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This paper deals with the following fractional elliptic equation with critical exponent

{(—A)su = uiﬁil + A — Doy, in Q,

u=0, in MV\Q,

where \, v € R, s € (0,1), 2% = (2N/N — 2s) (N > 2s), (—A)* is the fractional
Laplace operator, Q C %Y is a bounded domain with smooth boundary and ¢ is
the first positive eigenfunction of the fractional Laplace under the condition v = 0 in
RN \ €. Under suitable conditions on A and 7 and using a Lyapunov-Schmidt
reduction method, we prove the fractional version of the Lazer-McKenna conjecture
which says that the equation above has infinitely many solutions as || — oo .
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1. Introduction

In this paper, we consider the following fractional problem

(—A)u=g(u) — ey, in Q,
] (1.1)
u =0, in RV\Q,

where 7 € R, s€ (0,1), QCRY (N >2s) is a bounded domain with smooth
boundary and ¢; is the first positive eigenfunction of the fractional Laplace under
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the condition u = 0 in RN \ Q. g(¢) has superlinear growth and satisfies

)

=a> lim
t——+o00 t

9(t) _

——00 t o /8

Here o = +00 and 3 = —o0 are allowed. For any Q C RY and u € C§°(€2), we have
u =0 in RV\Q. The fractional Laplace operator (—A)? is defined as follows:

Sorfar) — u(y) — u(z)
(_A) U(y) = CN’SP.V . Wdz,

where P.V. stands for the principle value and Cy ;s is a normalization constant (see
for instance [14]).
In particular, if s = 1, equation (1.1) reduces to

{_Au =g(u) — vypr, in Q, (1.2)

u =0, on 0f).

Equation (1.2) has been studied first by Ambrosetti et al. in [2], and many results
were obtained there, the readers can refer to [5-7, 10-12, 22]. It is well known
(e.g. [2]) that the location of o, 3 with respect to the spectrum of (—A, H}(Q2)) has
great influence on the number of solutions to equation (1.2). Let 0 < A; < Ag <
A3 <---<A; < be the eigenvalues of Laplace —A in H}(Q). In [10] Lazer
and McKenna made a conjecture that equation (1.2) has an unbounded number of
solutions as 7 — +oo if @ = 400, f < A1, and ¢(t) does not grow too rapidly.

There were several works related to the Lazer-McKenna conjecture. Breuer et al.
[3] used numerical method to show that equation (1.2) has at least four solutions if
g(t) = t? and Q is a unit square in R2. Dancer et al. [5] proved the Lazer-McKenna
conjecture if g(t) = [t|P, where p € (1,(N 4+ 2)/(N —2)) and N > 3. Moreover, it
is shown in [6] that the Lazer-McKenna conjecture is also true if g(t) = & + Xt,
where uy = max(u,0), N >3, pe (1,(N+2)/(N—2), A< Ay or A€ (A, Aiy1)
for i > 1. Later on, Li et al. [11, 12] and Wei et al. [22] proved the Lazer-McKenna
conjecture if g(t) = ti*_l + At, where N > 6,2* = (2N)/(N —2) and X € (0,A;) or
A€ (A, Ajqq) for i > 1. Recently, in [1], Abdellaoui et al. extended the results in [5]
to fractional Laplace and proved the fractional version of conjecture. This inspires
us to consider problem (1.1). Our goal in this paper is to prove the fractional version
of the Lazer-McKenna conjecture, extending the results in [12]. More precisely, we
consider the following equation

s 2r—1 . .
{(—A)u-uJr +du— vy, inQ, (13)

u=0, in RV\Q,

where A € R, 2% = (2N /N —2s), N > 2s.
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Let Ay < Ag < A3 < --- < \; < -+ be the eigenvalues of fractional Laplace (—A)®
under the condition u = 0 in R \ Q. Indeed, it follows from [20] that

me me (Ju(y) — w(z)*/|ly — 2|V T2%)dydz
uweX§(M\{0} Jo [ul? ’

where X3(Q) is given by
X5(Q) = { € H®Y):u=0in SRN\Q},

with the norm

1/2
lu|| == / / )|2d dz .
RN Jorw |Z/ - Z|N+25

Furthermore, by [20], A; is simple and ¢; > 0 in .

Throughout this paper, we always assume that A and © satisfy one of the following
conditions:

(Cl) A€ (0 /\1) and v > 0;

(C2) A€ (A\j, A1) for some ¢ > 1 and v < 0.

The main result in this paper can be stated as follows:

THEOREM 1.1. Suppose that 0 < s < 1, (C1) or (C3) is satisfied. Then the number
of the solutions for equation (1.3) tends to infinity as |v| — +oo if N > 6s.

Obviously, —(7/A1 — A)g1 is a negative solution of equation (1.3). We will
construct solutions of equation (1.3) redin the form

N A7

U= — 1+ .

Then v solves

(=A)v— v =(v-— 1/<p1)i:71, in 0,
B Ny (1.4)
v=0, in RV\Q,

where v = (7/A1 — A\). Thus v — +00 as |7| — +oo.

In the sequel, we mainly consider equation (1.4). We will use Lyapunov-Schmidt
reduction method to construct peak solutions of equation (1.4). This method has
been widely used to study elliptic problems, see for examples [15-18, 24| and the
references therein. The advantage of this method is that we can not only prove the
existence of many solutions but also obtain the profile of these solutions. Without
loss of generality, we always assume that I;lgé(@l(y) =1 and we denote S ={z ¢

Q:p(z) =1}
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It is well known that

N—-2s/2
M
Up. p; =bo| ————""""
ot 0<1+u§|y—$jl2> ’

with
bo = oN—2s/2 (N + 25/2))
(N —2s/2)
solves equation
(=A)u=u*"1 u>0, inRY, (1.5)

where z; € MY and i € (0,00). In order to simplify notations, we denote U = Up ;.
Furthermore, in [8], it is shown that U is non-degenerate, in the sense that, if ¢
solves the linearized equation of equation (1.5)

(=A)%¢ = (25 = )U*2¢, in R,
then ¢ is a linear combination of

N2y o.ovu U

Let PU,

«;.u; be the solution of

s L 2i-1
{(—A) PU,, ., = Usil, inQ 16)

PU,, ., =0, in RV\Q.

We will choose PU,; ;. as a building block of approximate solution. Moreover, we
have

THEOREM 1.2. Let k > 0 be an integer and N > 6s. Then there exists v, > 0 such
that for any v > v, equation (1.4) has a solution of the form

k
Uy = ZPU:&,,J,;L,,J + ¢y,k7

j=1
satisfying that as v — oo,
(i) P € X5(Q) and ||py,kl| — 0;
) MV,jV_Q/(N_GS) —tg > 0;
(id) v2/N=6) |z, ; — @, ;| — 400 fori# j;
)

Ty; — xj € Q with xj € 5;
where the constant to is defined in (2.1).
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In order to expand energy (see appendix B), we have to estimate
Vo = Usjpy = PUs;py -

solves

If s=1, then ¥

TjsHj

AV, .. =0, inQ,
Voo, = Usj oy, on 00

Using comparison principle, we can easily obtain the leading term of W, ., for
much details, the reader can see [19]. In order to overcome these difficulties due
to the fractional Laplace, considering that many mathematics applied s-harmonic
extension method (see [4]) and studied a new local problem

div(yyn LV ®) =0, in R+
o =U, on RV\Q x {0},
FoL)

TjoHjo
lim  yn % =0, onx {0}
ot TN+ G . ;

we turn to obtain the leading term of W, , by convolution formula of Green

function with Uiﬁ} This idea is mainly from [9, 13]. For much details, the readers
can see appendix A. On the other hand, in order to solve critical points of K (z, u)
(see §3), we will use a type of gradient flow method (see [22, 23]). Indeed, we cannot
prove the existence of critical points of K (z, ) by using maximization procedure
as in [5, 6]. Furthermore, in [12], Li et al. proved that K(z, ) has a saddle point
such that K(z, ) attained the minimum at p; direction and attained maximum at
x; direction. Compared with [12], the gradient flow method we used in this paper
will simply be the procedure very much to obtain critical points.

