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Direct particle–fluid simulations of heavy spheres and ellipsoids interacting with
decaying isotropic turbulence are conducted. This is the rigorous extension of the
spherical particle analysis in Schneiders et al. (J. Fluid Mech., vol. 819, 2017, pp.
188–227) to O(104) non-spherical particles. To the best of the authors’ knowledge, this
represents the first particle-resolved study on turbulence modulation by non-spherical
particles of near-Kolmogorov-scale size. The modulation of the turbulent flow is
precisely captured by explicitly resolving the stresses acting on the fluid–particle
interfaces. The decay rates of the fluid and particle kinetic energy are found to
increase with the particle aspect ratio. This is due to the particle-induced dissipation
rate and the direct transfer of kinetic energy, both of which can be substantially
larger than for spherical particles depending on the particle orientation. The extra
dissipation rate resulting from the translational and rotational particle motion is
quantified to detail the impact of the particles on the fluid kinetic energy budget
and the influence of the particle shape. It is demonstrated that the previously derived
analytical model for the particle-induced dissipation rate of smaller particles is valid
for the present cases albeit these involve significant finite-size effects. This generic
expression allows us to assess the impact of individual inertial particles on the local
energy balance independent of the particle shape and to quantify the share of the
rotational particle motion in the kinetic energy budget. To enable the examination
of this mechanistic model in particle-resolved simulations, a method is proposed
to reconstruct the so-called undisturbed fluid velocity and fluid rotation rate close
to a particle. The accuracy and robustness of the scheme are corroborated via a
parameter study. The subsequent discussion emphasizes the necessity to account
for the orientation-dependent drag and torque in Lagrangian point-particle models,
including corrections for finite particle Reynolds numbers, to reproduce the local and
global energy balance of the multiphase system.

Key words: particle/fluid flow, multiphase flow, isotropic turbulence

1. Introduction
Solid particles dispersed in natural or technical flows are in general non-spherical.

Their shape ranges from approximately spherical as sand grains via approximately

† Email address for correspondence: l.schneiders@aia.rwth-aachen.de
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ellipsoidal as cellulose wood fibres to complex ice crystals in atmospheric clouds. The
relevance of the particle shape regarding the overall multiphase dynamics has been
emphasized in various studies (Voth & Soldati 2017). However, unlike the idealized
case of spherical particles, the response of turbulent flows to the presence of dispersed
non-spherical particles of finite size still is barely understood – despite the numerous
fields of application.

Numerical studies based on Euler–Lagrange point-particle models have shown
that small inertial spheroids dampen the turbulence production and dissipation rates
in turbulent channel flow by clustering in the near wall region and aligning their
orientation with respect to the mean flow direction (Zhao, George & van Wachem
2016). In one of the few studies considering the two-way coupling of angular
momentum between the phases, Andersson, Zhao & Barri (2012) demonstrated
that the torque of very small particles tends to mitigate turbulence attenuation.
State-of-the-art point-particle models for general ellipsoidal particle shapes are, strictly
speaking, restricted to particle major diameters below the Kolmogorov length (dmaj

p <η)
which experience creeping flow conditions, i.e. particle Reynolds numbers Rep � 1.
Analytical expressions for the hydrodynamic drag and torque are available for this
case (Voth & Soldati 2017). The systematic exploration of a larger parameter space is
exacerbated by the lack of generalized models, which led to relaxing these conditions
in some contributions, i.e. cases involving Rep > 1 (Marchioli, Zhao & Andersson
2016) or dmaj

p > η (Marchioli & Soldati 2013). In fact, while recent studies indicate
that point-particle models have the potential to perform adequately at dp ∼ η for
spherical particles (Fröhlich et al. 2018), significantly more research is needed to
manifest their validity in this regime, in particular for non-spherical particles.

In principle, the modelling issue can be avoided using particle-resolved simulations.
However, these are limited by computational resources and the efficiency of
numerical codes and become increasingly expensive with decreasing particle diameters.
Therefore, the majority of particle-resolved studies focused on dvol

p � η, where dvol
p

describes the diameter of a volume-equivalent spherical particle. Although meaningful
computations can only be performed for a relatively small number of particles and
academic flow problems, they are essential to derive new particle and turbulence
models. The available studies on non-spherical particles mostly considered neutrally
buoyant ellipsoids with dvol

p � η dispersed in turbulent channel flow (Do-Quang et al.
2014; Ardekani et al. 2017; Eshghinejadfard, Hosseini & Thévenin 2017; Ardekani &
Brandt 2019). These studies demonstrated prolate and oblate spheroids to accumulate
in streak structures near the wall, to preferentially align their rotational motion, and
dampen the wall-normal velocity fluctuations. For prolate particles, this effect was less
pronounced since their larger angular velocities create additional counteracting stresses
(Ardekani & Brandt 2019). Measurements of the turbulence response to non-spherical
particles are intricate as well due to the overlap of fluid and particle scales and
the rotational degrees of freedom. Experimental studies of large (dvol

p � η) neutrally
buoyant particles have detailed the rotational dynamics of elongated particles and
their interaction with homogeneous isotropic turbulence. Bellani et al. (2012) found
that prolate ellipsoids with an aspect ratio of two release more energy at small
fluid scales than spheres. Bordoloi & Variano (2017) reported that large cylindrical
particles do not exhibit a preferential rotation about the symmetry axis which is in
contrast to results for much smaller particles. Additionally, they demonstrated the
volume-equivalent diameter dvol

p to be the relevant parameter classifying the rotational
particle motion of non-spherical particles. For much smaller (dvol

p /η≈ 0.3) and heavy
fibres, Sabban, Cohen & van Hout (2017) reported the particles to preferentially align
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with the flow, exhibiting reduced rotation rates compared to neutrally buoyant fibres.
However, to determine the velocity disturbances due to the particles for the case
dvol

p ∼ η, a sub-Kolmogorov spatial resolution is required in experiments which has
been achieved only in few studies on spherical particles (Tanaka & Eaton 2010).

One of the open questions regarding finite-size, non-spherical particles in turbulence
is how the particles affect the turbulent kinetic energy budget and what is the
contribution of the rotational particle motion. In Schneiders, Meinke & Schröder
(2017a) an analytical expression for the particle-induced dissipation rate of arbitrarily
shaped particles was derived from first principles, however, the subsequent validation
was only performed for spherical particles. In the present study, we evidence this
mechanistic model to accurately describe the dissipation rate generated by larger
particles of ellipsoidal shape. We then quantify the proportion of the dissipation
rate directly and indirectly resulting from the rotational particle motion. To this
end, we investigate the modulation of decaying homogeneous isotropic turbulence
by solid spheres and ellipsoids. This extends our previous analysis on 45 000
spherical particles at dp ≈ η (Schneiders et al. 2017a) to non-spherical particle
shapes and slightly increased volume-equivalent particle diameters. By conducting
direct particle–fluid simulations, the stresses on the fluid–particle interfaces, which
determine the multiphase interaction, are precisely captured while strictly conserving
mass, momentum and energy. These computationally intensive simulations are enabled
by the use of dynamic mesh refinement and a numerical scheme with high accuracy
at the particle surfaces.

