimal IET with flips, the arguments used in its proof are
known by experts working with standard IETs.

Let a > 0 and I = [0, a]. Following [7], we say that T : I → I is an n-interval exchange trans-
formation (n-IET) if there exist a partition of I into intervals I1, I2, . . . , In with endpoints {x0, x1},
{x1, x2}, . . . , {xn−1, xn} satisfying 0 = x0 < x1 < · · · < xn = a and the following conditions:

(i) T is one-to-one on I\{x0, . . . , xn};
(ii) T

(
I\{x0, . . . , xn}

)∩ T
({x0, . . . , xn}

)= ∅;
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(iii) T |(xi−1,xi) is an isometry for all 1 ≤ i ≤ n.

Notice that (ii) and (iii) are automatically satisfied if T |Ii is an isometry (i = 1, 2, . . . , n). The
vector λ = (λ1, λ2, . . . , λn) with λi = xi − xi−1 is called the length vector. Moreover, there exist
εi ∈ {−1, 1} and bi ∈R (i = 1, 2, . . . , n) such that

T(x) = Ti(x) := εix + bi for all x ∈ (xi−1, xi) (i = 1, 2, . . . , n). (4.1)

The set F = {1 ≤ i ≤ n : εi = −1} is denominated the flip set of T (see [13]). If F = ∅, then
εi = 1 (i = 1, 2, . . . , n) and T is called standard or without flips. Otherwise, F �= ∅ and T is said
to have flips.

We assume that D(T) = {x1, x2, . . . , xn−1} is the set of discontinuities of T , otherwise T would
be an m-IET with m < n.

4.1 Poincaré maps of IETs

Let 0 = x0 < x1 < · · · < xn = a and let T : I → I be an n-IET defined on I = [0, a] with set of
discontinuities D(T) = {x1, x2, . . . , xn−1}.

Definition 4.1 (T-tower) Given r ≥ 1, we say that {J , T(J ), . . . , Tr−1(J )} is a T-tower if
J , T(J ), . . . , Tr−1(J ) are pairwise disjoint open intervals. Each interval Tk(J ), 0 ≤ k ≤ r − 1, is
called a floor.

It is an elementary fact that all the floors in a T-tower have the same length |J |. In this way,
r ≤ |I|/|J |. Equivalently, a family {J1, J2, . . . , Jr} of pairwise disjoint open intervals is a T-tower
if there exists a permutation τ : {1, . . . , r} → {1, . . . , r} such that Jτ (i+1) = T(Jτ (i)) for every 1 ≤
i ≤ r − 1.

The following result is a consequence of the injectivity of T on (0, a)\D(T).

Lemma 4.2 If {J , T(J ), . . . , Tr−1(J )} is a T-tower with Tr−1(J ) ∩D(T) = ∅, then either Tr(J ) ∩
J �= ∅ or {J , T(J ), . . . , Tr(J )} is a T-tower.

Proof Set U = (0, a)\D(T). Since J , T(J ), . . . , Tr−1(J ) are open intervals and Tr−1(J ) ∩
D(T) = ∅, we have that J ∪ T(J ) ∪ . . . ∪ Tr−1(J ) ⊂ U and Tr(J ) = T

(
Tr−1(J )

)
is an open inter-

val. Without loss of generality, we assume that r ≥ 2. We claim that Tr(J ) ∩ Tk(J ) = ∅ for all
1 ≤ k ≤ r − 1. In fact,

Tr(J ) ∩ Tk(J ) = T(A) ∩ T(B), where A = Tr−1(J ) and B = Tk−1(J ).

Because k − 1 ≤ r − 2 < r − 1 and J , T(J ), . . . , Tr−1(J ) are pairwise disjoint open intervals, we
have that A ∩ B = ∅ and A ∪ B ⊂ U . By the injectivity of T on U , we conclude that T(A) ∩ T(B) =
∅, which proves the claim.

Let 0 < a′ < a and I ′ = [0, a′]. Given x ∈ I , let N(x) ∈N∪ {∞} be defined by

N(x) = inf {N ≥ 1 : TN (x) ∈ I ′}, (4.2)
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where inf ∅ = ∞. The map T ′ : dom (T ′) → I ′, where dom (T ′) = {x ∈ I ′ : N(x) < ∞} and

T ′(x) = TN(x)(x) = T ◦ T ◦ . . . ◦ T︸ ︷︷ ︸
N(x) times

(x)

is called the Poincaré map or first-return map of T on I ′.
In general, the Poincaré map T ′ induced by the n-IET T on a subinterval I ′ of I may have more

discontinuities than T . In order to avoid that situation, we introduce the notion of admissible
interval (see Corollary 4.7).

Definition 4.3 (Admissible interval) The interval I ′ is admissible if there exist 0 = x′
0 <

x′
1 < . . . < x′

n = a′ such that N(x′
i) < ∞ for every 1 ≤ i ≤ n and the set B =⋃n

i=1

{
x′

i, T(x′
i), . . . ,

TN(x′
i)−1(x′

i)
}

satisfies

(H1) B ⊃D(T);
(H2) a′ ∈ T(B).

Henceforth, we will assume that I ′ is an admissible interval.

Lemma 4.4 Let K ⊂ I\B be an open interval. Then K ∩D(T) = ∅. Moreover, one of the
following alternatives happens:

(i) T(K) is an open subinterval of I ′;
(ii) T(K) ∩ I ′ = ∅ and T(K) is an open subinterval of I\B.

Proof By (H1), D(T) ⊂ B, thus K ∩D(T) = ∅ and T(K) is an open interval. Notice that

T(K) ∩ T(B) ⊂ [
T(K) ∩ T

({x0, . . . , xn}
)]∪ [

T(K) ∩ T
(
B\{x0, . . . , xn}

)]
.

The first term in the union is empty because of the property (ii) in the definition of n-IET and the
fact that K ⊂ I\{x0, . . . , xn}. The second term is empty because of property (i) in the definition
of n-IET and the fact that K and B\{x0, . . . , xn} are pairwise disjoint subsets of I\{x0, . . . , xn}.
Hence, T(K) ∩ T(B) = ∅. Now, by (H2), a′ �∈ T(K), thus either T(K) ⊂ I ′ or T(K) ∩ I ′ = ∅. In the
latter case, T(K) ∩ B ⊂ B\I ′ ⊂ T(B), which yields T(K) ⊂ I\B.

Lemma 4.5 Let J be an open subinterval of I ′\{x′
1, . . . , x′

n−1}, then there exists r ≥ 1 such that

{J , T(J ), . . . , Tr−1(J )} is a T-tower,
⋃r−1

k=0 Tk(J ) ⊂ I\{x0, . . . , xn}, I ′ ∩⋃r−1
k=1 Tk(J ) = ∅ and

Tr(J ) is a subinterval of I ′.