To end this section, we introduce some notations. We define H?®(R") the classical
Sobolev space

N 2(R M) u(z)l?
H*(RY) = {ueL (R /mN/mN \y—z|N+25 dydz<oo},

with the norm

1/2
_ u(z)|?
[ull e mny = </ u +/ERN /mN |y_Z|N+29 T oN+s dz :

We also define D*2(RY) as follows

2
D*?RN)=_ue L% %N / / )|ddz<oo ,
&) { "N Jorn |y—Z\N+25

with the norm
u(2)? 1/2
= ————dyd .
[Jull == (/%N /mN |y_Z|N+2s Z)
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We recall that X§(€2) is a Hilbert space with the product

u(z))(v(y) — v(2))
e /mN /mN |y — |N+2s dydz.

By [14], we can see that

u(z)|? / 2
S 2 dydz = 204 (5/2),|2
/EHN /SRJ ‘y Z|N+28 NS u‘ ’

where the constant Cy ;s is given by

1 —cos(&) -
Cnys = (ANW>

We can also refer to [20, 21] for more properties of X§(€2).

Our paper is organized as follows. In §2, we will carry out the reduction pro-
cedure. Then, we will study the reduced finite dimensional problem and prove
theorem 1.2 in §3. Our notations are standard. We will use C' to denote different
positive constant from line to line.

2. Finite dimensional reduction
Define
Do = { 1) < 1y € [(to — LA N =091 - L3y 2/ (N =000,

“Pl(xj) _ 1| < V—sr7 |$Z _ leN—Qs > V—(2N—8$)/(N—63)+s7—)z- 75 ]}7

wherez; € Q, j=1,... ko = (z1,...,2%), p = (141, ., 4&), T is a small constant,
L is a fixed large positive constant and t, is given by

Ay(N —28) ) T
J— 3 —
fo= ( 4sAA; ) ' 21)

Here the positive constants As and As are defined in lemma B.1. Let

1 £
y V7D
N—-2s)/2 (N-—-2s)/2
,uf; )/ ,u; )/ |2y — @ |N—2

Eij =

Then, for (z, ) € Dy ., we have

£ij < Oyf4s/(N76s)fs7‘.

B s . OPUy; 4, B OPUq; 4, B
EI,[LJC - {d) € X()(Q) . <¢7 ax][> - <¢’8,LLJ> - 0}7

where z; = (zj1,...,z;n8) € RN, j=1,... .k 1=1,...,N.

We set
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Define the energy functional corresponding to equation (1.4) as follows

‘2 1 2 1 2%
—— 2 dydz — = [ W= — [ (v—vp1)L.
/mN /mN ly — Z|NJr2S 2 Ja 2% Jo N

Let

Jo(z,p,0) =1, <ZPUML, + ¢>> (2,1) € Dy, ¢ € By e

Then we expand J,(z, i, ) at ¢ = 0 as follows

Tola s 8) = Jul,0) + 1(68) + 5@u(6,9) ~ Rul6),

where

k k k 27 -1

= PU,. ., 0) — ANPU,. .. & — PU,. ,. — ,

];< FRLRZ] ¢> jzl/ﬂ _77/“.7(725 /Q<jzl VR VSDl)Jr ¢

(2.2)

k 2;-2

(D, ) =, ) — | App — (25 — 1 PU,. .. — , 2.3

Q(6.) = (@0) ~ [ ov - (2 >/Q<; » vsol>+ bu,  (23)
and

23 k 2;
1 1
Ru(¢)?/S2<ZPUx17#7+¢V¢1> 727* o (ZPU£.7J‘J'V§01)
s T s j=1

=1 +
251
-/ <ZPij,uj—V<P1> o
2\ j=1 +
2r — 1 i
-5 /(ZPU%M—uw) @2 (2.4)
2\ j=1 +

Now we estimate [, (¢), Q. (¢, %) and R, (¢) respectively.

LEMMA 2.1. For any ¢ € X§(Q), we have

k y(1/2)+o 1/2
L(¢) = Z e +Z VBT +3 el I9]l-

Jj= s i#]
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Proof. Rewrite 1,(¢) as follows:

k k 2;-1 k
= {Z/ Uij,;}sb—/ <ZPUIJ.,M - wl) ¢>} - Z/ APU,, ;0
i=1 2\ j=1 + =179

= l1 — lg.
Note that
(a—b)%E " =% 4 O (/2412 40) yy s 0,

where o > 0 is a small constant. Then we have

k k 271
27 -1
w=3 fote- [ (Lo ) o
=179 o\ o

+
2% —1

s

k k
j=179 2\ j=1

k 2;-1-((1/2)+0)
of [ ()
o \io

k k
-3 [[uae- [ Yo rieo X [ putfi o potin )

(Vsﬁl)(l/2)+"¢>

=1 i=1 i#j
27 -1-((1/2)+0)
+O</ <ZUI].M> ¢>V§+a
o\ ;o
y ( /2)77( /2)
2 —1 2;—-1 2 —1/2),,(25—1/2
Z/ Usios® = Z/ PU$J7M¢+O<Z/ Usz;n; Uz’ ¢>
=t i#]
k
+O<Z/Uﬁfaw1 ((1/2>+0>¢>V(1/2)+o
j=17¢
k ) k
.1 .
= Z/ Ux;7ﬂj¢ - Z/(Uzj7uj — \I/ij,uzj)gs 1¢
j=179 =/
k
27 —1/2) (25 —1/2) —1—((1/2)40 o
+O<Z/QU§,,M Pugtt’ )+O<Z/UTJ P >¢> a/2+
i#j i
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k
* 27 -2 2§_1
:Z/Q@s —1)Uz;,ujx1/zj,uj¢>+o<z/ v )
j=1
ro 35 v e) o 8 [t e

i#]
(2.5)

Define Q; = {z: ,uj_lz +x; € Q}, we choose o > 0 small enough such that

1 9N N — 25 IN(N — 2s)
N—2s)(2F —1— = ~N[2- A
( s)(2 <2+U)>N+23 ( N+25> " Nias

Then

21— (L+o)
/2|Uz-7=l"j ’ ¢|
¢
2N Ni2s

N—25(1+ ) 1 N+2s 2N
< —T 2 (gTe
< Ok (/Q ((1 + z|2)<N—2s/2)<2;—1—<é+a>)) ) Il

N—2s
<ou; 7 G, (2.6)

By lemma A.2; we have

_ 1
2% 2 —N+2€
/ |Ua:]“u,J T, phg ¢| (/Q (1_|_ |Z|2)(4SN/N+28)

C
N+2s/2 ’

