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Abstract

Many real-world problems are known as planning and scheduling problems, where resources must be allocated so as
to optimize overall performance objectives. The traditional scheduling models consider performance indicators such as
processing time, cost, and quality as optimization objectives. However, most of them do not take into account energy con-
sumption and robustness. We focus our attention in a job-shop scheduling problem where machines can work at different
speeds. It represents an extension of the classical job-shop scheduling problem, where each operation has to be executed by
one machine and this machine can work at different speeds. The main goal of the paper is focused on the analysis of three
important objectives (energy efficiency, robustness, and makespan) and the relationship among them. We present some ana-
lytical formulas to estimate the ratio/relationship between these parameters. It can be observed that there exists a clear
relationship between robustness and energy efficiency and a clear trade-off between robustness/energy efficiency and
makespan. It represents an advance in the state of the art of production scheduling, so obtaining energy-efficient solutions
also supposes obtaining robust solutions, and vice versa.
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1. INTRODUCTION

The main objective of many companies and organizations today
is to improve profitability and competitiveness. These improve-
ments can be obtained with a good optimization of resources
allocation. However, in the last few years many companies are
facing not only complex and diverse economic trends of shorter
product life cycles, quick changing science and technology,
increasing customer demand diversity, and productionactivities
globalization, but also enormous and heavy environmental
challenges of global climate change (e.g., greenhouse effect),
rapid exhaustion of various nonrenewable resources (e.g., gas,
oil, and coal), and decreasing biodiversity.

Scheduling problems are widely discussed in the literature
and two main approaches can be distinguished (Billaut et al.,
2008):

1. Classical deterministic methods: These methods con-
sider that the data are deterministic and that the machine

environment is relatively simple. Some traditional con-
straints are taken into account (precedence constraints,
release dates, due dates, preemption, etc.). The criterion
to optimize is often standard (makespan). A number of
methods have been proposed (exact methods, greedy al-
gorithms, approximate methods, etc.), depending on the
difficulty of a particular problem. These kinds of studies
are the most common in the literature devoted to sched-
uling problems.

2. Online methods: When the algorithm does not have ac-
cess to all the data from the outset, the data become
available step by step, or “online.” Different models
may be considered here. In some studies, the tasks
that we have to schedule are listed and appear one by
one. The aim is to assign them to a resource and to spec-
ify a start time for them. In other studies, the duration of
the tasks is not known in advance.

Flexibility occurs at the boundary between these two
approaches: some information is available concerning the na-
ture of the problem to be solved and concerning the data.
Although this information is imperfect and not wholly reli-
able, it cannot be totally ignored. It is well known that there

Reprint requests to: Miguel A. Salido, Instituto de Automática e Informá-
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will be discrepancies, for a number of reasons, between the
initial plan and what is actually realized. Given a set of
disruptions that can occur in unforeseen circumstances, the
aim is to propose one or more solutions that adapt well to
disruptions, and then produce reactive decisions in order to
ensure a smooth implementation (Billaut et al., 2008).

The job-shop scheduling problem (JSP) represents a prob-
lem where there are some specific resources or machines that
have to be used to carry out some tasks. Many real-life prob-
lems can be modeled as a JSP and can be applied in some
variety of areas, such as production scheduling in the indus-
try, departure and arrival times of logistic problems, and the
delivery times of orders in a company. Most of the solving
techniques try to find the optimality of the problem for mini-
mizing the makespan, minimizing tardiness, minimizing
flow-time, and so forth.

Some recent works have focused on minimizing the energy
consumption in scheduling problems (Mouzon & Yildirim,
2008; Dai et al., 2013), mainly from the operations research
community (Mouzon et al., 2007; Bruzzone et al., 2012). Fur-
thermore, some works have been carried out to obtain robust
schedules to absorb incidences in dynamic scheduling (Ca-
plinkas et al., 2012). However, no works have related energy
efficiency with robustness, although there exists a clear rela-
tionship between them in job-shop scheduling.

We focus our attention in a JSP with different speed machine
(JSSM). It represents an extension of the classical JSP, where
each operation must be executed on a machine at a determined
speed (by a classical deterministic method). If the speed of a
machine is high, the energy consumption increases, but the pro-
cessing time of the task decreases; meanwhile, if the speed is
low, the energy consumption decreases and the processing
time increases. Thus, in online scheduling, if disruptions occur,
reactive decisions are needed, so machines can accelerate the
speed to absorb these disruptions and recover the original
schedule, obtained by the classical deterministic method.

To this end, we analyze the relationship between some
important parameters in order to obtain a multiple-objective
solution. We show that there is a clear trade-off between
makespan and energy consumption, and between makespan
and robustness. Therefore, there is a close relationship between
energy consumption and robustness. However, this close re-
lationship has not been analyzed in the literature, and new
techniques can be developed to achieve these objectives
jointly. Thus, our main goal is to find a solution that mini-
mizes the energy consumption and the makespan. Furthermore,
we extend this goal to determine the saved time by energy ef-
ficiency as a robustness measure in order to be used if inci-
dences appear. Thus, if a task is delayed, the lost time can
be recovered by increasing the speed of the machine to re-
cover the original solution.

