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SUMMARY
This paper presents an investigation of odor localization by
groups of autonomous mobile robots using principles of
Swarm Intelligence. First, we describe a distributed algo-
rithm by which groups of agents can solve the full odor
localization task more efficiently than a single agent. Next,
we demonstrate that a group of real robots under fully
distributed control can successfully traverse a real odor
plume, and that an embodied simulator can faithfully
reproduce these real robots experiments. Finally, we use the
embodied simulator combined with a reinforcement learn-
ing algorithm to optimize performance across group size,
showing that it can be useful not only for improving real
world odor localization, but also for quantitatively charac-
terizing the influence of group size on task performance.
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I. INTRODUCTION
This paper presents an investigation of odor localization by
groups of autonomous mobile robots using principles of
Swarm Intelligence (SI), a computational and behavioral
metaphor for solving distributed problems that takes its
inspiration from biological examples provided by social
insects. In most biological cases studied so far, robust and
capable group behavior has been found to be mediated by
nothing more than a small set of simple interactions among
individuals and between individuals and the environment.1

The application of SI principles to autonomous collective
robotics aims to develop robust task solving by minimizing
the complexity of the individual units and emphasizing
parallelism, exploitation of direct or indirect interactions,
and distributedness. The main advantages of this approach
are three: first, scalability from a few to thousands of units,
second, flexibility, as units can by dynamically added or
removed without explicit reorganization, and third,
increased system robustness, not only through unit redun-
dancy but also through the design of minimalist units.
Several examples of collective robotics tasks solved with SI
principles can be found in the literature: aggregation2,3 and
segregation,4 beacon localization,5 stick pulling,6 collective
transportation,7 and foraging.8

Solving a task using the SI approach reduces to
determining a set of local rules which, when carried out in

parallel by a group of agents, has the desired global effect.
These rules could involve the control of behavior (software
mediated) and/or direct physical interactions (hardware
mediated). Because software parameters are easier to
manipulate, they are the focus of this study. Each rule can
have a set of associated parameters, and once the rules have
been chosen, maximizing team performance involves solv-
ing a global optimization problem. If a deterministic
analytical model describing system performance exists,
there are efficient search methods available.9 However,
because SI systems depend heavily on unpredictable
agent-to-agent and agent-to-environment interactions, per-
formance is often stochastic, and evaluative, rather than
gradient-based, search methods are appropriate. This type of
control optimization has been extensively studied for the
case of a single agent,10–12 including the particular type of
off-line optimization which is of interest in this paper.13,14

Because optimal parameter values can be a function of the
number of agents in the system, parameter optimization for
each group size is necessary before the influence of the
number of agents on system performance can be analyzed.
We frame the problem in this way in order to attempt to
quantify the advantages of multi-robot systems on this task,
although in a broader framework the number of robots can
become another system parameter to be optimized. The
notion of optimizing parameters for a particular group size
may seem at odds with the flexibility provided by the SI
framework, but in fact the robustness provided by this
approach allows performance to degrade gracefully as
system behavior diverges from optimal.

Recent advances have been made in understanding
biological and artificial odor classification and odor localiz-
ation and tracking as developed in moths15,16 and rats17 in the
air, and lobsters18 and stomatopods19 in water. Biology
utilizes olfaction for a wide variety of tasks including
finding others of the same species, communication, behav-
ior modification, avoiding predators, and searching for food.
Odors, unlike visual and auditory perceptions, are non-
spatial: they possess neither spatial metric nor direction. In
contrast, odorant stimuli possess both spatial and temporal
character, snaking out complex plumes that can wander over
a wide area. This implies that a level of sophistication
beyond gradient following is necessary for localization of
an odor source.

