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SUMMARY
The purpose of this paper is to present a robust tracking
control algorithm for underactuated biped robots capable
of self-balancing in the presence of external disturbances.
The biped is modeled as a five-link planar robot with four
actuators located at hip and knee joints. A sliding mode
control law has been developed for the biped to follow a
human-like gait trajectory while keeping the torso nearly
upright. The control forces are calculated by defining four
first-order sliding surfaces as a linear combination of the
torso and the four joint tracking errors. The control approach
is shown to guarantee that all trajectories will reach and
stay on these surfaces during each step, while the walking
cycle stability is maintained through a Lyapunov function.
The criteria for asymptotic stability of the surfaces are
presented and a numerical search method is implemented for
the selection of the corresponding surface parameters. The
paper further investigates the robustness of the controller in
response to disturbances. Numerical simulations demonstrate
the tracking stability of the biped’s multistep walk and its
human-like response to an external disturbance.

KEYWORDS: Biped robots; Underactuated systems; Slid-
ing mode control; Stability analysis.

1. Introduction
Bipedal walking reveals many challenging issues despite the
continuously increasing research for legged locomotion. The
complexity of this class of mechanical systems makes their
study and design very difficult [1–4].

One of the challenges in bipedal walking is development
of an efficient and robust control algorithm that ensures
both stability of walking and accurate trajectory following.
Researchers have used nonlinear approaches such as
feedback linearization [5], sliding mode control [6–9], and
computed torque method [10]. However, their focus has been
control of fully actuated bipeds, where there is an actuator for
each degree of freedom (DOF). In the case of underactuated
robots, the reduction of the number of the actuators has the
advantage of reducing the energy expenditure, simplified
design, and potential use for spinal or leg injury rehabilitation
purposes. However, the control problem and stability analysis
become more difficult.

The method of Poincare has been used to study the
stability of underactuated biped motion in several studies.
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As an example researchers have studied and verified the
convergence of motion into a cyclic trajectory in a compass
biped model based on numerical computation of Poincare
map [11]. This method has been used to study the stability
of a simple passive biped without torso. As the dimension
of the model increases, the stability analysis, using standard
Poincare map, becomes impractical due to its complexity.
However, in ref. [12], the stability analysis of a 3-DOF biped
has been investigated with reduction of the Poincare map to
numerical calculation of a one-dimensional problem. This
new approach has been implemented in ref. [13] to control a
5-DOF biped. In ref. [14], it has been assumed that the biped
follows the desired motion based on controller development
as in ref. [12] and its stability has been investigated through
dynamics of the shin angle with a one-dimensional Poincare
map. This paper studies the stability of the motion during the
complete walking cycle. In ref. [15], a second-order sliding
mode control has been developed to control the walking
of a 5-DOF biped with four actuators. This work is the
continuation of the authors’ previous works [12], [13], where
the stability proof is based on the Poincare method. These
approaches encode the walking pattern to posture conditions
and reduce the dimension of the control problem effectively
rendering it into a fully actuated one by introducing a set
of output functions to control the torso, hip, and swing
leg end.

An alternative approach has been proposed where the
geometric evolution of the bipedal configuration is controlled
and not the temporal evolution [16], [17]. In these works, the
stability of the control law has been investigated through
angular momentum of the biped about the contact point
during the single support phase (SSP). The method also
reduces the control problem into a fully actuated one by
introducing a virtual time-dependent input and assumes
no modeling error or disturbances. In ref. [16], optimized
reference trajectories are tracked with the help of a time-
scaling control. In ref. [17], the reference trajectory is defined
for five generalized coordinates as a function of a scalar path
parameter that is varying between 0 and 1. This parameter
is dependant on the dynamics of the biped. In ref. [18],
partial feedback linearization method has been used to
control the entire walking cycle including the double support
phase (DSP). The stability of the SSP and DSP have been
investigated through development of a Lyapunov function
along the trajectory and the impact phase has been treated
as external perturbation. The torso motion stability proof
for this method relies on an accurate dynamic model and
cancellation of the nonlinear terms. Other methods include
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linearization-based approaches that may have the advantage
of integrating actuator saturation into the control law [19].

The main objective of this paper is to propose a stable and
robust control law for a 5-DOF biped with four actuators
located at hip and knee joints [20]. The goal is to stabilize
the torso while lower body follows a desired walking
profile. The control law is derived based on sliding mode
control approach. Four first-order linear sliding surfaces are
defined in terms of the torso and the four joint position and
velocity tracking errors, leading to the derivation of the four
controllers.