2. Computational set-up and scope of the analysis
2.1. Flow configuration

Solid spheres and ellipsoids dispersed in decaying homogeneous isotropic turbulence
are considered. The initial single-phase turbulent field, adopted from Schneiders et al.
(2017a), obeys the model energy spectrum E(κ) = (3u2

0/2)(κ/κ
2
p ) exp(−κ/κp), with

the root-mean-square (r.m.s.) velocity u0 and the peak wavenumber κp = 8π/L. It is
computed in a cubic domain of edge length L, discretized by a uniform background
mesh of 5123 Cartesian cells. The initial Taylor-scale Reynolds number is Reλ,0= 79.1
and the turbulent Mach number Mat = 0.1 such that compressibility effects can be
considered negligible (Lele 1994).

One of the challenges in particle-resolved simulations of statistically unsteady
turbulence is the definition of the initial position and velocity of the particles. In most
cases, the initial particle state is unknown. Its determination would require precise
experimental measurements, which are in general not available, or an additional
simulation. However, since the initial conditions in such a companion simulation
again are unknown, this leads to a catch-22 situation. In principle, the consideration
of forced, statistically steady turbulence would alleviate this problem. However,
as elucidated by Lucci, Ferrante & Elghobashi (2010), the application of forced
isotropic turbulence to study two-way coupling effects is inappropriate due to the
interference of the forcing scheme with the particle momentum coupling. It prevents
to distinguish the responsible mechanisms of fluid–particle interaction, especially at
small wavenumbers. Therefore, we adopt the initialization procedure used in Lucci
et al. (2010), Schneiders et al. (2017a) (among other studies), as discussed in the
following.

When the turbulent flow is fully developed, indicated by the convergence of the
velocity-derivative skewness to approximately −0.5, the particles are released at
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random locations with random orientations. Their linear and angular velocities are
determined by the local state of the flow field. Although this procedure significantly
increases the level of total kinetic energy due to the high particle mass loading, it
minimizes the initial slip velocities and therefore the initial strength of the shear
layer between the particles and the continuous phase. The particle-induced viscous
dissipation is kept at a relatively small level as well. For instance, one may relate this
situation to a turbulent jet issuing from a pipe carrying heavy inertial particles. In
such cases, the fluid kinetic energy decays more rapidly over the jet distance than the
particle kinetic energy due to their high inertia (Lau & Nathan 2014). Even higher
relative particle kinetic energies have been created in experimental measurements of
particle-induced grid turbulence (Geiss et al. 2004).

The injection time is at the non-dimensional time t∗i = tiε0/u2
0 = 0.28, where ε0 is

the initial dissipation rate. The Kolmogorov length at ti is ηi= 0.0019L and the Taylor
length λi= 0.028L. The three principal axes of the spheroids are denoted dx̂, dŷ and d̂z.
They correspond to the particle-frame coordinates (x̂, ŷ, ẑ), where ẑ is the direction of
the symmetry axis of the spheroids. The aspect ratio β= d̂z/dx̂ defines oblates (β < 1),
prolates (β > 1) and spherical particles (β = 1).

Table 1 lists several non-dimensional parameters of the considered cases at
release time. The particle-free turbulent field (case 0) is the reference case for the
particle-laden cases. The four particle-laden problems include spherical particles (case
S), oblates with β = 1/4 (case O4) and prolates with β = 4 and β = 8 (cases P4 and
P8). While β is varied, the number of particles (Np= 12 000), the volumetric particle
diameter dvol

p = (dx̂ dŷ d̂z)
1/3, the density ratio of particles and fluid (ρp/ρ = 1000),

the volume fraction (φv = 6.5× 10−4) and the particle mass loading (φm = 0.65) are
constant. Note that compared to our previous study (Schneiders et al. 2017a) we
have increased the volumetric particle diameter by approximately a factor of two
to provoke more significant finite-size effects. The particle volume fraction is kept
approximately constant to remain in the dilute flow regime (Balachandar & Eaton
2010) such that the number of particles becomes smaller. The particle Stokes numbers
have been estimated using particle relaxation times τp approximated for uniformly
distributed particle orientations (Voth & Soldati 2017). That is, the differences in
the Stokes numbers among the cases are solely due to shape effects. Note that the
particle relaxation times have not been corrected with respect to the finite particle
Reynolds numbers of Rep = O(10) encountered in this study. Therefore, the Stokes
numbers given in table 1 are too high by roughly a factor two, but it facilitates the
comparison with different studies since the a priori unknown statistical distribution
of particle Reynolds numbers is absent.

2.2. Relevance of the considered parameter space
The particles in the present study behave ballistically with respect to the smallest
flow scales. This is the inevitable consequence of realizing a significant particle mass
loading for dvol

p ≈ 2.5η, yet staying in the dilute flow regime. The ratios of dvol
p /η and

ρp/ρ can be considered representative for many gas–solid environments, e.g. turbulent
jets carrying pulverized fuel particles (Lau & Nathan 2014; Qi, Nathan & Lau 2015).
However, due to computational limitations, the Reynolds number Reλ still is small
compared to such environments, such that the integral turbulent length scale ` is not
large enough compared to dp to create a pronounced preferential concentration or
orientation behaviour. In other words, the ratio of the particle and integral turbulent
time scale τp/τ` is not small enough for the particles to completely relax from their
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Case β ρp/ρ dvol
p /η dmin

p /η dmaj
p /η dmaj

p /λ dmaj
p /` τp/τη τp/τλ τp/τ` φm

0 — — — — — — — — — — 0
S 1 1000 2.41 2.41 2.41 0.17 0.06 324 84 29 0.65
O4 1/4 1000 2.41 0.96 3.84 0.27 0.09 278 72 25 0.65
P4 4 1000 2.41 1.52 6.08 0.42 0.15 276 71 24 0.65
P8 8 1000 2.41 1.21 9.68 0.67 0.23 226 58 20 0.65

TABLE 1. Parameters of the five simulations at injection time t∗i = 0.28: particle aspect
ratio β; particle-to-fluid density ratio ρp/ρ; ratio of volumetric, minor and major particle
diameter dvol/min/maj

p to the Kolmogorov length η, Taylor scale λ and integral length `; the
corresponding Stokes numbers τp/τη/λ/`; and particle mass loading φm.

