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COMPUTING STRENGTH OF STRUCTURES RELATED TO
THE FIELD OF REAL NUMBERS

GREGORY IGUSA, JULIA F. KNIGHT, AND NOAH DAVID SCHWEBER

Abstract. In [8], the third author defined a reducibility ≤∗
w that lets us compare the computing power

of structures of any cardinality. In [6], the first two authors showed that the ordered field of reals R lies
strictly above certain related structures. In the present paper, we show that (R, exp) ≡∗

w R. More generally,
for the weak-looking structure RQ consisting of the real numbers with just the ordering and constants
naming the rationals, all o-minimal expansions of RQ are equivalent to R. Using this, we show that for
any analytic function f, (R, f) ≡∗

w R. (This is so even if (R, f) is not o-minimal.)

§1. Introduction. The behavior of structures in generic extensions of the uni-
verse has been studied from a number of different angles; for example, Baldwin,
Laskowski, and Shelah [2] studied the conditions under which nonisomorphic
structures may become isomorphic, and Knight, Montalbán, and Schweber [8]
(and independently Kaplan and Shelah [7]) studied structures existing in every
generic extension of the universe by some forcing. In the latter paper, general
results about such “generically presentable” structures led to a new proof of a result
of Harrington saying that if T is a counterexample to Vaught’s Conjecture, then
T has models of cardinality ℵ1 with arbitrarily large Scott ranks less than �2.
(There are now at least three new proofs of this result. In addition to the one in [8],
there is one by Baldwin, S.-D. Friedman, Koerwien, and Laskowski [1] and one by
Larson [10]; these other proofs do not use generically presentable structures directly,
but do use related ideas.)
We can do more with generic extensions. In [8], the third author defined a notion
that lets us compare the computing power of structures of any cardinality.

Definition 1.1 (Schweber). LetA and B be structures in V (of any cardinality).
We say that A ≤∗

w B if in a generic extension V (G) in which both A and B are
countable, every copy of B computes a copy of A.

In [8], there are a few examples comparing familiar structures. In particular, it
is shown that W ≤∗

w R, where R is the ordered field of real numbers, and W
represents the power set of �. We have W = (P(�) ∪ �,P(�), �,∈, S), where
S is the successor relation on �. In computability, the structures R and W are
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sometimes identified; both are referred to as “the reals.” Of course, they are not
the same structure: R is an archimedean ordered field, whileW is just a family of
subsets of �.
Let R∗ be an �-saturated extension of R. In [6], it is shown thatR∗ ≡∗

w W and
that R �≤∗

w R∗, so R �≤∗
w W . We recall a little of the proof. First, R is a residue

field section ofR∗. After collapse, R∗ is no longer �-saturated, but it is recursively
saturated, and it realizes just the types in the Scott set that is the old P(�). It is
shown that for a countable recursively saturated real closed field K , with residue
field k, some copy of K does not compute a copy of k. The proof of this involves
a reduction. It is shown that if every copy of K computes a copy of k, then the set
FT (K) consisting of finite elements that are not infinitesimally close to anyalgebraic
element must be defined in K by a computable Σ2 formula. It is then shown that
FT (K) has no such definition.
In the present paper, we consider further structures related to the reals. Let

Rexp = (R, exp). We show that Rexp ≤∗
w R. This was a surprise to the authors.

We had expected Rexp to be strictly more powerful than R. We generalize this
result, replacing R by an apparently very weak structure RQ consisting of the real
numbers with the ordering and constants naming the rationals, and replacing Rexp
by certain expansions of RQ.

General Theorem. Let M be an o-minimal expansion of RQ, in a countable
language, with definable Skolem functions. ThenM ≤∗

w RQ. In fact, after collapse,
every copy K ofRQ computes the complete diagram of a copy ofM.
Using the General Theorem, we prove that if Rf = (R, f), where f is total
analytic on R, then Rf ≡∗

w R. As further applications, we have the fact that
(R, (rn)n∈�) ≡∗

w R, where (rn)n∈� is an arbitrary countable sequence of reals, and
R+ ≡∗

w R, where R+ is the reduct of R in which multiplication is dropped. This
last result was obtained independently by Downey, Greenberg, and Miller [3].
It is clear that W ≡∗

w C = (2�, (Rn)n∈�), where f ∈ Rn iff f(n) = 1. The
structure C represents Cantor space. To represent Baire space, we may take B =
(��, (Rn,k)n,k∈�), where f ∈ Rn,k iff f(n) = k. Downey, Greenberg, andMiller [3]
showed that B ≡∗

w R. From Baire space, we derive a structure Rint , consisting
of the real numbers, with the ordering, and predicates for the half-open intervals
[q, q′), where q, q′ are dyadic rationals with q < q′. It is not difficult to show that
B ≡∗

w Rint .
On its face, Rint is even weaker than RQ. Modifying the proof of the General
Theorem, we could show that RQ ≤w Rint . Hence, R ≡∗

w Rint . Alternatively, we
could modify our General Theorem, replacingRQ byRint . Applying this variant of
the General Theorem, we would get the fact thatR ≤∗

w Rint , soRQ ≤∗
w Rint . Before

knowing the results in [3], the authors used this approach to show thatR ≡∗
w B.