(N+2s/2N)
> [l

(2.7)

the second inequality is because of

(N+2s/2N)
1 _0 (N 65/2)
Q, (1_|_ |Z‘2)(4SN/N+28) -

In fact, let R > 0 be such that Q C Br(z;), we have Q; C B, g(0). Thus,

1 / 1
<
/Qj (1 + |2|2)(@sN/N+2s) B, 5(0) (1 + [2]2)(@sN/N+2s)

1
<[ +f
/B1(0) BM,R(O)\B1 (0) (1 + |Z|2)(4SN/N+2S)

C+C/ N—l—(83N/N+2s)d,r

N— 85N/N+25)

< Cu;
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By Holder inequality, we have

2*—1 2 2*—1 2 2 2 27 /2
/QU%,,” PyEtD g« (/QU%,L{J)UQE,,,{R

Cllog(pip, )] N +25/2N)

18],
§N+25/4)M§N+2s/4)|xi _ xj|(N+23/2)

(N+2s/2N)
> 4]

(2.8)

the second inequality is because of
/Q USSP U8D < Clag — a1V iy NP s N dog ().
In fact, define
M={yeQ: ly—m|>ly—ul}, Q={yeQ: ly—zl<ly—azl}
For all y € Q, we have
|wi — x| < i —yl+ |y — 25| <2y — a4l

Hence, we have

(N/2) (N/2)
/ USSP USLD = by / - ' "
PR a, (1+MJ|ZJ*%|)(N/2 (14 p2ly — x;]2)(N/2)
. V2
<2Vopru; i -’N/ ’
o' e g (L + pi3ly — a2 (N72)
2; —(N/2) "
< 2Npss s xi—x-fN/ !
B S
72 "
2Nb L |x; — x4|7N/ !
! Br(ay) (1+ p3ly — x;2)(NV/2)

* _ 1
N g N N2 (N/2>/
0 ‘«T x]‘ My My By, 1 (0) (1_|_ |Z‘2)(N/2)

N —(N/2 —(N/2
< Ol — ) N,uj( /ui( /)log,uj.

Similarly, we have

[ UEDUELD < Clas — g N i VD 1) 1og
2
Combining (2.5)—(2.8) with lemma A.2, we can obtain that
k k (1/2)+0
_ v 1/2)+
ll - O<Z (N+2s/2) Z N 2s/2((1/2)40) + ZE H¢” (29)
j=1Hj J=1 i#j
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On the other hand,

|l2| =

TjsHg

k
o <> / N
j=178

(N+2s/2N)
) Kl

k
Z ( / [7(2N/N+25)
¢ Tjskj

1
<Z 2s</ 1+|z| ) (N—2s)/N+2s)

S Z o H¢II7 (2.10)

(N+2s/2N)
) 4]

the last inequality follows from (2N (N — 2s)/N + 2s) > N since N > 6s.
The result follows directly from (2.9) and (2.10). O

LEMMA 2.2. For any ¢,¢ € X§(Q2), there exists constant C > 0 such that
1Qu(8,9)| < Cligll[¥ll,
where C' is independent of v.
Proof. Using Holder inequality, we can easily check this conclusion. U
It follows from lemma 2.2 that @Q,(¢,®) is a bounded bi-linear functional in
X§(82). Then there exists a bounded linear operator @, from E, ,,  to E, ,,  such

that

Qv(d)?w) - <Ql/¢a 1/}>7 v¢a 1][1 S Em,,u,k- (211)

Now, we intend to prove that operator (), is invertible in F, ,, .

PROPOSITION 2.3. There exists constant p > 0, independent of v and (x, ) € Dy,
such that

HQV¢H p”¢H ¢ S Ez,u,k-

Proof. We argue by contradiction. Assume that there exist v, — 00, (2, n) €
Dy, &, Tjn — @5 € S and ¢, € E,, ., x such that

1Quénll = o(1)]|¢nll-

Without loss of generality, we may assume that [¢,| =1. Let ¢;,(y)=
_(N 29)/2¢n(ﬂi_,iy + Zin), Qin={y: :uz_,iy + 20 € Q). Then ||¢n] = [¢nll=1.
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Thus, we may assume that there exists ¢; € D®2(RY) such that
Gin — ¢ in D2 (M),
Gin — ¢ in L}, (RN,
&i,n — qu a.e. on RY.
We claim that ¢; solves
(—A)°¢s — (2; = )U* 3¢, = 0. (2.12)

In fact, it is sufficient to show that

/ (=A)*dim — / (2 —1)U%2¢;n =0, forallneCPRY).  (2.13)
RN RN

Since
2% 2
ny - >\n72z*1 PUI . — "
(6wt = [ Abun = (2 >/Q<Z_j wl>+ bun
= Qu(%ﬂ?) = <Qu¢nan> = 0(1)“77H7 Vn € EInlemk? (2'14)
we have

ST = A 1=
RN :u’i,n Qin
252

k
X - —(N— _ T
in 1

J= +
= oI, V7 € By s (2.15)

~ — —(N—-2s)/2 —
where 7i(y) = (i py + i), Ujn = m,ﬁ, )/ PUs; iy (i + Tim),

By = {n € X5(Q) : / (~A)5 V0 (~A) i)
RN

(M1

Y
A
Il
o
——

= [ DT

where [ =1,...,N,j=1,...,k and f/j?lm, f/]n are given by

% - —48 —8PUT~,,“ ‘nZ
Viin(y) = Mi,ﬁN 2 )/2%55—#%()
le

-1 )
2= Y+Tin

_ N2 OPU.. .. (=)
V‘,n y) = £LN 2 )/2,U/i,n nyTj,n
J ( ) S a'uj

-1 °
Z:Ni,ny"l'wi.n
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For any n € C§°(RY), we can choose a;;,, and b, such that

k
ﬁ:n_zza]ln ln+zbgn‘/jn€Ea:n,unk
j=1

j=11=1

Noting that 1 has compact support and the support of f/ﬂn and f/]n moves to
infinity as n — oo if ¢ # j. Thus, we can see that a;j;, — 0 and b;, — 0 if i # j.

Furthermore, we can check that a;;, and b; , are bounded. Since (zy,, i) € Dy, 1,

—(N—2s)/2

then v pu; , — 0. Substituting 7 in (2.15) and letting n — oo, we derive that

.- . U oU
—A)2gi(—A)2— — (2F =1 U%:? 2.1
“”(/w( VEoi(-A)i 5 — (20 - DU i ) (2.16)
where a;; = lim a;;, and b; = lim b; ,,. On the other hand,
.~ . U - U
| miaa) g - - Ui —o. (2.17)
RN 81‘[ xy
and
s ~ s 0U x
—A)2¢(—A 2F — 1)U *2¢Z _.0. 2.18
P e (218)

Thus, (2.13) follows from (2.16)—(2.18). Therefore, we have proved this claim.
We recall that U is non-degenerate, that is, if ¢; solves (2.12), then there exists
some constants ¢ and ¢ such that

~ oUu oU
¢i = chaxl +087u

Note that ¢, € E, 4, &, then qSZ n € By, ..k S0 we can obtain that

s~ ou
| caiaaig —o

and

g SOU B
Aw( A)2gi(— )am_o’l—L“wM

which imply that é; = 0. Then for any R > 0,

/ =udi [ 3= ol
B _1 (Cl)i,n) BR(())

;Li7nR
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Moreover, we have

k
[ (r o)
B —1p(in) \ j=1

27 -2

s

<C / U2, 62 = o(l).
—1 (i

in T +
(2.19)
Thus,
k 27 -2
/ (Z xj,u] - 1) Qfl
=1 +
k 272
Z/ ZPU$J)HJ — vy ¢721 + 0(1>
i=1 Q\B —1 (31'1 n) +

CZ/ (PUs, o, = vo1)E 262 + o(1)

\B —1 (zz n)

cz / UG+ o)

\B —1 ($1 n

k (s/N)
<0 (/ U2:> lonll? +0(1) = 0r(1) +0(1),  (2.20)
i=1 Qi,n\BR(0)

where og(1) — 0 as R — co. Combining (2.14) with (2.20), we deduce that

| miona)tn= [ A=l V€ Eppr (220
RN Q

Note that ¢, € X§(Q2) and ||¢,|| = 1. We may assume that there exits ¢ € X§()
such that

¢n — ¢ weakly in X((Q),

¢n — ¢ strongly in L?(9).