initial state before the carrier phase turbulence has dissipated most of its energy. The
ratios of τp/τη and τp/τ` are of the same order of magnitude as cases F (τp/τη= 149)
and G (τp/τη = 178) in Lucci et al. (2010) for significantly larger (dp ∼ λ) spherical
particles. We have stopped the simulations at T∗ = 3, which still covers only a
fraction of the particle relaxation time, i.e. ranging between (T∗/τ ∗p ) ≈ 0.2 for case
S and (T∗/τ ∗p ) ≈ 0.3 for case P8 due to the ballistic nature of the particles. This
is demonstrated in figure 1, illustrating the alignment of the particle motion with
the fluid motion for case P8 at t∗ = 2. The orientation distribution function (o.d.f.)
between the particle velocity vp and the ambient fluid velocity Up (figure 1a) only
shows a low alignment between the particle and the fluid motion. To demonstrate that
this is the consequence of particle inertia, we compare this distribution to the results
of a separate simulation with the exact same set-up, despite the density ratio being set
to ρp/ρ = 100. In the latter case, a pronounced alignment of the particle motion with
the local fluid motion is observed since the particle relaxation time is one order of
magnitude smaller. A similar trend is observed for the alignment between the particle
symmetry axis and the fluid rotation (figure 1b), where only a poor tendency for the
inertial particles to preferentially orient with respect to the fluid vorticity is observed.
The same behaviour is found for the orientation of the symmetry axis with respect
to the relative velocity direction (not shown). That is, the position and orientation of
the particles remain mostly stochastic in the cases considered in this study.

The weak particle response has certain consequences for the applicability of the
following analysis and necessitates defining of the focus of the present study. We
emphasize that the disparity between the dissipative time scale and the particle
relaxation time in combination with the limited Reynolds number and thus the lack
of very large-scale turbulent structures precludes the current set-up from an analysis
of particle transport and associated effects such as particle dispersion, clustering or
preferential orientation. The strict focus of the present study is to investigate the
direct energy transfer between the carrier phase and finite-size particles and the
additional dissipation rate induced by the particles at higher wavenumbers. The shape
effects of these processes are identified. This is achieved by resolving all relevant
scales of the fluid and the particle phase in a direct sense, i.e. without turbulence
models and without applying models to indirectly represent the particle surface or the
hydrodynamic interactions. The influence of gravity is neglected. This facilitates the
fundamental understanding of the particle–turbulence interaction and can be justified
for several fields of applications. Consider a turbulent round air jet at standard
atmospheric conditions with a bulk velocity of U = 100 m s−1, a nozzle diameter of
D = 0.5 m and carrying spherical particles with dp = 100 µm and ρp/ρ = 1000 as
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FIGURE 1. Alignment of the particle motion with the local fluid motion at t∗= 2 for case
P8 and two ratios of ρp/ρ: Orientation distribution function (o.d.f.) of the angle between
the particle velocity and the ambient fluid velocity, 6 (vp,Up) (a), and between the particle
symmetry axis and the ambient fluid rotation, 6 (Ω̂p, ẑ) (b).

encountered in various technical environments (Lau & Nathan 2014). The Kolmogorov
length scale η over the jet distance x can be estimated by (η/D)= 0.38Re−3/4

D (x/D)
(Antonia, Satyaprakash & Hussain 1980), where ReD ≈ 3 × 106, e.g. yielding
dp/η ≈ 4 at x = 10D. If the jet issues from a pipe with the same value of ReD,
one observes dp≈ η at the pipe centre line (Morrison, Vallikivi & Smits 2016) where
the turbulence is approximately isotropic. The particle terminal velocity due to gravity
is vt = gτp = 0.36 m s−1, assuming Stokes flow conditions for an order-of-magnitude
evaluation. Considering a moderate turbulence intensity of 10 %, the ratio of the
settling velocity to the velocity fluctuations is small, i.e. vt/u′ = 0.036. That is, the
ratio of the total particle kinetic energy due to gravitational settling to the turbulent
kinetic energy of the flow is small, φm(vt/u′)2� 1, at the pipe centre line and in the
near to intermediate field of the jet, despite dp & η.

It goes without saying that turbulent two-phase jets in technical processes exhibit
significantly higher Reλ than in the present study. Due to computational limitations,
the simultaneous resolution of the particle scale and turbulent length scales found
in most real-world problems is currently impossible. Although single-phase turbulent
jets are self-similar at sufficiently high Reynolds numbers (Antonia et al. 1980), this
property is generally lost for multiphase jets. Since the real Reynolds numbers cannot
be resolved, one has to choose whether to match the particle Stokes number with
respect to the dissipative scales or the integral length scales or any scale in between.
For studies on particles in anisotropic turbulence, an integral-scale Stokes number is
often stipulated to study the particle phase statistics (Lau & Nathan 2014). Since the
focus of the present study is on the energy transport between the phases, we choose to
match the Stokes number with respect to the Kolmogorov scale. That is, the response
of the particles to very large flow scales is neither covered nor is the turbulence decay
time long enough to create a significant energy record due to gravitational settling. In
other words, the time span covered is small compared to the typical turnover time of
integral-scale vortices found, e.g. in technical free jets or atmospheric flows. The lack
of particle response to the turbulent fluctuations leaves the particles approximately
randomly distributed and oriented throughout the simulations. That is, all relative
velocity directions and incidence angles of the particles are covered at various
particle Reynolds numbers. In some sense, this stochastic distribution of the particle
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phase renders the presented results generic with respect to effects due to preferential
motion of the particles. To strengthen this generality, many of the subsequent analyses
are performed for individual particles and not just in a statistical sense. For instance,
the inferences about the local kinetic energy balances will be demonstrated to apply
per particle and thus can be considered applicable also to systems in which large
turbulent length scales induce preferentially concentrated or oriented particles. These
mechanisms are not directly impacted by the interaction with very large flow scales,
even though an indirect interaction would originate from the spectral transport of
kinetic energy. That is, we expect these results to be relevant for a wide range of
applications and different flow set-ups. However, we explicitly do not encourage to
extend the current set-up to investigate mechanisms associated with particle transport.

3. Computational method
The numerical method and computational parameters are discussed in detail in

Schneiders et al. (2017a) and are briefly summarized in the following. The direct
particle–fluid simulations are performed using a cell-centred finite-volume scheme
for the compressible Navier–Stokes equations formulated on locally refined Cartesian
meshes. The particle surfaces are accurately tracked using level sets. A Cartesian
cut-cell scheme is used to couple the fluid stresses to the particle motion. The benefits
of the cut-cell approach lie in the strict conservation of fluid mass, momentum and
energy at these interfaces, the sharp and accurate resolution of the particle surface
stresses and its robustness for fluid–structure interaction. As a consequence, the
hydrodynamic force and torque acting on each particle can directly be evaluated by
integrating the normal and shear stresses over the discrete particle surfaces Γp, i.e.