In Section 2, we show that Rexp ≡∗
w R. The proof combines ideas from com-

putability (jumps and effective guessing strategies), computable structure theory
(definability by computable infinitary formulas), and model theory (o-minimality).
In Section 3, we generalize the result from Section 2 to prove the General
Theorem. In Section 4, we apply the General Theorem from Section 3 to show
that the expansions of R by an analytic function or an arbitrary sequence of con-
stants, and the reductR+ are equivalent toR. In Section 5, we show thatB ≡∗

w Rint .
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We indicate briefly what would be involved in proving the modified version of the
General Theorem, withRQ replaced byRint . In the remainder of the introduction,
we give some background on o-minimality.

Remark. If A is an expansion of B such that A ≡∗
w B, it may not be the case

that (in an appropriate generic extension) every copy of B computes a copy of A
together with an isomorphism between the copy of B and the reduct of the copy of A.
Indeed, that is the case with expansions ofR: for example, the functions thatR can
compute in this sense are precisely the piecewise algebraic functions.

1.1. o-minimality.

Definition 1.2. A structureM with a dense linear ordering on the universe is
o-minimal if each set definable by an elementary first order formula (with
parameters) is a finite union of intervals (possibly trivial) with endpoints inM.
The following is well-known [9].

Proposition 1.3. If T is the elementary first order theory of an o-minimal
structureM, then all models of T are o-minimal.
We say that T is an o-minimal theory if some/all models of T are o-minimal.

Examples.

1. R is o-minimal. Tarski [14] proved thatTh(R) is decidable. In the proof, Tarski
gave an effective elimination of quantifiers. There is an algorithm (familiar to
every school child) for deciding the truth of the quantifier-free sentences. As a
side result, Tarski stated the fact that inR, and the other models of the theory,
the definable sets are finite unions of intervals.

2. R+ is o-minimal. It is clear from the definition that any reduct of an o-minimal
structure that includes the ordering is o-minimal.

3. Rsin is not o-minimal—think of the set of zeroes of sin(x).
4. Rexp is o-minimal. Wilkie [17] showed thatTexp = Th(Rexp) ismodel complete;
i.e., ifM1 andM2 are models of the theory, withM1 ⊆ M2, thenM1 ≺ M2.
By results of Khovanskii [5], it follows that the theory is o-minimal.

5. Ran is o-minimal, where this is the expansion ofR with the restrictions fI of
analytic functions f to compact intervals I = [a, b]. More precisely, fI is the
total function that agrees with f on I and has value 0 otherwise. By results of
van den Dries [15], building on work of Gabrielov [4],Ran is o-minimal.

We will use the following three facts. The first is due to van den Dries [17, p. 94].

Proposition 1.4. Any o-minimal expansion ofR+ has definable Skolem functions.
The second fact is due to Pillay [13].

Proposition 1.5. For an o-minimal theory with definable Skolem functions, defin-
able closure is a good closure notion, satisfying theExchangeProperty—ifa is definable
from b̄, c and not from b̄, then c is definable from b̄, a.
This means that independence, basis, and dimension are well-defined. The third
fact is also due to Pillay [9].

Proposition 1.6. For an independent tuple b̄ in an o-minimal structureA, if ϕ(x̄)
is a finitary formula true of b̄, then there is an open box B around b̄, with vertices
having coordinates in A, such that ϕ(x̄) is valid on B.
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Remark. If A is an Archimedean model of Th(R) (or Th(R+)), and ā is a
tuple in an open box B with vertices having coordinates in A, then there is another
open box B∗ ⊆ B such that ā ∈ B∗ and B∗ has vertices with rational coordinates.
We refer to B∗ as a rational box.

§2. Rexp ≡∗
w R. In this section, our goal is to prove the following.

Theorem 2.1. Rexp ≡∗
w R.

Here is a brief overview of the proof. Clearly, R ≤∗
w Rexp. We show that

Rexp ≤∗
w R. Let Texp be the elementary first order theory of Rexp. The theory

Texp may or may not be decidable, depending on Schanuel’s Conjecture, see [12]. In
any case, the theory is coded in a real parameter. After collapse, let K be a copy of
R with universe a subset of �. Since K is isomorphic to R, there is an expansion
Kexp satisfying Texp. We show that this expansion is unique. Next, we show that
independence is defined in a way that yields a basis forKexp that is Δ02 relative toK .
Finally, we use a computable approximation to this basis in a finite injury priority
construction in order to construct a copy of Kexp that is computable in K .

2.1. Expanding K to a model of Texp. We first show that for a countable
Archimedean real closed ordered field K with an added function f satisfying Texp,
the expansion is unique. Moreover, if the function expK is defined by a computable
Π1 formula. The same is true if we substitute for exp an arbitrary continuous
function.