We claim that ¢ = 0. Indeed, for any n € C§°(€2), we choose ¢;; , such that

k N
o "171 nsMjn d. aPUIjJH“’JX" E
77_7] C]l" a - Uin 8 . € T sl Ko
j=11=1 il Hj
OPUs; i p,

In order to estimate ¢;j;, and dj,, multiplying (2.21) by and

OPUs; opim

— respectively, we have
k3

OPU,, . 4 G OPUy. . . OPU,. . .
— ) — i Ln e Lol ) =0, (222
<77, Oin > jz—;zz;w’ Dy Oxin (2:22)

Oz ip
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and
OPU,, . 4. r OPU,. . .. OPUs,. . .
7, —— ) — djn LR Lmrnt oy = 0. 2.23
Note that
oPU,. . . oU,. .. )
TjmsHlj,n * 2 2 Lj,n-Hj,n MJ
e AL S L | Ugps . —20000n = 0O —————= |, (2.24
<777 axjh > ( s )/Q JynsHgn aTjh n (ME.NQS/Q)) ( )
and

OPU,. . ._ U, .. ot
Zj,nsljn * 27 -2 Tjnsljn j
— e Y = (2 -1 Uzgs ., — =22 =0 —5—= | (2.25
<777 Oy > (25 )/Q Jimolyn D1t n ( gN—25/2)> ( )

Combining (2.22) with (2.24), we see that ¢, = O(,uj_lujf(Nf%)ﬂ). By (2.23) and

(2.25), we obtain that d; ,, = O(ujuj_(N_zs)/Q). Thus,

il 8PU:£j,n7,Uj.n d) o )\/ 6PU£Cj,n7ltj,n¢)
3,0,n ale y Pn 0 ale n
1 271
g C (N—-2s/2) (/ UI.7>"1u.7="|¢n| +/ U-'L'j,n7l/"j,n|¢n|>
'uj Q Q

1 (N+2s/2N) (N+2s/2N)
- 27 (2N /N +2s)
< CHE'N_QS/” [(/Q Uzjm/aﬂj,n) + (/Q Umj,'mﬂj,n ) ‘| ||¢n||

(N+2s/2N)
< €|z + | | : Il
< M§N—28/2) M§N+2s/2) Qon (1+ |y‘2)(N(N—2s)/N+25) n
1 1
SOz + (N+2s/2)° (2.26)

the last inequality follows from (2N(N — 2s)/N + 2s) > N since N > 6s. Using the
similar computation, we also have

aPUJEj,n,/VLan 8Pij,nal"j‘n _ 1

J

Inserting 7 into (2.21), combining (2.26) with (2.27) and letting n — oo, we can
deduce that

| aio-ayin- [ am=o. (2:29
RN Q

Since A # A;, ¢ = 0. Hence, the claim is completed.
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Taking 1 = ¢, in (2.21), we derive that

[ 18056, = [ 2k + o(wllénll = 1) + (D]

RN Q

which contradicts with ||¢,| = 1. O
LEMMA 2.4. For any ¢ € X§3(Q), it holds

DR, (¢) = O(||9||*~7), i=0,1,2.

Proof. Using the fact that for a,b > 0,
-1
(a+0b)P =a’ + pa 'b+ %M*W +0(P), p>2,
we can easily check this conclusion. Here, we omit it. |

PROPOSITION 2.5. There exists v, > 0 such that for v > vy, there exists a C*-map
vz Dy — X§(Q), such that ¢y 4., € Ey i satisfies

k
<1; ( > PUs, ., + qsy,m#) : n> =0, V9€E,x (2.29)

j=1
Furthermore,
k
A p(1/2)+e (1/2)+0
Pzl = O<Z1 ma +Z (N 25/2((1/2) o) T 25 ’
J
where o is a small positive constant.
Proof. Set
k k (1+0/2)
v 1+o’ 2
Mo ={ 016 € Bapall < 32 e 4 3l 4 S
Jj=1 J Jj=1 i)

First, by lemma 2.1, we see that [,(¢) is a bounded linear functional in E, , .
Then, there exists [, such that

lu((b) = <ZV7 ¢>a v¢ S Eﬂc,u,k-
Combining this with (2.11), we can obtain that (2.29) is equivalent to

L, +Qué+ R, (¢) = 0. (2.30)
It follows from proposition 2.3 that @, is invertible in £, , , and
QI <pt

Thus, (2.30) can be written as
¢=Ap:=-Q, 'L, — Q. R, (9). (2.31)

Now, we prove that A is a contraction map from N ,,  to Ny . k.
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On one hand, for any ¢1, ¢2 € N, 1, using lemma 2.4, we have

IA(p1) — A(d2)|| = |Q, " Ry, (¢1) — Q' Ry (2) |l
<p IR (¢1) — R, (62)]
C(llal 72 + g2l )61 — @2l

1
< . - )
2H¢1 P2|

if v is large enough. Hence, A is a contraction map.
On the other hand, for any ¢ € N, ,, 1, applying lemma 2.1 and lemma 2.4 again,
we have

IASI < p Il + oM IRL (@) < CUIL N+ g% )

1/2)+o
<Z 2 Z <N 2s/2><1/2+o>+25(1/2)+0>

i#]
k y(1+0/2)
(1+0/2)
< Z 2s—0o + Z (N 25/2)(1+J/2 + Z
Jj=1 H; i#£]

if v is large enough. Therefore, A is a contraction map from N, to N, , . By
contraction mapping theorem, there exists a unique ¢, 5, € N, , x such that (2.31)
holds. Moreover,

L(1/2)+0

k k
A (1/2)+0
<o X+ 2 e+ £

[y

3. Proof of main result

In this section, we will choose suitable (z, u) € Dy, such that

k
0 =3 PUsp s + b

j=1
is a solution of equation (1.4). We define

K($7M) = Jv(xa;u'v(bv,z,#)v ({E,/J) € Dk,uu
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where ¢, , is obtained in proposition 2.5. Using proposition 2.5 and lemma B.2,
we deduce that

K(CL‘,/J,):JZ,(.%‘ /1’70)—’_0( 2)

k k
)\AQ ©1(T; A31/ 1
=kA; — E < % M(SVJ;S/Q) ) - E §b0(z43 + boAA (x4, x))eij
J

=1 \ 1 i#j
k 1 v plte 1+
+0| > 2 T e +D e
. T (( )(1+0)/2)
j=1 \ 1 wi 7]
k k
)\AQ Lpl (l’ )Agl/ 1
= kAl — < MZ_S (N 725/2) Z ibO(AB + b(])\A(I“ Zj))é‘ij
i=1 \ " i#]
1
+0 L(@s(140)/N—6s) | (3.1)

where the positive constants Ai, Az, A3 A(x;,x;) are defined in lemma B.2 and
o > 0 is a small constant.