2. PROBLEM DESCRIPTION

The JSSM can be formally defined as follows. We are given
a set of n jobs fJ1, . . . , Jng, and a set of m resources or

machines fR1, . . . , Rmg. Each job Ji consists of a sequence
of vi tasks (uil, . . . , uivi). Each task uil has a single machine
requirement Ruil and a start time stuil to be determined.
Each machine can work with different speeds, so each task
is linked up to an integer duration puil and an integer energy
euil used by the corresponding machine.

A feasible schedule is a complete assignment of starting
times to tasks that satisfies the following constraints: the
tasks of each job are sequentially scheduled, each machine
can process at most one task at any time, and no preemption
is allowed. The objective is finding a feasible schedule that
minimizes the completion time of all the tasks and the energy
used. The problem is a standard job-shop problem denoted as
J k Cmax according to the classification scheme proposed in
Blazewicz et al. (1986). However, the association between
duration and energy have been created so the problem
JSSM can be denoted as J(Speed) k Cmax,Energy. For each
task, three different speeds have been defined. Each speed
has a duration and an energy consumption. When the working
speed increases, the energy also increases but the duration
decreases.

3. ENERGY EFFICIENCY

Nowadays manufacturing enterprisers are facing not only
complex and diverse economic trends of shorter product
life cycles, quick changing science and technology, increas-
ing customer demand diversity, and production activities glo-
balization, but also enormous and heavy environmental chal-
lenges of global climate change (e.g., greenhouse effect),
rapid exhaustion of various nonrenewable resources (e.g.,
gas, oil, and coal), and decreasing biodiversity. Statistical
data in 2009 shows the Germany industrial sector was respon-
sible for approximately 47% of the total national electricity
consumption, and the corresponding amount of CO2 emis-
sions generated by this electricity summed up to 18%–20%
(BMWi, 2009). Thus, manufacturing companies are respon-
sible for the environmental outcome and are forced to have
manufacturing systems that demonstrate major potential to re-
duce environmental impacts (Duflou et al., 2012).

There has recently been growing interest in the develop-
ment of energy savings due to a sequence of serious environ-
mental impacts and rising energy costs. Research on minimiz-
ing the energy consumption of manufacturing systems has
focused on three perspectives: the machine level, the product
level, and the manufacturing system level. From the machine-
level perspective, developing and designing more energy-
efficient machines and equipment to reduce the power and
energy demands of machine components is an important stra-
tegic target for manufacturing companies (Li et al., 2011;
Neugebauer et al., 2011). Unfortunately, previous studies
show that the share of energy demand for removal of metal
material compared to the share of energy needed to support
various functions of manufacturing systems is quite small
(less than 30% of total energy consumption; Dahmus &
Gutowski, 2004; Gutowski et al., 2005).
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From the product-level perspective, modeling embodied
product energy framework based on a product design view-
point for an energy reduction approach is beneficial to sup-
port the improvements of product design and operational
decisions (Seow & Rahimifard, 2011; Weinert et al., 2011).
It requires strong commercial simulation software to facilitate
the analysis and evaluation of the embodied product energy.
The results cannot be applied easily in most manufacturing
companies, especially in small- and medium-size enterprises,
due to the enormous financial investments required. From the
manufacturing system-level perspective, thanks to decision
models that support energy savings, it is feasible to achieve
a significant reduction in energy consumption in manufactur-
ing applications. In the specialized literature about production
scheduling, the key production objectives for production de-
cision models, such as cost, time, and quality, have been
widely discussed. However, decreasing energy consumption
in manufacturing systems through production scheduling has
been rather limited. One of the most well-known research
works is the work of Mouzon et al. (2007), who developed
several algorithms and a multiple-objective mathematical
programming model to investigate the problem of scheduling
jobs on a single CNC machine in order to reduce energy con-
sumption and total completion time. They pointed out that
there was a significant amount of energy savings when non-
machines were turned off until needed; the relevant share of
savings in total energy consumption could add up to 80%.
They also reported that the interarrivals would be forecasted,
and therefore more energy-efficient dispatching rules could
be adopted for scheduling.

In further research, Mouzon et al. (2008) proposed a
greedy randomized adaptive search algorithm to solve a mul-
tiple-objective optimization schedule that minimized the total
energy consumption and the total tardiness on a machine.
Fang et al. (2011) provided a new mixed-integer linear pro-
gramming model for scheduling a classical flow shop that
combined the peak total power consumption and the associ-
ated carbon footprint with the makespan. Bruzzone et al.
(2012) presented an energy-aware scheduling algorithm
based on a mixed-integer programming formulation to realize
energy savings for a given flexible flow shop that was re-
quired to keep fixed original job assignment and sequencing.

Although the majority of the research on production sched-
uling has not considered energy-saving strategies completely,
the efforts mentioned above provide a starting point for explor-
ing an energy-aware schedule optimization from the viewpoint
of energy consumption. However, no work has been carried out
to consider a multiple-objective optimization schedule to mini-
mize the total energy consumption, the makespan, and to max-
imize the robustness of the schedule.