Proof By the definition of B, we have that B ∩ I ′ = {x′
1, . . . , x′

n}, thus J ⊂ I\B and T(J ) is an
open interval by (H1). If T(J ) ⊂ I ′, then we take r = 1 and we are done. Otherwise, applying
Lemma 4.4 with K = J yields I ′ ∩ T(J ) = ∅ and T(J ) ⊂ I\B. Moreover, in this case, we have
that the set

A =
{

α ≥ 1 : {J , T(J ), . . . , Tα−1(J )} is an α-tower with I ′ ∩
α−1⋃
k=1

Tk(J ) = ∅
}

.

https://doi.org/10.1017/S095679251900024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679251900024X


A switched server system 693

is a non-empty subset of
[
1, |I|

|J |
]
. By applying Lemma 4.4 finitely many times, we can prove that

r = max A works.

Proposition 4.6 Let T : I → I be an n-IET and I ′ ⊂ I be an admissible interval for T. Then, for
each 1 ≤ i ≤ n, there exist ri ≥ 1 and a word i0i1 . . . iri−1 over the alphabet A= {1, . . . , n} such
that the interval Ji = (x′

i−1, x′
i) satisfies

(A1) {Ji, T(Ji), . . . , Tri−1(Ji)} is a T-tower with I ′ ∩⋃ri−1
k=1 Tk(Ji) = ∅;

(A2) Tri (Ji) is an open subinterval of I ′;
(A3) Tk(Ji) ⊂ (xik−1, xik ) for every 0 ≤ k ≤ ri − 1;
(A4) N(x) = ri for all x ∈ Ji.

Moreover, the intervals Tk(Ji), 0 ≤ k ≤ ri − 1, 1 ≤ i ≤ n, are pairwise disjoint.

Proof Applying Lemma 4.5 with J = Ji yields (A1)–(A3). The item (A4) follows from (A1) and
(A2). We claim that Tk(Ji), 0 ≤ k ≤ ri − 1, 1 ≤ i ≤ n are pairwise disjoint. Otherwise, by (A1),
there exist i �= j, 0 ≤ ki ≤ ri − 1, 0 ≤ kj ≤ rj − 1 with ki ≤ kj such that Tki (Ji) ∩ Tkj (Jj) �= ∅. By the
injectivity of T on (0, a), we obtain that Ji ∩ Tkj−ki(Jj) �= ∅, which is a contradiction since Ji ⊂ I ′

while Tkj−ki(Jj) ∩ I ′ = ∅.

In Proposition 4.6, the word i0i1 . . . iri−1 is the symbolic itinerary of the T-tower {Ji,
T(Ji), . . . , Tri−1(Ji)}. Concerning the next three corollaries, we let Ji, ri and i0i1 . . . iri−1, be as in
the statement of Proposition 4.6.

Corollary 4.7 Let T : I → I be an n-IET and I ′ ⊂ I be an admissible interval for T. Then the
Poincaré map T ′ of T on I ′ is the n′-IET, n′ ≤ n, defined by

T ′(x) = Tiri−1 ◦ · · · ◦ Ti1 ◦ Ti0 (x) if x ∈ (x′
i−1, x′

i),

where Ti : R→R is the affine map defined by (4.1). Notice that D(T ′) ⊂ {x′
1, . . . , x′

n−1}.

Definition 4.8 (Exhaustive family) The family of T-towers
{
Ji, T(Ji), . . . , Tri−1(Ji)

}
, 1 ≤ i ≤ n,

is exhaustive if all the floors are pairwise disjoint and I
∖⋃n

i=1

⋃ri−1
k=0 Tk(Ji) is a finite set.

Corollary 4.9 Let T : I → I be an n-IET and I ′ ⊂ I be an admissible interval for T. Suppose that

(H3)
∑n

i=1 ri|Ji| = |I|,

then the family of T-towers {Ji, T(Ji), . . . , Tri−1(Ji)}, 1 ≤ i ≤ n, in Proposition 4.6, is exhaustive.

Proof In fact, in this case, by Proposition 4.6, S = I
∖⋃n

i=1

⋃ri−1
k=0 Tk(Ji) is the union of finitely

many compact intervals and has Lebesgue measure zero, which implies that S is a finite set.

Corollary 4.10 Let T : I → I be an n-IET and I ′ ⊂ I be an admissible interval for T such that
(H3) holds. If T ′ is topologically transitive, so is T.
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Proof By Corollary 4.9, I\⋃n
i=1

⋃ri−1
k=0 Tk(Ji) is a finite set. Moreover, by (A3) of Proposition

4.6, x ∈ Ji �→ Tk(x) ∈ Tk(Ji) is an isometry for every 0 ≤ k ≤ ri − 1 and 1 ≤ i ≤ n. Since I ′ is the
closure of

⋃n
i=1 Ji, any T ′-orbit dense in I ′ corresponds to a T-orbit dense in I .

4.2 Self-similar IETs

Let I ′ ⊂ I be an admissible interval for T . By Corollary 4.7, the Poincaré map T ′ : I ′ → I ′ is an
n′-IET with set of discontinuities D(T ′) ⊂ {x′

1, . . . , x′
n−1}.

Definition 4.11 (Self-similar IET) Let T : I → I be an n-IET and I ′ ⊂ I be an admissible interval
for T . We say that T is self-similar on I ′ if T ′ = L ◦ T ◦ L−1 on I ′\{x′

0, . . . , x′
n}, where L : I → I ′

is the affine bijection x �→ a′
a x.

In other words, T is self-similar on I ′ if D(T ′) = {x′
1, . . . , x′

n−1} and T ′ is a rescaled copy of T .
In particular, we have that D(T ′) = L

(D(T)
)
.

Denote by A∗ the set of (finite) words over the alphabet A= {1, 2, . . . , n}. By (A3) in
Proposition 4.6, to the pair (T , I ′), we can associate the map σ : A→A∗ defined by σ (i) =
i0i1 . . . iri−1 called the substitution associated with (T , I ′). In this way, the substitution σ assigns
to each letter i ∈A, the symbolic itinerary of the T-tower {Ji, T(Ji), . . . , Tri−1(Ji)}. By means of
the concatenation operation, we can consider σ as a self-map of A∗. The matrix associated with
(T , I ′) is the n × n matrix M associated with σ , whose j, i-entry is

mji = #{k : σ (i)k = j}, (4.3)

where # denotes the cardinality of the set. Notice that mji is the number of times that the T-orbit
of the interval Ji = (x′

i−1, x′
i) visits the interval (xj−1, xj) before return to intersect I ′. In particular,

we have that

ri =
n∑

j=1

mji. (4.4)

In what follows, we denote by m(k)
ji the j, i-entry of Mk . Moreover, Ji and ri are as in the statement

of Proposition 4.6.