Now, we intend to estimate the derivative of K(x,p). It follows from propo-
sition 2.5 that there exist constants ¢, d;, i =1,...,k, h=1,...,N such

that
Do (@, 1 Gre) _ N Usip oPU,, .
— = C’Lh o dj————. (32)
a(bmm,,u ; }; a.fzh ; a,ul
Thus
0K (x, 1) _ OJy(x, 1, vz ) n AT, (z, pt, puw ) Obuzp
O O [ " Opy
O (T, 11, o) | = o OPUy, . by
- -~ 7 _|_ ¢ K2) 17 )
aﬂj ;}; " 0x;p auj
Zd aPUzl i 8¢ur N
opi O .

Hence, we have to estimate (0J,(x, i, ¢u,z,1)/01;), cin and d;.

LEMMA 3.1. Let ¢y 4, be obtained in proposition 2.5. Then

OJy(x, by Qoo )  25MAg 3 N —2s ¢1(xj)Asv iO 1
3#]‘ M§S+1 2 u;N—23/2)+1 1 p(4s(1+0)/N—6s)
(3.3)
and
a‘]l/('ra /J’7 ¢V,;E,M) 1 v V1+0
Dz = 1O\ v o T (22 2 s ) (34)
J J Hj i#]
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where o > 0 is a small constant, constants As, Az are defined in lemma B.1.

Proof. By a direct computation, we have

k
OPU,, .,
OJu(@ 1y brr) _ <1L< S PU,, . + ¢u,w,u> |t >

g = O

k
OPU
= Il// PUx‘L i xj L / ¢V x, 1] M

T, i v,x, — vy -
Q e " 7 5#;‘

+
“opru
/ <ZPU$L;M'L V > % (35)
=1 + Mj

It follows from proposition 2.5 and (2.10) that

x C
¢V Z, — — o / ¢V7I7 ijv J
‘ / . 3#; uj 0 [92elUas

C ||¢UJL’ y,” ]_
S p2 S o vaaraa—ey |- (3.6)
Note that
y 2,1 k 27 -1
oPU,. ,,.
/ ZPUM,}M + (bu,z,,u — VY, — Z PUwz‘,P«i — vy OV,
! =t + 1=1 4 3;@
R 25
(25 —1) / <ZPU$I,ML V(pl> ¢M’M#
+

23 ,18PUm7 Hj
+o</ ekt ). (3.7)

Then, using lemma A.2, proposition 2.5 and Hoélder inequality, we obtain that

* 3PU C _ C .
2.1 2% —1 _
‘ J e R AR O
: _

Hj j

C 1
< ;J <V(4s(1+a)/N63) ) : (3.8)
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898
On the other hand, by a similar computation in (B.7), we can obtain
PU‘/I‘,J' M

k 27 -2 a
PUm, . T Ve ¢u,ac,
/Q (; g >+ " O,
e
-/ (ZU ) [ )
Q

2
’ U, 1
Vo1 Pvap—a "+ —O| —orrgy
- > Dy 11 (ugz\r 25/2)
1oz,

+
2r 2
_/ DU Graulzts 4 Lo
o\ &= Tisfhi VT, aﬂj 14 H§N_23/2)
/ ( Z Uwz Hi
Q

i=1

| —

2:-2-((1/2)+0)
) |V901|(1/2)+”¢u,x,H|Uzj,,Lj>

+
.
A/

&

s [ Gu.zl
Uwi,ui (ZSV%H a + ,Uj0<,LL(N_25/2)
J

k 27 -2

2% -2

< ) - Ux] Hj
—1

k (o2
(Z i [P )
N—-2s)/2)(1/24+0c
- ﬂ(( )/2)(1/2+0)
27—1/2 2*—1 2
7/ ZU$(1,M1 / )UQEJW'J / )|¢V717N|

i#£]
( AN L )

1 60,2l
+—0 el )y Lo
1 ( 1 Z M(_(Nfzs)/2)(1/2)+o)

1 (1/2)+0 ozl
= LS, o(LN_Q:/Q)
Hj

i= i

(N—25/2)
Hj

i#]
k o
L Lo S X2 bl
o\ A= (=22 240 |
Thus, (3.3) follows from lemma B.3 and (3.5)-(3.9).
The similar computation and lemma B.4 yield (3.4)
LEMMA 3.2. Let c;; and d; be defined in (3.2). Then
1 v yite
_ -1
Gt = Hj O( s T Nz T T (veamare ) ZEZ'J)
Hi K i
and
v 1
+ p(4s(l+0)/N—6s) |’

1
d; = ;0| = +
J J (uis u;N—2s/2)
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Proof. Multiplying (0PUy,, ., /0u;) and (OPUy,; ,,, /0x;) by (3.2), respectively, we

obtain
i N [ OPUs 9P, +id‘ OPU,,,, OPU., .,
. . ih Oz, Oy | ’ Opi Oy

OPU,. ..
_ aJD(I’/’L7¢V7x7H), PRl , (310)
a(bu,r,p, an

and

iic, aPUqu‘,,m aPUIjM Jrid, aPUri,#z‘ 6PU%‘7MJ‘
_ PN\ T Oz dxj; = ! ou; 7 Oxy

i=1 h=1 1
aJl/ )y My Y, aPUiE j j
- (@1t Pran) T (3.11)
8¢V,$,/L 655]'1
On the other hand, by a direct computation, we have
aJu(¢vM»¢u,m,u) 6Pij,uj . aJv($»N7¢u,z,u)
: - (3.12)
8¢V,a:,u 8/”’] 8:“]
and
aJl/(va7¢u,a:,;L) 8PU1;‘7M _ aju(xmuvd)u,m,,u)
, = (3.13)
a(ﬁl,)g;# (9le 8$jl
Combining (3.10)—(3.13) with lemma 3.1, we can complete the proof. O

Based on lemma 3.1 and lemma 3.2, we can conclude the following conclusion.

PROPOSITION 3.3. Let (x, i) € Dy, Then

OK(x,p) _ 28AAy N —2s o(z;)Asv 10< ! ) (3.14)

i = u?sﬂ ) M§N—zs/z)+1 ITJ (4s(1+0)/N—6s)

where o > 0 is a small constant.

Define
Ay As
ft) = - 125 + t(N=25/2)"

Then it is easy to check that f(¢) has unique minimum point

2/(N—6s
to = Az(N — 2s) /! :
o= 48)\142

on (0,00). Let
g = kAl +n, a;= kAl + kf(t(])v_(4S/N_68) _ V—(4s/N—65)—(35/2)'r’
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where 17 > 0 is a small fixed constant. Denote

K* = {(m,u) € Dy, K(z, 1) < a}.