4. ROBUSTNESS

Robustness is a common feature in real-life problems. Biolog-
ical life, functional systems, physical objects, and so on,
persist if they remain running and maintain their main fea-

tures despite continuous perturbations, changes, incidences,
or aggressions (Szathmary, 2006). Thus, robustness is a
concept related to the persistence of the system, its structure,
its functionality, and so forth, against external interferences: a
system is robust, if it persists.

It is really difficult to give a unique definition for robust-
ness, because this concept is differently defined in several do-
mains. Furthermore, the definition often remains implicit in
the literature or is determined by the specific target applica-
tion. Finally, most authors prefer to use the concept of robust
solution (and here, of robust schedule).

The data associated with a scheduling problem are the pro-
cessing times, occurrence dates of some events, some struc-
tural features, and the costs. None of this data is free from
factors of uncertainty. The duration of tasks depends on the
conditions of their execution, in particular on the necessary
human and material resources. They are thus inherently
uncertain, regardless of contingent factors that may impair
their execution. For instance, transportation times for compo-
nents between separate operations in a manufacturing system
will depend on the characteristics of the transportation re-
sources available. Finally, in a production scheduling, some
resources such as versatile machines require a reconfiguration
time between operations. This time depends on the type of
tools needed and the location of these tools in the shop,
not to mention the operator carrying out the reconfiguration
(Billaut et al., 2008).

Let us first propose some consensus definition: a schedule
is robust if its performance is rather insensitive to the data un-
certainties. Performance must be understood here in the broad
sense of solution quality for the person in charge; this natu-
rally encompasses this solution value relative to a given criter-
ion, as well as the structure itself of the proposed solution.
The robustness of a schedule is a way to characterize its
performance.

In the literature, it is sometimes difficult to separate sensi-
tivity analysis and robustness. The sensitivity analysis tries to
answer the “what if . . .” questions. It deals with disturbances
more than with general uncertainty: data are fixed but might
be disturbed (Billaut et al., 2008).

In scheduling problems, robustness can be defined as the
following.

DEFINITION 1. Robustness is the ability of a solution to
maintain its feasibility when incidences appear during execu-
tion in the scheduling problem. B

In this paper, the robustness of a schedule will be used to an-
swer what-if questions, mainly related to small disruptions that
daily occur in real-life scheduling problems. In this way, the
robustness of a schedule can be used to obtain energy-aware
schedules that do not modify the start time of tasks. To this
end, the slack between tasks that makes the schedule robust
(to absorb incidences) can be profitable by machines to work
at lower speed and therefore saving energy consumption.
However, if this slack is needed, due to a disruption, the in-
volved machine can increase its speed in order to recover
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the disrupted time and finalize the task on time. In this way,
there exists a relationship between robustness and energy sav-
ing that can be applied to many scheduling contexts.

5. MODELING AND SOLVING A JSSM

The more natural way to solve the JSP involves all variables
and constraints related to jobs, tasks, and machines (Garrido
et al., 2000; Nowicki & Smutnicki, 2005; Huang & Liao,
2008). However, the solution obtained is an optimal solution
that minimizes the makespan, but it does not guarantee a cer-
tain level of robustness. Generally, this solution is not able to
absorb incidences, and a delay in a task is propagated along
the rest of the schedule.

Several reactive/proactive techniques have been developed
in the literature to manage incidences in scheduling problems
(Billaut et al., 2008). Thus, computing a new solution from
scratch after each problem change is possible (reactive tech-
nique), but it has two important drawbacks: inefficiency
and instability of the successive solutions (Verfaillie &
Schiex, 1994). While reactive methods merely deal with the
consequences of an unexpected change, taking a more proac-
tive approach may guarantee a certain level of robustness. We
are interested in this proactive approach, so that our goal is
searching for a equitable trade-off between robustness and
optimality of a solution.

Robustness (as in Section 4) in job-shop scheduling can be
obtained through allocating buffer times between tasks in or-
der to absorb small disruptions (task delays, etc.) that can oc-
cur stochastically along the schedule. In an optimized solu-
tion of a JSSM, some natural buffers appear to satisfy the
involved constraints (nonoverlapping constraints). These buf-
fers give the schedule some degree of robustness. However, if
more buffers must be included to make the final solution more
robust, the involved tasks must be moved and the effect must
be propagated to the rest of the schedule.

To add robustness to JSSM solutions, we use the extra
speed that machines can work only in cases where machines
are not working at top speed. Several solutions are obtained
with different weights to minimize makespan or energy
used. When the main objective is to minimize the energy
used, the solutions are composed of several tasks that are
processed by machines in a low speed. If some incidences
appear, this speed can be increased and the solutions remain
valid. Following this idea, the energy roominess can be
considered as robustness.