Lemma 2.2 (Uniqueness). Let f be a continuous function on the reals, and let
Tf = Th(R, f). IfK is a copy ofR (after collapse), then there is a unique expansion
(K,fK ) satisfying Tf . Moreover, the function fK is defined by a computable Π1
formula with a real parameter r. Hence, it is Δ02 relative to K .

Proof. Let a ∈ K . For each open interval I containingf(a), and having rational
endpoints, there is an open interval J containing a, also with rational endpoints,
such thatf (as a function onR)maps J to I . For each such pair of intervals I and J ,
with rational endpoints, there is a sentence in Tf saying thatf maps J into I . Then
the function fK must map J to I in K . This implies that fK(a) in K must match
f(a) in R. This proves uniqueness.
Suppose r is a parameter coding Tf . This means that r ∈ [0, 1], and in its
“preferred” binary expansion, r has 1 in the kth place iff k is the Gödel number of
a sentence of Texp. The preferred binary expansion has infinitely many 0’s. Most
reals in the interval [0, 1] have a unique binary expansion, with infinitely many 0’s
and infinitely many 1’s. However, the dyadic rationals in the interval [0, 1] have two
binary expansions, one ending in an infinite string of 1’s, with only finitely many
0’s, and the other ending in an infinite string of 0’s, with only finitely many 1’s.
We show that there is a computable Π1 formula, with parameter r, defining fK

in K . We have y = f(x) iff for all pairs of rational intervals J and I such that Tf
contains the sentence saying that f : J → I , if x ∈ J , then y ∈ I . This is naturally
expressed as the conjunction of finitary quantifier-free formulas over a set that is
c.e. relative to Tf . We can replace this by a c.e. conjunction involving the parameter
r ∈ [0, 1]. Let ck(u) be a finitary quantifier-free formula saying of u ∈ [0, 1] that
its preferred binary expansion has 1 in the kth place. For all k, we define a finitary
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quantifier-free formula �k(u, x, y). If k is the Gödel number of a sentence saying
that f : J → I , then �k(u, x, y) says ck(u)→ (x ∈ I → y ∈ J ), and if k is not the
Gödel number of such a sentence, then �k(u, x, y) = �. Then the computable Π1
formula

∧
k �k(r, x, y) holds just in case y = f(x). �

Remark. Not all Archimedean real closed ordered fields can be expanded to
models of Texp. In particular, since e = exp(1) is transcendental, the ordered field
of real algebraic numbers cannot be expanded in this way.

By Proposition 1.6, for a tuple ā that is independent in Rexp, each formula ϕ(x̄)
true of ā is valid on a rational box B around ā. We need the converse of this.

Lemma 2.3. Let ā be a tuple of reals. Suppose that for every formula ϕ(x̄) true
of ā in Rexp, there is a rational box B around ā such that Texp contains the sentence
saying that ϕ(x̄) is valid on B. Then ā is independent in Rexp.
Proof. Suppose not. Say ak is defined from a1, . . . , ak−1 in Rexp. Let ϕ(x̄) be a
formula saying that xk is defined in this way from x1, . . . , xk−1. This cannot be valid
on an open box. �

2.2. Independence relations onRexp.
Definition 2.4. SupposeK is an Archimedean real closed ordered field with an
expansion (K, exp) satisfying Texp. Let INDn(K) be the set of n-tuples inK that are
independent in (K, exp).

We show that the relations INDn(R) are defined in R by computable sequences
of computable Π2 and computable Σ2 formulas. The computable Π2 definitions
are easy.

Lemma 2.5 (Computable Π2 definition of INDn). For each n, we can effectively
find a computableΠ2 definition of INDn, with a parameter r coding Texp.

Proof. We have ā ∈ INDn iff for each formula ϕ(x̄), there is a rational box
B around ā such that Texp contains one of the sentences (∀x̄ ∈ B)ϕ(x̄) or
(∀x̄ ∈ B)¬ϕ(x̄). We can express this as a computable Π2 formula. Let ck(u) be the
formula saying that the kth place in the preferred binary expansion of u is 1. For
each formula ϕ in the appropriate variables, and each rational box B, let k(ϕ,B)
be the Gödel number of the sentence saying (∀x̄ ∈ B)ϕ(x̄). We have ā ∈ INDn iff∧

ϕ

∨
B

(ā ∈ B & (ck(ϕ,B)(r) ∨ ck(¬ϕ,B)(r))),

where the conjunction is over all ϕ with appropriate variables, and the disjunction is
over all rational boxesB. This is computableΠ2, with the parameter r, as required. �
The computable Σ2 definition for the relation INDn is less obvious.

Lemma 2.6 (Computable Σ2 definition of INDn). For each n, we can effectively
find a computable Σ2 definition of INDn , with a parameter r coding Texp.

