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Stability analysis of near-limit stretched
premixed flames
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The dynamics of radiative, near-limit, stretched premixed flames was investigated
analytically and numerically, with emphasis on pulsating stability for sub-unity Lewis
numbers. The analysis includes both flame stretch and order-unity heat loss, and
yields a dispersion equation for the stability of radiative stretched flames subjected
to symmetrical and asymmetrical perturbations. The dispersion equation reduces to
that of the classical thermo-diffusional stability analysis of Sivashinsky in the limit
of small heat loss, small stretch rate, and infinite flame separation distance. Results
show that sub-limit flames are stable near both radiation and stretch extinction limits,
and that oscillation occurs only at moderate flame stretch rates. The unstable regime
and the stability diagram were obtained. Numerical simulation with detailed chemical
kinetics and transport models yielded results that are in good agreement with theory.
The present work also provides a satisfactory explanation of the experimental results
obtained in microgravity.

1. Introduction
Understanding of the propagation and stability of near- and sub-limit premixed

flames not only is important for fundamental combustion research but is also
relevant to the development of new combustion technologies such as those associated
with low-NOx emission, lean burn, micro-scale combustion, and material synthesis.
Recent experimental and theoretical studies on near- and sub-limit combustion using
stationary counterflow flames (Maruta et al. 1996; Ju et al. 1997; Buckmaster 1997)
found that sub-limit flames can be established, and that there exist multiple flame
regimes (near-stagnation flame, weak flame, distant flame, and normal flame) and
various extinction and jump limits due to the interaction between radiation and diffu-
sional transport. It was also shown that the flammable regimes for these flames at
general Lewis numbers can be described by the so-called G- and K-shaped extinction
response curves (Ju et al. 1997).

It is well known that the flammable regimes of flames are affected by their stability.
Theoretical (Sivashinsky 1977; Joulin & Clavin 1979) and numerical (Rogg 1982;
Kailasanath, Ganguly & Patnaik 1993; He & Clavin 1993) studies of the thermal-
diffusion stability of the one-dimensional propagating planar flame show that the
flame becomes oscillatory when the Lewis number (Le) is larger than a critical
value satisfying β(Le − 1) > 4(1 +

√
3) ≈ 10.9, where β is the Zeldovich number.

Detailed numerical simulations of one-dimensional rich hydrogen/air propagating
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planar flames (Christiansen, Sung & Law 1998) demonstrated that the flammability
limit due to radiative loss is substantially narrowed when pulsating instability is
taken into account. However, all these studies were mainly concerned with pulsating
instabilities of unstretched flames at Le larger than the critical value.

On the other hand, microgravity experiments (Maruta et al. 1998) showed that lean
CH4/O2/He/N2 flames with β(Le−1) � 10.9 actually oscillated at equivalence ratios
sufficiently larger than the flammability limit. These results differ from the previous
theory in two aspects: (i) oscillation does not occur at stretch rates close to the stretch
and radiation limits; (ii) oscillation does not occur at equivalence ratio close to the
flammability limit. However, the mechanism controlling this phenomenon was not
identified in their study. A direct numerical simulation by Ju et al. (2000) successfully
reproduced the observed oscillation and demonstrated that this oscillation is induced
by thermal radiation. The results also showed that the radiation-induced oscillation
can occur at Lewis number close to unity, and offered a reasonable explanation of the
micro-gravity experiment and the normal-gravity experiment in which oscillations
were observed for stretched cylindrical CH4/air flames (Kitano, Kobayashi &
Otsuka 1989). However, this finding cannot be explained by the classical thermal-
diffusion theory. Furthermore, due to computational limitation, the stability diagram
for the entire flammable regime was not obtained. Thus, a theoretical examination of
the stability and the stability diagram is necessary.