Proposition 4.12 Let T : I → I be an n-IET self-similar on some admissible interval I ′ ⊂ I in
such a way that (H3) holds. Given k ≥ 1, let J (k)

i = Lk−1(Ji) for all 1 ≤ i ≤ n. Then{
J (k)

i , T
(
J (k)

i

)
, . . . , T (r(k)

i −1)
(
J (k)

i

)}
, 1 ≤ i ≤ n, (4.5)

is an exhaustive family of T-towers, where r(k)
i =∑n

j=1 m(k)
ji .

Proof By Corollary 4.9, we know that {Ji, T(Ji), . . . , Tri−1(Ji)}, 1 ≤ i ≤ n, is an exhaustive
family of T-towers. Hence, the result is true for k = 1 because J (1)

i = Ji and r(1)
i = ri. Since

T is self-similar on I ′, we know that T ′ is a rescaled copy of T . In particular, by the above,{
L(Ji), T ′(L(Ji)), . . . , (T ′)ri−1(L(Ji))

}
, that is,{

J (2)
i , T ′(J (2)

i ), . . . , (T ′)ri−1(J (2)
i )

}
, 1 ≤ i ≤ n, is an exhaustive family of T ′-towers. (4.6)
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To obtain (4.5), we will replace each set (T ′)�
(
J (2)

i

)
, 0 ≤ � ≤ ri − 1, in (4.6) by a T-tower. Fix

1 ≤ i ≤ n and let i0i1 . . . iri−1 be the symbolic itinerary of the T-tower {Ji, T(Ji), . . . , Tri−1(Ji)},
which is equal to the symbolic itinerary of the T ′-tower

{
J (2)

i , T ′(J (2)
i ), . . . , (T ′)ri−1(J (2)

i )
}
. Notice

that i0 = i and (T ′)�
(
J (2)

i

)⊂ Ji� for all 0 ≤ � ≤ ri − 1. This implies that the first return time of

(T ′)�
(
J (2)

i

)
to I ′ under the action of T is ri� . In particular, we have that

T ′(J (2)
i

) = Tri0
(
J (2)

i

)
(T ′)2

(
J (2)

i

) = Tri0 +ri1
(
J (2)

i

)
...

(T ′)ri−1
(
J (2)

i

) = T
ri0 +ri1 +...+ri(ri−2)

(
J (2)

i

)
Now we will replace each set (T ′)�

(
J (2)

i

)
, 0 ≤ � ≤ ri − 1, in (4.6) by a T-tower as follows:

J (2)
i �→ J (2)

i , T
(

J (2)
i

)
, . . . , Tri0 −1

(
J (2)

i

)
,

T ′
(

J (2)
i

)
�→ Tri0

(
J (2)

i

)
, Tri0 +1

(
J (2)

i

)
, . . . , Tri0 +ri1 −1

(
J (2)

i

)
,

...
...

(T ′)ri−1
(

J (2)
i

)
�→ Tri0 +ri1 +···+ri(ri−2)

(
J (2)

i

)
, Tri0 +ri1 +···+ri(ri−2) +1

(
J (2)

i

)
, . . . , Tri0 +ri1 +···+ri(ri−1) −1

(
J (2)

i

)
.

This leads us to the exhaustive family of T-towers:{
J (2)

i , T
(
J (2)

i

)
, . . . , T

ri0 +ri1 +···+ri(ri−1) −1(
J (2)

i

)}
, 1 ≤ i ≤ n.

To conclude the proof of the case k = 2, we have to show that

ri0 + ri1 + · · · + ri(ri−1) = r(2)
i .

In fact, by (4.4),

ri0 + ri1 + · · · + ri(ri−1) =
n∑

j=1

mji0 +
n∑

j=1

mji1 + · · · +
n∑

j=1

mji(ri−1)

= m1i

n∑
j=1

mj1 + m2i

n∑
j=1

mj2 + · · · + mni

n∑
j=1

mjn

=
n∑

j=1

n∑
�=1

mj�m�i =
n∑

j=1

m(2)
ji = r(2)

i .

Proceeding likewise, we prove that the claim is true for any k ≥ 1.

Corollary 4.13 Let T : I → I be an n-IET self-similar on some admissible interval I ′ ⊂ I in such
a way that (H3) holds. If the following conditions are satisfied:

(H4) The matrix M associated with (T , I ′) is positive,

then T is topologically transitive.

Proof Let k ≥ 1 be given. For each 1 ≤ i ≤ n, let J (k)
i = Lk−1(Ji) be as in (4.5), where L : I → I ′

is the affine bijection x ∈ I �→ a′
a x ∈ I ′. Let
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Pk = {
T�(J (k)

i ) : 0 ≤ � ≤ r(k)
i − 1, 1 ≤ i ≤ n

}
.

Then, by Proposition 4.12, the union of the intervals in Pk is equal to I up to finitely many points.
Moreover, by (H4), each interval J (k+1)

i visits all the intervals in Pk before to return to intersect⋃n
i=1 J (k+1)

i . Now let U , V ⊂ I be open intervals. Since maxJ∈Pk |J | → 0 as k → ∞, by taking
k large enough, we may assume that there exist intervals JU , JV ∈ Pk such that JU ⊂ U and
JV ⊂ V . Moreover, by the above, there exist 1 ≤ i, j ≤ n, 1 ≤ �U ≤ r(k+1)

i and 1 ≤ �V ≤ r(k+1)
j such

that T�U
(
J (k+1)

i

)⊂ JU ⊂ U , T�V
(
J (k+1)

j

)⊂ JV ⊂ V and Tr
(k+1)
i

(
J (k+1)

i

)∩ J (k+1)
j is an open interval.

In this way, there exists k ≥ 0 such that Tk(U) ∩ V �= ∅. By Birkhoff’s Transitivity Theorem, we
have that T has a dense orbit.

5 The isometric model and the proof of Theorem 2.1

The aim of this section is to prove Theorem 2.1. The key step required to prove Theorem 2.1
is showing that the map T defined in (2.1) is topologically transitive. Unfortunately, we cannot
apply Corollary 4.13 directly to T because T is not self-similar. Thus, instead of T , we consider
the Poincaré map S = T ′ of T on I ′ = [0, 1]. More specifically, we will show that I ′ is an admis-
sible interval for T and that (H3) holds true. Then, by Corollary 4.10, T will be topologically
transitive if S is topologically transitive. This reduction is very convenient because, as we will

show, S is self-similar on the subinterval
[
0, 1

η

]
of [0, 1] and its topological transitivity will fol-

low from Corollary 4.13. To conclude that T is minimal we will prove that T has no periodic
orbit. These are the forthcoming steps.

In what follows, let T : [0, |λ|] → [0, |λ|] be the map defined in (2.1). Notice that D(T) =
{x1, x2, x3}, where

x0 = 0, x1 = λ1, x2 = λ1 + λ2, x3 = λ1 + λ2 + λ3, x4 = λ1 + λ2 + λ3 + λ4 = |λ|.
Some preparatory lemmas are necessary to prove Theorem 2.1.

