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SUMMARY
The inverse kinematics of a 12 degrees-of-freedom (DOFs)
biped robot is formulated in terms of certain parameters.
The biped walking gaits are developed using the parameters.
The walking gaits are optimized using genetic algorithm
(GA). The optimization is carried out considering relative
importance of stability margin and walking speed. The
stability margin depends on the position of zero-moment-
point (ZMP) while walking speed varies with step-size. The
ZMP is computed by an approximation-based method which
does not require system dynamics. The optimal walking
gaits are experimentally realized on a biped robot.

KEYWORDS: Biped robot; Inverse kinematics; Zero-
moment-point; Stability margin; Walking speed; Genetic
algorithm.

1. Introduction
Gait generation for bipedal systems is being studied
for more than two decades. Gait generation involves
major research directions such as actuator-level trajectory
generation using simplified bipedal models, joint trajectory
generation based on postural stability analysis, biologically
inspired approaches to generate gait, and learning and
optimization of bipedal gaits.

Dynamics of biped systems is nonlinear and difficult
to analyze.1 In certain studies simplified biped models
are utilized. The most popular and widely used model
is the inverted pendulum model.2−4,10 In this model the
whole body is replaced with a concentrated mass located
at the center-of-mass (CM). Bio-mechanical concepts and
inverted pendulum models are often utilized to generate
walking gaits for simplified two-legged mechanisms.25,26

Inverted pendulum model is useful for stability analysis of
bipeds by computing the zero-moment-point (ZMP) which
is the point on the ground where the resultant of every
moment is zero.4 Combining 1-degree-of-freedom (DOF)
inverted pendulum model for stance leg and 2-DOF inverted
pendulum model for swing leg simplifies walking gait
generation.2 Self-excitation control of inverted pendulum
model leads to passive dynamic walking.3 A running-cart-
table model simplifies the estimation of variation in ZMP
during bipedal activities.7

* Corresponding author. E-mail: prahlad@ieee.org

Postural stability of legged systems is analyzed by the
concept of ZMP introduced by Vukobratovié et al. in
early nineties.1 The postural stability of legged systems is
ensured by keeping the ZMP within the area covered by
foot, i.e., the support polygon. The most common approach
for gait generation is to compute trajectories maintaining
postural stability using system dynamics.5,7,9 Decoupling
the subsystems reduces the complexity in bipedal gait
generation.6 Decoupled and linearized dynamic equations
simplify the ZMP computation.5 Injection of torque at the
ankle provides ZMP compensation to maintain postural
stability during various bipedal activities.8 By maintaining
the CM at a specific height, the linear inverted pendulum
model generates stable walking gait.9 ZMP-based gait
generation is utilized by the ASIMO humanoid.20

Biologically inspired approaches generate natural walking
gaits27−30 in particular biped gaits.11,12,21,22 Neural
oscillators are suitable for learning stable walking patterns
on unknown surface conditions.11 Genetic algorithm (GA) is
an effective tool to optimize neural oscillators generating
natural walking patterns.12 In biological systems, central
pattern generators (CPG) produce the basic rhythmic leg
movements as well as leg coordination.23,24 Biological
locomotion mostly relies on CPG and sensory feedback
(reflexive mechanism).23,24 The concept of CPG is realized
using adaptive neural oscillators in ref. [21]. Human-like
reflexive-mechanisms are often used for learning walking
gaits.22

1.1. Related works
Several techniques exist to learn and optimize bipedal gaits
based on objectives such as minimizing energy consumption
and maximizing stability margin, speed, and learning
rate. Neural Network (NN)10−12,22,23 reinforcement learning
(RL),11,31 imitation-based approaches,13 and GA12,19 are the
learning and optimization tools used in bipedal gait synthesis.

NN is a widely used technique for gait generation.
Unsupervised and supervised learning methods are adopted
in training NN. RL (unsupervised) and human motion capture
data and GA (supervised) are tools useful to train NN for
bipedal gait generation. In the unsupervised approach the
learning process is dependent on the feedbacks from the
training environment.22 Supervised training of NN requires
large number of training data for generalization.