The stability of stretched flames was analysed by Buckmaster (1979), Sivashinsky
& Law (1982) and Kortstarts et al. (1997) for adiabatic flames with small stretch and
slow time evolution. However, there is no theory describing the stability of radiative,
near-limit stretched flames. The purpose of the present study is therefore to study
the dynamics and stability of radiative, counterflow premixed flames, and to obtain
a rigorous dispersion equation and diagram for the onset of pulsating oscillation for
Le less than unity. The mathematical model for the theoretical analysis is given in the
next section, which is followed by the stationary solution and the stability analysis,
and finally a numerical investigation of the stability of CH4–air mixture with detailed
chemistry.

2. Mathematical model
The configuration considered in the present study is axis-symmetrical back-to-back

counterflow premixed flames. In this configuration the air–fuel mixtures are issued
from two opposed burners forming two planar flames near the stagnation plane. A
schematic of the twin flames and the three analytical domains (1: unburned region
on the right-hand side, 2: burned gas region, and 3: unburned gas region on the
left-hand side) are shown in figure 1. By employing the conventional assumptions of
constant density, constant thermal properties, potential flow, and localized reaction
zone, the governing equations for temperature and fuel concentration are

∂T

∂t
− ax

∂T

∂x
=

∂T

∂x
+ (1 − σ )(W1 + W3) − Q, (1)

∂C

∂t
− ax

∂C

∂x
=

1

Le

∂2C

∂x2
− (W1 + W3), (2)

where

W1 = exp

(
N

2

(
1 − 1

T +
f

))
δ(x − x+

f ), W3 = exp

(
N

2

(
1 − 1

T −
f

))
δ(x − x−

f ) (3)
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123

x

x f

0

Figure 1. Schematic of twin flames. The dashed vertical line indicates the stagnation plane.
Zones 1, 2 and 3 are three analytical regions, respectively for the unburned gas on the
right-hand side, the burned gas and the unburned gas on the left-hand side.

Furthermore, t , x, C and T are the time, streamwise coordinate, temperature and
fuel mass fraction, respectively normalized by Dth/U 2

ad , Dth/Uad , Tad and C0. Here
Dth , Uad , Tad and C0 are, respectively, the thermal diffusivity, adiabatic flame speed,
adiabatic flame temperature and initial mass fraction of fuel. N is the activation
energy normalized by the adiabatic flame temperature, Le the Lewis number, δ the
Dirac δ-function, and a the stretch rate normalized by U 2

ad/Dth . The two flame fronts
are located at x+

f and x−
f , respectively, on the right- and the left-hand sides of the

stagnation plane (x = 0). For convenience of algebraic manipulation, the heat loss
Q(T ) is approximated as a linear function of temperature. There are two possible
choices for the one-parametric function Q(T ). In the first case, the heat loss is only
considered in the burned gas region and the heat loss in the unburned gas region is
ignored, i.e.

Q = h(T2 − σ ), x−
f < x < x+

f ,

Q = 0, x+
f < x < +∞, −∞ < x < x−

f ,

where h is the intensity of radiation heat loss normalized by U 2
ad/Dth and σ is the ratio

of the initial temperature to the adiabatic flame temperature. This approximation was
applied in the theoretical study of ‘flame balls’ (Buckmaster, Joulin & Ronney 1991).
The other possible choice for Q is that the heat loss occurs in both the unburned and
the burned gas regions. In this case, Q = h(T − σ ) holds everywhere. This approach
was also applied in the study of counterflow flames (Buckmaster 1997). It should
be noted that, in this simple model, the detailed specification of concentration of
the radiating species is not included. Thus, there is arbitrariness in the choice of the
one-parametric heat-loss term. In the present study, we employed both formulations
of heat loss by paying more attention to the first. By introducing an integer n = 0, 1
the heat-loss term may be written in the form
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Q = h(T2 − σ ), x−
f < x < xf ,

Q = nh(T1 − σ ), x+
f < x < +∞,

Q = nh(T3 − σ ), −∞ < x < x−
f .


 (4)

The case of n= 0 corresponds to the first choice of Q in which heat loss in the
unburned region is ignored. The case of n = 1 includes heat loss everywhere.