5.1 Reduction Lemma

Lemma 5.1 I ′ = [0, 1] is an admissible interval for T. Moreover, the Poincaré map T ′ : I ′ → I ′

is given by

T ′(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−x + λ1 + λ3 = −x − ν2 + 1 if x ∈ [x′

0, x′
1)

x + λ3 = x − ν1 − ν2 + 1 if x ∈ [x′
1, x′

2]

x + λ2 + λ3 − |λ| = x − ν1 − ν2 if x ∈ (x′
2, x′

3)

−x + λ1 + λ2 + λ3 = −x + ν3 + 1 if x ∈ [x′
3, x′

4],

where

x′
0 = 0, x′

1 = ν1, x′
2 = ν1 + ν2, x′

3 = ν1 + ν2 + ν3, x′
4 = 1,

and D(T ′) = {x′
1, x′

2, x′
3}.

Proof See the Appendix.
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Lemma 5.2 (Reduction Lemma) If T ′ is topologically transitive, then so is T.

Proof See the Appendix.

5.2 The map S

Let S : [0, 1] → [0, 1] be the 4-IET defined by

S(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−x − ν2 + 1 if x ∈ [y0, y1)

x − ν1 − ν2 + 1 if x ∈ [y1, y2]

x − ν1 − ν2 if x ∈ (y2, y3)

−x + ν3 + 1 if x ∈ [y3, y4],

where

y0 = x′
0 = 0, y1 = x′

1 = ν1, y2 = x′
2 = ν1 + ν2, y3 = x′

3 = ν1 + ν2 + u3, y4 = x′
4 = 1.

(5.1)
Then D(S) = {y1, y2, y3}. In the previous subsection, we proved that S = T ′. Let L : [0, 1] →[
0, 1

η

]
be the map L(y) = 1

η
y. Set y′

i = L(yi), 1 ≤ i ≤ 4, then

y′
0 = 0, y′

1 = 1

η
y1, y′

2 = 1

η
y2, y′

3 = 1

η
y3, y′

4 = 1

η
.

The proofs of the next three lemmas are given in the Appendix.

Lemma 5.3
[
0, 1

η

]
is an admissible interval for S.

Proof See the Appendix.

Lemma 5.4 S is self-similar on
[
0, 1

η

]
.

Proof See the Appendix.

Lemma 5.5 S is topologically transitive.

Proof See the Appendix.

Lemma 5.6 T is topologically transitive.

Proof By Lemma 5.5, S is topologically transitive. Since S = T ′, we have that T ′ is also
topologically transitive. The proof is concluded by applying Lemma 5.2.

Proof of Theorem 2.1 The topological dynamics of n-IETs is well-understood. In particular,
it is known that the domain of T splits into the union of periodic components, minimal com-
ponents and T-connections (see [16, Theorem 3.2] and [8, pp. 470–480]). By Lemma 5.6, T
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is topologically transitive, thus T has no periodic component and has a unique minimal com-
ponent. Moreover, the minimal component is also a quasi-minimal set in the sense that every
non-periodic orbit is dense in it. In this way, T will be minimal if we show that T has no peri-
odic orbit. By way of contradiction, suppose that T has a periodic orbit γ . Then γ contains at
least one discontinuity of T , otherwise there would exist a periodic component containing γ . In
particular, T has a T-connection, that is, there exist k ≥ 1 and xi, xj ∈D(T) such that Tk(xi) = xj

and T�(xi) �∈D(T) for all 0 < � < k. This contradicts the fact that the Poincaré map of T on I ′ is
a self-similar 4-IET. Therefore, T has no periodic orbit, showing that T is minimal.

Now let us prove that T is uniquely ergodic. Since T has no periodic orbit, all the T-
invariant measures are non-atomic and are supported on an uncountable set. Let μ1, μ2 be two
(non-atomic) T-invariant Borel probability measures, then μ′

1 = 1
μ1([0,1])μ1 and μ′

2 = 1
μ2([0,1])μ2

are S-invariant Borel probability measures. Moreover, by the proof of Lemma 5.2, T satis-

fies (H3) on [0, 1], then μ1 = μ2 if and only if μ′
1 = μ′

2. Since S is self-similar on
[
0, 1

η

]
,

we have that any S-invariant Borel probability measure μ′ is determined by the vector r =(
μ′((y0, y1)

)
, μ′(

(
y1, y2)

)
, μ′((y2, y3)

)
, μ′((y3, y4)

))
which has strictly positive entries, where

y0, . . . , y4 are as in (5.1). Moreover, since S is self-similar, we have that ν is the only prob-
ability eigenvector of P with strictly positive entries, that is, r = ν. This means that the only
S-invariant measure is the Lebesgue measure, then μ′

1 = μ′
2 and so μ1 = μ2. This proves that T

is uniquely ergodic.

6 Piecewise contractions and the proof of Theorem 2.2

In this section, we will prove Theorem 2.2. By Lemma 1.1 and by Theorem 2.1, all we have to
do is to find parameters d1, d2, d3 > 0 such that the map fd1,d2,d3 defined in (1.2) is topologically
semiconjugate to T . The map fd1,d2,d3 is a piecewise 1

2 -affine contraction in the following sense.

Definition 6.1 (Piecewise 1
2 -affine contraction) A map f : [0, 1] → [0, 1] is a piecewise 1

2 -affine
contraction if there exist a partition of [0, 1] into intervals J1, . . . , Jn, numbers a1, . . . , an ∈{− 1

2 , 1
2

}
and b1, . . . bn ∈R such that f (x) = aix + bi for all x ∈ Ji (i = 1, 2, . . . , n).

Our strategy is the following: first we construct a class C of piecewise 1
2 -affine contractions

topologically semiconjugate to T (Proposition 6.4). Then we prove that there exist d1, d2, d3 > 0
such that fd1,d2,d3 ∈ C (Proposition 6.5).

Definition 6.2 (The map gu,�) Given vectors u = (u1, u2, u3, u4) and � = (�1, �2, �3, �4) with
positive entries satisfying |u| = u1 + u2 + u3 + u4 = 1 and |�| = �1 + �2 + �3 + �4 = 1

2 , let gu,� :
[0, 1] → [0, 1] be the piecewise 1

2 -affine contraction defined by

gu,�(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− x

2
+ u1

2
+ u3

2
+ �1 + �2 if x ∈ J1,

− x

2
+ u1

2
+ 1

2
+ �1 + �2 + �3 if x ∈ J2,

− x

2
+ u1

2
+ u2

2
+ u3

2
+ �1 if x ∈ J3,

− x

2
+ u1

2
+ u3

2
+ 1

2
+ �1 + �2 if x ∈ J4,

(6.1)
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where J1, J2, J3, J4 is the partition of [0, 1] given by

J1 = [0, u1), J2 = [u1, u1 + u2), J3 = [u1 + u2, u1 + u2 + u3), J4 = [u1 + u2 + u3, 1].