Fp =
∮
Γp

(−pn+ τ · n) dA, Tp =
∮
Γp

(xΓ − rp)× (−pn+ τ · n) dA, (3.1a,b)

where rp denotes the particle mass centre. The Newton and Euler equations governing
the linear and rotational motion of the particles are solved using a second-order
accurate scheme. A dynamic mesh refinement technique is applied to adaptively
resolve the flow field in the vicinity of the particles, see Schneiders et al. (2017a).
In this study, four grid levels are used starting from the uniform background mesh.
Due to the larger curvature and more complex shape of the ellipsoids, the finest
mesh resolution is the same as in Schneiders et al. (2017a), although the volumetric
particle diameter was increased. The mesh spacing at the fluid–solid interfaces is
dvol

p /1x≈ 20 and dmin
p /1x & 8 in all particle-laden cases. The number of mesh cells

varies over time and ranges from approximately 109 in case S to 1.5× 109 for case P8
due to the larger particle surface area therein. The turbulent flow structures, the near
particle vortical structures and the local mesh refinement are illustrated in figure 2
for case P8 at time t∗ = 1. It shows a volume rendering of Q/〈ω2〉0, i.e. the second
invariant of the velocity gradient tensor normalized by the mean enstrophy obtained
in case 0 at the same time level. The strong amplification of enstrophy close to the
particles is clearly visible.

The continuous motion of the particles causes the locally refined mesh to rapidly
vary over space and time. To enable the distributed-memory computations on current
supercomputers, a dynamic load balancing strategy was developed to maintain an
equally distributed number of computational cells, i.e. a balanced memory and work
load, across the different compute cores. The solver has thoroughly been validated
for solid body motion in viscous compressible and approximately incompressible
flow including isotropic turbulent flow fields. For details the reader is referred to
Schneiders et al. (2016, and references therein).
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1

0

Q
/¯

ø2 ˘ 0

FIGURE 2. (Colour online) Volume rendering of the second invariant of the velocity
gradient tensor, Q, for case P8 normalized by the reference enstrophy 〈ω2〉0 at t∗= 1 (top);
close-up view with a slice of the computational mesh (bottom). Particles are light grey,
high fluid rotation rates are indicated by dark blue regions.
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4. Impact of particle shape and orientation on kinetic energy budget
4.1. Balance of kinetic energies

Let Ek =
∫
Υf

ek dV denote the total fluid kinetic energy, integrated within the global
fluid volume Υf , where ek = ρu2/2 is the local kinetic energy. The summed kinetic
energy of the particles, K =∑Np

p=1(mpv
2
p + ωT

pIpωp)/2, is determined using the linear
and angular particle velocities, vp and ωp, and the moment-of-inertia tensor Ip. Note
that for fluid points which are infinitesimally small, the rotational fluid motion does
not affect the linear kinetic energy. The decay rates of Ek and K are determined by

dEk

dt
=Ψ (t)− E(t),

dK
dt
=−Ψ (t), (4.1a,b)

where the term

Ψ (t)=
Np∑

p=1

Ψp =−
Np∑

p=1

(Fp · vp + Tp ·ωp) (4.2)

describes the conservative, direct transfer of kinetic energy via stresses acting at the
fluid–particle interfaces (Schneiders et al. 2017a) and

E(t)=
∫
Υf

ε dV =
∫
Υf

[τ : (∇u)− (∇ · u)p] dV (4.3)

defines the global dissipation rate. The pressure-dilatation term (∇ · u)p contributes
approximately 0.2 % to the total dissipation rate in the single-phase case, since the
flow field is approximately divergence free. Hence, the total energy of the system
decays as d(Ek + K)/dt = −E(t). The temporal distributions of Ek, K, E and Ψ

are shown in figure 3. The kinetic energy budgets in the present cases show a
qualitatively similar behaviour to the slightly smaller spherical particles (dp ≈ η) in
Schneiders et al. (2017a). Until t∗ = 1, the particles reduce the fluid kinetic energy
by approximately 5.7 % in case S, 7.1 % in cases O4 and P4 and 8.7 % in case
P8, compared to the single-phase flow (figure 3a). The strong amplification of the
dissipation rate (figure 3b) is due to the velocity gradients generated close to the
particle surfaces which amplify the strain rate and enstrophy of the ambient flow
field. At t∗ = 1 the increase of E relative to the single-phase flow is 41 % in case
S, 53 % in cases O4 and P4 and 65 % in case P8. This extra dissipation is partially
compensated by the continuous release of particle energy via Ψ (figure 3b) owing
to the high inertia of the particles. The variation of Ψ follows a similar trend as
the additional dissipation rate E , relative to case 0, and both significantly increase
with the aspect ratio β. These opposed effects lead to the rather moderate damping
of fluid kinetic energy Ek with a relatively small influence by the particle shape. On
the contrary, the strong dependence of Ψ on the particle shape leads to significant
differences in the decay rates of the particle kinetic energy K (figure 3a). Clearly, the
spherical particles transfer the least amount of energy to the fluid and the decay rate
of K increases with the aspect ratio β. The almost identical decay of K for cases P4
and O4 is explained by the comparable particle relaxation times (cf. table 1) leading
to a similar development of the average particle velocities. As a consequence, the
variation of E , Ψ and Ek is almost alike for P4 and O4 as well.
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FIGURE 3. Temporal variation of (a) the fluid kinetic energy Ek and the particle kinetic
energy K, both normalized by their initial values; (b) the viscous dissipation rate E and
the interphase energy exchange Ψ , both normalized by Eref = ρL2u3

0.

To understand the integral behaviour of Ψ and E , the local balance of fluid kinetic
energy in the vicinity of each particle is examined. In Schneiders et al. (2017a)
an analytical model for the particle-induced dissipation rate was derived from first
principles and independently of the particle shape, while assuming the particle to
not be significantly larger than the smallest flow scale. Following this analysis, the
instantaneous dissipation rate around each particle reads

Ep(t)=
∫
Σp(t)

ε dV =Fp · (Up − vp)+ Tp · (Ωp −ωp)− If , (4.4)

where Σp describes a certain volume of fluid around the particle at time t, Up− vp the
relative fluid velocity experienced by the particle and Ωp − ωp the relative rotational
velocity. The quantity If is a fluid inertia term describing the local acceleration
of the fluid elements and contributes little to the above equation when particle
inertia dominates over fluid inertia (Schneiders et al. 2017a). In the present study
it is approximated as If ≈

∫
Σp
ρ(u − Up) · (du/dt) dV . The fluid volume Σp needs

to be chosen, on the one hand, large enough to capture the majority of velocity
disturbances induced by the particles and on the other hand small enough to not catch
up disturbances by adjacent particles and background turbulence. In the following,
we set

Σp = {x | δp(x) <∆}, (4.5)

where δp(x)=min |x− Γp| denotes the distance of the point x to the particle surface
Γp and ∆= 1.5dvol

p , as justified further below.