The stability of the control law can be explained in terms of
the reaching and sliding phases of the sliding mode approach.
The walking cycle was proven to be stable since the impact
at the end of each step introduces a jump that throws the
trajectory off the intersection of the surfaces. The standard
Lyapunov function in sliding mode control, however, pushes
the trajectory back on the surfaces in finite time. During the
sliding phase, the system dynamics is represented by the four
linear first-order surfaces and one nonlinear equation derived
through a simple partial feedback linearization process. Since
the biped is linearly controllable [21], the stability criteria are
derived based on linearization of the one nonlinear equation.
Consequently, we have used a combination of symbolic
manipulation and a numerical search method to determine
the surface parameters in the stable region.

Our approach has either one or both of the following
two advantages over the existing methods. First, sliding
mode control approach guarantees stability in the presence
of significant but bounded modeling uncertainties and
disturbances. Second, the joint trajectories are directly
controlled rather than a transformed set of output functions
that define the motion of the biped’s feet and hip. This
provides additional flexibility for choosing an energy-
efficient desired walking trajectory.

2. Biped Model

2.1. Kinematic model
We present a sagittal model of an anthropomorphic biped in
xy plane, as shown in Fig. 1. The model consists of five rigid
links, a torso, and two identical legs, each having two links
connected via knee joints. Two coaxial hip joints connect the
legs to torso and each joint has one rotary DOF. The biped in
the SSP can be considered as a 5-DOF biped whose model
is represented by four relative joint angles and the torso
absolute angle. Biped motion is controlled by four actuators
located at knee and hip joints. Hence, it is categorized as an
underactuated system in the SSP.

2.2. Dynamic model
Based on the assumption that the DSP is instantaneous, the
dynamic model can be described in two parts, which consists
of the SSP and an impact model.

2.2.1. Single support phase model. During the SSP, the
connection between the stance leg and the ground is modeled
as a pivot joint. The equations of motion may be written as

D(q)q̈ + C(q, q̇) + G(q) = U, (1)

Fig. 1. Configuration variables of 5-DOF biped.

where q = [q1, q2, q3, q4, q0]T is the vector of generalized
coordinates, U = [τT, 0]

T
, τ = [τ1, τ2, τ3, τ4]T vector of

actuator forces, D ∈�(5×5) the inertia matrix, and C and
G ∈ �(5×1) vectors of centrifugal and coriolis terms and
gravity terms, respectively.

2.2.2. Impact model. Impact occurs when the swing leg
of the biped touches the ground, which we have modeled
as contact between two rigid bodies. At this moment, the
roles of the swing and the stance legs are exchanged. The
basic assumptions for impact modeling are: the external
forces on the biped can be represented by impulsive forces,
a discontinuity occurs in the joint velocities due to rigid
body contact, positions remain unchanged and continuous,
and the actuator torques are not impulsional. Formulation
of the impact model requires the assumption that at the
moment when the free leg touches the ground, the stance leg
immediately leaves the ground. Therefore, contact between
the swing leg and the ground is modeled as a pivot joint
connection. Further, we must use a 7-DOF model that allows
the free motion of the stance leg [6]. Hence, we need to add
the Cartesian coordinate of the stance leg end (xs, ys) to the
generalized coordinates:

qc = [q1, q2, q3, q4, q0, xs, ys]
T. (2)

The equations of motion for the impact duration can be
written as

Dc(qc)q̈c + Cc(qc, q̇c) + Gc(qc) = Uc + Fδ, (3)

where Dc ∈ �(7×7), Cc, Gc ∈ �(7×1), Uc = [τT, 0, 0, 0]
T
, and

Fδ ∈ �(7×1) is the generalized constraint force. Integration of
Eq. (3) over an infinitesimal duration of impact ([t0, t0 +
�t], �t → 0) leads to the expression of conservation of
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momentum about the contact point [6]

Dc(qc)(q̇+
c − q̇−

c ) =
∫ t0+�t

t0

Fδ . dt, (4)

where q̇−
c and q̇+

c denote the joint velocities just before and
after the impact. Assuming that the external forces are acting
only at the end of the swing leg (as the stance leg detaches
from the ground immediately), one may write the generalized
constraint forces as

Fδ = JT λ, (5)

where J ∈ �(2×7) represents the Jacobian of the Cartesian
position of the swing leg end (xs, ys) with respect to qc and
λ∈ �(2×1) denotes Cartesian force vector acting on the swing
leg end during impact. Assuming that the swing leg does not
slip or rebound, we can also write

Jq̇+
c = 0. (6)

Equations (4)–(6) provide nine linear simultaneous equations
that can be solved for the angular velocities just after impact
and the external forces on the swing leg end. The solution
helps us determine the amount of friction required to avoid
slipping and facilitates the initialization of the biped model
for the next step,

q̇+
c = q̇−

c + I(qc)(−ẋ−
e ), (7)

where I(qc) = D−1
c JT(JD−1

c JT)−1 and ẋ−
e denotes the velocity

of the swing leg end just before the impact.