Also let

C =
{

gu,� : ui, �i > 0, ∀i,
4∑

i=1

ui = 1 and
4∑

i=1

�i = 1

2

}
.

In what follows, let T : [0, |λ|] → [0, |λ|] be the isometric model and let I1, I2, I3, I4 be the
partition of [0, |λ|] associated with T (see (2.1)). We will also keep all the notations and values
given in Sections 1 and 2. Let

p1 = 0, p2 = T(λ1 + λ2), p3 = T(λ1 + λ2 + λ3) and p4 = |λ|.

Lemma 6.3 The T-orbits of p1, p2 and p3 are pairwise disjoint.

Proof Denote by O(x) = {x, T(x), . . .} the T-orbit of x ∈ [0, |λ|]. By (2.1), T(λ1) = |λ| and
T(0) = T(|λ|). Hence,

O(p1) ⊂ {0} ∪ O(λ1), O(p2) ⊂ O(λ1 + λ2), O(p3) ⊂ O(λ1 + λ2 + λ3).

In the proof of Theorem 2.1, we showed that T has no T-connection, thus there exists no T-orbit
that passes through two discontinuities of T . This together with the injectivity of T on (0, |λ|]
implies that O(λ1), O(λ1 + λ2) and O(λ1 + λ2 + λ3) are pairwise disjoint. Moreover, we have
that 0 has no preimage, which concludes the proof.

Proposition 6.4 Let u = (u1, u2, u3, u4) and � = (�1, �2, �3, �4) be vectors with positive entries
satisfying

∑4
i=1 ui = 1 ,

∑4
i=1 �i = 1

2 , and⎛⎝u1

u2

u3

⎞⎠= M

⎛⎝�1

�2

�3

⎞⎠+ 1

2

⎛⎝c14

c24

c34

⎞⎠, (6.2)

then g = gu,� is topologically semiconjugate to T.

Proof Let � = (�1, �2, �3, �4) be a vector with positive entries such that
∑4

i=1 �i = 1
2 . Let

P = {
Tk(pi) : k ≥ 0 and 1 ≤ i ≤ 4

}
.

By Theorem 2.1, P is a denumerable dense subset of [0, |λ|]. Since T(p1) = T(p4), we may write
P = {

Tk(pi) : k ≥ 0 and 1 ≤ i ≤ 3
}∪ {p4}. Let φ : P → (0, 1) be the map defined by φ(pi) = �i,

1 ≤ i ≤ 4, and, for all k ≥ 1,

φ
(
Tk(p1)

)= �1 + �4

2k
, φ

(
Tk(p2)

)= �2

2k
, φ

(
Tk(p3)

)= �3

2k
.

By Lemma 6.3, φ is well-defined. To each p ∈P , let Gp ⊂ [0, 1] be the compact interval defined
by Gp1 = [0, �1] , Gp4 = [1 − �4, 1] and
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Gp =
⎡⎢⎣∑

q<p
q∈P

φ(q), φ(p) +
∑
q<p
q∈P

φ(q)

⎤⎥⎦ if p �∈ {p1, p4}. (6.3)

Notice that Gp has length |Gp| = φ(p) for all p ∈P . Hence,

∑
p∈P

∣∣Gp

∣∣= 4∑
i=1

�i +
∑
k≥1

�1 + �4 + �2 + �3

2k
= 1

2

(
1 +

∑
k≥1

1

2k

)
= 1. (6.4)

By (6.3) and by the density of P in [0, |λ|], we have that P and {Gp}p∈P share the same ordering
meaning that if p, q ∈P , then

p < q ⇐⇒ sup Gp < inf Gq. (6.5)

In particular, we have that the intervals Gp, p ∈P , are pairwise disjoint and, by (6.4), their union
is dense in [0, 1].

Let ĥ :
⋃

p∈P Gp → [0, |λ|] be the function that on Gp takes the constant value p. By (6.4) and

(6.5), we have that ĥ is nondecreasing and has dense domain and dense range. Thus, ĥ admits
a unique nondecreasing continuous surjective extension h : [0, 1] → [0, |λ|]. It is elementary to
see that h−1

({p})= Gp for every p ∈P . Denote by J1, J2, J3, J4 the partition of [0, 1] defined by
Ji = h−1(Ii), where I1, I2, I3, I4 are as in the definition of the isometric model T .

Let ĝ :
⋃

p∈P Gp →⋃
p∈P GT(p) be such that ĝ|Gp : Gp → GT(p) is an affine bijection with slope

− 1
2 for every p ∈P . We claim that for each 1 ≤ i ≤ 4 , there exist a dense subset Ĵi of Ji and

bi ∈R such that

ĝ(x) = −1

2
x + bi for all x ∈ Ĵi . (6.6)

Let 1 ≤ i ≤ 4, Îi = Ii ∩P , and Ĵi =⋃
p∈Îi

Gp, then, by (6.4) and (6.5), we have that

(i) Ji ∩⋃
p∈P Gp is dense in Ji;

(ii) Ji ∩⋃
p∈P Gp = h−1(Ii) ∩⋃

p∈P h−1({p}) =⋃
p∈P h−1({p} ∩ Ii) =⋃

p∈Îi
Gp = Ĵi,

showing that Ĵi is a dense subset of Ji.
Moreover, by definition, ĝ|Gp : Gp → GT(p) is an affine bijection with slope − 1

2 for all p ∈P ,
thus there exists cp ∈R such that

ĝ(x) = −1

2
x + cp for all x ∈ Gp and p ∈P . (6.7)

Let us prove that ĝ is strictly decreasing on Ĵi =⋃
p∈Îi

Gp. Let x < y be two points in Ĵi. Since ĝ
is already strictly decreasing on each interval Gp, we may assume that x ∈ Gp and y ∈ Gq, where
p, q ∈ Îi are such that sup Gp < inf Gq. By (6.5), we have that p < q and {p, q} ⊂ Ii. Then, since
T ′(z) = −1 for all z ∈ Ii, we have that T |Ii is decreasing, thus T(p) > T(q). By (6.5) once more,
we get sup GT(q) < inf GT(p). By definition, ĝ(p) ∈ GT(p) and ĝ(q) ∈ GT(q), thus ĝ(p) > ĝ(q). This
proves that ĝ is decreasing on Ĵi. It remains to prove that cp in (6.7) is the same for all p ∈ Îi.
Let p, q ∈ Îi with p �= q. We may assume that a = sup Gp < inf Gq = b. Notice that since ĝ is
decreasing on Ĵi,
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FIGURE 4. The plot of g = gu,�.