4.2. Reconstruction of the ambient fluid velocity Up and rotation rate Ωp

In the following we demonstrate that (4.4) is still applicable when non-spherical
particles are considered with major axes significantly larger than the Kolmogorov
length scale. A generalized definition of the velocity Up will be applied. This quantity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

51
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.516


530 L. Schneiders, K. Fröhlich, M. Meinke and W. Schröder

is often interpreted as the ‘undisturbed fluid velocity seen by the particles’, however,
this notion is clearly inappropriate for dmaj

p & η or for substantial two-way interactions,
i.e. when the particle-induced disturbances overlap with the length scales of the
flow. In such cases, a suitable definition of Up is required to translate results from
particle-resolved simulations or experiments (Bellani & Variano 2012) to the various
modelling approaches in non-uniform multiphase flow, for instance, to define the
particle Reynolds number Rep = |Up − vp|dvol

p /ν. Here, we refer to Up as the ambient
fluid velocity with respect to each particle. In experimental studies, this relative
velocity is sometimes determined with respect to the global mean flow velocity,
i.e. Rep = |U − vp|dvol

p /ν (Geiss et al. 2004; Lau & Nathan 2014), which clearly
does not reflect the state of the local flow about the particles but rather represents a
statistical quantity. For particles larger than the Kolmogorov length scale, estimating
the so-called undisturbed fluid velocity at the particle centre was shown to be
inappropriate by Bagchi & Balachandar (2003). They also investigated how averaging
the fluid velocity u over increasing volumes around the particle affects the accuracy of
particle force models in frozen turbulence. In particle-resolved simulations of turbulent
channel flow, Kidanemariam et al. (2013) have proposed to average the fluid velocity
over a segment of a spherical shell at a distance of 1.5dp from a spherical particle.
However, they truncate a part of the reconstruction region based on the wall-normal
direction, which complicates the generalization of their scheme. Burton & Eaton
(2005) reconstructed the undisturbed fluid velocity in isotropic turbulence using a
separate simulation without particles. This approach is not suitable for pronounced
two-way coupling effects which significantly alter the development of the background
turbulent flow. For large (dp � η) spherical particles in isotropic turbulence with
gravity, Fornari, Picano & Brandt (2016) computed Up by averaging u over spherical
shells around the particle and performed a parameter study to identify a suitable shell
radius. However, even for large shells with a distance of 5dp to particle surface, the
mean values of Up do not fully converge in their study. They attribute this effect
to the disturbances by the pronounced particle wakes emerging from gravitational
settling.

To the best of our knowledge, the methods to reconstruct Up proposed in the
literature are restricted to spherical particles and their accuracy has not been discussed
in detail. In the following, a new scheme to reconstruct Up is described which is
applicable to spherical and non-spherical particles and also allows us to determine Ωp.
The accuracy and robustness of the scheme are evidenced via a parameter sensitivity
study. One may require that a suitable definition of Up (i) maximizes the correlation
of the particle acceleration dvp/dt with Up, while (ii) minimizes the bias of Up by
vp. For instance, at finite particle Reynolds number the particle wake may bias the
reconstruction of Up (Fornari et al. 2016). Therefore, we propose to estimate Up from
the upwind region of the particle using a Gaussian weighting function, i.e.

Up =
[∫

Σ̃p

Cup
p (x) dV

]−1 ∫
Σ̃p

Cup
p (x)u(x) dV, (4.6)

with the upwind-biased weighting function

Cup
p (x)=

{
exp{−18[δp(x)− δ0]2/σ 2}, if 6 [np(x),Fp]< θ up,

0, else,
(4.7)
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FIGURE 4. (Colour online) Reconstruction of the ambient fluid velocity Up: (a) illustration
of the reconstruction scheme in the plane spanned by the hydrodynamic force vector F̂p
and the particle symmetry axis direction ẑ. A Gaussian weight is applied in the upwind
region defined by 6 (Fp, np) < θ

up, where np is the normal vector to the closest surface
point. The illustration shows θ up = 120◦ and dmin

p = 1.5dvol
p , while the thickness σ was

increased for better visualization. Colouring is shown for 〈|u(x)− vp|/|Up − vp|〉 and the
isocontour (· · · · · ·) is at level 1.0. (b) Resulting velocity pattern 〈|u(x)− Up|/|Up − vp|〉
in the plane spanned by Ûp − v̂p and the particle symmetry axis direction ẑ. Isocontours
are shown at levels 0.2 (- - - -) and 0.4 (· · · · · ·). Ensemble averaging was performed for
all particles in the range 40◦ 6 αp 6 50◦ in case P4.

where 6 (np, Fp) is the angle between the hydrodynamic force vector Fp and the
normal vector np towards the closest particle surface point. The limiting angle
θ up separates the upwind and the wake regions as illustrated by figure 4(a). The
reconstruction region

Σ̃p = {x | δmin < δp(x) < δmax = δmin + σ }, (4.8)

is additionally defined by the minimum distance δmin and its width σ . The maximum
weight is obtained at δ0 = (δmin + δmax)/2 = δmin + σ/2, representing the mid-radius
of the reconstruction region Σ̃p (see figure 4a). The ambient fluid rotation Ωp is
evaluated analogously to (4.6).

In the following, we discuss the choice of the three parameters θ up, δmin and σ .
The reconstruction region should exclude the region Σp defined in (4.4), since the
latter represents the range of the particle-induced velocity disturbances. Figure 5
demonstrates how varying the parameters θ up, δmin and σ affects the reconstruction
of Up and Ωp. To this end, the average values of the absolute relative velocities
〈|Up− vp|/|vp|〉 and relative rotational velocities 〈|Ωp−ωp|/|ωp|〉 have been evaluated
at t∗ = 1. While one parameter is varied in each figure, the other two parameters are
constant at the reference values δmin = dvol

p , θ up = 120◦ and σ = 0.1dvol
p . Figures 5(a)

and 5(b) show the influence of varying δmin. It can be seen that at distances below
δmin= dvol

p , the linear and rotational fluid velocities rapidly reduce towards the particle
velocity up and ωp. This illustrates the particle-induced disturbances which are to be
avoided. The absolute relative velocities reach a plateau beyond δmin= dvol

p and slowly
decay when the reconstruction region is moved further away from the particle. This
increasing decorrelation of the reconstructed values of Up and Ωp from the local state
of the flow near the particle is due to filtering effects when increasing the radius of
the reconstruction region.
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FIGURE 5. Influence of the parameters δmin (a,b), θ up (c,d) and σ (e, f ) on the magnitude
of the reconstructed linear (left) and rotational (right) relative velocity vector at t∗ = 1.
While one parameter is varied in each figure, the other two parameters are constant at
the reference values δmin = dvol

p , θ up = 120◦, and σ = 0.1dvol
p .
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This is further evidenced by the increase of the squared deviation between the local
velocities u(x) and the estimated Up within each Σ̃p, using the same weights as in
(4.6). This root-mean-square deviation is computed as

r.m.s. dev.= 1
u0


[∫

Σ̃p

Cup
p (x) dV

]−1 ∫
Σ̃p

Cup
p (x)[u(x)−Up]2 dV


1/2

, (4.9)

and then averaged over all particles. The r.m.s. deviation of Ωp is analogously
computed. Note that the particle velocities vp and ωp only indirectly influence (4.9)
via the no-slip condition on the particle surface. The r.m.s. deviation of the velocities
increases with δmin due to the growing radius of the reconstruction region Σ̃p, i.e. the
increasing filtering effect with respect to the smallest flow scales. At small δmin, the
r.m.s. deviation of Ωp sharply increases due to the counter-rotating vortices attached
to the particle surface. The decay of the rotational motion Ωp with δmin is faster
compared to Up since the velocity gradient defines smaller length scales.