5.1. IBM ILOG CPLEX CP Optimizer tool

The problem is modeled and solved with the IBM ILOG CPLEX
CP Optimizer tool (CP Optimizer; see http://www-01.ibm.com/
software/integration/optimization/cplex-optimizer/). CP Opti-
mizer uses constraint programming technology to solve
detailed scheduling problems and other hard combinatorial
optimization problems.

CP Optimizer is a commercial solver embedding powerful
constraint propagation techniques and a self-adapting large
neighborhood search method dedicated to scheduling (Laborie,
2009). This solver is expected to be very efficient for a variety
of scheduling problems (IBM, 2010), in particular when the
cumulative demand for resources exceeds their availability, as
it happens, for example, in the satellite control network schedul-
ing problem confronted in Kramer et al. (2007).

The problem has been modeled as a typical JSP. The exten-
sion with different machine speeds has been implemented
considering that each task is executed by a machine and
this machine has different optional modes where each mode
represents the duration of the task and an associated con-
sumption energy.

The objective is to find a solution that minimizes the multi-
ple-objective makespan and energy consumption. The weight
of each objective can be changed by the l parameter.

l�Makespanþ ð1� lÞ � EnergyConsumption: (1)

Because the values of energy consumption and makespan
are not proportional, it is necessary to normalize both measures
(NormEnergy)(NormMakespan). NormEnergy value is cal-
culated by summing the energy used in the execution of all
the tasks, divided by the maximum energy (maxEnergy).
Here, maxEnergy is the sum of the energy needed to execute
all tasks at top speed. The NormMakespan is the makespan
divided by the sum of the task durations when the machines
are working at the lowest speed (maxMakespan). The objec-
tive function is Expression (2).

l� NormMakespanþ ð1� lÞ � NormEnergy: (2)

Algorithm 1 shows a pseudocode of the model to solve the
problem.

Algorithm 1: Model in CP-Optimizcr
Data: tasks: Set of tasks; modes: Set of 3 modes for each

task;
Result: A solution minimizing the objective function de-

pending on l

Interval itvs :¼ Define interval, one for each task;
Interval modes :¼ Define mode, three for each task;
Sequence mchs :¼ Each itvs with the same machine is

linked up;
Minimize ((12l) * NormEnergyþ l * NormMakespan)

Subject to

† noOverlap (mchs)
† end BeforcStart (itvs[ j][o], itvs[ j][oþ 1])
† alternative (itvs[ j][o], all(md in modes: if(md.id ¼ itvs.

id)))

Figure 1 shows two different schedules obtained by CP
Optimizer for a given instance of the JSSM proposed in
Agnetis et al. (2010). This instance represents a scheduling
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Fig. 1. Schedules with different l values.
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problem with three machines, three jobs, each with five tasks,
and each task has a processing time between 1 and 10 time
units when the machine works at full speed. Each task is rep-
resented by a gray rectangle, which can be divided in two re-
gions: a solid black gray color represents the processing time
when the machine is working at full speed (mandatory), and a
light gray color with horizontal lines represents the extra pro-
cessing time if the machine does not work at full speed (op-
tional). This region represents the used time to save energy.
However, this time can also be used to absorb incidences if
a disruption occurs (EEBuffer). Each task is labeled with
the number of the task, the machine used, and the speed
used by the corresponding machine (green is low speed, yel-
low is medium speed, and red is full speed). Finally, the black
rectangles represent natural buffer times generated by the so-
lution. They can also be used to absorb incidences.

Two solutions (schedules) have been obtained for the same
instance with different lambda values (l) between 0.1 and
0.9. For l ¼ 0.1, the solution X1 give more importance
(0.9) to energy efficiency and less importance (0.1) to mini-
mize makespan. It can be observed that the makespan was
54, no tasks were carried out by machines at full speed
(red), 2 tasks at medium speed (yellow), and 13 tasks at
low speed (green). It generated an energy consumption of
79 units, and it can be observed that all tasks maintain slack
to absorb incidences, so the robustness of the schedule is
considered high.

For l ¼ 0.9, the solution X2 gives more importance (0.9)
to minimize makespan and less importance (0.1) to energy
efficiency. It can be observed that the makespan was 34,
and 7 tasks were carried out by machines at full speed
(red), 4 tasks at medium speed (yellow), and 4 tasks at low
speed (green). It generated an energy consumption of 112
units, and it can be observed that only 8 tasks maintain slack
to absorb incidences, so the robustness of the schedule is
considered low.

By modifying the value of l, an approximate Pareto front
for the bicriteria optimization schedule is generated. It must
be taken into account that no single solution between the X1

and X2 can be said, a priori, to be the best one. They are non-
comparable, so choosing a solution from an approximate Pa-
reto front can only be done by the user, depending on the
requirements. This is why we advocate producing, for a given
problem instance, the Pareto front rather than a single
solution.

6. DEFINITION OF THE BENCHMARK SET

To analyze the relationships among makespan, energy con-
sumption, and robustness, we have evaluated the behavior
on the benchmarks proposed in Agnetis et al. (2010). Accord-
ing to the benchmark results (small and large instances), sev-
eral analytical formulas have been developed to estimate
these parameters. All analyzed instances are characterized
by the number of machines (m), the maximum number of
tasks by job (vmax), and the range of processing times ( p).