RL relies on sensory feedback from the environment.11,31

The associated learning process should utilize enough
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training data to enhance the generalization capabilities of
the learned gaits, which is a tedious task. It is desirable to
utilize the kinematic and dynamic models for faster dynamic
walking.

Visual information of human locomotion or motion
capture data are often used in biped locomotion to imitate
human walking gait.13 Performance of the imitation-based
approaches depends on the vision systems used for capturing
motion data. They are difficult to experimentally realize due
to lack of dynamical analysis and hardware restrictions.

GA is a powerful tool to resolve the issues related to the
optimality of biped gaits. The major application of GA is in
optimal training of NN.12,19 GA is utilized for bipedal gait
generation by minimizing a weighted cost function of the
input energy and ZMP error generating training data set for
a three-layer NN in ref. [19]. The effects of hardware and
mechanical constraints are not clearly brought out due to
lack of experimental validation. The impact of variations in
parameters and walking speed on dynamic stability is also
not addressed.

Apart from the optimal training of NN, GA is useful
for other purposes in bipedal locomotion. GA-based path
planning produces smooth bipedal movements.14,19 GA-
optimized computed-torque control architecture improves
actuator-level control.15 GA-optimized spline trajectories
result in bipedal gaits with minimal energy consumption.17

In this work, GA is utilized to optimize the gait parameters
in solving the inverse kinematics model. The walking
gaits are generated based on the optimal parameters. The
description of the biped, actuators, and the mechanical
design are provided in Section 2. Inverse kinematics is
formulated for a 12-DOF biped robot in terms of certain
gait parameters. Inverse kinematic model and walking gait
generation are described, respectively, in Sections 3 and
4. The walking gaits are optimized using GA considering
relative importance between stability margin and speed of
walking. Section 5 discusses the GA-based gait optimization.
The ZMP computation method for gait optimization is
outlined in Section 6. The optimized walking gait is
experimentally realized on a biped robot. The tradeoff
between walking speed and stability margin are brought
out. With increase in speed, walking becomes dynamic (less
stable) and vice versa. The experimental results are discussed
in Section 7, while the paper concludes in Section 8.

2. Biped Model, Actuators, and Mechanical Design
The biped robot consists of two legs. The waist-link connects
the two legs. Each leg has three links: foot-link, shank-link,
and thigh-link. The joint between the foot-link and shank-
link is the ankle, the joint between shank-link and thigh-link
is the knee while the one between thigh-link and waist-link
is the hip. The biped has 12 DOFs. Two DOFs at ankle, 1
DOF at knee, and 3 DOFs at hip, i.e., 6 DOFs in each leg
(Fig. 1). Each DOF corresponds to an independent actuator.

The links are made of light-weight aluminium which leads
to their little contribution to the overall mass or inertia of the
link. The overall mass or inertia of the links are computed
based on the positions and weights of the actuators which
are located at the joints between two links. The link masses

Fig. 1. Generalized coordinates.

Fig. 2. Biped model: mass distribution.

are assumed concentrated at the joints located at the distal
ends. The mass distribution of the biped is shown in Fig. 2.
‘‘d1” indicates the thigh-link length and “d2” the shank-link
length. “Fy” and “Fx” are the foot width and length. “Fx1”
and “Fx2” are the distances from the ankle to the rear and
front edges of the foot. “By” and “Bx” are the hip-link width
and length. The distance between two hip-joints is “w”, and
the distance between the ankle-joint and CM of the foot is
“L”. Table I provides the parameter values.

Table I. Parameters of the robot.

Parameters Values

m1 0.07 kg
m2 0.02 kg
m3 0.14 kg
m4 0.21 kg
d1 0.19 m
d2 0.15 m
w 0.12 m
L 0.02 m
Bx 0.1 m
By 0.14 m
Fx1 0.03 m
Fx2 0.07 m
Fy 0.055 m
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Fig. 3. The biped.