Animals use a combination of ‘hardware’ (frequency of
receptor adaptation, perhaps), ‘software’ (temporal integra-
tion and/or spatial integration), and behavioral search
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strategies (both intrinsic and landmark-based) to locate odor
sources. Odor localization is in essence a behavioral
problem that varies from animal to animal. While some
animals exploit fluid information at different layers (lobster)
or several residues on the ground (ants), others can track
odors in the air (moths) or use a combination of information
(dogs). From an engineering standpoint there are advantages
to combining odor tracking with mobile robots, such as in
the detection of chemical leaks and the chemical mapping of
hazardous waste sites. We are interested in developing
groups of small mobile robots that use odor tracking
algorithms, multiple sensory modalities (e.g. odometry,
anemometry, olfaction), and sensory fusion to search out
and identify sources of odor.

The aim of the case study described in this paper is four-
fold. Firstly, we describe a distributed algorithm by which
groups of agents can solve the full odor localization task
more efficiently than a single agent. Secondly, we demon-
strate that a group of real robots under fully distributed
control can successfully traverse a real odor plume. Thirdly,
we show that an embodied simulator can faithfully repro-
duce these real robots experiments. Lastly, we establish that
this simulator combined with a reinforcement learning
algorithm can be used to optimize performance across group
size, and thus can be useful not only for systematically
improving real world odor localization, but also for
quantitatively characterizing the influence of group size on
task performance.

II. THE ODOR LOCALIZATION PROBLEM
The general odor localization problem addressed in this
paper is as follows: find a single odor source in an enclosed
2D area as efficiently as possible. This can be broken down
into three subtasks: plume finding – coming into contact
with the odor, plume traversal – following the odor plume to
its source, and source declaration – determining from odor
acquisition characteristics that the source is in the immedi-
ate vicinity. Plume finding amounts to a basic search task,
with the added complication, due to the stochastic nature of
the plume, that a simple sequential search is not guaranteed
to succeed. Plume traversing requires more specialized
behavior, both to progress in the direction of the source and
to maintain consistent contact with the plume. Source
declaration does not necessarily have to be done using odor
information, as typically odor sources can be sensed via
other modalities from short range, but here we propose a
solution using no extra sensory apparatus.

II.A. Biological inspiration
As an odor source dissolves into a fluid medium, an odor
plume is formed. The turbulent nature of fluid flow typically
breaks the plume into isolated packets, areas of relative high
concentration surrounded by fluid that contains no odor. The
task of odor localization thus becomes one of plume
traversal, or following the trail of odor packets upstream to
the source. This becomes difficult as odor packets become
more sparse (due to source intermittency and diffusion
below detectable levels) and more dispersed (due to flow
meander).

Although the approach of moving slowly and continually
sampling odor and flow data to reduce environmental noise
is used in nature (starfish) and has been applied to robotic
systems,20,21 environmental and behavioral constraints (e.g.
significant plume sparseness or meander, time critical
performance) can render these systems ineffective. In that
case, upon sensing an odor signal, a good policy is to move
directly upwind, as a good immediate local indication of
source direction under such circumstances is the instanta-
neous direction of flow.22 When the odor is no longer
present, a good strategy is to perform a local search (known
as casting in the biological literature) until it is re-acquired,
as the location of the previous packet encounter provides the
best immediate estimate of where the next will occur. This
type of surge-cast behavior has been observed in moths,23

and its performance has been studied in simulation.16

The previous work on this odor localization algorithm
was aimed at studying biology, which limited the sensory
and behavioral time scales investigated. When applying
these ideas to robots, however, the separation between
algorithm and underlying hardware is much more clear, and
it no longer makes sense to constrain behavior strictly by
sensory response characteristics. Therefore, in this work key
aspects of the search behavior, such as surge duration and
casting locality, are treated as algorithm parameters.

II.B. The spiral surge algorithm
The basic odor localization algorithm used in this study,
Spiral Surge (SS), is shown in Figure 1. It consists of
different behaviors related to the three different subtasks.