By employing the new time and spatial variables τ = at/2, ς = x
√

a/2 and H = h/a,
the governing equations (1)–(4) may be written as

∂T1

∂τ
− 2ς

∂T1

∂ς
=

∂2T1

∂ς2
− 2nH (T1 − σ ) for ς+

f < ς < +∞, (5)

∂C1

∂τ
− 2ς

∂C1

∂ς
=

1

Le

∂2C1

∂ς2
for ς+

f < ς < +∞, (6)

∂T2

∂τ
− 2ς

∂T2

∂ς
=

∂2T2

∂ς2
− 2H (T2 − σ ) for ς−

f < ς < ς+
f , (7)

∂T3

∂τ
− 2ς

∂T3

∂ς
=

∂2T3

∂ς2
− 2nH (T3 − σ ) for −∞ < ς < ς−

f , (8)

∂C3

∂τ
− 2ς

∂C3

∂ς
=

1

Le

∂2C3

∂ς2
for −∞ < ς < ς−

f . (9)

In the above, the subscripts 1, 2 and 3 respectively correspond to the regions of
the fresh mixture in the right-half (ς+

f < ς < +∞), the combustion products (ς−
f <

ς < ς+
f ), and the fresh mixture in the left-half (−∞ < ς < ς−

f ) (see figure 1). Since
fuel is completely consumed in the burned gas region, the boundary conditions for
equations (5)–(9) can be given as

T1 → σ, C1 → 1 as ς → +∞, T3 → σ, C3 → 1 as ς → −∞, (10)

∂T2(−0)

∂ς
=

∂T2(+0)

∂ς
0, T2(−0) = T3(+0) as ς = 0, (11)

and the jump conditions at the flame interfaces (ς = ς
±
f ) are

∂T2

∂ς
− ∂T1

∂ς
=

(1 − σ )

Le

∂C1

∂ς
, (12)

1

Le

√
a

2

∂C1

∂ς
= exp

(
N

2

(
1 − 1

T +
f

))
, (13)

T1 = T2 = T +
f , (14)

C1 = 0, (15)

∂T2

∂ς
− ∂T3

∂ς
=

(1 − σ )

Le

∂C3

∂ς
, (16)

− 1

Le

√
a

2

∂C3

∂ς
= exp

(
N

2

(
1 − 1

T −
f

))
, (17)

T3 = T2 = T −
f , (18)

C3 = 0. (19)
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Equations (12)–(15) and (16)–(19) are the boundary conditions at the flame interfaces
of ς = ς+

f and ς = ς−
f , respectively.

Following Buckmaster (1997), we assume that thermal radiation is due to the
emission of the burned gas products such as H2O and CO2, so that the magnitude of
dimensional radiation loss hU 2

ad (σ )/Dth is proportional to the mass fraction of the
deficient reactant C0. If hc at a given value of σc is known, the value h at any σ can
be found through

h(σ ) = hc

C0(σ )

C0(σc)

U 2
ad (σc)

U 2
ad (σ )

, (20)

where

C0(σ ) =
CpT0

q

(
1

σ
− 1

)
,

U 2
ad (σc)

U 2
ad (σ )

= exp

(
Ta

T0

(σ − σc)

)
. (21)

By applying this model to the planar propagating flame subjected to radiative heat
loss, we obtain the classical formula for the critical heat losses at the flammability
limit (Buckmaster & Ludford, 1983):

hc =
1

(n + 1)e

T 2
c

Ta(Tc − T0)
=

T0

(n + 1)eTa

1

σc(1 − σc)
. (22)

The above formula allows us to specify the critical value of the radiative heat
loss parameter hc via the critical flame temperature at the flammability limit for a
given mixture. Here, we have used the data recommended by Buckmaster (1997),
and have chosen T0 = 300 K, Ta = 15000 K, Le= 0.9, which correspond roughly to
a lean methane–air mixture. The resulting dimensional flame temperature at lean
flammability limit is Tc = 1300 K and σc = T0/Tc ≈ 0.23.