Dynamixel motors (DX-113) from Robotis Inc.
(www.tribotix.com) are used as actuators. The motors are
compact and light-weight (58 g) providing high torque (a
maximum holding torque of 1.02 Nm). The motors have
a control-network with position and velocity feedbacks.
Each motor along with associated mechanical components
weighs around 70 g which is reflected in Table I.
The control instructions are sent to the motors from
MATLAB environment by RS-485 serial communication.
The mechanical structure of the biped is shown in Fig. 3.

3. Biped Inverse Kinematics

3.1. Generalized coordinates
The biped has 12 DOFs realized by 12 actuators placed
at the joints. Any specific configuration of the biped is
expressed by a 12 × 1 vector of generalized coordinates,
[θ1, θ2, . . . , θ12]T , as shown in Fig. 1.

3.2. Inverse kinematics
The Cartesian coordinates of the reference points
Pi(Pix, Piy, Piz) are shown in Fig. 4. P0,12 are the ankle
joints, P3,10 are the knee joints, and P6 is the hip joint. P0,3,6

are joints of the stance leg and P10,12 are the joints of the
swing leg. Positions of the motors are such that the CM of
the foot-links does not coincide with the ankle-joints. The
point P0m is the Cartesian coordinate of the CM of the stance
leg foot-link while P12m is that of the swing leg foot-link.

Fig. 4. Biped reference points for inverse kinematics.

Fig. 5. Biped: inverse kinematic parameters.

The inverse kinematic parameters are defined as (Fig. 5)

x1 = P0x − P6x, y1 = −P6y, z1 = P0z − P6z,

xr = P12x − P6x, yr = −P6y, zr = P12z − P6z. (1)

x1 and xr are the displacements of the hip along sagittal
plane with respect to the corresponding ankle. y1 and yr are
the displacements of the hip along frontal plane with respect
to the corresponding ankle. z1 and zr are the heights of the hip
from the ankle. Four angular quantities (Fig. 5) are defined
as per (2).

θA = cos−1

[
d2

1 + d2
2 − x2

1 − y2
1 − z2

1

2d1d2

]

θB = cos−1

⎡
⎣ d1 sin(θA)√

x2
1 + y2

1 + z2
1

⎤
⎦

θC = cos−1

[
d2

1 + d2
2 − x2

r − y2
r − z2

r

2d1d2

]

θD = cos−1

[
d1 sin(θC)√
x2
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r

]
. (2)
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The expressions for the generalized coordinates in terms
of the inverse kinematic parameters are provided in (3). For
straight walking, y1 = yr and θ4 = θ9 = 0.

θ1 = tan−1

(
y1

z1

)
,

θ12 = tan−1

(
yr

zr

)
,

θ6 = −θ1,

θ7 = −θ12,

θ3 = π − θA,

θ10 = π − θC,

θ5 = π

2
− θA + θB + sin−1

⎛
⎝ x1√

x2
1 + y2

1 + z2
1

⎞
⎠ ,

θ8 = π

2
− θC + θD + sin−1

(
xr√

x2
r + y2

r + z2
r

)
,

θ4 = 0,

θ9 = 0,

θ2 = θ3 − θ5,

θ11 = θ10 − θ8. (3)

4. Biped Walking Gait
The walking gait is expressed in terms of the following
parameters: step-length s, bending-height h, maximum
lifting-height H , maximum frontal-shift n, and step-time T

(Fig. 6). During walking, the height of the waist-link is kept
constant.

The biped walking motion is generated by choosing
an appropriate time function for the three refer-
ence points: P0(P0x, P0y, P0z), P6(P6x, P6y, P6z), and
P12(P12x, P12y, P12z). P0 is stationary for 0 ≤ t ≤ T and
acts as a reference for P6 and P12. For T < t ≤ 2T , the
positions of P0 and P12 are interchanged. P0, P6, and P12

are chosen intuitively. P0 and P12 are selected according to

Fig. 6. Gait generation parameters.

the desired leg movement for a specific activity. The choice
of P6 depends on the mechanical structure of the biped as
it involves shifting of ZMP from one foot to another. In a
walking cycle, 0 ≤ t ≤ 2T , P0 and P12 for straight walking
are provided by (4).