Proof. Fix n. Let (ϕm(x̄))m∈� be a computable list of formulas in the vari-
ables x̄ = (x1, . . . , xn), in the language of Rexp. We build a tree T , computable in
Texp, consisting of finite sequences of rational boxes B1, B2, . . . , Bs such that B1 ⊇
B2 ⊇ · · · ⊇ Bs and for each k < s , one of the sentences (∀x̄ ∈ Bk+1)ϕk(x̄) or
(∀x̄ ∈ Bk+1)¬ϕk is in Texp. By Proposition 1.6 and Lemma 2.3, ā ∈ INDn iff there
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is a path � = B1, B2, . . . through T such that for each s , ā is in the box Bs . We show
that this definition can be expressed by a computable Σ2 formula in the language of
real closed ordered fields, with the parameter r.

Claim: There is a computable Π1 formula, with parameter r, saying that x codes a
path through T .

Proof of Lemma. The preferred binary expansion of x ∈ [0.1] is the characteris-
tic function fx of a set Sx ⊆ �. The set Sx may be finite, but it cannot be cofinite.
We consider a path through T to be a set S with the following properties:

1. each element of S is a code for a finite sequence (B1, . . . , Bs ) in T ,
2. if (B1, . . . , Bs , Bs+1) is in S, then so is (B1, . . . , Bs ),
3. if two sequences in S have length s , then they are equal,
4. S is infinite.

We show that each of the four properties above can be expressed by a computable
Π1 formula. For Property 1, we say that Sx has no elements not in T . Since T is
computable in Texp and Texp is coded by r, there is a c.e. set C of pairs (�, k), with
� ∈ 2<� , such that k /∈ T iff for some (�, k) ∈ C , r agrees with �, where this means
that the preferred binary expansion of r extends �; i.e., ck(r) holds for �(k) = 1
and ¬ck(r) holds for �(k) = 0. To say that Sx has no elements not in T , we take
the c.e. conjunction over (�, k) ∈ C of formulas saying that if r agrees with �, then
¬ck(x). This is computable Π1 with parameter r.
For Property 2, we say thatSx (a set of codes for finite sequences), is closed under
initial segments. We take the conjunction of formulas ck(x)→ ck′(x), for the pairs
(k, k′) such that for some s , k is the code for a sequence of length s+1 and k′ is the
code for the initial segment of length k. This is computable Π1, with no parameter.
For Property 3, we say that if two sequences in Sx have length s , then they are
equal. We take the conjunction of formulas saying ¬(ck(x) & ck′(x)), for the pairs
(k, k′) coding distinct sequences of the same length. This is computable Π1, with
no parameter.
For Property 4, we must say that Sx is infinite. We recall that the elements x of
[0, 1) that code finite sets are just the dyadic rationals. We have a computable Π1
formula saying that r is not equal to any of these rationals.
Putting the four statements together, we have a computable Π1 formula, with
parameter r, saying that x codes a path through T . This proves the Claim. �

Knowing that x codes a path through T , we want a computable Π1 formula
saying that an n-tuple ū lies in the boxes on this path. We take the conjunction over
k coding a finite sequence of rational boxes (B1, . . . , Bs ) of the formulas saying
ck(x) → ū ∈ Bs . To say that ū is independent, we have a computable Σ2 formula
saying that there exists x such that Sx is a path through T and ū lies in the boxes
corresponding to this path. �

Thanks to the computable Π2 and computable Σ2 definitions, we know that for
any copy K ofR, the relations INDn(K) are Δ02 relative to K , uniformly in n.

Lemma 2.7 (Basis). SupposeK is a copy ofR. Then we have a sequence b1, b2, . . . ,
Δ02 relative to K , and forming a basis for Kexp.
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Proof. Applying a procedure that is Δ02 relative to K , we run through the ele-
ments, and we use the relations INDn to choose a basis. We let b1 be first satisfying
IND1(u1), we let b2 be first such that (b1, b2) satisfies IND2(u1, u2), etc. �
To complete the proof thatRexp ≤∗

w R, we show the following:
Proposition 2.8 (Enumerating the complete diagram of the expansion). After
collapse, letK ∼= R. Then there is a copy C ofKexp with complete diagram computable
in K .

Proof. Let b1, b2, . . . be a basis for Kexp that is Δ02 relative to K , determined as
in the previous lemma. Guessing at this basis, and using Texp, we enumerate the
complete diagram of a copy C of Kexp. The universe of C will be �, which we think
of as a set of constants. We fix a computable enumeration of the sentences ϕ(c̄),
where ϕ(x̄) is a formula in the language of Rexp and c̄ is a tuple of constants.
We suppose that the language includes symbols for the definable Skolem functions.
We fix a computable enumeration of terms �(c̄), where �(x̄) is a term in variables x̄
and c̄ is a corresponding tuple of constants.
At each stage s , we have enumerated into the complete diagram of C a finite set �s
of sentences. The set �s includes sentences saying that the constants mentioned are
all distinct. We start with �0 = ∅, and �s ⊆ �s+1. We will arrange that for each sen-
tence ϕ(c̄), one of±ϕ(c̄) is in �s for some s . We will also arrange that for each term
�(c̄), a sentence of the form �(c̄) = c′ appears in �s for some s . To determine an iso-
morphism f from C ontoKexp, it is enough to determine f−1(bn) for all n, since the
rest of the elements are definable from the basis.We have the following requirements.