3. Stationary solutions
For a stationary analysis, it is reasonable to limit our attention to the symmetrical

solution. In this case, instead of using the boundary conditions (11), we can apply the
symmetry condition at ς = 0:

∂T2

∂ς
= 0. (23)

The problem defined by equations (5)–(7) and the boundary conditions (10), (12)–(15)
and (23) has the following solution:

T1s = σ + (T +
fs − σ )

I−(ς, nH )

I−(ς+
fs , nH )

, (24)

T2s = σ + (T +
fs − σ )

I+(ς, H ) + I−(ς, H )

I+(ς+
fs , H ) + I−(ς+

fs , H )
, (25)

C1s =
erf(

√
Leς) − erf(

√
Leς+

fs )

1 − erf(
√

Leς+
fs )

, (26)

where

erf(ς) =
2√
π

∫ ς

0

exp(−η2) dη
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and

I−(ς, Λ) = exp(−ς2)

∫ ∞

0

ηΛ exp

(
−η2

4
− ςη

)
dη, (27)

I+(ς, Λ) = exp(−ς2)

∫ ∞

0

ηΛ exp

(
−η2

4
+ ςη

)
dη. (28)

The solution of equation (26) for C1s is straightforward. It is noted that, for the first
time, exact solutions for equations (5) and (7) with boundary conditions (10), (14)
and (23) have been found. Proofs of these solutions are given in the Appendix. The
temperature and concentration distributions in the half-plane ς < 0 can be found
from (24)–(26) using the substitutions

T3(ς) = T2(−ς), C3(ς) = C1(−ς), ς+
fs = −ς−

fs , T +
fs = T −

fs .

It is noted that exact solutions (24)–(26) remove the requirement of the small-heat-loss
assumption (hxfs ≈ 1/N � 1), which is a common asymptotic approach in previous
studies but obviously becomes incorrect as xfs → ∞. Therefore our method provides
a direct way to understand the relation between the stretched stagnation flame and
the far-field planar propagating flame in the small-stretch limit.

By substituting equations (24)–(26) into (12)–(13), one obtains an algebraic system
of equations for the flame separation distance xfs = ς+

fs

√
2/a and the flame temperature

Tfs , √
a

2Le
ψ(

√
Le ς+

fs ) = exp

(
N

2

(
1 − 1

Tfs

))
, (29)

(Tfs − σ )(BS(ς
+
fs , H ) − A(ς+

fs , nH )) =
(1 − σ )√

Le
ψ(

√
Le ς+

fs ), (30)

where

ψ(ς) =
2√
π

exp(−ς2)

1 − erf(ς)
, (31)

A(ς, Λ) =
d

dς
ln(I−(ς, Λ)), (32)

BS(ς, Λ) =
d

dς
ln(I+(ς, Λ) + I−(ς, Λ)). (33)

In the limit of xfs → 0 and ς+
fs → 0, (29) and (30) yield the flame stretch aext and

flame temperature at the stretch extinction limit T ∗,

aext =
πLe

2
exp

(
N(T ∗ − 1)

T ∗

)
, T ∗ = σ +

1 − σ√
Le

. (34)

It is seen from (34) that the Lewis number has a strong effect on the stretch extinction.
A decrease of Le results in an increase of the extinction temperature and the stretch
limit. In the limiting case of a → 0, ς+

fs → ∞, H = h/a → ∞, the function ψ(
√

Le ς+
fs )

defined by (31) may be written in the form

ψ(
√

Leς+
fs ) ≈ 2

√
Le ς+

fs + O

(
1

ς+
fs

)2

. (35)
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In view of (35), equation (29) readily becomes

Tfs = 1

/(
1 − 2

N
lnVf

)
, (36)

where Vf =
√

2aς+
fs = axf is the gas velocity entering the flame front. In the limit

of infinite flame separation distance, ς+
fs → ∞, the integral I−(ς+

fs ) in (28) vanishes so
that (30) is reduced to

(Tfs − σ )
d

dς+
fs

(ln I+(ς+
fs , H ) − ln I−(ς+

fs , nH )) = 2(1 − σ )ς+
fs . (37)