P0x(t) =
(

s

2

)
sin

(
π

T

(
t − T

2

))
(u(t − 2T ) − u(t − T )),

P0y(t) = −w(u(t − 2T ) − u(t − T )),

P0z(t) = H sin

(
π

(
P0x(t)

s
+ 0.5

))
(u(t − 2T ) − u(t − T )),

P12x(t) =
(

s

2

)
sin

(
π

T

(
t − T

2

))
(u(t) − u(t − T )),

P12y(t) = −w(u(t) − u(t − T )),

P12z(t) = H sin

(
π

(
P12x(t)

s
+ 0.5

))
(u(t)−u(t−T )), (4)

where u(.) is a unit step function given by (5).

u(t) =
{

1 if t ≥ 0,

0 otherwise. (5)

P6 for straight walking is given by (6).

P6x(t) =
(

s

4

)
sin

(
π

T

(
τ − T

2

))
,

P6y(t) = n sin

(
π

2

(
sin

(
τπ

2T

)
+ 1

))
sin

(
π

t

T

)
,

P6z(t) = (d1 + d2 − h), (6)

where for 0 ≤ t ≤ T , τ = t and for T ≤ t ≤ 2T , τ = t − T .
When P0, P6, and P12 are as per (4) and (6), the biped robot
walks straight. The walking gait is generated by sampling
the functions in (4) and (6) at certain intervals. In (4) and
(6), t and T govern the sampling process which decides the
walking speed and the smoothness of the walking gaits. With
�t as the sampling interval, ( T

�t
) indicates the number of

samples in T seconds or sampling frequency. A too low
( T
�t

) results in mechanical jerking during walking which can
lead to erratic movement and instability. A too high ( T

�t
)

causes computational burden on the hardware making the
walking process very slow. For a given system, the values of
T and �t should be chosen accordingly. There can be various
combinations of walking parameters, i.e., s, h, H, and n that
generate straight walking gaits. Selection of optimal walking
parameters is discussed in Section 5.

5. GA-Based Parameter Optimization
This section discusses the selection of the parameters s, h,
H, and n for straight walking, considering the step-time T as
unity. The values of the parameters are computed considering
a tradeoff between stability and speed of walking.
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5.1. Constrains on walking parameters
Mechanical design of the biped robot brings constrains on
the maximum and minimum ranges of feasible values of
the walking parameters. Following are the constrains on the
walking parameters which are arrived at experimentally:

0.05 ≤ s ≤ 0.13,

0.001 ≤ n ≤ 0.13,

0.001 ≤ H ≤ 0.13,

0.001 ≤ h ≤ 0.13. (7)

5.2. Postural stability considering ZMP
For legged systems with foot, the ZMP should fall inside
the support polygon for postural stability. In double-support
walking phase the feet are in contact with the ground, while
only the stance leg is in contact with the ground in single-
support phase. During single-support phase, the area of the
support polygon is same as the area covered by the stance
leg foot.

For the biped model considered, let the Cartesian coordin-
ate of the ZMP be (xzmp, yzmp, 0). During single-support
phase, the conditions for postural stability of the biped are

− Fx1 ≤ xzmp ≤ Fx2,

− Fy

2
≤ yzmp ≤ Fy

2
. (8)

Walking is static if the conditions in (8) are satisfied
during the entire walking cycle. During dynamic walking,
the conditions are not met for the entire walking cycle.

5.3. Cost function
Stability of biped systems is quantified by the distance of its
ZMP from the stance foot ankle-joint during single-support
phase. The walking gait with maximum stability margin is
obtained by minimizing (9).