Rn: Determine f−1(bn).

At stage s , we have tentativelymapped some constants d̄s to a tuple v̄s inK which
we believe to be an initial segment of the basis b1, b2, . . . . In �s , we have mentioned
the constants d̄s , plus some further constants c̄s . Each ci ∈ c̄s has been given a
definition �i(d̄s ), and the sentence ci = �i(d̄s ) is in �s . We will maintain the condi-
tion that what we have said in �s about d̄s is valid on a rational box Bs around v̄s .
We must make this precise.
Let 	s (d̄s , c̄s) be the conjunction of the sentences in �s . Let ū be a tuple of vari-
ables corresponding to d̄s . We suppose that these variables do not appear in the
sentences of �s . Let 	∗s (ū) be the formula obtained from 	s (d̄s , c̄s) by replacing each
di ∈ d̄s by the corresponding variable ui , and replacing each ci ∈ c̄s by �i (ū), where
ci is defined to be �i(d̄s ). Note that 	∗s (ū) has conjuncts saying that the terms ui and
�i(ū) are all distinct. Now, 	∗s (ū) expresses what we have said about d̄s in �s . We say
how to check that this is true on a rational box Bs around v̄s . We write 	∗s (Bs ) for
the sentence saying (∀ū ∈ Bs )	∗s (ū). We check that v̄s ∈ Bs and that 	∗s (Bs ) ∈ Texp.
We can check that v̄ ∈ Bs using K . We can check, using the real coding Texp, that
the sentence 	∗s (Bs ) ∈ Texp.
At stage s + 1, if our stage s guess v̄s at the initial segment b̄s of the basis seems
correct, then v̄s+1 = v̄s , v′, where v′ appears to be the next element of the basis. If
at stage s our guess v̄s at b̄s changes, then v̄s+1 is the restriction of v̄s to the part
that still seems to be an initial segment of the basis. In this case, any constants in
d̄s which were tentatively mapped to elements of v̄s that are not in v̄s+1 will now
be given definitions in terms of d̄s+1. At all future stages t, these elements will be
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part of the definable tuple c̄t . In the event that at a later stage some elements of v̄s
appear to return to the basis, we will map new constants to those elements.
At stage s + 1, assuming that our v̄s+1 has a new element v′, we map a new con-
stant d ′ to it. We put into �s+1 sentences saying that d is not equal to any element
of d̄s or c̄s . We decide the next sentence ϕ that mentions only the constants from
d̄s , c̄s . Also, for the next term �(d̄s ) not already given a name, we add a sentence
c = �(d̄s ), where c is either in c̄s or the first constant not yet mentioned. The
lemmas below guarantee that we can do all of this, while maintaining the condition
that what we have said in �s+1 about d̄s+1 is valid on a rational box around v̄s+1.
We need some terminology.

Definition 2.9. We say that (�; d̄ ; c̄) is a good triple if

1. � is a finite set of sentences with constants split into disjoint sets d̄ , and c̄,
2. � includes sentences saying that the constants are all distinct,
3. for each c ∈ c̄, � includes a sentence �(d̄ ) = c.

For a good triple (�; d̄ ; c̄), a test formula 	∗(ū) is obtained in the way we obtained
	∗s (ū) from �s above.

Definition 2.10. For a good triple (�; d̄ ; c̄), we say that 	∗(ū) is a test formula
if it is obtained by the following steps:

1. Let 	 be the conjunction of �, and let ū be a sequence of new variables
corresponding to d̄ .

2. Let 	∗(ū) be the formula obtained from 	 by replacing di by ui and replacing
ci by �i(ū), where ci = �i(d̄ ) is a sentence of � defining ci in terms of d̄ .

For our construction, at stage s , we will have a good triple (�s ; d̄s ; c̄s) with a
test formula 	∗s that is valid on a rational box Bs , so that the sentence 	

∗
s (Bs ) is in

Texp. Moreover, we will have f tentatively mapping d̄s to v̄s ∈ K , where v̄s ∈ Bs .
We believe that v̄s is an initial segment of the basis.

Lemma 2.11. Let (�; d̄ ; c̄) be a good triple with test formula 	∗(ū) valid on a ratio-
nal box B containing an independent tuple b̄. Let b′ be a further element independent
over b̄. Let �′ be the result of adding to � sentences saying of a new constant d that it
is not equal to any mentioned in �. Then (�′; d̄ , d ; c̄) is a good triple, with test formula
	′∗(ū, u′) that is valid on a rational box B ′ around b̄, b′. (We may suppose that the
projection of B ′ on the initial coordinates, omitting the last one, is contained in B.)