At large ς+
fs and H , the derivatives on the right-hand side of (37) have the forms (see

Appendix)

d

dς
ln I+(ς, H ) ≈

√
ς2 + 2H − ς, (38)

d

dς
ln I−(ς, nH ) ≈ −

√
ς2 + 2nH − ς. (39)

In the case of heat loss everywhere (n = 1), by using (38) and (39), equation (37) can
be transformed to

(Tfs − σ )
√

V 2
f + 4h = (1 − σ )Vf . (40)

Equations (36) and (40) are the classical formulas describing an unstrained non-
adiabatic flame with flame velocity Vf =

√
2aς+

fs = axfs . For h<hc, there are two

solutions (a stable solution with large velocity e−1/2 <Vf < 1 and an unstable solution
with small velocity 0 < Vf < e−1/2). At h = hc, the two solutions merge at Vf = e−1/2,
which is the flammability limit.

By calculating (29) and (30) for Le= 0.9, the typical relation between flame sepa-
ration distance and stretch rate for the sub-limit (σ =0.23, n= 0) and near-limit
(σ = 0.22, n= 0, 1) stretch flames are shown in figures 2 and 3. It is seen that
the present result qualitatively reproduces previous findings (Ju et al. 1997 and
Buckmaster 1997). A detailed description and classification of the separate branches
of these curves in figuers 2 and 3 are given by Ju et al. (1997, 1998). Here, for brevity,
we only give a brief summary of the bifurcations. In sub-limit flame bifurcations
(figure 2), branch (a) is the distant flame (DF), (b) the unstable slow burning flow,
and (c) the near-stagnation flame (NSF). For the near-limit flame (equivalence ratio
slightly higher than the fundamental limit of a one-dimensional planar propagating
flame), the DF and NSF branches in figure 2 merge, resulting in a new bifurcation
pattern (figure 3) in which branch (e) is the normal flame (this is the flame extensively
investigated in normal gravity (Law 1988), and (d) is the weak flame branch (WF). In
figure 3, the dependence of xf (a) on the stretch rate is plotted for both the one-sided
(n = 0) and two-sided (n = 1) heat-loss approximations. Both approximations yield
quite similar solution curves associated with the normal flame (e) and the slow burning
flow (b). The difference between the results of these two formulations arises at small
stretch rates and flame location distances. Unlike the results of a model with from
both sides heat losses and results of previous studies (Ju et al. 1997, 1998), where weak
flame quenching takes place at small strain rates, this radiation-dominated quenching
limit is lacking in the case of one-sided heat loss formulation because the heat loss in
the unburned region is ignored. The dependence of flame temperature on strain rate
corresponding to figures 2 and 3 is shown in figures 4 and 5, respectively.
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25

20

15

10

5

0

xf

(a)

(b)

a
0.01 0.1 1

(c)

Figure 2. Flame separation distance xf vs. non-dimensional stretch rate a for Le = 0.9,
σ = 0.23 and n = 0. The thick lines denote the stable regions of the distant flame branch
(a) and the near-stagnation flame branch (c). The thin line on branch (b) represents the
unstable slow burning flow, and the thin line on branch (c) denotes the region of pulsating
instability of the near-stagnation flame.

20

15

10

5

0

xf (e)

(b)

a
0.001 0.1

(d )

0.01 1

Figure 3. Flame separation distance xf vs. non-dimensional stretch rate a for Le = 0.9 and
σ = 0.22 for n = 0 (solid lines) and n = 1 (dashed lines). The thick solid lines denote the
stable normal flame (e) and weak flame (d) branches. Thin solid line of branch (b) indicates
the unstable region of the slow burning flame. The thin line on the right part of (d) branch
represents the pulsating region of the weak flame.

4. Linear stability analysis
The stability of the complex bifurcations was not discussed in previous studies

(Ju et al. 1997; Buckmaster 1997; Ju et al. 1999), although clarification of the
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1.1

0.9

0.8

Tf

(c)

(b)

a
0.1

(a)

0.01 1

1.0

0.7

Figure 4. Flame temperature Tf vs. stretch rate a for Le = 0.9, σ = 0.23 and n = 0.
Notation of the solution curves is the same as in figure 2.