Figures 5(c) and 5(d) show the influence of θ up on the velocity reconstruction. It
can be seen that beyond θ up = 135◦ the magnitude of Up − vp decreases due to the
reduced velocity in the particle wake. On the contrary, the magnitude of Ωp − ωp
slightly increases due to the increased vorticity in the particle wake. The higher
vorticity also causes a steep increase of the r.m.s. deviation of the relative rotational
velocity. In the limit θ up = 180◦, no upwind-biased reconstruction is applied and
the inclusion of the particle wake deteriorates the estimated values of Up and Ωp.
Varying the width of the reconstruction region σ has a negligible influence on the
velocity reconstruction (figure 5e, f ). The magnitude of Ωp slightly decorrelates with
increasing σ , i.e. increasing δmax, while the r.m.s. deviation slightly increases with σ
due to the growing reconstruction volume. In contrast to δmin, variations in σ only
produce minor filtering effects since the mid-radius δ0 of the reconstruction region
Σ̃p only grows slowly.

The curves show a very similar trend for the different cases which results from
the definition of δmin in terms of the volumetric particle diameter dvol

p . This proves
the applicability of the reconstruction scheme to the ellipsoidal particle shapes which
are considered in this study. The method is robust for particles with dvol

p ∼ η and
dmaj

p . λ. For larger particles, pronounced filtering effects are expected and in this case
the above and similar reconstruction schemes require careful validation regarding the
sensitivity of the measured quantities.

In addition to the magnitude of the relative velocities, we verify that the direction
of the ambient fluid velocity is suitably reconstructed. For the spherical particles, the
relative linear and rotational velocities should align with the hydrodynamic force and
torque vectors, i.e. cos(Fp, Up − vp) ≈ 1 and cos(Tp, Ωp − ωp) ≈ 1. Figure 6 shows
the development of this alignment while varying δmin and θ up, whereas σ = 0.1dvol

p .
It is seen in figure 6(a) that for increasing distances δmin, the relative velocities tend
to decorrelate from the particle acceleration. Again, this effect is more pronounced
for the rotational motion due the smaller length scales. Choosing too narrow an
upwind region (θ up < 90◦) deteriorates the reconstruction of the flow direction, see
figure 6(b). This effect is explained by the finite particle size, i.e. for decreasing θ up

the reconstruction volume becomes too small compared to the ambient flow length
scale. As opposed to the magnitude of the relative velocities, the flow direction is
hardly biased by the particle wake since the latter is axisymmetric for the particle
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FIGURE 6. Influence of the parameters δmin (a) and θ up (b) on the direction of the
reconstructed linear and rotational relative velocity vectors for case S at t∗=1. The relative
velocities should align with the hydrodynamic force and torque vectors, i.e. cos(Fp,Up −
vp)≈ 1 and cos(Tp,Ωp−ωp)≈ 1. While one parameter is varied in each figure, the other
two parameters are constant at the reference values δmin= dvol

p , θ up= 120◦ and σ = 0.1dvol
p .

Reynolds numbers encountered in the present study. However, for higher particle
Reynolds number the upwind bias may become essential to reproduce the incident
flow direction.

In light of the above results, the fluid velocities should be reconstructed with
dvol

p <δmin < 1.5dvol
p and 90◦<θ up< 135◦. The parameter σ has a minor impact on the

reconstructed ambient flow, while small values of σ tend to decrease filtering effects.
In this range, the best correlation of the reconstructed velocities with the particle
acceleration and the least bias due to the near-particle shear layer or the particle
wake are observed. For the following analyses, we set δmin = 1.5dvol

p , θ up = 120◦ and
σ = 0.1dvol

p . The velocity reconstruction is demonstrated in figure 4 for case P4 at
t∗ = 1. Figure 4(a) illustrates the reconstruction volume with non-zero weight Cup

p in
the upwind region. It shows the average velocity distribution 〈|u(x)− vp|/|Up − vp|〉
in the plane spanned by Ûp− v̂p and the particle symmetry axis direction ẑ. Ensemble
averaging was performed for all particles in the range 40◦ 6 αp 6 50◦, where
αp ≡ 6 (̂z, Ûp − v̂p) describes the inclination angle between the symmetry axis and the
relative velocity vector. Figure 4(a) demonstrates that a bias of Up by the particle
wake is avoided using the proposed reconstruction scheme. Figure 4(b) shows the
resulting velocity distribution 〈|u(x) − Up|/|Up − vp|〉, i.e. relative to the ambient
velocity Up. The small deviation between u and Up in front of the particle confirms
the upwind bias in the determination of the ambient velocity. The quick decorrelation
of u(x) and Up with increasing distance from the particle illustrates the overlap of
the small flow scales and the particle scale. The Kolmogorov length scale ηi and
Taylor length scale λi at release time are indicated for reference.

The proposed definitions of Up and Ωp have been further verified by ensuring
that their distribution shortly after release of the particles recovers the probability
density functions of the global fluid velocity field u and vorticity field ω. Note
that these distributions will in general not coincide for particles larger than in
the present study, due to the emerging filtering effects of the reconstruction
scheme, i.e. due to the inherent filtering effects in the motion of finite-size
particles. Additionally, a good agreement of the directly evaluated particle force
Fp and the estimate 0.5 CD(Rep)ρ|Up − vp|2Ap, using the empirical drag coefficient
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CD(Rep) = 24(1 + 0.15Re0.687
p )/Rep by Schiller & Naumann (1933), is observed for

the majority of the spherical particles at t∗ > 1 (not shown).
As noted earlier, the ambient fluid velocity Up represents the ‘link’ between

the energy balances of particle-resolved simulations, experimental measurements,
point-particle schemes and other approaches. However, in contrast to the present
simulations in which Up depicts a quantity derived from the results and does not
explicitly enter the simulations, the formulation of Up is one of the key components
defining the accuracy of any point-particle scheme. Point-particle models for finite-size
particles at dp & η are yet in the early stages of development (Balachandar & Eaton
2010; Fröhlich et al. 2018; Mehrabadi et al. 2018). One of the challenges involves the
interpolation of Up at the particle location while avoiding self-induced disturbances
(Mehrabadi et al. 2018). At the same time, an operator for the reverse projection of
the particle force onto the fluid momentum equations is required to retain momentum
and energy conservation. For instance, Mehrabadi et al. (2018) have considered
a Laplacian term to measure and remove the particle-induced disturbances. This
approach was demonstrated to be accurate when (dp/λ)