Q =
∫ T

0

(
x2

zmp + y2
zmp

)
dt. (9)

The walking parameters corresponding to the minimum
value of Q generate gaits with maximum stability margin.
When walking speed is factored in the optimization process,
the step-length (s) appears in the cost function. Let us define
functions

f1 = 1

Q
,

f2 = s. (10)

Let the maximum numerical values of f1 and f2 are f max
1

and f max
2 , respectively. The expression for the normalized

cost function is given in (11).

f = λf1

f max
1

+ (1 − λ)f2

f max
2

, (11)

where 0 ≤ λ ≤ 1. The cost function (11) has maximum
value with either λ = 1.0 or λ = 0. λ is not used as a

Table II. Parameters of GA.

Parameters Values

Chromosome size 4
Population size 30
No. of epoch 30
Mutation rate 0.1
Crossover rate 0.8

parameter in the GA-based optimization, rather it is left
unchanged during the optimization process. The optimal
walking gait parameters are obtained maximizing the cost
function (11) for a specific value of λ. The walking
parameters corresponding to λ = 1 generate the most stable
gait. Speed of walking is maximum when λ = 0. Intuitively,
when the step-length “s” is smaller, stability margin is higher.
Small step-length “s” produces slow walking. GA is utilized
to obtain the optimal walking parameters by maximizing the
cost function (11) after selecting λ as a tradeoff between the
walking speed and stability margin.

5.4. Genetic algorithm
GA, with parameters in Table II, is utilized to optimize the
walking parameters by maximizing the cost function (11).
The block diagram of the GA algorithm is shown in Fig. 7.
Floating point strings are used and the initial population
is chosen randomly satisfying the constrains in (7). Single-
point crossover is performed by swapping the values of two

Fig. 7. The GA algorithm for obtaining optimal walking parameters
for a specific value of λ.
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chromosomes after tournament selection. Mutation is carried
out by flipping the values of alleles. For example,

Before mutation: 0.05 ≤ s = 0.07 ≤ 0.13
After mutation: s = (0.05 + 0.13) − 0.07.

Using GA, the optimal walking parameters are obtained
for different λ.

In the GA-based gait generation approach, the following
points are noticeable:

• Various kinds of bipedal locomotion (for example, stair
climbing and obstacle avoiding) can be generated using
inverse kinematics (3). However, the expressions for P0,
P6, and P12 in (4) and (6) will change for different
activities. Depending on the size (height) of the obstacle
(stair), the values of parameters s, h, H, and n will change
requiring redoing the optimization.

• Bipedal gaits to follow curvilinear paths are generated
by choosing appropriate expressions for θ4 and θ9 in (3).
For example, θ9 = K , a positive constant for 0 ≤ t ≤ T

and θ4 = K for T < t ≤ 2T makes the robot move in a
circular path. Due to mechanical constraints and walking
stability, K ≤ 80 and λ ≥ 0.7 are maintained.

6. Computation of ZMP
To compute the cost function (11), the ZMP positions are
required at every integration step. Conventional methods1 of
computing ZMP involve computation of system dynamics
which is tedious and requires high computational effort. An
approximation-based approach of ZMP computation is used
in this work which does not require system dynamics.

CM, (xcm, ycm, zcm), of the biped robot is given by

xcm =
∑

i miPix∑
i mi

,

ycm =
∑

i miPiy∑
i mi

,

zcm =
∑

i miPiz∑
i mi

. (12)

The ZMP, (xzmp, yzmp, 0), is related to CM by

xzmp = xcm +
∑

i miPixP̈iz − ∑
i miPizP̈ix

g
∑

i mi

+
∑

i Miy

g
∑

i mi

,

yzmp = ycm +
∑

i miPiyP̈iz − ∑
i miPizP̈iy

g
∑

i mi

−
∑

i Mix

g
∑

i mi

,

(13)

where Mix and Miy are the moments of the links due to
rotation about x- and y-axes, respectively. The moments
can be computed from the system dynamic equations using
Newton–Euler dynamic formulation.18 In the biped model
described in Section 2, the masses are concentrated at the

link ends making the inertia tensor of the links zero. Due to
zero inertia tensor, the moments, Mix and Miy , are zero.18

ZMP is computed by

xzmp = xcm +
∑

i miPixP̈iz − ∑
i miPizP̈ix

g
∑

i mi

,

yzmp = ycm +
∑

i miPiyP̈iz − ∑
i miPizP̈iy

g
∑

i mi

. (14)

Using (4), (6), and (14), it is possible to determine the
closed-form expressions of ZMP which are provided in the
appendix.