The number of jobs ( j) is set to 3. A set of instances was gen-
erated by combining values of each parameter: m ¼ 3, 5, 7;
vmax ¼ 5, 7, 10, 20, 25, 30; and p ¼ [1,10], [1,50], [1,100],
[1,200]. In these benchmarks, the number of operators
was not considered, so that we fixed it to the number of
machines. We have modeled the instances to be solved by
the optimizer.

We have also extended the original instances of Agnetis
et al. (2010) to add different energy consumptions (e1, e2,
and e3) to each task according to three processing times
(pt1, pt2, and pt3), where pt1 is equal to the original value
of processing time in the Agnetis instances. Pt2 and pt3
were calculated following Expressions (3) and (4), respec-
tively. These instances can be found in our webpage (see
http://gps.webs.upv.es/jobshop/).

pt2 ¼Maxðmaxdur � 0:1þ pt1, Randð1:25 � pt1, 2:25 � pt1ÞÞ (3)

pt3 ¼Maxðmaxdur � 0:1þ pt2, Randð1:25 � pt2, 2:25� pt2ÞÞ (4)

The value maxdur represents the maximum duration of a
task for the corresponding instance and the expression rand
represents a random value between both expressions. Similar
expressions were developed to calculate the energy consump-
tion [Expressions (5)–(7)].

e1 ¼ Randðpt1, 3 � pt1Þ (5)

e2 ¼Maxð1, Minðe1 �maxdur � 0:1, Randð0:25 � e1, 0:75 � e1ÞÞÞ
(6)

e3 ¼Maxð1, Minðe2 �maxdur � 0:1, Randð0:25 � e2, 0:75 � e2ÞÞÞ
(7)

Following these expressions the processing times of pt1,
pt2, and pt3 increase as the energy consumption of e1, e2,
and e3 decrease. For example, given an instance with 5 tasks
per job, three triplets are represented for each task: the
id of the task, the energy used, and the processing time
(,id, e, pt.):

, id, e3, pt3 ., , id, e2, pt2 . , , id, e1, pt1 .,

,1, 14, 14., ,1, 16, 10., ,1, 19, 7.,

. . .

,15, 3, 6. , ,15, 5, 4. , ,15, 6, 3. :

7. MAKESPAN VERSUS ENERGY
CONSUMPTION

In this section, we analyze the trade-off between makespan
and energy consumption in JSPs with different machine
speeds. Figure 2 shows an approximate Pareto front for a
set of 10 instances with 5 machines, 10 tasks per job, and a
maximum processing time of 50 time units. For l ¼ 1, it
can be observed that the average energy consumption was
1311 and the average makespan was minimized (317). How-
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ever, for l ¼ 0, the average energy consumption was mini-
mized (745) and the average makespan was maximized
(564.4). As we pointed out above, depending on the user re-
quirements, a value of l must be selected to obtain the desired
level of makespan/energy consumption. Table 1 shows the
makespan and energy consumption for each value of l in dif-
ferent instances. It must be taken into account the relation-
ship/ratio between makespan and energy consumption is sim-
ilar in all instances, so that this trade-off is not dependent on
the number of machines, number of tasks per job, or the range
of processing times.

According to the analyzed instances, the ratio between en-
ergy consumption and makespan can be estimated by using

Formula (8):

EnergyðlÞ
MakespanðlÞ � e0:25þ1:2l � sinðlpÞ

2
þ cosðlpÞ

8
: (8)

Thus, given a schedule instance with a given makespan and
a l value, we can estimate the energy consumption required
to execute this schedule. In the same way, given a schedule
instance with a given energy consumption threshold and a
l value, we can estimate the makespan needed to execute
this schedule. This formula can be redefined by the operator
according to the distribution of energy consumption of ma-
chines at different speeds. This formula and further formulas

Fig. 2. Approximate Pareto front for the bicriteria makespan–energy consumption.

Table 1. Makespan and energy consumption in instances ,m, vmax, p.

5_10_50 7_10_100 3_20_50 3_25_100 3_30_200

l Mk Energ. Mk Energ. Mk Energ. Mk Energ. Mk Energ.