0.8

Tf

(d )

(b)

a
0.1

(e)

0.001 1

1.0

0.6

0.01

Figure 5. Flame temperature Tf vs. stretch rate a for Le = 0.9, σ = 0.22 and n = 0, 1.
Notation of the solution curves is the same as in figure 3.

stability of the sub-limit flame is of great importance. The main goal of the present
study is the linear stability analysis of the sub-limit flames, including the case of
asymmetrical perturbations.
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The linear stability of the stationary solution of the previous section can be
determined by examining the growth rate of infinitesimal perturbations of variable
φ̃:

T1 = T1s + T̃ 1φ̃, T2 = T2s + T̃ 2φ̃, T3 = T3s + T̃ 3φ̃, C1 = C1s + C̃1φ̃,

C3 = C3s + C̃3φ̃, T
±
f = Tfs + T̃

±
fs φ̃, ς

±
fs = ±ς+

fs + ς̃
±
f φ̃,

}
(41)

where φ̃ is assumed to be proportional to exp(2Ωτ ). By substituting the above
expansions into (5)–(9), the solutions of the perturbations as functions of ς and Ω

are given by

T̃ 1 = a1I
−(ς, Ω + nH ), T̃ 2 = a2I

+(ς, Ω + H ) + a3I
−(ς, Ω + H ),

T̃ 3 = a4I
+(ς, Ω + nH ), C̃1 = a5I

−(ς
√

Le, Ω), C̃3 = a6I
+(ς

√
Le, Ω),

}
(42)

where ai are the constants and the functions I−, I+ are defined by (27) and (28).
As shown in the Appendix, I−(ς, Ω) and I+(ς, Ω) are the exact solutions of the

equation

d2φ

dς2
+ 2ς

dφ

dς
− 2Ωφ = 0, (43)

and I−(ς) → 0 as ς → ∞ whereas I+(ς) diverges at infinitely large ς . By taking into
account that T ′

1(ς) → 0 and C ′
1(ς) → 0 as ς → ∞, the solutions for T ′

1 and C ′
1 are

chosen to be proportional to I−(ς).
By then substituting (42) into the boundary conditions (12)–(19), and expanding

it near the flame location, the linearized boundary conditions (12)–(19) at the flame
front may be written as

ς = ς+
fs :

dT̃ 2

dς
− dT̃ 1

dς
− 1 − σ

Le

dC̃1

dς
+

(
d2T2s

dς2
− d2T1s

dς2
− 1 − σ

Le

d2C1s

dς2

)
ς̃+

f = 0, (44)

d2C1s

dς2
ς̃+

f +
dC̃1

dς
=

N

2T 2
fs

dC1s

dς
T̃ +

f , (45)

dT1s

dς
ς̃+

f + T̃ 1 =
dT2s

dς
ς̃+

f + T̃ 2 = T̃ +
f , (46)

dC1s

dς
ς̃+

f + C̃1 = 0; (47)

ς = −ς+
fs :

dT̃ 3

dς
− dT̃ 2

dς
+

1 − σ

Le

dC̃3

dς
+

(
d2T3s

dς2
− d2T2s

dς2
+

1 − σ

Le

d2C3s

dς2

)
ς̃−

f = 0, (48)

d2C3s

dς2
ς̃−

f +
dC̃3

dς
=

N

2T 2
fs

dC3s

dς
T̃ −

f , (49)

dT3s

dς
ς̃−

f + T̃ 3 =
dT2s

dς
ς̃−

f + T̃ 2 = T̃ −
f , (50)

dC3s

dς
ς̃−

f + C̃3 = 0. (51)
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xf
+

Time

0

xf
–

Figure 6. Oscillatory evolution history of the flame front location (x+
f , x−

f ). Solid lines

denote the symmetric oscillations and the dashed lines denote the asymmetric oscillations.