Consider the following flow
dxz(t)

dt
dp(t)

— D.K((t),ult), t>0,

= —D,K(x(t), u(t)), t>0,
(2(0), 1(0)) = (wo, po) € K.
‘We have

PROPOSITION 3.4. Let N > 6s. Then the flow does not leave Dy, ,, before it reaches

Ko,
Proof. Denote

i :tjl/2/(N_65), tj S [to —LI/_STﬂf()-f—LV_STL j=1,... k.
Suppose that p; = (o + Ly=57)v?/(N=6%) for some j. Then by (3.14), we have

OK (z, p)

alu _ f/(tj)yf(4s+2/N765) +0 ((1 o 901(17j)>1/(4s+2/N65)>
J

+0 (V—(2+4s+4so/N—63)>
_ f/(tj)yf(4s+2/N76s) +O<V(4s+2/N6s)sr>
— f//(to)V_(4S+2/N_68)LV_ST +0 <L2V_28TV_(4S+2/N_6S)>

+0 (V(4S+2/N65)ST> >0,

if we choose L > 0 is large.
Similarly, if p; = (to — Ly=s7 )2/ (N=6%) for some j. Then by (3.14), we have

OK (z, 1)

5 _ 7f”(tO)V7(4S+2/N76S)LV75T +0 <L2VQSTV(48+2/N65)>
M

+0 (V—(4s+2/N—63)—s7'> <0.

So the flow does not leave Dy, ,,.
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|N—23 _ V—(2N—83)/(N—6s)+s7'

Now, we suppose that |z; — z; . Then we have

01V7(45/N76s)7sr

€ij 2

Thus, applying (3.1), we can derive

k
A Azv
K(z,p) <kA; — Z ( 232 - (N—32s/2)>
/_,LA

j=1 Hj

- Z “bo(As + boAA(z4, 5))eij + o( (4s+dso/N— 65))
i#]

k
< kA, + Z f(tj)y(4s/N76s) _ Cly7(4S/N76S)7ST +0 (V(43/N65)257>

j=1

_ k‘Al + kf(to)y_(4s/N_6s) +0 <V—(43/N—6S)L2V—237>

— Oy~ (4s/N=65) ST—i—O( (4s/N—6s)— 257’) < o, (3.15)

where the last equality follows from the fact that f(t;) = f(to) + O(|t — ¢;]?).
On the other hand, if [pq(z;) — 1| = v~°7, then using (3.1), we can obtain

k k
Mo Asv 1 —pi(x))Asv
K(z,p) = kA — Z ( 25 M(IN—25/2)> - Z T (N-2s/2)

=1\ j j=1 3
"1
- Z 5[)0(143 + b())\A(a?i, .’L‘j))gij +0 <y—(43+4SU/N—6s)>
i#]
k k A
= kA, + Z f(tj)f(ﬁls/Nst) _ Z Uv_iss/mf@s/zvfes)fﬁ
j=1 j=1 t]
"1
- Z ibO(AB + boAA(xi,x))ei; + O (V(4S+45"/N65)>
i#]
—(4s/N—6s) a A3 —(4s/N—6s)—sT
< kA; + Z f(t; — Z t(NT/z)V

+O< (4s/N—6s)— 257’)
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= kAy + kf(to)y™ /N7 + O <u<43/N65> L2V25T>

k
A
— Z (N_s’s/2) V7(4S/N76s)75'r + O<V(4S/N65)257‘> < ay. (316)
i=1t;
Thus, we complete the proof. O

Proof of theorem 1.2 We will prove that K (z, 1) has a critical point in Dy, ,,.
Define

U= {n b, 1) = (ha (2, ), ha(, 1)) € Do (2, 1) € D },

where hy(z,p) =z if @ € 9D, ,. Here we denote Dy, = {x : (z,11) € Dy, } and
define the boundary of Dy , by D, ;.. Furthermore, we denote D} , = {u : (x, 1) €

Dy}
Let

, = inf K (h(z, p)).
ov=inf max K(h(z,p))

We claim that ¢, is a critical value of K. In order to prove this claim, it is sufficient
to prove that

(1) a1 < ey < ag,

(ii) sup K(h(z,p)) <aq,VheT.
(w>”)eaD11/,k><D§,k

Obviously, (ii) directly follows from (3.15) and (3.16).

Now, we prove (i). Using (3.1), we can easily check that ¢, < as.

For any h = (hy, he) € T, by the definition of h, we have hy (x, u) =z if z € 8D11,’k.
Define

ﬁl(m) = hl(x, tol/iQ/(Niﬁs)).
Then Bl(x) =z for any x € BD,E’ &~ Thus, by degree argument, we can obtain
deg(h1, Dy ,6) =1, VE€D,,.
Hence, for any & € D}, ,, there exists & € D, such that
hi (%) = €.
Let fi = hy(Z, tor=/(N=6%)) Then we have

max K (h(z, 1)) > K(h(&,tor™ > N70))) = K(&, fi).
(Iv/")GDV,k

Choose §; € Q such that dist(§;,S) < v °" and |§ —&| = cav™°", where ¢; is a
small positive constant. By a direct computation, we have

1
S _ (N—2s)T—(2(N—2s)/N—6s)
Eij : NgN—23/2)M§N—2(s/2)|£i g [N O(V ) (3.17)
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Combining (3.1) with (3.17), we obtain

k k
)\AQ A31/ 1-— gﬁl(z‘)AgV
K@MO:kA1_§:<M%__MNJN%>__§:H@Fgm)
J i j

j=1 j=1 j
"1

_ Z ibo(Ag + boAA(z4, ;))éij + O (V(4s+4sa/N65)>
i#]

k
= kA, + Zf(tj)yf(&e/Nst) + 0(1/7(45/]\]768)7257—)
j=1
+0 <V(N—25)T—(2(N—25)/N—6s))

= kA; + kf(to)y~@s/N=69) 4 0 (V—(4S/N—6S)L2V—28T>
4 Oy (4s/N=65)-2s7)
S+ %V7(45/N76s)7(3s/2)'r - an.
Consequently, we complete the proof.

Appendix A. Basic estimate

903

In this section, we always suppose that dist(z;,0Q) > 6 > 0, where ¢ is a small
constant. Let G(y, z) be the Green’s function of (—A)® in Q. That is, G satisfies

(=A)°Gly,) =6y, in €,
G(y,-) =0, in /V\Q,

where §, denotes the Dirac mass at the point y. The regular part of G is given by

H(ya Z) = F(ya Z) - G(ya Z)7
where I'(y, ) is given by
CN,S

[y, z) = e

Let
Wojn; = Usjy = PUsj py-

Then we have
LEMMA A.1. It holds

0 < PUI].’#]» < Uz_jyﬂj, 0 < \I]mj,;tj < UCE_;’»#J"

https://doi.org/10.1017/prm.2021.40 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2021.40

904 Q. Li and S. Peng

Proof. By proposition 2.4 in [13], we can see that G(y,z) >0 and H(y,z) > 0.