3. Reference Trajectories
We define the desired trajectories based on human walking
observation [13] through five constraint equations. First, the
horizontal position of the swing leg end, xe, is defined as a
fifth-order polynomial of time

xe(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5, (8)

where coefficients ai, i = 0, . . . , 5, are derived based on the
desired horizontal initial and final positions, velocities, and
accelerations of the swing leg end

xe(t0) = −L ẋe(t0) = v0; ẍe(t0) = 0

xe(tf) = L; ẋe(tf) = vf ; ẍe(tf) = 0.
(9)

Then, the vertical position of the swing leg, ye, is defined as
a parabolic function of xe

ye = c2ex
2
e + c1exe + c0e. (10)

The coefficients of the parabola can be determined based on
step length, L, and maximum height, H , i.e.,

c2e = −4H/L2; c1e = 0; c0e = H. (11)

Two more constraints are added to ensure that the horizontal
position of the hip is centered between the two feet and its
vertical position moves on a parabolic path resembling that
of the swing leg end, i.e.,

xh = xe/2 (12)

yh = c2hx
2
h + c1hxh + c0h. (13)

Similarly, the coefficients of this second parabola can be
determined based on L and maximum hip height. The fifth
constraint maintains nearly vertical posture for the torso

q0(t) = qd
0 , (14)

where qd
0 is a small constant angle whose value depends on

the average walking speed.
Using the notation “C” for “cos” and “S” for “sin,” the

horizontal and vertical positions of the hip can be defined
based on Fig. 1 as follows:

xh = L2S(q0 + q2) + L1S(q0 + q1 + q2) (15)

yh = L2C(q0 + q2) + L1C(q0 + q1 + q2) (16)

and those of the swing leg as

xe = xh + L2S(q3 − q0) + L1S(q3 − q0 − q4) (17)

ye = yh − L2C(q3 − q0) − L1C(q3 − q0 − q4), (18)

where L1 and L2 represent the lengths of tibia and
femur, respectively. Equations (15)–(18), called the postural
conditions, can be solved to determine the desired trajectory
for the four joint coordinates

qd
1 (t) = acos

[
x2

h + y2
h − L2

1 − L2
2

2L1L2

]
(19)

qd
2 (t) = atan

[
xh

(
L2 + L1Cqd

1

) − yhL1Sqd
1

xhL1Sqd
1 + yh

(
L2 + L1Cqd

1

)]
− qd

0 (20)

qd
3 (t) = atan

[
xeh

(
L2 +L1Cqd

4

) − yehL1Sqd
4

−xehL1Sqd
4 + yeh

(
L2 + L1Cqd

4

)]
+ qd

0 (21)

qd
4 (t) = acos

[
x2

eh + y2
eh − L2

1 − L2
2

2L1L2

]
, (22)

where xeh = xe − xh and yeh = ye − yh. Reference trajectories
remain continuous (q+

c = q−
c ) during the impact based on

assumptions made in our impact model.

4. Sliding Mode Control Formulation
The goal of sliding mode control approach is to
define asymptotically stable surfaces such that all system
trajectories converge to these surfaces and slide along them
until reaching the origin at their intersection [22]. Since
the biped model, represented by Eq. (1), is underactuated,
the equations are partitioned into four actuated and one
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unactuated coordinates,[
Daa Da0

DT
a0 D00

] [
q̈a

q̈0

]
+

[
fa

f0

]
=

[
τ

0

]
, (23)

where f = [fT
a , f0]T = C + G and may also represent external

forces and disturbances. The fifth (unactuated) equation in
the set (23) is a second-order nonholonomic constraint.
Hence, it is completely nonintegrable and strongly accessible
such that the dimension of the reachable states is not reduced
[23]. In order to derive a stable control law that relies on the
structure of the system equations, we redefine the actuated
accelerations as input and lump all nonlinearities into a single
equation

q̈a = u (24)

q̈0 = −D−1
00

(
f0 + DT

a0u
)