Lemma 2.12. Let (�; d̄ ; c̄) be a good triple with test formula 	∗(ū) valid on a
rational box B containing an independent tuple b̄. Let ϕ be a sentence with constants
among d̄ , c̄. There is a good triple (�′; d̄ ; c̄), where �′ is the result of adding ±ϕ to �,
with test formula 	′∗(ū) valid on a rational box B ′ ⊆ B containing b̄.
Lemma 2.13. Let (�; d̄ ; c̄) be a good triple with test formula 	∗(ū) valid on a ratio-
nal box B containing an independent tuple b̄. For a term �(d̄ ), there is a good triple
(�′; d̄ : c̄′), with a test formula 	′∗(ū) valid on a rational box B ′ ⊆ B containing b̄,
where �′ and c̄′ satisfy one of the following:

1. �′ is the result of adding to � a sentence c = �(d̄ ), for some c ∈ c̄, and c̄′ = c̄,
2. �′ is the result of adding to � a sentence c′ = �(d̄ ), where c′ is new, along with
sentences saying that c′ is not equal to any of the constants in d̄ , c̄, and c̄′ is c̄, c′.
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In our construction, it may be that at stage s +1, our guess at the initial segment
of the basis changes. Then v̄s+1 is the restriction of v̄s to the part that seems correct.
We must give the extra elements of d̄s definitions in terms of d̄s+1. The following
lemma says that we can do this.
Lemma 2.14. Let (�, d̄ ; d ′; c̄) be a good triple with test formula 	∗(ū, u′) valid on
a rational boxB containing a tuple b̄, b′, where b̄ is independent. There is a good triple
(�′; d̄ ; c̄ , d ′) with test formula 	(ū, u′) valid on a rational box containing b̄, where �′

is the result of adding to � a sentence d ′ = �(d̄ ). We may take B ′ to be the projection
of B on the initial coordinates, omitting the one that corresponds to u′.
Proof of Lemma. The box B is a cross product of rational intervals. Say that I
is the interval corresponding to the coordinate u′, and take q ∈ I . There is a term �
in our language naming q. Let �′ be the result of adding to � the defining sentence
d ′ = �, and modifying the definitions ci = �(ū, u′), by replacing u′ by �. We have
in � sentences saying that d ′ is distinct from all constants in d̄ , c̄. The formulas of
� are valid on B, and they guarantee that for ū ∈ B ′, nothing in I can be equal to
any ui . Also, for ci with a definition ci = �(d̄ ) in �, for ū ∈ B ′, nothing in I can be
equal to �(ū). �
We begin at stage 0 with the good triple (∅, ∅, ∅). Our guess at an initial segment
of the basis is ∅, and f is not defined on any elements. Suppose at stage s , our guess
at an initial segment of the basis is v̄s , we have the good triple (�s , d̄s ; c̄s), with test
formula 	∗s (ū) valid on a box Bs around v̄s , and we have f mapping d̄s to v̄s .
Wemust saywhat happens at stage s+1. Supposing v̄s still appears to be an initial
segment of the basis, and that v′ is the next element of the basis, we consider letting
v̄s+1 = v̄s , v′ and extending f to map a new constant d ′ to v′, and letting d̄s+1 =
d̄s , d

′. Assuming that we can find an appropriate rational box on which the test for-
mula is valid, we let �s+1 be an extension of �s , with some sentences added as follows:
Step 1. We add sentences saying that d ′ is not equal to anything in d̄s , c̄s .
Step 2. We add one of the sentences ±ϕ, where ϕ is the first sentence on our list

that involves only constants from d̄s , c̄s .
Step 3. For the first term �(d̄s ) such that �s does not include a defining sentence

c = �(d̄ ), we add such a sentence. Here c may be an element of d̄s , or c̄s
or a new constant.

Lemma 2.11 says that we can carry out Step 1, finding a rational box on which
the appropriate test formula is valid, provided that our guess the initial segment of
the basis is correct. Lemma 2.12 says that we can carry out Step 2, provided that
our guess at the initial segment of the basis is correct. Lemma 2.13 says that we can
carry out Step 3, provided that our guess at the initial segment of the basis is correct.
Running our approximations ahead, either v̄s will no longer seem to be an initial
segment of the basis, or else we will arrive at v̄s+1 the result of adding a single
element to v̄s and a good triple (�s+1, d̄s+1, c̄s+1), carrying out all three steps, with
a test formula that is valid on an appropriate rational box Bs+1 containing v̄s+1.
We do not add to the diagram unless this happens.
If it appears that v̄s is not an initial segment of the basis, then we apply
Lemma 2.14 finitely many times, to give definitions to the elements of d̄s that are
mapped to the elements of v̄s that are not in v̄s+1. This lemma tells us how to arrive
at an appropriate next good triple and a rational box Bs+1. If those elements of v̄s
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later return to our approximation for b̄, the construction will create new elements
that will be mapped to those elements.
Eventually, our guess at the initial segment of the basis of length n is correct. Say
this happens at stage s . The initial segment of the basis of length n is v̄s , and for
all stages t ≥ s , the stage t version of f will map d̄s to v̄s . What we say about d̄s is
true about v̄s . Taking the limit, f gives preimages to all elements of the basis. Each
element of our C that is not the preimage of a basis element underf has a definition
in terms of some elements that preimages of the basis elements. We have arranged
that if ϕ(d̄ , c̄) is in �s , where f(d̄) = v̄ is part of the basis, and ci has been given
a definition �i(d̄ ) in �s , then ϕ(v̄, �̄(v̄)) is true in Kexp. Thus, f is an isomorphism.
This completes the proof of Proposition 2.8. �

§3. Generalizing. In Section 2, we proved thatRexp ≤∗
w R. In this section, we use

essentially the same proof to obtain theGeneral Theorem stated in the introduction.
Recall thatRQ consists of the set of real numbers, with the ordering and constants
for the rational numbers. This is a very weak structure in terms of elementary first
order definability. The theorem says that it has as much computing power as various
expansions of the reals, including Rexp.
Theorem 3.1 (General Theorem). LetM be an o-minimal expansion ofRQ, in a
countable language, and with definable Skolem functions. ThenM ≤∗

w RQ. In fact,
after collapse, every copy K ofRQ computes the complete diagram of a copy ofM.
Proof. The proof of Theorem 3.1 consists of a sequence of lemmas, following the
outline fromSection 2.Most of these are direct analogues of lemmas fromSection 2,
and are proved in the same way; we omit their proofs here. The greatest difference
is in the first lemma below, Lemma 3.2. In Section 2, the proof of Lemma 2.2, on
uniqueness of the expansion, did not use o-minimality, just the fact that exp is a
continuous function, together with the fact that the theory Texp is coded by a real.
Here o-minimality plays an important role.
Let TM = Th(M).
Lemma 3.2 (Uniqueness). For K ∼= RQ, there is a unique expansion KM to a
model of TM.
Proof. SinceM is o-minimal, with definable Skolem functions, definable closure
is a good closure notion. Since K ∼= RQ, there is at least one expansion of K to
a model of TM, say K1. Let b1, b2, . . . be a basis for K1. Suppose K2 is another
expansion ofK to a model of TM. To show thatK1 = K2, we first show that for all
tuples b̄ in the K1-basis, b̄ satisfies the same formulas in K1 and K2. Suppose ϕ(x̄)
is true in K1 of a basis tuple b̄. Since b̄ is independent in K1, by Proposition 1.6
there is a rational box B around b̄ such that the sentence (∀x̄ ∈ B)ϕ(x̄) is in TM.
Then ϕ(x̄) must be true of b̄ in K2.
To complete the proof thatK1 = K2, we show that every element c has a definition
from a tuple in the K1-basis that is good in both K1 and K2. For an element c, we
know that there is a definition in K1 from a tuple b̄ of basis elements. Say c = �(b̄).
Let c′ be the element satisfying the definition �(b̄) in K2. We can show that c = c′.
If c is in a rational interval I , then the formula saying �(x̄) ∈ I is true of b̄ in K1.
This formula is also true of b̄ in K2, so c′ ∈ I . This shows that c = c′, completing
the proof thatK1 = K2. �
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We write KM for the unique expansion of K to a model of TM. Let INDn be
the set of n-tuples in K that are independent in the expansion KM. The following
lemmas are then proved similarly as their counterparts (Lemmas 2.5, 2.6, 2.7, and
Proposition 2.8, respectively) in Section 2:
Lemma 3.3 (Computable Π2 definition of INDn). For each n, we can effectively
find a computableΠ2 definition of INDn, with a real parameter r coding TM.
Lemma 3.4 (Computable Σ2 definition of INDn). For each n, we can effectively
find a computable Σ2 definition of INDn , with a real parameter r coding TM.
Lemma 3.5 (Basis). There is a basis b1, b2, . . . for KM that is Δ02 relative to K .
Lemma 3.6 (Enumerating the complete diagram of the expansion). Any copy of
K computes the complete diagram of a copy of the expansionKM.
The proof of Theorem 3.1 is thus complete. �
Corollary 3.7. RQ ≡∗

w R.
Proof. It is easy to see thatRQ ≤∗

w R ≤∗
w (R, (q)q∈Q), where the structure on the

right is the expansion of the ordered field of reals with constants for the rationals.
By Theorem 3.1, (R, (q)q∈Q) ≤∗

w RQ. �

§4. Applying the general result. In this section, we apply Theorem 3.1 to show
that various structures are equivalent to R in computing power. We begin with
Rf = (R, f), where f is analytic. In Section 2, we considered the case where f is
the exponential function. In this case,Rf is o-minimal, but in general, in particular,
if f is the sine function,Rf will not be o-minimal.
Proposition 4.1. Let f be analytic onR. ThenRf ≡∗

w R.
Proof. Clearly,R ≤∗

w Rf . LetRbounded f be the expansion ofR by the family of
functions fz , for z ∈ Z, where

fz(x) =
{
f(x) if x ∈ [z, z + 1],
0 otherwise.