Plume finding is performed by an initial outward spiral
search pattern (SpiralGap1). This allows for thorough
coverage of the local space if the total search area is very
large and initial information can be provided by the
deployment point (an external ‘best guess’ as to source
location). Alternatively, if no a priori knowledge is availa-
ble, a spiral with a gap much greater than the arena size
(producing essentially straight line search paths) provides
an effective random search procedure.

Plume traversal is performed using a type of surge
algorithm. When an odor is encountered during spiraling,
the robot samples the wind direction and moves upwind for
a set distance (StepSize). If during the surge another odor
packet is encountered, the robot resets the surge distance but
does not re-sample the wind direction. After the surge
distance has been reached, the robot begins a spiral casting
behavior, looking for another plume hit. The casting spiral
can be tighter than the plume finding spiral (SpiralGap2), as
post surge the robot has information about packet density
and a thorough local search is a good strategy. If the robot
subsequently re-encounters the plume, it will repeat the
surging behavior, but if there is no additional plume
information for a set amount of time (CastTime), the robot
will declare the plume lost and return to the plume finding
behavior (with a wider, less local, spiral gap parameter).

Source declaration can be accomplished using the fact
that a robot performing the plume traversal behavior at the
head of a plume will tend to surge into an area where there
is no plume information, and then spiral back to the origin
of the surge before receiving another odor hit. If the robot
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keeps track internally of the post spiral inter-hit distances
(using odometry, for example, which is sufficient because
information must be accurate only locally), a series of small
differences can indicate that the robot has ceased progress
up the plume, and must therefore be at the source. However,
because small inter-hit distances can occur in all parts of the
plume, this method is not foolproof, and tuning of the
difference threshold (SrcDecThresh), as well as the number
of observed occurrences before source declaration (SrcDec-
Count), is required to obtain a particular performance within
a given plume. See Table I for a summary of individual SS
parameters.

SS uses only binary odor information generated from a
single plume sensor. This is motivated partially because this
is the most simple and reliable type of information that can
be obtained from real hardware. There may be more
information encoded in fine plume structure,24 however, due
to the highly stochastic nature of turbulent fluid flow and the
odor-packet nature of the plume, it is unclear that more
complex sensing – via graded intensity information or larger
sensor arrays – would benefit an odor localizing agent when
flow information is available through other means.

II.C. Collaborative spiral surge
One way to increase the performance of a robot swarm is
collaboration. In particular, if collaboration is obtained with
simple explicit communication schemes such as binary

signaling, the team performance can be enhanced without
losing autonomy or significantly increasing complexity at
the individual level. Several simple types of communication
can be integrated into basic SS. Though this issue is not
explored in this paper, the effects of communication
strategies can change depending on the environment, so
communication type should be a tunable system parameter.

II.D. Plume traversal
This paper will focus on the plume traversal subtask
because it contains most of the plume related complexity
present in the full odor localization task, and due to
experimental limitations it is not feasible to study all phases
with real robots at this time. Therefore in the following
experiments the full SS algorithm is not employed, as agents
are always in ‘plume traversal’ mode. This makes Spir-
alGap2 and StepSize the parameters of interest, and
effectively fixes CastTime at infinity. To study plume
traversal, we place groups of agents within a starting area at
the distal end of an odor plume in an enclosed arena. Over
repeated trials we measure the time and distance traveled by
the whole group until the first agent comes within a given
radius of the plume source (TSF, DSF).

To justify the high density of agents in the plume (which
would be unlikely given that in the general problem the
plume area is a small percentage of the total search area),
we allow explicit communication between the agents that
causes all downwind agents (locally determined from
previous individual measurement and odometry) to surge
toward an agent that has received an odor hit and is
initiating its own surge behavior. This provides an attractive
force that holds the group together as it traverses the plume
and makes the experimental situation (in which many robots
are simultaneously within the plume) more reasonable.

Efficiency for the plume traversal task cannot be defined
in the general case. Instead, we use two basic measures of
task performance: time and group energy (which can be
considered proportional to the sum of the individual
distances traveled). Since these measures are physically

Fig. 1. Spiral Surge odor localization behavior.