1

2
(b − a) − (cq − cp) = −(̂

g(b) − ĝ(a)
)=

∑
Gr⊂[a,b]

∣∣̂g(Gr

)∣∣
= 1

2

∑
Gr⊂[a,b]

|Gr| = 1

2
(b − a),

yielding cp = cq. Thus, (6.6) is true.
It follows from (6.6) that ĝ|Ĵi

admits a unique monotone continuous extension to the interval
Ji = h−1(Ii). This extension is also an affine map with slope equal to − 1

2 . Since i is arbitrary, we

obtain an injective piecewise 1
2 -affine extension g of ĝ to the whole interval [0, 1] =⋃4

i=1 Ji.
We claim that h ◦ g = T ◦ h. In fact, for every y ∈ Gp, we have that

h
(
g(y)

)= ĥ
(̂
g(y)

)= T(p) = T
(̂
h(y)

)= T
(
h(y)

)
. (6.8)

Hence, (6.8) holds for a dense set of y ∈ [0, 1]. By continuity, (6.8) holds for every y ∈ [0, 1]. In
this way, g is topologically semiconjugate to T .

Figure 4 gives a geometrical picture of the map g. All the slopes equal − 1
2 . It is elementary to

verify that g = gu,�, where ui = |Ji|. Thus, the formula of g is the one provided in Definition 6.2.
It remains to prove that u = (u1, u2, u3, u4) satisfies (6.2). In fact,

∑4
i=1 ui =∑4

i=1 |Ji| = 1.
Moreover, we have that

ui = |Ji| =
∑

Gp⊂Ji

∣∣Gp

∣∣= ∑
p∈P∩Ii

φ(p) =
4∑

j=1

∑
k∈Kij

�j

2k
=

4∑
j=1

cij�j.

Replacing �4 by 1
2 − �1 − �2 − �3 yields, for all 1 ≤ i ≤ 3,

ui =
3∑

j=1

(cij − ci4)�j + 1

2
ci4,

which concludes the proof.
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Proposition 6.5 Let u = (u1, u2, u3, u4) be such that u1, u2, u3 > 0, u4 = 1 − u1 − u2 − u3,

0 < u1 <
1

3
,

1

3
< u1 + u2 <

2

3
,

2

3
< u1 + u2 + u3 < 1, (6.9)

and let � = (�1, �2, �3, �4) be a vector with positive entries satisfying
∑4

i=1 �i = 1
2 . If⎛⎝2 2 0

2 2 2
2 0 0

⎞⎠⎛⎝�1

�2

�3

⎞⎠=
⎛⎝−1 0 −1

−1 0 0
−1 −1 −1

⎞⎠⎛⎝u1

u2

u3

⎞⎠+
⎛⎝1

1
1

⎞⎠ , (6.10)

z1 = u1, z2 = u1 + u2, z3 = u1 + u2 + u3, (6.11)

and

d1 = 1

3z1
− 1, d2 = 2 − 3z2

3z2 − 1
, d3 = 3 − 3z3

3z3 − 2
, (6.12)

then gu,� = fd1,d2,d3 , that is, gu,� is the Poincaré map of a switched server system.

Proof By replacing (6.10) in (6.1), and (6.11) and (6.12) in (1.2), it can be easily verified that
gu,� = fd1,d2,d3 .

Proof of Theorem 2.2 The items (a) and (b) of Theorem 2.2 follow immediately from
Propositions 6.4, 6.5 and Theorem 2.1. Let v ∈ ∂�. It is clear that ωF(v) is a closed, therefore
compact, set for every v ∈ ∂�. Since F : ∂� → ∂� is topologically conjugate to a piece-
wise contraction f : [0, 1] → [0, 1] injective on (0, 1], by [18, Lemma 4.1], there are finitely
many pairwise disjoint open connected subsets F1, . . . , Fr of ∂� such that

⋃r
j=1

⋃
k≥0 Fk(Fj)

is dense in ∂� and Fk(v) ∈ ∂�
∖⋃r

j=1

⋃k−1
�=0 F�(Fj) for all k ≥ 1. In this way, because{

∂�
∖⋃r

j=1

⋃k−1
�=0 F�(Fj)

}
k≥1

is a nested sequence of compact sets, we have that ωF(v) belongs

to the set ∂�
∖⋃r

j=1

⋃
k≥0 Fk(Fj), which has empty interior. Hence, ωF(v) has empty interior,

thus ωF(v) is totally disconnected. Since, by the item (b), F is topologically semiconjugate to T ,
we have that ωF(v) is a perfect set. In this way, ωF(v) is a Cantor set. This proves the item (c). Let
us prove the item (d). Let 0 ≤ t1 < t2 · · · be the switching times. Let v(tk) = (

v1(tk), v2(tk), v3(tk)
)

be the state of the server at the time tk . By (3.5), we have that l(tk) = 1 (i.e. the server
is connected to the tank 1) if and only if v(tk) ∈ [r2, e1] ∪ [e1, r3). Since F is topologically
semiconjugate to T , this translates into interval dynamics as follows: l(tk) = 1 if and only if
wk ∈ [λ1 + λ2, λ1 + λ2 + λ3), where wk = h(v(tk)) is the projection of v(tk) by the topological
semiconjugacy h. In this way, since T is uniquely ergodic, the normalised Lebesgue measure
μ in the only T-invariant Borel probability measure, then by the version of Birkhoff’s Ergodic
Theorem for uniquely ergodic transformations (see [7, Proposition 4.1.13]), we reach

freq (1) = lim
n→∞

1

n
#{1 ≤ k ≤ n : l(tk) = 1}

= lim
n→∞

1

n
#{1 ≤ k ≤ n : wk ∈ [λ1 + λ2, λ1 + λ2 + λ3)}

= lim
n→∞

1

n
#{1 ≤ k ≤ n : Tk−1(w1) ∈ [λ1 + λ2, λ1 + λ2 + λ3)}

= μ
(
[λ1 + λ2, λ1 + λ2 + λ3)

)= λ3

|λ| .
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Likewise, l(tk) = 2 if and only if v(tk) ∈ [r3, e2] ∪ [e2, r1). In terms of interval dynamics, this
means that l(tk) = 2 if and only if wk ∈ [λ1 + λ2 + λ3, |λ|] ∪ [0, λ1). Therefore,

freq (2) = lim
n→∞

1

n
#{1 ≤ k ≤ n : l(tk) = 2}

= lim
n→∞

1

n
#{1 ≤ k ≤ n : wk ∈ [λ1 + λ2 + λ3, |λ|] ∪ [0, λ1)}

= lim
n→∞

1

n
#{1 ≤ k ≤ n : Tk−1(w1) ∈ [λ1 + λ2 + λ3, |λ|] ∪ [0, λ1)}

= μ
(
[λ1 + λ2 + λ3, |λ|])+ μ

(
[0, λ1)

)= λ1 + λ4

|λ| .