0 565.4 745 1088.4 1571.4 1296 1507.4 3160 3827.1 7289.6 9162.7
0.1 524.4 745 1004.3 1571.6 1168.7 1507.4 2768.4 3827.5 6600.8 9163.5
0.2 515.8 747.1 992.1 1574.5 1145.7 1513.7 2734.2 3835.7 6513.2 9184
0.3 502.6 752.3 970.2 1584.2 1112.6 1527.3 2667.1 3866.7 6364.8 9258.8
0.4 483.6 764.2 918.3 1616.3 1079 1559.9 2553 3946.1 6158 9386.5
0.5 454.3 792.1 884.5 1650.3 1011.7 1628.6 2421.8 4077 5825 9771.5
0.6 410.1 854.1 843.7 1709.8 946.8 1722.5 2280.6 4300.6 5452 10239.4
0.7 384.7 917.4 768.2 1879.5 854.6 1933.7 2056.1 4742.9 4953.3 11370
0.8 343.1 1053 690.1 2147.3 777.8 2216.3 1854.4 5466.1 4530.8 12935.4
0.9 322.8 1179.1 635.7 2466.4 728.3 2498 1738.4 6164.9 4182.9 14696.1
1 317 1311.5 625.9 2664.1 707.8 2764.3 1686.1 6667.1 4048.9 16235.5
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have been empirically obtained by approximation of all
analyzed benchmarks. They were approximated by polyno-
mial interpolation and then they were empirically approxi-
mated to a more complex formula to adjust the behavior in all
desired points. Thus, they show that there is a clear relation-
ship between the involved parameters.

8. ROBUSTNESS VERSUS ENERGY
CONSUMPTION

The main goal of this paper is to show the trade-off between
robustness and energy consumption. In this way, the advan-
tage could be twofold. Developing new techniques for search-
ing energy-efficient schedules also means searching for robust
schedules. Thus, these techniques will generate energy-aware
and robust solutions in production scheduling, so small dis-
ruptions can be repaired by accelerating the needed machines
to recover the original schedule. In this way, no rescheduling is
needed, and the user can adjust the parameters to obtained the
optimal solution based on the problem preference.

To carry out this study, we have simulated 100 incidences
to each instance in order to analyze the number of incidences
that can be absorbed by the resultant schedule. An incidence
is a delay to a random task of the schedule. The duration of the
incidence (%incid) was bounded by 20% of the total duration
of the involved task. Figure 3 shows an approximate Pareto
front for a set of 10 instances with 7 machines, 10 tasks per
job, and a maximum processing time of 100 time units. It
can be observed that as the robustness increased, the energy
consumption decreased. This is because more robust solu-
tions allow machines to work at minimum speed, so the en-
ergy consumption decreased; that is, if all machines work at
minimum speed, all tasks have a slack (time between solving

the task at minimum speed minus solving the task at
minimum speed). Thus, if a disruption occurs in a machine
mi at speed (sil) during the task ti, this machine can accelerate
its speed to si2 in this task ti in order to finish on time (before
the next task tiþ1 starts). In this case, we consider the schedule
is robust. If the delay of task ti affects the following task, tiþ1,
the machine mj that works in this task accelerates its speed in
order to finish on time. Finally, the disruption is absorbed in
some steps. In this case, we consider the schedule is stable be-
cause the disruption has been propagated to some other tasks
before the original solution is recovered.

Table 2 shows the energy consumption and robustness in
different instances. It must be taken into account that the ro-
bustness maintained the same behavior in all instances, so
that the robustness is not directly dependent on the number
of machines, the number of tasks per job, or the range of pro-
cessing times. However, in most instances, for l ¼ 0,1 and l

¼ 0 the energy needed is similar, but the robustness is differ-
ent (see last two rows in instances 3–5–10, 3–7–10, and 5–
10–50). Thus, given an energy consumption threshold, we
can obtain different solutions with different robustness and
makespan levels.

The relationship between energy consumption and robust-
ness can be estimated by using Formula (9):

EnergyðlÞ
Robustnessðl;%incidÞ

� ttasks � p=2

6:3� 6
%incid

100

� �
� ð8 �Cosðl2pÞ � SinðlpÞ þ 11Þ

:
(9)

This formula is more accurate for l values close to 0 (from
0.6 to 0), because energy consumption is more considered for
these values in the objective function. Thus, given a percent-

Fig. 3. Approximate Pareto front for the bicriteria energy consumption–robustness.
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age of robustness for a given incidence duration (%incid) and
a l value of a schedule, we can estimate the energy needed to
carry out this schedule. In the same way, for a schedule with a
given energy consumption, a l value, and a threshold of the
duration of the incidences (%incid), we can estimate the ro-
bustness of this schedule. This formula can be refined by
the operator according to the distribution of energy consump-
tion of machines at different speeds.

9. MAKESPAN VERSUS ROBUSTNESS

There is a direct relationship between makespan and robust-
ness: as makespan increases, the robustness is bigger because
the tasks are more sparse in time and they are able to absorb
more incidences. However, it is not realistic to generate too
sparse schedules, so generally a makespan bound is set and

we try to find the more robust schedule for a given makespan
threshold.

To carry out this study, the simulation carried out in the
previous section gave us the number of incidences that can
be absorb by modifying the energy consumption threshold.
Figure 4 shows an approximate Pareto front for a set of 10 in-
stances with 7 machines, 10 tasks per job, and a maximum
processing time of 100 time units. It can be observed that
as the makespan increased, the robustness also increased
with a trigonometrical shape. Table 3 shows the makespan
and robustness in different instances. It must be taken into
account that the robustness is quite similar in all instances,
so it is not directly dependent on the number of machines,
the number of tasks per job, or the range of processing
times. When the makespan threshold was set to the minimum
possible (to achieve the optimal solution), these solutions

Table 2. Energy consumption and robustness in instances ,m,vmax,p.