Table I. Spiral surge algorithm parameters

SpiralGap1 Initial spiral gap width
SpiralGap2 Plume re-acquisition spiral gap width
StepSize Surge distance post odor hit
CastTime Length of time before reverting from re-

acquisition to initial search spiral
SrcDecThresh Significance threshold between consecutive

separate odor hits
SrcDecCount Number of significant differences before

source declaration
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independent, a composite metric incorporating a particular
weighting of these two basic factors can be considered.

Q=�TSF +�DSF (1)

P=
�TMIN +�DMIN

Q
(2)

Q is an arbitrary weighting of time and distance. By
choosing specific values for � and �, the appropriate
relationship can be generated for evaluating any particular
application. The form of P ensures that for any � or �
greater than 0, the optimal system will achieve a perform-
ance of 1, and any that require more time or distance will
have a performance less than 1. In this study we experimen-
tally determine the optimum values for the given task (TMIN,
DMIN) from a real robot executing the optimal behavior (a
straight line path from start to goal areas at maximum
speed). Maximum speed, which determines the relationship
between the time and distance values, is determined by the
maximum safe operating speed of the real robot in the given
environment.

III. MATERIALS AND METHODS

III.A. Real robots
We use Moorebots, as shown in Figure 2. The plume
traversal arena is 6.7 by 6.7 m, and the robots are 24 cm in

diameter. In addition to the standard configuration,25 each
robot is equipped with four infra-red range sensors for
collision avoidance, a single odor sensor tuned to sense
water vapor, and a hot wire anemometer. Note that the
hardware requirements needed by the SS algorithm could be
fulfilled by robots much simpler and smaller than Moor-
ebots (e.g. Khepera26 or even Alice27 robots). This is
consistent with one of the main characteristics of the SI
approach that calls for minimization of the individual
complexity. The use of more sophisticated robots such as
Moorebots in these experiments is motivated by their
superior user interface which in turn allows extended
capabilities for monitoring, debugging, and implementation
flexibility.

The odor sensor detects the presence of an airborne
substance through a change in the electrical resistance of a
chemically sensitive carbon-doped polymer resistor.28 We
generate a water plume using a pan of hot water and an
array of fans. Mapping the plume using a random walk
behavior (see Figure 3) over long periods reveals a stable
plume boundary. A stationary environment is critical
because it reduces the number of trials required to produce
accurate performance measurements.

The anemometer is enclosed in a tube that gives it
unidirectional sensitivity, which, combined with a scanning
behavior, allows the robot to measure wind direction. A
wind map of 2102 individual samples averaged spatially is
shown in Figure 4. Although the wind field is relatively
simple compared to those found in real environments, it
does fluctuate somewhat over time due to eddies generated

Fig. 2. A Moorebot equipped with wind, odor, and proximity sensors, as well as markings for overhead tracking.
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Fig. 3. Plume hits received by six real robots over one hour while performing a random walk behavior.

Fig. 4. Average wind direction in plume traversal arena as measured by the real robots. Plume source at upper right. Arrow lengths are
proportional to the mean flow magnitude at the tail of each arrow.
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by interaction between the mean flow and the walls of the
room. These fluctuations produce variations in the instanta-
neous wind measurements, which must be dealt with by the
plume traversal algorithm.

An overhead camera tracking system, combined with a
radio LAN among the robots and an external workstation, is
used to log position data during the trials, reposition the
robots between trials, and emulate the binary communica-
tion signals. Trials of different group size are interleaved
and inactive robots are automatically positioned at recharg-
ing stations. The arena layout, as seen from the overhead
camera, is shown in Figure 5.

III.B. Embodied simulation
We used Webots,29 a 3D sensor-based, kinematic simulator,
originally developed for Khepera robots,26 to systematically
investigate the performance of SS in simulation. This
embodied simulator has previously been shown to generate
data that closely matches real Khepera6,30,31 and Moorebot5

experiments, so we were confident that real robot behavior
was accurately captured.