Link masses are approximately 5–10% of the actuator
masses. Height of hip-link being kept unchanged during
walking, the robot has nominal rotational movements.
Numerical values of Mix and Miy are negligible even when
links have distributed mass (which is not the case in this
biped model). However, the third terms in (13) might not be
negligible for fast bipedal activities like running and jumping,
or when the link masses and dimensions are comparable to
those of the actuators leading to the necessity to compute
system dynamics.

7. Simulations and Experiments
The ZMP expressions are obtained in MATLAB/Simulink
environment. These expressions are converted into C
language code by using “ccode” command for faster
computation and simulation. Runga-Kutta fourth-order
method of numerical integration, with fixed time step of
0.0001 s, is used for GA-based optimization. The optimal
walking parameters are computed in Microsoft VC++
environment using the generated C code.

The optimal walking parameters are further used in
MATLAB environment to compute inverse kinematic
solutions for the biped to walk straight and to generate
the control instructions for the motors. These instructions
are sent to the motors using RS-485 serial communication
protocol making the biped walk straight. As the DX-
113 motors are capable of communicating with MATLAB,
inverse kinematic is solved online and the instructions are
sent to the motors.

For computing the cost function f in (11), f max
1 and f max

2
are required. f max

1 is 442.522 corresponding to the maximum
value of cost function f1. f max

2 is obtained from (7) and is
equal to 0.13.

Several simulations were run to compute the optimal
walking parameters for different values of λ (Table III).
Walking becomes slower with higher stability margin.
Parameters corresponding to λ = 1 produce gaits with
highest stability margin. Experimentally, it is seen that the
biped falls down while trying to walk with parameters for
λ < 0.1. Table III shows the optimum walking parameters
for different λ varying from 0.1 to 1.0. Dynamics walking is
observed for λ < 0.2. Walking gaits are realized for λ evenly
varying from 0.1 to 0.2. λ = 0.15 provides satisfactory
walking performance on cemented surface. Figure 8 shows
the fitness trend in GA-based optimization which converges
within 15 epoches. Integration time step for evaluating f
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Table III. Optimum walking parameters obtained through GA
optimization.

λ s n H h f

0.10 0.125 0.128 0.010 0.022 0.944
0.15 0.130 0.109 0.014 0.020 0.965
0.20 0.124 0.130 0.006 0.017 0.926
0.40 0.119 0.108 0.018 0.016 0.903
0.60 0.104 0.112 0.013 0.016 0.857
0.90 0.057 0.127 0.017 0.018 0.939
1.0 0.055 0.120 0.026 0.010 1.000

Fig. 8. Fitness trend with λ = 0.15.

in the optimization process is 0.0001 s and one generation
corresponds to 300, 000 time steps. Step-time T is 1 s and
�t is 0.1 s. In an Intel Pentium IV processor, the overall
optimization process takes approximately 10 min.

As the inverse kinematic is solved at every sampling instant
and the communication between MATLAB and the motors
has some time delay, the time for one step of walking is
more than the step-time T (approximately 1.2 s). The biped’s
walking gait with λ = 0.15 is shown in Figs. 9 and 10 for
10 step-times. The biped walking experiment is shown in
Fig. 11. The walking speed is about 0.125 m/s.