Then
PUs; ;= / G(y’Z)UIQJ;!;Jl'dZ >0
Q
and

Voo = F(y,z)UﬁE,;]l.dz—/ G(y,z)U;f];JIdz
Q

RN

:/ F(y,z)U;fE,;j.dz—&—/ H(ywz)Uf;;Jldz > 0.
RN\Q Q

LEMMA A.2. We have

co
Yoy = W(H(y» j) + o(1)),
j

8\11%.7“], . 7N —2s Co

Ons 2 pug
Ve, s o OH (y,x;)
J0 — ? 1
01,5 ME_Nfzs/z) B +o(1) |,

where j=1,...,k,i=1,...,N andcozf%NUQ:_l.
Proof. Note that

Uy 0) = [ T 2025 ()
and

PUs, o 6) = | Gl 2023 ()

Then, we have

U, = / T(y, 2)Us: ot (2)dz — /Q Gy, 2)Us: 1 (2)d
‘:RN

2573y (H (Y, 25) + (1)),

z

:/ rmmﬁﬁw¢+/Hmmﬁzww
RN\Q Q

_of 1 / 1 1
'LL(N+25/2) RN\Q |Z _ y|N—25 |Z _ l‘j|N+25

J

1 B .
+ﬂ(1\/—2s/2)/g H(y,p; "z +a;)U%(2)dz
J 3J
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1 H(y,z;) .
=0 + o / Ut
<M(N+23/2)> L2 Jo

J J

1
1 w12l
+0 / 4
(M§N2S/2) Q, (1 + z|)N+25dz>

1 H(y,xzj) — 1
=0 + 2J / U+ 0| —7=
N+2s N-—2s N, ’
(lé +2 /2)> #§ 25/2) Joun p N2

J

the last equality follows from (B.3), where ; = {z : yi; '2 +2; € Q}. By a similar
argument above, we can prove (A.2) and (A. 3) O

Appendix B. Energy expand

In this section, we will expand J, (x, u,0) and its derivatives. First, we recall that
the energy function corresponding to equation (1.4) is given by

/ / )‘2ddz 1/)\2—i (v—v )2:
R . |y_Z|N+25 2 o P1)y -

LEMMA B.1. We have

Mo p1(xj)Asy 1 v
L, (PUs; ;) = A1 — 5 T Iu(Nz2s/2) +0 JPARET +0 (N/2)
J

J

I/1+o

+ O( ((N—=2s)(140)/2) ) ’
K

where o is a small positive constant and Ay, As, Az are defined by

. 1 *
/ U?%, Ay = f/ U2, As :/ U1
mN 2 Q{N mN

Proof. By a direct computation, we have

2% 1 A 1 o
TPUs, ) = 5 | VRGP =5 [ (P = 5 [ (PUL =)

S

1 2% 1 2% _1 A 2
5/9ijij D) /QUQCJ Hj \Ilwwlh - §/QU$J'7MJ‘
+ O(/QUIJ‘HLLJ\I/I]'HU‘J'>

1 25 -1
_E Q(ij,uj—l/gﬁl) +O</ﬂ( wjy — VP \IJI]_’M]_>
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1 - A 1
:*/ Ut — 23/ U + 0| —x—
2 Jon 205" Jorn My
1 1
+0 /
Qﬂ?sgw%N2J

J

906

27 —1

1 o* .
T ox (U, —v1)¥ +0 (/ Uz qjﬂ%w)
Q Q

S

1/ o My 1 o 1
== U — —-— Uejuy —vp1)y +O0| —w—; |- (B.1
3 S U7 = = 5 [ U —ve¥ 40 s ) (B)

Let R > 0 such that Q C Bg(z;). Choose o small such that N + 2s — (N — 2s) >
N. Using the following estimate

(a— b)i_: = a% —25a% 04+ 0(a® 1) A b > 0,

we find

2r 2* . 2r 1 4o 2 —l—0o
/(Uﬂﬂjw —vpr)y = / Uzju; — 23/ Uzj v + O(” / Usj )
Q Q Q Q

2% (xy)v . ylto
= U2 - Zsr\y)” v-tiof — 2
o W2 Jog I CERERE

-1
v syl
+ w35 0 / e
HE‘N 25/2) ( By nor 1+ |y[N+2

:/ UQ: _ 2:@1(x])A3V
Q{N

(N—2s5/2)
J
V1+o' v
JrO(((l\’—28)(1+0)/2)> +O<(N/2)>, (B.2)
e 1
the last equality is due to the following estimate
—1 e 1
- j if £ <s<1,
pitlyl ”{11 < .
B 1+ [y[N+2s — py o log g 1t s =3, (B.3)
o <<l

J

The result directly follows from (B.1) and (B.2).
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LEMMA B.2. We have

X k
Mo pa(z;)Asy
Iu(ZPij,uj> =kA; — Z ( 25 M(szs/z)
J

j=1 j=1 K

k
1
— Z ibO(AS + bo)\A(!Ei, xj))gij
i)

o k 1 v pite 4o
+0( > WJF*JFW +D el

J=1 \"J wi i#j

where Ag, As are defined in lemma B.1, o is a small positive constant and A(z;, ;)

18 defined by
1 1
A(x;, x; :/ + < Q.
ot = <|y—x7;N—28 |y—xj|N—25>

Proof. By a direct computation, we have

k
AP OTTINES SIALTSNESS oy A el
j=1

l#]

_7Z/PUIJ i 1’1#1

i#]

k 2; k
2%
(S rvmn—ver) =300 v )
Q j=1 j=1

Noting that for i # j, we have

2% —1 27—-1 2 71
/Uz]hu’JPUI’L)Mi :/UTJMU‘]Um’L)uL /UT] 12 w“m

2% —1 1
/ UmJ,uJ wip T O( (N72s/2) (N25/2)>
M§N72s/2)M£N725/2)|xi _ .T_j|N_2$ RN

1
+O<u§1v 23/2)M(N 25/2))

1
= boAzei; + O( (N—2s/2) (N—25/2) )7 (B.5)
1221 Mg
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and

1
APUIj’MjPUIi7Hi = /QUIJ"M Uz, s + O<M;N2S/2)H§N25/2)>

_bZE"/ 1 + 1
o \ly — a2y — N2

1
+0 (M(N2s/2)M(N23/2) >

J i

1
= b(Z)Ez]A(l'ul'j) +O<ILL(N_23/2)‘LL(N—23/2)>. (BG)

J i

Now we estimate the last term in (B.4). By a similar computation as (B.2), we
obtain that

k 28 k
Z 2%
/ ((Z PUmjVHj - VSD1> mJ Hj VSDl)-ﬁ)
Q =

k 23 k
T R
2\ \j=1 + =1 j=1Hj
2% k 2% -1 & it
:/Q(ZU%M) —2:/Q<ZU%M> W1+O<Z<<st><1+a>/z>>
J=1 j=1 j=1H;
u 2 « 1
- Z Um; Hj 23Um; piVP1 |+ 0 Z N—2s
j=1"9 =1 Hj
k 20k k 23 k ito
:/Q<<ZU$J’HJ> _Z/Q<ZUJZJ,NJ> >+O<Z((]V28)(1+0')/2)>
Jj=1 Jj=1 Jj=1 j=1H;
2r -1
* - ’ & 27 -1 k 1
—2F ZUI].M _ZUQJ}»M vo1+ 0O Zﬂ
@ \j=1 j=1 j=1 1

* 2% 71
- 2 Z/ Ua:J?HJ Li i +O<Z/ U$Ja,“fj Iz;/h)
i#]
a vite 251 21
+O<Z - 25)(1+a /2)) +O</ > Usy% Uil V<P1>
i#]

G
O(Z N2s>
j=1 Hj
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L k
) log (pift;)
= b()25A35ij+O<§ : (N/2) (N/2) _aj»|N
E: J

N |

i#]
k 1+o
+ O(Z (N—2s)(14+0) /2))
j=1 :U’
b v K 1
+O<Z N+2/4) (N+2/4 >+O<Z N23>'
oy u; +2/ )ME +2/ )|Jii _le(N+2/2) el
The result follows from lemma B.1 and (B.4)—(B.7).
LEMMA B.3. We have
OJy(x,1,0) _ 25AAy N —2s ¢y(x;)Asv
aﬂ] M?s—i—l 2 M;N_28/2)+1
1 1 v plte
+ =0 —=5 + + + e
14 (M;V 2¢ ,ugN/Q) 'u((N 2s)(140)/2) ; J)

where Ao, As are defined in lemma B.1 and o > 0 is a small constant.