The physical arena was captured in Webots, as shown in
Figure 6. To properly capture the plume stimulus, we
incorporated a series of leaky source 2D plume images
generated in a water flume by Philip Roberts and Donald
Webster at Georgia Tech.32 Such ‘plume movies’, even
though they do not capture the influence of the agents on
plume dynamics, offer a good approximation to the
discretized (packet-like) nature of odor stimulus received in
real environments. We scaled the recorded plume data to
imitate the average speed and envelope of the real plume

data (see Figure 7 and Figure 3), and tuned the odor
sensitivity threshold (higher threshold leads to less
odor information) based on performance observed in
our real arena. Odor hit frequency differences between the
real and simulated maps are due to different polling rates of
the respective measurement systems and differences in
response bandwidth of the real and simulated sensors. Flow
information was taken directly from the real robot data (as
shown in Figure 4) and introduced into the embodied
simulations.

IV. OFF-LINE MACHINE LEARNING
OPTIMIZATION
Machine learning in multi agent systems has been the
subject of much recent study.33 The main design issues that
must be addressed by these systems involve diversity in the
control (homogeneous vs. heterogeneous) and the type of
reward signal (local vs. global). Optimization algorithms
allowing controller differentiation or using local reinforce-
ment signals face a daunting credit assignment problem,
because it is difficult to determine which actions of which
agent are responsible for the outcomes observed in the
system. Learning under these conditions has been addressed
with the help of explicit communication,34 a priori informa-
tion about proper task completion,35 and careful alignment
of individual and group performance metrics,36,37 although
none of these approaches can be easily applied to the
problem of plume traversal. Extensive peer-to-peer commu-
nication is undesirable, because the overhead of providing
and maintaining each agent’s unique identification, as well

Fig. 5. Real robot arena as seen from overhead camera.
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as a possibly exponentially increasing number of messages,
makes it difficult to scale to large group sizes. There is
no efficient way to determine progress up the plume
(measuring packet densities at different points would
be time consuming and possibly unreliable), so breaking
the task down into subtasks that can be rewarded
more directly is not possible. And there is no individual
metric that captures performance more clearly than the
group metric used because performance is inherently
defined at a system-wide level (contrast this to a task in
which the goal is to get as many plume hits as possible – 
here the group performance can be broken down clearly into
the sum of individual performances, each of which may
provide a more salient reinforcement signal to an individual
agent).

The use of homogeneous controllers with a global reward
signal offers another answer to the credit assignment
problem for off-line control optimization. By making the
learning agent operate in the space of algorithm parameters,
and providing only measures of group performance, there
effectively becomes one agent and one reward signal and
the credit assignment problem no longer applies.38 This may
be an extreme simplification to the problem of learning in
distributed multi-agent systems, but it provides a way to
optimize team performance when evaluation is expensive,

as is often the case with real-world environments that
include a strong stochastic component.

The optimization procedure for the plume traversal task
involves the off-line tuning of two parameters, SpiralGap2
and StepSize. Optimization for each group size allows
meaningful comparison of performance across group size.
In this initial study the selection of design points (i.e.,
parameter pairs over which to optimize) is done a priori,
although there are techniques for selecting them adap-
tively14,39 which may be utilized in further studies. The
possible parameter space is bounded to include a wide range
of behaviors. Small spiral gaps and step sizes (in compar-
ison to the arena size) induce more local search patterns
which benefit from robot proximity to the source, while
larger parameter values produce global searches which
cannot take advantage of robot location information, but
likewise are not adversely affected when the robot wanders
away from the source. The design points are selected from
a logarithmically spaced grid. This spacing is chosen to
reflect the fact that for this task the performance surface is
more highly sloped in the more local (smaller parameter)
region of the search space.