Finally, l(tk) = 3 if and only if v(tk) ∈ [r1, e3] ∪ [e3, r2). In terms of interval dynamics, this means
that l(tk) = 3 if and only if wk ∈ [λ1, λ1 + λ2). Therefore,

freq (3) = lim
n→∞

1

n
#{1 ≤ k ≤ n : l(tk) = 2}

= lim
n→∞

1

n
#{1 ≤ k ≤ n : wk ∈ [λ1, λ1 + λ2)}

= lim
n→∞

1

n
#{1 ≤ k ≤ n : Tk−1(w1) ∈ [λ1, λ1 + λ2)}

= μ
(

[λ1, λ1 + λ2)
)= λ2

|λ| .
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Appendix. Numerical analysis

The proofs of the results that demand numerical analysis are provided in this section. In order
not to overstretch the discussion, we skip some details. Since the isometric model T : I → I
is a piecewise-defined map, in order to compute Tk(x), it is necessary to know which of the
intervals I1, I2, I3, I4 the point Tk−1(x) belongs to. In other words, we need to know the address
ik−1 determined by the equation Tk−1(x) ∈ Iik−1 . By recursion, if we know the word i0i1 . . . ik−1,
then we can compute Tk(x) exactly by means of Corollary 4.7. All we need is to compute
{x, T(x), . . . , Tk(x)} for finitely many x’s and finitely many k’s.

A.1 Spectral analysis of the matrix P

The characteristic polynomial p of P is the product of polynomials:

p(t) = (t − 1)(t3 − 11t2 + 7t − 1).

Hence, the Perron–Frobenius eigenvalue η of P is a root of the irreducible polynomial over Q:
t3 − 11t2 + 7t − 1. In particular, 1, η and η2 are rationally independent. Namely, η is equal to

η = 1

3

(
11 + 50 · 22/3

3
√

499 + 3i
√

111
+ 3

√
998 + 6i

√
111

)
∼= 10.331851

and the associated probability eigenvector ν = (ν1, ν2, ν3, ν4) is given by

ν =
(−3η2 + 32η − 9

4
,

5η2 − 54η + 25

4
,
η2 − 10η − 3

4
,
−3η2 + 32η − 9

4

)
, (A1)
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Table A.1. Symbolic itineraries of T-orbits of some points

i x′
i

{
Tk(x′

i) : 0 ≤ k ≤ N(x′
i) − 1

}
TN(x′

i)(x′
i) N(x′

i)

0 0 0 0.796052 . . . 1
1 ν1 x1 1.311107 . . . 0.796052 . . . 2
2 ν1 + ν2 0.548394 . . . x3 x′

4 2
3 ν1 + ν2 + ν3 x2 0.451606 . . . 1
4 1 1 0.107159 . . . 1

which is, approximately, equal to

ν ∼= (0.344446, 0.203947, 0.107159, 0.344446).

The vector λ = (λ1, λ2, λ3, λ4) = Qν is given by

λ =
(−3η2 + 32η − 9

4
,

6η2 − 64η + 22

4
,
−2η2 + 22η − 12

4
,

5η2 − 54η + 25

4

)
, (A2)

which is, approximately, equal to

λ ∼= (0.344446, 0.3111078, 0.4516059, 0.203947).

Notice that |λ| ∼= 1.311107.

Proof of Lemma 5.1 Let I1, I2, I3, I4 be the partition of [0, |λ|] defined by

I1 = [x0, x1), I2 = [x1, x2), I3 = [x2, x3), I4 = [x3, x4],

where

x0 = 0, x1 = λ1, x2 = λ1 + λ2, x3 = λ1 + λ2 + λ3, x4 = λ1 + λ2 + λ3 + λ4 = |λ|.
Then ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

I1
∼= [0, 0.344446)

I2
∼= [0.344446 , 0.655553)

I3
∼= [0.655553, 1.107159)

I4
∼= [1.107159, 1.311107].

Let

x′
0 = 0, x′

1 = ν1, x′
2 = ν1 + ν2, x′

3 = ν1 + ν2 + ν3, x′
4 = 1.

By using the equality λ = Qν, by (2.1) and some numerical analysis, we reach Table A.1.
Table A.1 shows that (H1) and (H2) in Definition 4.3 are satisfied for B =⋃4
i=1

{
x′

i, T(x′
i), . . . , TN(x′

i)−1(x′
i)
}

and a′ = x′
4 = 1. In fact, D(T) = {x1, x2, x3} ⊂ B and a′ ∈ T(B).

Hence, I ′ is an admissible interval for T . By Proposition 4.6, for each 1 ≤ i ≤ 4, there exist ri ≥ 1
and a word i0i1 . . . iri−1 over the alphabet A= {1, 2, 3, 4} such that (A1)–(A4) are true. In partic-
ular, we have that ri = N(ci), where ci = (x′

i−1 + x′
i)/2. The values of ri and i0i1 . . . iri−1 are given
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Table A.2. Symbolic itineraries of T-orbits of some intervals

i ci = (x′
i−1 + x′

i)/2
{

Tk(ci) : 0 ≤ k ≤ ri − 1
}

Tri (ci) N(ci) i0i1 . . . iri−1

1 0.172223 . . . 0.172223 . . . 0.623829 . . . 1 1
2 0.4464201 . . . 0.446420 . . . 1.209134 . . . 0.898026 . . . 2 24
3 0.601974 . . . 0.601974 . . . 1.053579 . . . 0.053579 . . . 2 23
4 0.827777 . . . 0.827777 . . . 0.2793829 . . . 1 3

in Table A.2. By Corollary 4.7, Table A.2 and the equality λ = Qν, we have that the Poincaré
map T ′ of T on I ′ = [0, 1] is given by

T ′(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−x + λ1 + λ3 = −x + ν1 + ν3 + ν4 = −x − ν2 + 1 if x ∈ [x′

0, x′
1)

x + λ3 = x + ν3 + ν4 = x − ν1 − ν2 + 1 if x ∈ [x′
1, x′

2]

x + λ2 + λ3 − |λ| = x − λ1 − λ4 = x − ν1 − ν2 if x ∈ (x′
2, x′

3)

−x + λ1 + λ2 + λ3 = −x + ν1 + ν2 + 2ν3 + ν4 = −x + ν3 + 1 if x ∈ [x′
3, x′

4].

This concludes the proof of Lemma 5.1.

Proof of Lemma 5.2 It suffices to verify the hypotheses of Corollary 4.10. By Lemma 5.1, I ′

is an admissible interval for T . Moreover, by the N(ci)-column in Table A.2 and by the equality
λ = Qν, we reach for Ji = (x′

i−1, x′
i),

4∑
i=1

ri|Ji| =
4∑

i=1

ri(x
′
i − x′

i−1) =
4∑

i=1

riνi = ν1 + 2ν2 + 2ν3 + ν4 = λ1 + λ2 + λ3 + λ4 = |λ|,

which shows that (H3) is true.