(25)

τ = Da0q̈0 + Daau + fa. (26)

First-order linear sliding surfaces are normally defined
based on weighted combination of the position and velocity
tracking errors q̃ = q − qd and ˙̃q = q̇ − q̇d. Partitioning of
the tracking errors into four actuated and one unactuated, the
surfaces may be defined as [24]

s = ˙̃qa + λaq̃a + α0 ˙̃q0 + λ0q̃0, (27)

where λa ∈ �(4×4) and α0, λ0 ∈ �(4×1) are the constant para-
meters that must be selected to ensure the asymptotic stability
of the sliding surfaces. Clearly, if we choose λa as a diagonal
positive definite matrix, then the surfaces are exponentially
stable as long as the torso is stable, i.e., q̃0 → 0.

The control law can be calculated by defining a candidate
Lyapunov function in terms of the surfaces as

V (q, q̇) = 1

2
sTs ≥ 0 (28)

Thus, we must determine the control law that satisfies
V̇ (q, q̇) ≤ 0 or equivalently

si ṡi ≤ −ηi |si | i = 1 . . . 4, ηi > 0. (29)

The equations considered earlier represent the reaching
conditions for the four surfaces. Substituting from Eqs. (24),
(25), and (27) into Eq. (29) and adding the robustness terms,
one may write [20]

u = M̂−1
[
α0D̂

−1
00 f̂0 − ṡr − ksgn(s)

]
(30)

where “ˆ” denotes that the terms are evaluated based on the
estimated dynamic parameters of the system and

M̂ = I4 − α0D̂
−1
00 D̂T

a0 (31)

ṡr = −q̈d
a − α0q̈

d
0 + λa ˙̃qa + λ0 ˙̃q0 (32)

ksgn(s) = [k1sgn(s1), . . . , k4sgn(s4)]T, (33)

where I4 ∈�(4×4) denotes the Identity matrix. Note that the
parameters of α0 must be selected such that matrix M̂ is
invertible for all biped configurations.

In Eq. (30), the gains of the “sign” functions (robustness
terms), k, must be selected such that the reaching conditions
(Eq. (29)) are satisfied. Assuming that the mass and geo-
metric properties of the biped can be accurately measured,
the uncertainties and disturbances can be collected in f0 and
k is determined as

k = η + α0D̂
−1
00 F0, (34)

where F0 represents the bound on our modeling uncertainty
and disturbances

|f0 − f̂ 0| ≤ F0. (35)

The amount of effort required for the system trajectory to
reach each surface is proportional to the magnitude of the
corresponding element of k.

5. Stability Analysis
The control law of Eq. (30) is asymptotically stable if we can
prove: A) matrix M̂ is invertible, B) all system trajectories
reach the surfaces in finite time and remain on the surface,
and C) the surfaces are asymptotically stable.

5.1. Invertibility condition
The biped inertia matrix D̂ is positive definite. Thus, the
elements of vector D̂−1

00 D̂a0 are bounded in the biped
configuration space. Further, it can be shown that the
determinant of M̂ is given as 1 − D̂−1

00 α0
TD̂a0 [25]. Hence,

we can simply choose the elements of α0 with sufficiently
large magnitudes such that det(M̂) �= 0.

5.2. Reaching condition
The controller of Eq. (30) ensures that all system trajectories
will reach the surface and remain there since it guarantees
that 1

2 sTs is a Lyapunov function even in the presence of
uncertainties and disturbances which were integrated in the
model through Eq. (34). The trajectories will reach each
surface i within the finite time of |si(0)|/ηi [26]. Note that, at
the end of each step there is a jump in velocities due to impact
of the swing leg and ground. This causes a perturbation in
the initial conditions of the next step throwing the trajectory
off the surfaces. However, the stability of multistep walk is
guaranteed due to the finite time reaching conditions. Clearly,
the values of ηi must be large enough to ensure a smooth
transition from one step to the next but small enough to
avoid excessive actuator forces.

5.3. Surface exponential stability
During the sliding phase of trajectory, the closed loop system
dynamics is represented by the combination of the four first-
order linear surfaces in Eq. (27) in the form s = 0 and the
one unactuated acceleration equation, namely, Eq. (25), after
substituting for the control law and eliminating the robustness
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term

˙̃qa + λaq̃a + α0 ˙̃q0 + λ0q̃0 = 0 (36)

q̈0 + D̂−1
00

[
f̂ 0 + D̂0aM̂−1

(
α0D̂

−1
00 f̂ 0 − ṡr

)] = 0, (37)

where the system state vector is reduced to x = [̃qT
a , q̃0, ˙̃q0]T.