Once the design points xi (i=1 . . . N, where N is the total
number of points), are selected, the optimization is per-
formed as follows:

Fig. 6. Webots plume traversal arena with average plume intensity map.
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(i) Initialize the set of active points A to include all xi .
(ii) At each cycle j, simulate a trial at each xi in A, storing

the result Q=y i
j in Yi .

Q is defined in Eq. (1). Each Yi represents a set of
performance values generated using the input parame-
ters xi .

(iii) Let QMax =maxi E(Yi) and E(Ym)=QMax

For each xi�A, if
�QMax >QMax �E(Yi )+�SE(Ym �Yi )

where i!=m, remove xi from A and place it in Sm. E(x)
represents the expected value of x. SE(x) represents the
standard error of x. Si is the set of points that have been
determined to produce a performance that is to some
degree of certainty within some margin of the perform-
ance of xi .

(iv) For each xi�A, if Yi <Yk, for some xk�A, as determined
by a Kolmogorov-Smirnov test to confidence level �,
remove xi from A and return all members of Si to A.

(v) If more than one remains xi in A, go to Step (ii).

At the end of the process, the remaining point xMax

represents the best guess at the optimum performance. Q is
defined in Eq. (1). This algorithm is defined by the initial
design choice method and three parameters: �, �, and �. �
defines the margin around xMax in which it is defined to be
not cost effective to further optimize (e.g., if �=0.1 then if
all remaining options are determined to be within 10% of
each other, the optimization stops). � defines the desired
level of certainty of achievement of the margin defined by �.

� defines the level of certainty that the Kolmogorov-
Smirnov test makes proper decisions. Basically, on each
iteration all active points are sampled, and then Step (iii)
removes input points that perform close to the current
estimate of best performance, and Step (iv) eliminates
points that perform detectably worse than another active
point. Q is used so that equal weight is given to all
measurements in calculating the sample mean, and poor
performances do not effectively become 0.

This optimization procedure is related to that described
by Yakowitz,13 with several important distinctions. First,
instead of drawing the design points on the fly from an a
priori pdf, all such input points are defined from the outset
of the optimization process. This enables the designer to
tailor the state space coverage to the evaluation resources
available. Second, rather than refining estimates across all
points until some pre-determined stopping time, this method
removes design points from consideration as they are
determined to be inferior or definitively within some defined
range of the current optimal point, thereby allocating more
evaluation time to the most promising input points. Thirdly,
this method compares design points via evaluating entire
sample distributions using a non-parametric test as opposed
to via the sample mean. It is feasible to store all of the
performance data and compare distributions rather than
sample means or some other central tendency measurement
because data generation is considered to be expensive
(which is true for embodied simulation and even more so for
real robots), and data analysis comparatively cheap. A non-
parametric comparison test is used because we do not want

Fig. 7. Plume hits received by six simulated robots over one hour.

Odor localization434

https://doi.org/10.1017/S0263574703004946 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703004946


to assume anything about the performance distribution a
priori, nor do we want to take enough samples to generate
an appropriate model. This process assumes stationarity of
the environment during the optimization process, and also a
close correspondence between training and deployment
environments.

V. RESULTS AND DISCUSSION

V.A. Real robots
We tested real robot plume traversal performance using two
sets of SS parameters and two control experiments. As
previously stated, only SpiralGap2 and StepSize are con-
sidered because we are looking only at the plume traversal
aspect of the task. SS1 represents a non-local search in that
its search paths are straight and its surges extend to the
boundaries of the arena. SS2 uses a smaller spiral gap and
surge length to perform a more local exploration of the
arena. Random Odor uses SS2 parameters, and receives
odor hits that are generated from the time sequence of SS2
odor hits but are not correlated with robot position in the
arena. This control experiment investigates whether an
algorithm incorporating precise odor packet location infor-
mation is more efficient than a blind upwind surging
behavior. An alternative experiment could be to decouple
the wind source from the odor source by creating a wind
field with an array of fans, but due to practical limitations in
our experimental set-up, the Random Odor case was easier

to implement and provided equivalent information from a
proof-of concept point of view. Random Walk takes straight
line paths and random avoidance turns at boundaries (using
no odor or flow information) to provide a traversal
performance baseline. Specific parameters relating to the
real robot tests are listed in Table II. Fifteen trials of each
group size were run for SS1, SS2 and Random Odor, and 30
trials were run for Random Walk due to the high variance of
performance values.