The variation of ZMP for single step-time of walking
cycle with λ = 0.15 is shown in Figs. 12 and 13. The
shaded portions in the figures indicate the single-support
phase. The single-support phase is sensed by the current-
intake-feedback from the motors. For postural stability of
the biped in single-support phase, the ZMP should be within
the following ranges (from (8)): −0.03 ≤ xzmp ≤ 0.07 and
−0.0275 ≤ yzmp ≤ 0.0275. In Figs. 12 and 13, it is seen
that the above conditions are not satisfied in certain phases
of walking cycle. Therefore, dynamic walking is generated
with λ = 0.15.

7.1. Effect of λ on walking performance
During biped walking (static or dynamic) the duration
when the biped is not statically stable decides the stability
margin. Stability margin varies with λ. With increase in
λ the stability margin increases and vice versa. Stable
walking on different surface conditions requires different

Fig. 9. The walking gait with λ = 0.15: θ1, θ12, θ2, θ11, θ3, θ10 (time
in second vs. angle in degree).

stability margins. For example, while walking on cemented
surface λ = 0.15 provides satisfactory walking performance.
λ = 0.2 is required for satisfactory walking performance
on plywood surface. λ = 0.9 provides stable walking
parameters when wires of thickness 3 mm are placed on the
walking surface. The value of λ can be adjusted for stable
walking depending on the surface condition or disturbances.

The stability margin is maximum with parameters for
λ = 1.0. Figures 14 and 15 show the variation of ZMP
for one step-time when walking on cemented surface. The
ZMP positions meet the conditions for static stability (8)
for the entire walking cycle. Parameters corresponding to
λ = 1 produce static walking. The static walking speed is
approximately 0.05 m/s.

Figures 16 and 17 show the variation of ZMP for one
step-time when walking on cemented surface with λ = 0.1.
In certain phases of the walking gait, the conditions in (8)
are not satisfied leading to dynamic walking. With λ = 0.1,
the stability margin is lesser and the walking speed is higher
(approximately 0.128 m/s) than those with λ = 0.15.

7.2. Effect of step-time (T ) on walking performance
With increasing T, the walking process slows down
increasing the stability margin and, both f1 and f max

1

increase. However, f1

f max
1

does not change, keeping the value
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Fig. 10. The walking gait with λ = 0.15: θ4, θ9, θ5, θ8, θ6, θ7 (time
in second vs. angle in degree).

Fig. 11. Biped walking for one step-time with λ = 0.15.

Fig. 12. yzmp vs. xzmp for one step-time with λ = 0.15.

Fig. 13. yzmp and xzmp vs. time for one step-time with λ = 0.15
(dotted line is xzmp and solid line is yzmp).

Fig. 14. yzmp vs. xzmp for one step-time with λ = 1.0.
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Fig. 15. yzmp and xzmp vs. time for one step-time with λ = 1.0
(dotted line is xzmp and solid line is yzmp).

Fig. 16. yzmp vs. xzmp for one step-time with λ = 0.1.

Fig. 17. yzmp and xzmp vs. time for one step-time with λ = 0.1
(dotted line is xzmp and solid line is yzmp).

Table IV. Walking parameters for different step-time (T).

T s n H h f max
1 f

2.0 0.126 0.12 0.014 0.0215 1258.90 0.9596
1.5 0.130 0.11 0.014 0.0220 979.51 0.9612
0.8 0.130 0.12 0.014 0.0200 382.66 0.9585
0.5 0.129 0.11 0.014 0.0210 202.87 0.9645

of f almost unchanged. Table IV shows the optimal walking
parameters for λ = 0.15 with different values of T. The
parameters vary nominally with T . With increase in T and
constant �t , sampling frequency ( T

�t
) increases. Sampling

frequency decreases when T decreases with constant �t . If
( T
�t

) is constant, absolute value of T does not have any effect
on walking performance. Although, ( T

�t
) can be changed to

adjust the walking speed, due to hardware constraints it is
not recommended to change ( T

�t
), rather λ or step-length “s”

can be adjusted to vary the walking speed.