Proof. By a direct computation, we have

OPU,. ..
Oy, (x, 1,0 <I’ (ZP xu) 347/;>

ou; O
- 8PU1 OPUs; i,
- [ty [, e
Hj
2:71
. aPUIj)l"i
ZPU Tiy i — vy TN/J

_ UQ*_l aPUzJ’#J Y m]’“’]
- TjsHj lgvlh i
Q Hj

+O<Z/PU%M ””")

i#]
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(B.7)

* 3PU +_10PU,
_/(PU:EJ',MJ V%Ol)2 Tl (Z/ Tzz,ml 7M7>
Q

i#]
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+_10PU, OPU,. . y
:/Ui;——i& N[ PUL g 10 S
Q O, O, iz P

2;—-1 Lw N
Pl ) ) FRLY]
/Q( =ity Y 1) 6“]'

_/U‘z;l_‘}aUIJM 7)\/ Usin, OUq; 1u;
Q O o 7 Ouy

10U,
— Ug, p, — v e L
/Q( FRLZ) 1) aluj

1 1 i
+ =0 = | +O[ Y 2

2S>\A2 / 2 _28 x] 1 1 Vl-‘ro
= 3 T : vp; + —O0 N2 (150 /2]
M? +1 J M 14 M§(N 2s)(14+0)/2)

1 1 i
+ =0 = | +O[ Y2

_ 2sMAy N —2s Azpi(zy)v —l—O( v >

— T 2s+1 N—2s5/2 N/2
i O
1 plito €ii
+—0O0| —FF+—=|+0 2.
1 <M§(N_28)(1+U)/2)> (; 1

Using the similar computation, we can conclude the following result.

LEMMA B.4. We have

oJ, (x I, ) 1 v plteo
— = 0O ;e + 3 p + Eij
Oxj; ’ N;'V ’ ME'N/Q) ((N e/ ; ’

Acknowledgments

The authors would like to express their gratitude to the reviewers for careful reading
and helpful suggestions which led to an improvement of the original manuscript.
This research was supported by the National Natural Science Foundation of China
(No0.11831009; No.12071169).

References

1 B. Abdellaoui, A. Dieb and F. Mahmoudi. On the fractional Lazer-McKenna conjecture
with superlinear potential. Calc. Var. Partial Differ. Equ. 58 (2019), 36 pp.

2 A. Ambrosetti and G. Prodi. On the inversion of some differentiable mappings with
singularities between Banach spaces. Ann. Mat. Pura. Appl. 93 (1972), 231-246.

https://doi.org/10.1017/prm.2021.40 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2021.40

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

On the fractional Lazer-McKenna conjecture with critical growth 911

B. Breuer, P. J. McKenna and M. Plum. Multiple solutions for a semilinear boundary value
problem: a computational multiplicity proof. J. Differ. Equ. 195 (2003), 243-269.

L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian.
Comm. Partial Differ. Equ. 32 (2007), 1245-1260.

E. N. Dancer and S. Yan. On the superlinear Lazer-McKenna conjecture. J. Differ. Equ.
210 (2005), 317-351.

E. N. Dancer and S. Yan. On the superlinear Lazer-McKenna conjecture. II. Comm. Partial
Differ. Equ. 30 (2005), 1331-1358.

E. N. Dancer and S. Yan. The Lazer-McKenna conjecture and a free boundary problem in
two dimensions. J. Lond. Math. Soc. 78 (2008), 639-662.

J. Dévila, M. del Pino and Y. Sire. Nondegeneracy of the bubble in the critical case for
nonlocal equations. Proc. Amer. Math. Soc. 141 (2013), 3865-3870.

J. Dévila, L. Lépez Rios and Y. Sire. Bubbling solutions for nonlocal elliptic problems. Rewv.
Mat. Iberoam 33 (2017), 509-546.

A. C. Lazer and P. J. McKenna. On a conjecture related to the number of solutions of a
nonlinear Dirichlet problem. Proc. Roy. Soc. Edinburgh Sect. A. 95 (1983), 275-283.

G. Li, S. Yan and J. Yang. The Lazer-McKenna conjecture for an elliptic problem with
critical growth. II. J. Differ. Equ. 227 (2006), 301-332.

G. Li, S. Yan and J. Yang. The Lazer-McKenna conjecture for an elliptic problem with
critical growth. Calc. Var. Partial Differ. Equ. 28 (2007), 471-508.

W. Long, S. Yan and J. Yang. A critical elliptic problem involving fractional Laplacian
operator in domains with shrinking holes. J. Differ. Equ. 267 (2019), 4117-4147.

E. D. Nezza, G. Palatucci and E. Valdinoci. Hitchhiker’s guide to the fractional Sobolev
spaces. Bull. Sci. Math. 136 (2012), 521-573.

S. Peng and Z.-Q. Wang. Segregated and synchronized vector solutions for nonlinear
Schrédinger systems. Arch. Ration. Mech. Anal. 208 (2013), 305-339.

S. Peng, Q. Wang and Z.-Q. Wang. On coupled nonlinear Schrodinger systems with mixed
couplings. Trans. Amer. Math. Soc. 371 (2019), 7559-7583.

S. Peng, C. Wang and S. Wei. Constructing solutions for the prescribed scalar curvature
problem via local Pohozaev identities. J. Differ. Equ. 267 (2019), 2503-2530.

S. Peng, C. Wang and S. Yan. Construction of solutions via local Pohozaev identities.
J. Funct. Anal. 274 (2018), 2606-2633.

O. Rey. The role of the Green’s function in a nonlinear elliptic equation involving the critical
Sobolev exponent. J. Funct. Anal. 89 (1990), 1-52.

R. Servadei and E. Valdinoci. Variational methods for non-local operators of elliptic type.
Discrete Contin. Dyn. Syst. 33 (2013), 2105-2137.

R. Servadei and E. Valdinoci. The Brezis-Nirenberg result for the fractional Laplacian.
Trans. Amer. Math. Soc. 367 (2015), 67-102.

J. Wei and S. Yan. Lazer-McKenna conjecture: the critical case. J. Funct. Anal. 244 (2007),
639-667.

J. Wei and S. Yan. Infinitely many solutions for the prescribed scalar curvature problem on
RN . J. Funct. Anal. 258 (2010), 3048-3081.

J. Wei and S. Yan. Infinitely many positive solutions for the nonlinear Schrodinger equations
in ®N. Cale. Var. Partial Differ. Equ. 37 (2010), 423-439.

https://doi.org/10.1017/prm.2021.40 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2021.40

	1 Introduction
	2 Finite dimensional reduction
	3 Proof of main result
	A Appendix A. Basic estimate
	B Appendix B. Energy expand
	References