Proof of Lemma 5.3 The proof consists in verifying the hypotheses (H1) and (H2) in
Definition 4.3 considering the map S : [0, 1] → [0, 1], defined in Subsection 5.2, and the interval

I ′ =
[
0, 1

η

]∼= [0, 0.096788]. Notice that D(S) = {y1, y2, y3}, where

y0 = 0, y1 = ν1
∼= 0.344446, y2 = ν1 + ν2

∼= 0.548394, y3 = ν1 + ν2 + ν3 = 0.655553, y4 = 1.

Let

y′
0 = 0, y′

1 = 1

η
y1, y′

2 = 1

η
y2, y′

3 = 1

η
y3, y′

4 = 1

η
.

By using the equality Pν = ην and some numerical analysis, we reach Table A.3. Table A.3

shows that (H1) and (H2) in Definition 4.3 are satisfied for B =⋃4
i=1

{
y′

i, S(y′
i), . . . , SN(y′

i)−1(y′
i)
}

and a′ = y′
4 = 1

η
. In fact, D(T) = {y1, y2, y3} ⊂ B and a′ ∈ S(B). Hence, I ′ =

[
0, 1

η

]
is an admissible

interval for S, which concludes the proof.

Proof of Lemma 5.4 By Lemma 5.3 and Proposition 4.6, for each 1 ≤ i ≤ 4, there exist ri ≥ 1
and a word i0i1 . . . iri−1 over the alphabet A= {1, 2, 3, 4} such that (A1)–(A4) are true. In particu-
lar, we have that ri = N(ci), where ci = (y′

i−1 + y′
i)/2. The iterates Sk(ci) are shown in Table A.4.
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Table A.3. Symbolic itineraries of S-orbits of some points

i y′
i

{
Sk(y′

i) : 0 ≤ k ≤ N(y′
i) − 1

}
SN(y′

i)(y′
i) N(y′

i)

0 0
0 0.796052 . . . 0.311107 . . . 0.484944 . . .

0.077048 . . . 7
0.936550 . . . 0.170609 . . . 0.625442 . . .

1
ν1

η

0.033338 . . . 0.762713 . . . y1 0.796052 . . .

0.311107 . . . 0.484944 . . . 0.936550 . . . 0.170609 . . . 0.077048 . . . 9
0.625442 . . .

2
ν1 + ν2

η

0.053078 . . . 0.742974 . . . 0.364185 . . . 0.815791 . . .

0.291368 . . . 0.504683 . . . 0.956289 . . . 0.150869 . . . y′
4 9

0.645182 . . .

3
ν1 + ν2 + ν3

η

0.063449 . . . 0.732602 . . . 0.374557 . . . 0.826163 . . .

0.043710 . . . 13
0.280996 . . . 0.515055 . . . 0.966661 . . . 0.140498 . . .

y3 0.451605 . . . 0.903211 . . . 0.203947
0.592104 . . .

4
1

η

0.096788 . . . 0.699263 . . . 0.407895 . . . 0.859501 . . .

0.010371 . . . 13
0.247658 . . . y2 1 0.107159 . . .

0.688892 . . . 0.418267 . . . 0.869873 . . . 0.237286 . . .

0.558765 . . .

Table A.4. Symbolic itineraries of S-orbits of some intervals

i ci = (y′
i−1 + y′

i)

2

{
Sk(ci) : 0 ≤ k ≤ ri − 1

}
Sri (ci) N(ci)

1 0.016669 . . .
0.016669 . . . 0.779382 . . . 0.327776 . . . 0.468275 . . .

0.060379 . . . 7
0.919881 . . . 0.187278 . . . 0.608773 . . .

2 0.043208 . . .

0.043208 . . . 0.752843 . . . 0.354315 . . . 0.805921 . . .

0.086918 . . . 90.301237 . . . 0.494814 . . . 0.946420 . . . 0.160739 . . .

0.635312 . . .

3 0.0582639 . . .

0.058263 . . . 0.737788 . . . 0.369371 . . . 0.820977 . . .

0.005185 . . . 15
0.286182 . . . 0.509869 . . . 0.961475 . . . 0.145684 . . .

0.650368 . . . 0.101973 . . . 0.694078 . . . 0.413081 . . .

0.864687 . . . 0.242472 . . . 0.553579 . . .

4 0.08011894 . . .

0.080118 . . . 0.715933 . . . 0.391226 . . . 0.842832 . . .

0.027040 . . . 13
0.264327 . . . 0.531724 . . . 0.983330 . . . 0.123829 . . .

0.672223 . . . 0.434936 . . . 0.886542 . . . 0.220617 . . .

0.575434 . . .
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Table A.5. Symbolic itineraries of the tower

i ri = N(ci) i0i1 . . . iri−1

1 7 1 4 1 2 4 1 3
2 9 1 4 2 4 1 2 4 1 3
3 15 1 4 2 4 1 2 4 1 3 1 4 2 4 1 3
4 13 1 4 2 4 1 2 4 1 4 2 4 1 3

The values of ri and i0i1 . . . iri−1 are given in Table A.5. By Corollary 4.7, Table A.5 and the

equality λ = Qν, we have that the Poincaré map S′ of S on
[
0, 1

η

]
is given by

S′(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−x + 2 − 2ν1 − 5ν2 − 2ν3 if x ∈ (y′

0, y′
1)

x + 2 − 3ν1 − 4ν2 − ν3 if x ∈ (y′
1, y′

2)

x + 3 − 5ν1 − 6ν2 − ν3 if x ∈ (y′
2, y′

3)

−x + ν3 if x ∈ (y′
3, y′

4).

(A3)

By (A3) and by the equality 1
η
ν = P−1ν, it follows that S′ = L ◦ S ◦ L−1 on I ′\{y′

0, . . . , y′
4},

proving that S in fact self-similar on
[
0, 1

η

]
. This concludes the proof of Lemma 5.4.

Proof of Lemma 5.5 It suffices to verify the hypotheses of Corollary 4.13. By Lemma 5.3,[
0, 1

η

]
is an admissible interval for S. By Lemma 5.4, S is self-similar on

[
0, 1

η

]
. Let pij denote

the i, j-entry of the matrix P. By the N(ci)-column in Table A.5 and by the equality Pν = ην, we
reach for Ji = (y′

i−1, y′
i),

4∑
i=1

ri|Ji| =
4∑

i=1

ri(y
′
i − y′

i−1) =
4∑

i=1

ri
νi

η
= 1

η
(7ν1 + 9ν2 + 15ν3 + 13ν4)

= 1

η

4∑
j=1

4∑
i=1

pijνi = 1

η

n∑
i=1

ηνi = 1,

which shows that (H3) is true. Applying (4.3) to the third column in Table A.5 yields M = P,

where M is the matrix associated with
(

S,
[
0, 1

η

])
. Hence, M is positive and (H4) holds. By

Corollary 4.13, S is topologically transitive. By Lemma 5.2, T is topologically transitive.
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