Since Ran is o-minimal, so isRbounded f .
Lemma 4.2. Rf ≤∗

w Rbounded f .
Proof. Let (K, (fKz )z∈�) be a copy ofRbounded f .We definefK such that (K,fK)
is isomorphic toRf . Given a ∈ K , we can find, effectively in the fieldK , the integer
z that is the “floor” of a; i.e., z ≤ a < z + 1. Then fK(a) = fKz (a). �
We can now complete the proof of Proposition 4.1. It is clear thatRbounded f ≤∗

w

(Rbounded f, (q)q∈Q). Using Theorem 3.1, we get (Rbounded f, (q)q∈Q) ≤∗
w RQ ≤∗

w R.
This shows thatRf ≤∗

w R. �
Recall thatR+ is the reduct ofR without multiplication, but including addition,
the ordering, and the constants 0 and 1. The result below is also proved in [3].
Proposition 4.3. R ≡∗

w R+.
Proof. By Theorem 3.1, we have R ≤∗

w RQ. It is easy to see that RQ ≤∗
w

(R+, (q)q∈Q) ≤∗
w R+ ≤∗

w R. �
The final example of this section is simple. Let (rn)n∈� be any sequence of elements
ofR, and consider (R, (rn)n∈�), the expansion of the ordered fieldRwith constants
for those elements.
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Proposition 4.4. R ≡∗
w (R, (rn)n∈�).

Proof. Let M be the expansion of RQ with all of the structure of R and the
constants rn . We haveR ≤∗

w M ≤∗
w RQ ≤∗

w R. We use Theorem 3.1 for the second
reduction. The other reductions are clear. �

§5. The structure Rint . Recall that the structure Rint has just the set of real
numbers, with the ordering, and unary predicates for the half-open intervals [q, q′)
with dyadic rational endpoints. This can be thought of as the minimal structure
that is able to recover the (preferred) binary expansions of the real numbers, as
each initial segment of the binary expansion of a number corresponds exactly to the
number being in a half-open interval of this sort. For instance, knowing that the
binary expansion of x begins 0.10 corresponds exactly to knowing that x ∈ [ 12 ,

3
4 ).

In this section, we will show thatRint ≡∗
w B, where B is the structure representing

Baire space. In [3], Downey,Greenberg, andMiller showed thatB ≡∗
w R, by a proof

which resembles our proofs from Sections 2 and 3, although the work was done
independently. This, together with the fact thatRint ≡∗

w B, implies thatRint ≡∗
w R.

Independently of Downey, Greenberg, and Miller, the authors had arrived at the
fact that B ≡w R. We end the section by saying just a little about our reasoning.
In particular, we state a variant of Theorem 3.1 in which theRQ is replaced byRint .
Proposition 5.1. B ≡∗

w Rint .
We split the proof of Proposition 5.1 into two lemmas.

Lemma 5.2. B ≤∗
w Rint .

Proof. Given a copyK ofRint , we can enumerate the preferred binary expansions
of the reals in the interval [0, 1). For each such real, we get a function f ∈ 2� such
that f has infinitely many 0’s. Given such an f, we pass to a function g ∈ �� ,
where g(0) is the number of 1’s before the first 0, and for k > 0, g(k) is the number
of 1’s between the kth 0 and the (k + 1)st . This gives a copy of B. �
Lemma 5.3. Rint ≤∗

w B.
Proof. Given a copy ofB, we can enumerate the functions g ∈ �� . From each g,
we pass effectively to a function f ∈ 2� such that g(0) is the number of 1’s before
the first 0 inf, and g(k+1) is the number of 1’s between the (k+1)st and (k+2)nd

0’s in f. The functions f ∈ 2� are just the preferred binary expansions of reals
in the interval [0, 1). The ordering on these reals corresponds to the lexicographic
ordering on the functions f. For each dyadic rational q, we give a name in which
we mark the first in the infinite sequence of 0’s.
For a function f that is the preferred binary expansion of a real r in the interval
[0, 1), we cannot effectively determine whether r = q. However, for a pair q < q′ ∈
D, we can effectively determine whether r ∈ [q, q′). We have a copy of the restriction
ofRint to the interval [0, 1). For the full structure, we take pairs (z, f), where z ∈ Z

and f ∈ 2� has infinitely many 0’s. We take the lexicographic ordering on these
pairs. The full set of dyadic rationals consists of the elements z + q, for q with a
special name. We can determine membership in intervals with these endpoints. This
gives a copy ofRint . �
Corollary 5.4. RQ ≡∗

w Rint .
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Proof. By Corollary 3, RQ ≡∗
w R. As we said above, Downey, Greenberg, and

Miller [3] showed thatR ≡∗
w B. By Proposition 5.1, B ≡∗

w Rint . �
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