8. Conclusions
In this work, the walking gait generation of a 12-DOF
biped robot is considered. Closed-form solution of the
inverse kinematics of the biped is computed. The inverse
kinematics is expressed in terms of certain gait parameters.
The walking gait is generated based on the parameters. The
walking gait is parameterized in terms of four factors, i.e.,
step-length, bending-height, maximum lifting-height, and
maximum frontal-shifting. These walking parameters are
then optimized using GA. The optimization is performed as
a tradeoff between postural stability and walking speed. The
optimal gaits are experimentally realized on a biped robot.
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Appendix: ZMP computation of the biped
The following expressions are used in the computation of the
biped CM in (12) mentioned in Section 6:∑

i miPix = −(m2 + 2m4)x1 + m1d2 cos(θ1) cos(θB)

+ m3L cos(θ1) cos(θB) + m1(xr + d2 cos(θ1) cos(θB))

+ m3(xr + L cos(θ1) cos(θB)),∑
i miPiy = −m4y1 − m2

(w

2
+ y1

)
− m4(w + y1)

+ m1d2 sin(θ1) sin(θB) + m3L sin(θ1) sin(θB)

− m1(d2 sin(θ1) sin(θB) + w)

− m3(L sin(θ1) sin(θB) + w),∑
i miPiz = m3L cos(θ1) cos(θB) + m1d2 cos(θ1) cos(θB)

+ (m2 + 2m4)P6z + m1(zr − z1 + d2 cos(θ1) cos(θB))

+ m3(zr − z1 + L cos(θ1) cos(θB)),∑
i mi = 2(m1 + m3 + m4) + m2. (A 1)

For the computation of the biped’s ZMP in expression (14),
the following expressions are used:∑

i miPixP̈iz = m1P3xP̈3z + (m2 + 2m4)P6xP̈6z

+ m1P10xP̈10z + m3Pm12xP̈m12z + m3Pm0xP̈m0z,∑
i miPizP̈ix = m1P3zP̈3x + (m2 + 2m4)P6zP̈6x

+ m1P10zP̈10x + m3Pm12zP̈m12x + m3Pm0zP̈m0x,∑
i miPiyP̈iz = m1P3yP̈3z + m4P6yP̈6z

+ m2

(
P6y − w

2

)
P̈6z + m4(P6y − w)P̈6z

+ m1P10yP̈10z + m3Pm12yP̈m12z + m3Pm0yP̈m0z,∑
i miPizP̈iy = m1P3zP̈3y + (m2 + 2m4)P6zP̈6y

+ m1P10zP̈10y + m3Pm12zP̈m12y + m3Pm0zP̈m0y. (A 2)

In (A 2), the expressions of P6(P6x, P6y, P6z) are given
by (6). The expressions of P3(P3x, P3y, P3z), P10(P10x, P10y,

P10z), P0m(P0mx, P0my, P0mz), and P12m(P12mx, P12my, P12mz)
are computed using (4) and (6). The expressions of the above
reference points are given by

P3x = d2 cos(θB) cos(θ1),

P3y = d2 sin(θB) sin(θ1),

P3z = d2 cos(θ1) cos(θ2),

P3 = [P3x, P3y, P3z]
T . (A 3)
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P10x = xr − x1 + d2 cos(θD) cos(θ12),

P10y = d2 sin(θD) sin(θ12) − w,

P10z = zr − z1 + d2 cos(θ11) cos(θ12),

P10 = [P10x, P10y, P10z]
T . (A 4)

P0mx = L cos(θB) cos(θ1),

P0my = L sin(θB) sin(θ1),

P0mz = L cos(θ1) cos(θ2),

P0m = [P0mx, P0my, P0mz]
T . (A 5)

P12mx = xr − x1 + L cos(θD) cos(θ12),

P12my = L sin(θD) sin(θ12) − w,

P12mz = zr − z1 + L cos(θ11) cos(θ12),

P12m = [P12mx, P12my, P12mz]
T . (A 6)

Using (A 1)–(A 6), the closed-form expressions of ZMP
are computed with sufficient accuracy without computing
system dynamics.
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