Figures 8 and 9 show that for all conditions studied,
traversal time decreases with group size while group
distance traveled increases. This indicates, as expected for a
search task, that as time becomes more important to

Fig. 8. Normalized time across group size for real robot trials. Lower values are better.

Table II. Plume traversal parameter values

Agent Speed 0.325 m/s
Arena Length 6.7 m
Plume Length 9 m
Plume Speed 1 m/s
Src Dec Radius 0.88 m
Plume: Arena Area 1 : 2.3
Goal: Arena Perimeter 1 : 18.0
�, � 1
TMin 19.0 s
DMin 6.2 m
SS1: SpiralGap2 1785 km
SS1: StepSize 9.1 m
SS2: SpiralGap2 0.357 m
SS2: StepSize 0.91 m
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performance than energy usage (i.e., �>� in Eq. (1)), larger
group sizes will be preferred.

Figure 10 shows that while single robots are generally
most efficient in this arena (for �=�=1), SS1 gives the best
results for each group size (significant via K-S test to
p<0.01 for group size�{1, 2, 3}), demonstrating successful
real robot plume traversal. Random Odor performs worse
than SS2 for all group sizes (significant as above for group
size�{1, 2, 4, 6}), indicating that location of odor informa-
tion is an important aspect of the search algorithm. This
means that SS is actually plume tracing rather than simply
localizing the source of the wind, because if it were only
wind localizing, one would expect Random Odor to perform
exactly the same as SS2. Also, SS2 performs worse than SS1
(significant as above for all group sizes), suggesting that
local search is not a good strategy in this small arena where
the goal-to-search perimeter ratio is high (i.e., it is likely to
find the goal by chance). Random Walk retains relatively
constant performance across group size, and at the larger
group sizes its performance tends to approach the optimal
observed performance. This suggests that as a search arena
becomes overcrowded, random movement becomes the best
strategy. All error bars in the plots represent standard error.

V.B. Embodied simulations
We successfully reproduced the real robot performance data
in Webots, as shown in Figure 11. Data represents 1000
trials per group size. All parameters in Table II apply to the

Webots data as well. Only SS1 for group size of one robot
produces significantly different results (as determined by a
2-tailed K-S test with p<0.01) between Webots and the real
robots, and even in this case the error bars overlap. Because
our Webots data closely matches our available real robot
data, it is reasonable that further simulated experiments will
accurately reflect real world behavior.

V.C. Optimization with the embodied simulator
Due to the large goal-to-search perimeter ratio in real robot
arena, there is no advantage to local search, and SS1
represents the optimal parameter set. This intuitive result
was confirmed by the optimization process, although it is
somewhat disappointing because SS1 represents essentially
a degenerate case of SS plume traversal. In a larger arena,
the traversal task becomes more difficult, and the local
search properties of SS should become more valuable.

To examine this hypothesis we enlarged the arena to 16
times its original area and optimized the plume traversal
performance across group size. The simulated plume in the
larger arena remained the same length and speed as before,
and to make it more realistic the cross-plume scaling was
eliminated. Without the proximity of walls and fans to
create turbulent flow, the plume structure most likely
observed in a large arena is best represented by the structure
found in the original flume data. Similarly, the wind data
from the real arena is no longer applicable, so wind
direction values were generated using 10% white noise from

Fig. 9. Normalized distance across group size for real robot trials. Lower values are better.
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Fig. 10. Performance across group size for real robot trials. Higher values indicate better performance.

Fig. 11. Performance of real robot and Webots trials across group size. Higher values indicate better performance.
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the plume axis. All other parameters remained the same as
in the previous trials.