It is well known that systems with isolated equilibrium
points for each fixed set of inputs (i.e., systems with potential
energy such as a biped) are linearly controllable [21]. Hence,
we may linearize Eq. (37) about the system trajectory and
torso equilibrium point to establish linear stability criteria
that can guarantee local exponential stability of the nonlinear
system. Substituting for ˙̃qa from Eq. (36) in the linearized
form of Eq. (37), one may write

¨̃q0 + A0aq̃a + A00q̃0 + B00 ˙̃q0 = 0. (38)

The state matrix of the linear time varying system represented
by Eqs. (36) and (38), ẋ = A(t)x, is derived as

A(t) =

⎡⎢⎣−λa]4×4 [−λ0]4×1 [−α0]4×1

[0]1×4 0 1

[A0a]1×4 A00 B00

⎤⎥⎦ , (39)

where each bracket’s subscript denotes the submatrix size.
Exponential stability of the linear time varying system can

be established if at any time t ≥ 0, the eigenvalues of A(t) all
have negative real parts (i.e., the matrix is negative definite),
it remains bounded [26], and∫ ∞

t0

AT(t)A(t) dt < ∞. (40)

Since time varying components of A(t) are functions of the
periodic desired trajectories, it is clear that A(t) remains
bounded and Eq. (40) is satisfied.

In order to determine whether or not matrix A(t) is negative
definite, its elements were derived symbolically using
MAPLE. The characteristic polynomial for the eigenvalues
of matrix A(t) is represented in Laplace domain as

b6S
6 + b5S

5 + b4S
4 + b3S

3 + b2S
2 + b1S + b0 = 0 (41)

where S is the Laplace variable. The Hurwitz stability condi-
tions result in 13 independent coefficients

h1, h2, . . . , h12, h13 > 0, (42)

where

h1 = b6, . . . , h7 = b0, h8 = h2h3 − h1h4

h2
, . . . (43)

The parameters in Hurwitz criteria are time varying (i.e.,
depend on the biped posture changes) and functions of
surface parameters λa, α0, and λ0. Thus, the condition in
Eq. (42) must be checked throughout the biped walking cycle
for a given set of surface parameters. Hence, a numerical
algorithm was developed to check if Eq. (42) is satisfied

Table I. Biped geometry and inertia properties.

Mass Center of Moment of Length
Link (Kg) mass (m) inertia (Kg.m2) (m)

Torso 50 0.33 7.0 0.55
Femurs 8.6 0.27 0.69 0.41
Tibias 6.4 0.24 0.44 0.40

during the whole walking cycle while searching for surface
parameters. Several guidelines may be used to reduce the
complexity of the parameter search. As explained earlier,
we choose λa to be a diagonal positive definite matrix,
such that the surfaces become exponentially stable as long
as the torso is stable (see Eq. (36)). Another condition is
that all elements of λ0 and α0 must have the same sign
to achieve an exponentially stable torso motion. Further,
|α0i

|	 1, i = 1 . . . 4, is sufficient to ensure the invertibility
of matrix M̂, i.e., magnitudes of the elements of D̂−1

00 αT
0 D̂a0

will be much larger than 1 for all robot configurations.

6. Simulation Results
Consider the biped in Fig. 1 with geometric and inertia
properties as listed in Table I. A length of 0.45 m, a height
of 0.05 m, and a duration of 0.45 s have been selected for
each step. Also, an initial horizontal hip speed of 1.0 m/s
is used based on calculation of average linear momentum
during one step and the torso must lean forward for a stable
walking profile. We chose this value to be 5◦. The following
control parameters have been selected based on the criteria
and the numerical search method explained in the previous
section:

η = [40, 40, 40, 40]T (1/s2)

λ0 = [143, 143, 143, 143]T (1/s)

λa = diag[35, 7, 7, 7] (1/s)

α0 = [14, 14, 14, 14]T

The large value selected for λa1 is due to tibia of the stance
leg being the main link that keeps the biped stable while
walking. Also, the values selected for η are large to ensure
a quick reaching phase for the control law. In order to
avoid chattering typically associated with the sliding mode
control law, we have also approximated the discontinuous
sign functions (sgn(s)) with continuous saturation functions
(sat( s

φ
)) of small boundary layers

φ = [.01, .01, .01, .01]T (1/s).