5_10_50 7_10_100 3_20_50 3_25_100 3_30_200

l Ener. Robust. Ener. Robust. Ener. Robust. Ener. Robust. Ener. Robust.

1 1311.5 26.7% 2664.1 29.2% 2764.3 26.8% 6667.1 27.0% 16235.5 25.6%
0.9 1179.1 37.2% 2466.4 37.9% 2498 36.3% 6164.9 36.8% 14696.1 39.7%
0.8 1053 48.2% 2147.3 49.0% 2216.3 50.6% 5466.1 49.5% 12935.4 48.9%
0.7 917.4 68.1% 1879.5 67.5% 1933.7 66.0% 4742.9 67.9% 11370 65.2%
0.6 854.1 79.8% 1709.8 82.6% 1722.5 79.6% 4300.6 78.9% 10239.4 80.9%
0.5 792.1 86.6% 1650.3 89.1% 1628.6 88.0% 4077 86.3% 9771.5 88.0%
0.4 764.2 91.8% 1616.3 89.8% 1559.9 93.4% 3946.1 94.1% 9386.5 92.7%
0.3 752.3 94.2% 1584.2 94.8% 1527.3 95.3% 3866.7 94.9% 9258.8 95.9%
0.2 747.1 97.0% 1574.5 94.3% 1513.7 96.6% 3835.7 96.0% 9184 96.8%
0.1 745 93.7% 1571.6 97.1% 1507.4 97.3% 3827.5 97.6% 9163.5 96.3%
0 745 97.2% 1571.4 96.2% 1507.4 99.0% 3827.1 98.9% 9162.7 99.2%

Fig. 4. Approximate Pareto front for the bicriteria makespan–robustness.
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were able to absorb an average of 29% of the incidences (first
row of Table 3). This is because natural buffers (black rectan-
gles in Fig. 1) were able to absorb this percentage of inciden-
ces. Finally, when the makespan threshold was set to an upper
bound (obtained by minimizing energy consumption), the
percentage of absorbed incidences was close to 100%. That
means that the buffers are well distributed among all tasks,
and almost all disruptions were able to be absorbed.

The relationship between makespan and robustness can be
obtained from Formulas (8) and (9) to obtain Formula (10):

EnergyðlÞ
Robustnessðl, %incidÞ

� ttasks � p=2

6:3� 6
%incid

100

� �
� ð8 �Cosðl2pÞ

�SinðlpÞ þ 11Þ � eð0:25þ1:2lÞ � SinðlpÞ
2

þ CosðlpÞ
8

: (10)

Thus, given a makespan of a schedule with a given l value,
and the duration of the incidence (%incid), we can estimate the
robustness of this schedule. In the same way, given a robustness
threshold, the duration of the incidence (%incid), and a l value,
we can estimate the makespan of this schedule. This formula
can be refined by the operator according to the distribution of
energy consumption of machines at different speeds.

10. GENERAL ANALYSIS

In this section, a general analysis for all instance types was
carried out. The main objective is to analyze the relationship
among all relevant parameters around robustness and energy
efficiency for all analyzed instances and different l value
(horizontal axe). Figure 5 shows the results for disruptions
of 40% of the maximum processing time (%incid ¼ 40).
The main vertical axes represents the robustness. Thus, the
blue curve (% of Absorbed (40%)) represents the percentage
of absorbed incidences for each l value. The yellow curve
(%Natural Buff) represents the percentage of incidences ab-

sorbed by a natural buffer. The green curve (%EffEn Buff)
represents the percentage incidences absorbed by accelerating
a machine. In this way, the robustness is % of Absorbed
(40%) ¼ %Natural Buffþ%EffEn Buff.

In the secondary vertical axes, the garnet columns (Nbuff-
Eff) represent the average number of buffers generated by in-
creasing the speed of machines, and light blue columns
(NbuffNat) represent the average number of natural buffers.

It can be observed that NbuffNat is mainly constant be-
cause they are independent of the objective (minimize make-
span or energy consumption). However, the total amount of
time involved in these natural buffers decreased as the value
of l increased. This is because as l increased, the objective
function gives more importance to minimize makespan, so
the free slack is also minimized. Thus, the percentage of times
that the incidence is absorbed by a natural buffer (%Natural
Buff) also decreased. The same tendency is carried out by
NbuffEff, where the number of buffers generated decreased
as l increased. This is because as l increases, the objective
is to minimize makespan and more machines are assigned
at maximum speed, so few buffer times can be generated
by speeding up the machines. The percentage absorbed inci-
dences (%EffEn Buff) also decreased as the l increased.
However, the difference between the percentage of absorbed
incidences by the speeding up the machines (%EffEn Buff)
and the percentage of absorbed incidences by natural buffers
(%Natural Buff) can be observed. The main objective is rep-
resented by the blue curve (% of Absorbed (40%)), which
represents the percentage of absorbed incidences for each l

value. It can be observed that for l ¼ 0 (minimizing energy
consumption), almost all incidences can be absorbed. Thus,
energy-aware schedules are also considered robust solutions
that can absorb medium-size incidences.