2 � 1 which is given in
their study of spherical particles at dp ≈ η. At increasing particle sizes, the overlap
of the turbulent scales and the scale of the particle-induced velocity disturbances
exacerbates such an approach. While recent studies demonstrate that the spatial
extents of the interpolation and projection operators at dp ≈ η should be chosen large
enough to avoid self-induced disturbances (Fröhlich et al. 2018; Balachandar, Liu &
Lakhote 2019), our results above suggest that, if these volumes become too large,
the reconstruction may suffer from significant filtering effects (figure 5) and errors
in the reconstructed relative velocity direction (figure 6). Moreover, it is obvious that
too large a projection region will diffuse hydrodynamic particle–particle interactions.
Therefore, the projection and interpolation operators for dp > η necessitate careful
construction. Moreover, modelling the rotational motion of the particles requires
the reconstruction of the ambient fluid rotation and strain rates, which has hardly
been discussed in the literature. The derivation of accurate and robust interpolation
and force projection schemes for non-spherical, finite-size particles in point-particle
applications is an intricate problem on its own and beyond the scope of the present
study.

4.3. Particle-induced dissipation rate of non-spherical particles
Using the above definitions, the validity of model (4.4) is verified for the present
cases in figure 7. Ensemble averaging was performed using 10 bins in the range
0 6 Ep/Ep,ref 6 25, with Ep,ref = ρu3

0d2
p, for each case. It can be seen that the model

closely reproduces the dissipation rate
∫
Σp
ε dV which directly has been integrated

for each particle. Since for its derivation no assumptions were made on the particle
shape (Schneiders et al. 2017a), the model exhibits a good agreement with the data
irrespective of the aspect ratio β. Even for case P8, in which the major axis of
the ellipsoids is of the order of the Taylor length scale (cf. table 1), no substantial
deterioration of the model quality is observed. The standard deviation of the data in
figure 7 increases with higher values of

∫
Σp
ε dV . The statistical sampling at these

values becomes less significant, corresponding to the relatively small number of
particles at larger relative velocities, i.e. larger Rep. On average, 〈Rep〉 ≈ 14 at t∗ = 1
while values of Ep/Ep,ref = 25 correspond to Rep≈ 30. Only few particles attain higher
values of Rep. The slight tendency of the model to underpredict

∫
Σp
ε dV is due to the

relatively large volume fraction of the particle phase which leads to a mutual overlap
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FIGURE 7. Particle-induced dissipation rate, directly computed by the volume integral∫
Σp
ε dV , versus the analytical model Ep in (4.4), both normalized by Ep,ref = ρu3

0d2
p at

time level t∗ = 1. Error bars indicate the standard deviation.

of adjacent Σp. These hydrodynamic interactions increase with the aspect ratio of
the particles, causing the average particle-to-particle distance to decrease although the
volume fraction remains constant. Note that figures 4–7, which are shown at t∗ = 1,
are qualitatively representative for the data at all later time levels.

It has to be emphasized that the good agreement of the above model is not
the outcome of calibrating the definitions of Σp and Up. This is substantiated by
figure 8, which shows the convergence of the evaluated dissipation rate

∫
Σp
ε dV when

increasing the integration distance ∆, i.e. the volume Σp, at time t∗ = 2 for cases S
and P8. When enlarging the integration region Σp, a convergence of the correlation
shown in figure 7 is observed although the volume Σp rapidly grows by the cube
of the distance ∆. At the same time, the scattering of the data increases due to the
aforementioned particle–particle interferences which become more probable to be
captured when increasing Σp. At ∆= 1.5dvol

p , most of the particle-induced dissipation
is captured in all cases. Likewise, as previously demonstrated in figure 5, an increase
of the reconstruction region for the determination of Up mostly introduces filtering
effects but only slowly deteriorates the quality of the model (4.4). That is, the
presented model is very robust with respect to these definitions if the particle-induced
disturbances are captured by Σp and are avoided by Σ̃p.

Combining the model for Ep and the definition of Ψp, it follows that the influence
of an individual particle on the fluid kinetic energy balance, when fluid inertia can be
neglected and the flow is dilute, effectively reduces to Ψp − Ep =−Fp ·Up − Tp ·Ωp.
The share of the rotational terms in the values of Ep and Ψp is small in the present
cases due to the absence of mean shear. Let E rot

p =Tp · (Ωp−ωp) denote the rotational
component of Ep≈ E lin

p + E rot
p . The overall fraction of E rot

p at t∗= 1 amounts to roughly
2.5 % for case P8, 0.8 % for case P4, 0.4 % for case O4 and 0.2 % for case S.
These values slowly decay over time due to the minor interaction of the particles
with the small flow scales. Although a substantial number of particles in case P8 attain
states with E rot

p ∼ E lin
p when |Up− vp| is small, these do not contribute significantly to

the global dissipation since E lin
p ∼ |Up − vp|2. However, for the prolates E rot

p grows by
the power of 3–4 with β, such that substantially larger values may be observed for
longer fibres.

The direct contribution of the rotational particle motion to the energy balance
via E rot

p and the rotational terms in Ψp may become more significant in anisotropic
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FIGURE 8. Convergence of the particle-induced dissipation rate with increasing radius ∆
of the integration volume, shown for cases S (a) and P8 (b) at t∗ = 2: The integrated
dissipation rate converges towards the model prediction while |Σp| grows by ∆3.
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FIGURE 9. Particle orientation impact on energy budget: average particle-induced
dissipation Ep (a) and energy transfer Ψp (b) normalized by the expected dissipation of
a sphere E sphere

p and as a function of the particle alignment cos(αp) at t∗ = 1.

turbulence. It is emphasized, however, that the rotational motion also indirectly
influences Ep and Ψp via the linear force Fp, leading to the significant differences
in Ψp and Ep between cases S and P8 (figure 3). That is, the absolute values of
Ep and Ψp tend to be significantly larger for the non-spherical particles. This is
demonstrated in figure 9, which shows the impact of the particle orientation on
the average values of Ep and Ψp. To remove the dependence of these terms on the
instantaneous particle Reynolds number, they are non-dimensionalized by the expected
value for a spherical particle of the same volume and same Rep. Using (4.4) and
neglecting the in this case subordinate rotational component, it can be estimated as
E sphere

p = 0.5 CD(Rep)ρ|Up − vp|3Ap, with the drag coefficient CD(Rep) defined above
and Ap = π(dvol

p )2/4. Ensemble averaging was performed using 10 bins in the range
0 6 |cos(αp)| 6 1. As expected, the spherical particles in case S show a uniform
distribution with respect to their orientation while the average value of Ep is close
to E sphere

p . This agreement again confirms the accurate reconstruction of the velocity
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FIGURE 10. (Colour online) Average relative fluid kinetic energy 〈ek− ek〉/u2
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spanned by Ûp − v̂p and ẑp: case S (a) and case P8 for three classes of orientations αp
(b–d). Isocontours are shown at −0.05 (· · · · · ·) and 0.25 (- - - -).