The smallest and the largest of the 13 Hurwitz coefficients
in Eq. (42) versus the torso angle are presented in Fig. 2.
The discontinuities in the plots are due to impact at the
end of each step and the remaining coefficients display very
similar variations. Clearly, these coefficients are positive with
relatively large magnitude and display a limit cycle, which
ensures the stability of the walk even in case of significant
variations from the reference trajectories.
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Fig. 2. Hurwitz coefficient for 120 steps; (a) h1, (b) h11.

Fig. 3. Simulation of the biped for four steps, dotted line is the
stance leg.

Figure 3 shows the biped smooth walking motion for four
steps using the sliding mode control law. The phase plots of
the four actuated coordinates for 120 steps demonstrate an
asymptotic stability by achieving of a limit cycle, as shown in
Fig. 4. Similarly, Fig. 5 shows the torso angle reaching a limit
cycle in a 120-step simulation. It is clear that the controller
can keep the torso near the desired angle and converges to a
limit cycle with constant mean torso angle of 5.2◦.

Fig. 4. Phase plots of the four actuated coordinates for 120 steps
(ωi ≡ q̇i).

Fig. 5. Torso angle time history (a) and phase plot (b) for 120 steps
(ω0 ≡ q̇0).

Figure 6 shows the required actuator torques at hip and
knee joints. The actuation torque profiles are consistent with
those of published results [13] and their magnitudes are
very reasonable for such a large biped compared with other
numerical results [19]. However, it is possible to improve
these results by searching for better surface parameters
through some optimal criterion [27]. Figure 7 shows the
vertical and horizontal components of the ground reaction
forces with maximum magnitudes of about 1000 N. and
250 N, respectively. It is clear that the vertical component of
the ground reaction force is always positive and the unilateral
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Fig. 6. Time history of the four actuator torques (N.m) for 10 steps.

Fig. 7. Horizontal (top) and vertical (bottom) components of ground
reaction forces.

constraint on the stance leg end is satisfied. Slipping will not
occur as long as the friction coefficient is larger than 0.25.

Reaching and sliding phases of the sliding mode control
law are demonstrated in Fig. 8 for all actuated coordinates
during steps 2 and 3. As one can see, the trajectories are not
on the surface at the beginning of the step due to a jump in
velocities after each impact. However, the controller pushes
the trajectory back on the surfaces which subsequently slide
on the surfaces to the desired angles.

6.1. Response to external disturbances
An important advantage of the control law introduced in this
research is its robustness with respect to external disturbances
as long as its magnitude is within some known bounds.
Hence, we applied an external impulsive torque of relatively
large magnitude to the biped torso during its fourth step. The
torque has a magnitude of 700 N.m and a duration of 0.02 s.
The only knowledge of the disturbance by the controller is
that its magnitude is within a limit of more than twice the
actual value.

Figure 9 shows the effect of the disturbance on the torso
angle during a 50-step walk. The figure demonstrates that the
controller is able to recover from the “push” by the external
disturbance and the torso angle reached its limit cycle with

Fig. 8. Reaching and sliding phases of the control law for two steps
(ωi ≡ q̇i).

Fig. 9. Torso angle variation for 50 steps in the presence of a
disturbance.

Fig. 10. Simulation of the biped motion in the presence of a
disturbance.

the same constant mean angle as in the undisturbed case.
Figure 10 shows the four consecutive steps before, during,
and just after the application of the disturbance. The response
of the biped is similar to the natural human response where
the torso leans forward (pushed by the disturbance force) and
immediately rotates back, while the swing leg moves up to
avoid falling over.
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7. Conclusions
In this paper, the sliding mode control approach was
successfully used to design a robust tracking controller for
an underactuated biped. The control law was determined
based on the dynamics of the biped, which was modeled as
a 5-DOF system moving in the sagittal plane with four
actuators located at hip and knee joints. Four first-order
sliding surfaces were defined as linear combinations of
the torso and the four joint tracking errors to determine
the control law for the four actuators. The sliding mode
control law was shown to be globally finite-time stable in
the reaching phase and locally exponentially stable in the
sliding phase due to linearization of one nonlinear equation
in the transformed system dynamics. Symbolic manipulation
and a numerical search method were used to determine the
surface parameters for an asymptotically stable control law.
The robustness of the controller was investigated in response
to an external disturbance. It was shown that the biped is
able to recover from a sudden forward push with a human-
like response.
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