Optimization was performed 10 times for each group size
using the parameters shown in Table III. Repetition was
necessary because the full SS algorithm is not being used, so
when the agent loses the plume, it takes a long time for the
local search spiral to be re-acquired. This results in heavy
tailed performance distributions, which are difficult to rank
correctly. Use of full SS (which increases the optimization
dimension) will make the performance distributions better
behaved, and the optimization results will be more con-
sistent.

The best parameters observed in the results of the
optimization process (over all 10 trials) are shown in Table
IV. SpiralGap2 remains constant across group size, while
StepSize increases. One would expect both parameter values
to increase with the number of robots, because larger
parameter values correspond to less local search. Larger
group sizes endowed with a less local search behavior cover
space more efficiently and can afford an increased risk of
losing contact with the plume since the task will be

accomplished by only one of them reaching the source. It is
likely that SpiralGap2 simply has a much greater influence
on search locality (as its effect compounds over time), and
due to the coarse granularity of the search space, all group
sizes peak at the same value. This hypothesis could be tested
by focusing the parameter search in this region and
repeating the optimization process, or by enhancing the
optimization method to choose attractive design points on
the fly.

Performance from 4000 trials using the best values for
each group size is shown in Figure 12. For these particular
task constraints and time-energy weighting, three robots
perform most efficiently. Smaller group sizes are too likely
to lose the plume, and larger group sizes waste energy with
overlapping search areas. The optimal group size (3) in the
larger arena is larger than the optimal group size (1) in the
smaller arena, and although the data is not yet complete
(larger arena and group sizes have yet to be tested) we
expect that as search area size increases, because the penalty
for plume loss will become more severe, larger group sizes

Table III. Optimization parameter values

N 81 (9�9)
SpiralGap2 range 0.14–28.3 m
StepSize range 0.37–9.1 m
� 0.1
� 1.96
� 0.001

Fig. 12. Optimized performance on plume traversal task of Webots trials across group size in larger arena. Higher values indicate better
performance.

Table IV. Best SS parameter values for large arena

Group Size SpiralGap2 [m] StepSize [m]

1 0.62 1.82
2 0.62 1.82
3 0.62 2.60
4 0.62 3.72
5 0.62 3.72
6 0.62 3.72
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will become optimal. This concept can be generalized to
state that the more difficult the plume is to stay in contact
with (i.e. due to high sparseness or meander), the larger the
number of robots in the optimal group size. We are currently
testing this hypothesis, as it could be used to help determine
ideal deployment numbers based on source concentration
expectation and atmospheric conditions. In addition, sup-
porting the data observed in the real robot arena, the raw
data from these optimized trials, shown in Figure 13,
indicates that as time becomes more valued over energy
used, larger group sizes will become optimal.

VI. CONCLUSION
In this paper we have described a distributed algorithm for
solving the full odor localization task, and shown that group
performance can exceed that of a single robot. We have
demonstrated that one subtask, plume traversal, can be
successfully accomplished by real robots. Furthermore, we
have established that an embodied simulator can accurately
replicate the real robots results, and shown that it can be
used to optimize performance across group size. Thus, it is
useful not only for improving real world odor localization,
but also for quantitatively characterizing the influence of
group size on task performance under the constraints of the
SI architecture.

Furthermore, our data indicates that in this search task, as
completion time becomes more valued over total energy

used, larger group sizes become optimal. Also, larger
movement parameter values can result in more efficient
search for larger group sizes, and larger group sizes are
favored as it becomes more difficult to maintain plume
contact. These types of observations may eventually result
in formulae for narrowing the range of possible optimal
parameter values based on odor localization task parame-
ters, which will decrease optimization costs.

Our eventual goal, achievement of near optimal perform-
ance on the full odor localization task in the real world, will
require efficient search of a large parameter space through a
combination of accurate simulation and efficient off-line
machine learning techniques.
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