In Figure 6 we have simulated disruptions of different
length, from 10 to 40% of the maximum processing time
(from %indic¼ 10 to %indic ¼ 40). The red curve (% of ab-
sorbed (10%)) represents the percentage of absorbed inciden-
ces for each l value. The green curve (% of absorbed (20%))
represents the percentage of absorbed incidences for each l

Table 3. Makespan and robustness in instances ,m,vmax,p.

5_10_50 7_10_100 3_20_50 3_25_100 3_30_200

l Mk Robust. Mk Robust. Mk Robust. Mk Robust. Mk Robust.

1 317 26.7% 625.9 29.2% 707.8 26.8% 1686.1 27.0% 4048.9 25.6%
0.9 322.8 37.2% 635.7 37.9% 728.3 36.3% 1738.4 36.8% 4182.9 39.7%
0.8 343.1 48.2% 690.1 49.0% 777.8 50.6% 1854.4 49.5% 4530.8 48.9%
0.7 384.7 68.1% 768.2 67.5% 854.6 66.0% 2056.1 67.9% 4953.3 65.2%
0.6 410.1 79.8% 843.7 82.6% 946.8 79.6% 2280.6 78.9% 5452 80.9%
0.5 454.3 86.6% 884.5 89.1% 1011.7 88.0% 2421.8 86.3% 5825 88.0%
0.4 483.6 91.8% 918.3 89.8% 1079 93.4% 2553 94.1% 6158 92.7%
0.3 502.6 94.2% 970.2 94.8% 1112.6 95.3% 2667.1 94.9% 6364.8 95.9%
0.2 515.8 97.0% 992.1 94.3% 1145.7 96.6% 2734.2 96.0% 6513.2 96.8%
0.1 524.4 93.7% 1004.3 97.1% 1168.7 97.3% 2768.4 97.6% 6600.8 96.3%
0 565.4 97.2% 1088.4 96.2% 1296 99.0% 3160 98.9% 7289.6 99.2%
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value. The garnet curve (% of absorbed (30%)) represents the
percentage of absorbed incidences for each l value. Finally,
the gray curve (% of absorbed (40%)) represents the percent-
age of absorbed incidences for each l value. It can be ob-
served that all curves maintained the same behavior in all l
values, and the values are proportional to the length of the dis-
ruptions. This is because it is easier to absorb small inciden-
ces than higher, but the difference is not too high. Thus,
longer incidences than 40% will maintain the same tendency
(proportional to the presented in Fig. 6).

In the secondary vertical axes, the extra energy needed to ab-
sorb incidences is represented for the different lengthsofdisrup-
tions (from 10 to 40%). It can be observed that although % of
Absorbed (20%) was able to absorb fewer disruptions than %
of Absorbed (10%), it needed more extra energy than the other
in many cases. It must taken into account that as the number of
absorbed disruptions increased, the extra energy needed to ab-
sorb these disruptions also increased, and the magnitude of
needed energy is proportional to the size of the disruption.
For instance, for l ¼ 0 (minimizing energy), the percentage
of absorbed disruption of size 40% was around 77%; mean-
while, the percentage of absorbed disruption of size 30% was
around 87%. However, the extra energy needed to absorb these
incidences was almost the same in both cases, because larger
disruptions generated larger needed of extra energy.

11. CONCLUSIONS

Many real-life problems can be modeled as a JSP where ma-
chines can work at different speeds. It represents an extension
of the classical JSP, where each operation has to be executed

by one machine and this machine has the possibility to work
at different speeds. In this paper, we analyze the relationship
among three important objectives that must be taken into
consideration: energy efficiency, robustness, and makespan.
Analytical formulas are presented to estimated the relation-
ship between these objectives in the analyzed instances.
The results show the trade-off between makespan and robust-
ness, and the direct relationship between robustness and
energy efficiency.

To reduce the makespan, the energy consumption has to
be increased to process the tasks faster. When the energy con-
sumption is low, it is because the machines are not working at
their highest speed, so if an incidence occurs, the speed of
these machines can been increased in order to recover the
time lost by the incidence. Thus, robustness is directly related
to energy consumption. Robustness is also directly related to
makespan because when makespan increases, there are more
gaps in the solution, so sometimes incidences can be ab-
sorbed by these natural buffers.

Thus, new techniques can be developed to find robust
solutions, and at the same time they are guaranteed to be
energy-aware solutions. Thus, in online scheduling, the
obtained robust solution is carried out, and only in case of
disruptions are involved machines accelerated to absorb the
disruptions, and the rest of the tasks are executed in an
energy-aware scheduling.

In further works, we will develop new metaheuristic tech-
niques for finding robust and energy-aware solutions. These
problems have multiple objectives, so efficient techniques
must be developed to obtain optimized solutions in an
efficient way.

Fig. 5. General analysis for disruptions of 40% of maximum processing time (%incid ¼ 40).
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