Up. The average value of |Ψp| is slightly smaller than Ep as anticipated from the net
kinetic energy decay (figure 3).

For the non-spherical particles the smallest values of |Ψp| and Ep are observed
when their surface perpendicular to the direction of Up − vp is minimal, i.e. when
|cos(αp)| = 1 for prolate particles and |cos(αp)| = 0 for oblate particles. Even though
the projected area in this case is smaller than for the spheres, the increased total
surface area leads to similar values of |Ψp| and Ep. As the particles change their
alignment with the relative flow direction, |Ψp| and Ep substantially increase with the
aspect ratio of the particles. For instance, in case P8 the particle-induced dissipation
rate is approximately 2.4 times higher on average than for the spherical particles when
ẑ and Ûp − v̂p are orthogonal. This behaviour explains why the total dissipation and
energy transfer rates strongly increase with the aspect ratio (figure 3). In the present
cases, the particle orientation is almost uniform. In general, the global energy balance
highly depends on the distribution of the particle orientations and also the particle
Reynolds numbers.

In figure 10 the impact of the particle orientation in case P8 is illustrated by the
average pattern of fluid kinetic energy, subtracted by the global mean value ek =
Ek/|Υf |. The flow patterns were evaluated in the plane spanned by Ûp − v̂p and the
symmetry axis direction ẑ. For P8, averaging was performed for subsets of particles
with 0◦6 |αp|6 10◦, 40◦6 |αp|6 50◦ and 80◦6 |αp|6 90◦, i.e. with a slight smoothing
effect due to the variation of αp by ±5◦. These states are compared to the flow pattern
obtained for case S. It can be seen that the fluid kinetic energy sharply increases
close to the particle surface where the ambient fluid tends to move at the particle
velocity. For small |αp|, the projected area of the P8 particles is smaller than for the
spheres and thus the peak increase of ek at the particle surfaces is smaller than for
S, corresponding to smaller relative velocities. At increasing |αp|, the prolates tend
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to act as bluff bodies for the local fluid flow and an increasing region of fluid is
accelerated or decelerated in the wake region of the particles while Up− vp increases.
The resulting strong velocity gradients lead to the intense strain rate and therefore
larger dissipation rate for the ellipsoidal particles.

5. Final remarks and implications for point-particle modeling
Direct particle–fluid simulations of heavy spheres and ellipsoids interacting with

decaying isotropic turbulence were conducted, extending the results on spherical
particles of Kolmogorov length scale size (Schneiders et al. 2017a) to O(104)
non-spherical particles. The particle minor and major axes in the considered cases
range between Kolmogorov and Taylor length scale size. By explicitly resolving the
stresses acting on the fluid–particle interfaces, the modulation of the turbulent flow
was precisely captured.

The development of Euler–Lagrange point-particle models capable of representing
non-spherical particles at dvol

p & η is a major challenge for the prediction of two-phase
flows in various applications. One of the open questions concerns the two-way
interaction since the particle scale and the smallest flow scales overlap. Using the
expression for the particle-induced dissipation rate (4.4), the local kinetic energy
balance induced by individual particles can be assessed. Analogously to the discussion
for spherical particles in Schneiders et al. (2017a), the conservation of energy by
two-way coupled Lagrangian point-particle models is discussed for non-spherical
particles in the following. The linear motion leads to a net impact of −Fp · Up on
the fluid kinetic energy balance due to an individual particle. This corresponds to
the feedback term which is applied in the majority of two-way coupled point-particle
particle schemes, where Up is usually defined as the fluid velocity interpolated at the
particle position. Note that sometimes approaches to reduce self-induced disturbances
are included, see e.g. Mehrabadi et al. (2018), Balachandar et al. (2019). It follows
that these schemes implicitly account for the particle-induced dissipation without
explicitly resolving the responsible velocity gradients and disturbance length scales.
They can therefore be expected to accurately reproduce the distribution of kinetic
energy whenever Fp and Up are accurately determined for all particle orientations.
The present results indicate that a bias of Fp or Up by self-induced disturbances
or filtering effects can lead to significant errors in the determination of the energy
exchange between the phases.

An analogous inspection of the rotational terms leads to an effective impact of
−Tp ·Ωp on the fluid kinetic energy balance per particle. In Andersson et al. (2012)
a torque coupling scheme for small non-spherical particles was proposed based on
an analogy to micropolar fluids. In their approach, the Stokes shear tensor is altered
by an anti-symmetric particle stress tensor τp such that ∇τp ≡ ∇ × Tp is subtracted
from the fluid momentum equations. The resulting term in the energy balance follows
from multiplication with the local fluid velocity, i.e. −U · (∇×Tp)=−(∇×U) ·Tp=
−Ω ·Tp, corresponding to the rotational transfer term above, i.e. implicitly accounting
for the rotationally induced dissipation. That is, unless the magnitude of this term
is orders of magnitude smaller than its linear counterpart, a torque coupling scheme
proves necessary for the conservation of energy in these models. In any case, even if
this direct rotational contribution is small, the present results evidence the linear part
of the two-way coupling rate, −Fp · Up, to be highly dependent on the orientation
and the shape of the particles, i.e. to be indirectly impacted by the rotational motion.
Therefore, an orientation-sensitive model for the particle drag is required to reproduce
the balance of fluid kinetic energy.
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Provided that the hydrodynamic force and torque acting on the particle are known
as a function of the particle Reynolds number and the orientation of the particle, the
particle-induced dissipation rate can be evaluated by (4.4). The remaining quantities
are typically available in point-particle schemes. At increasing particle diameter, the
fluid inertia term If becomes more significant. However, unlike spherical particles for
which a ‘standard drag curve’ is established (Clift, Grace & Weber 1978), no such
expression exists for ellipsoidal or general particle shapes. Generalized correlations
have been developed for specific particle shapes (Sanjeevi, Kuipers & Padding 2018;
Andersson & Jiang 2019) and attempts have been made to provide curve fits covering
a broader parameter space using particle-resolved simulations (Ouchene et al. 2016).
However, as discussed by Andersson & Jiang (2019) such simulations face several
numerical challenges, specifically for moderate particle Reynolds numbers, and they
conclude that ‘the accuracy of already existing formulas can hardly be assessed’. The
importance of such fluid inertia corrections for point-particle simulations of spherical
particles has recently been evidenced by conducting direct comparisons with particle-
resolved simulations (Schneiders, Meinke & Schröder 2017b; Mehrabadi et al. 2018).
In conclusion, improved models for the orientation-dependent hydrodynamic drag and
torque are the prerequisite to reproduce the local and global energy balance in the
presence of non-spherical particles of finite size. Moreover, whereas two-way coupling
projection schemes have been discussed for finite-size spherical particles (Fröhlich
et al. 2018), similar approaches have yet to be investigated for non-spherical particles
of finite size.
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