The above equations yields the dispersion relation for Ω of the form

DSDA = 0, (52)

where

DS,A = 2H (Tfs − σ ) +
1 − σ√

Le
ψ(ς+

fs

√
Le)(A(ς+

fs

√
Le, Ω) − BS,A(ς+

fs , Ω + H )

+ 2ς+
fs (Le − 1)) + (A(ς+

fs , Ω + nH ) − BS,A(ς+
fs , Ω + H ))

×
(

2T 2
fs

N
(2ς+

fs Le + A(ς+
fs

√
Le, Ω)) + (T +

fs − σ )A(ς+
fs , nH )

)
. (53)

Here ψ is defined by (31), and A and BS are defined by (32) and (33), respectively. In
addition,

BA(ς, Λ) =
d

dς
ln(I+(ς, Λ) − I−(ς, Λ)). (54)

As one can see from (52) that its solution consists of solutions of DS =0 and DA = 0,
which can be found independently. The first dispersion equation DS = 0 corresponds to
the case of symmetrical perturbations (ς̃−

f = − ς̃+
f ) and the second case, DA = 0, may

be associated with asymmetrical or anti-symmetrical perturbations (ς̃+
f 	= ς̃−

f ). In the
case of asymmetrical perturbations the flame separation distance remains invariable.
The equality of the distance between the flames and the plane ς = 0 characterizes
the case of symmetrical perturbations. The ς+

f , ς−
f dependence on time in the case of

symmetrical and anti-symmetrical flame oscillations is shown qualitatively in figure 6.
At large flame separation distances (ςfs → ∞) and small velocity gradients (a → 0)

such that the flame velocity Vf = xfsa =
√

2aςfs remains finite, the dispersion relation
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may be transformed to (see Appendix for details)√
V 2

f + 4(h + ω)

(
(Tfs − σ )

(
Vf +

√
V 2

f + 4h
)

+
2T 2

f Le

N

(√
V 2

f + 4ω/Le − Vf

))

= (1 − σ )Vf

(
Vf (1 − Le) +

√
(LeVf )2 + 4Leω +

√
V 2

f + 4(h + ω)
)

(55)

where ω = Ωa is the growth rate of small perturbations in the unit of U 2
ad/Dth .

In the limit of small heat loss (h = 0, Vf = 1, Tf = 1) and near-unity Lewis number
(Le → 1, N → ∞, β(Le − 1) = (1 − σ )(Le − 1)N is a finite quantity), (55) can be
rewritten as

(2 + 8ω + β(Le − 1))(
√

1 + 4ω − 1) − 4β(Le − 1)ω = 0, (56)

which is identical to that given by the theory of thermal-diffusion stability of the
planar adiabatic flame (Sivashinsky 1977). According to this theory the flame becomes
oscillatory when β(Le − 1) > 4(

√
3+1), which follows from (56). Thus, the dispersion

equation (52) for stretched flames becomes the classical dispersion relation for the
freely propagating flame in the limits of small stretch rates and large flame separation
distances.

The equations DS = 0 and DA = 0 were solved numerically to identify unstable
stationary solutions. A stationary solution is considered to be unstable if any root
of the dispersion equation (52) has positive real parts (Re(Ω) � 0). Numerical cal-
culations of the growth rates Ω for different branches of xf (a) curves in figures 2 and
3 are conducted. To render experimental comparison possible, we rewrite the growth
rate in the form of

Ω = (γ + iω)/a, (57)

in which ω is the oscillation angular frequency normalized by U 2
ad/Dth . For the sub-

limit flame regime (figures 2 and 4), calculations of (52) for the case of n = 0 shows
that on the DF branch ((a) in figure 2), all the roots of (52) have negative real parts
and the imaginary parts are absent. Thus the DF branch is stable.

On the other hand, the calculated growth rate related to the slow-burning flame
regime ((b) in figure 2) has a positive real part which vanishes at the neutral stability
point. Thus, the slow-burning branch is unstable. This result agrees with previous
inference (Ju et al. 1997, 1999) and numerical prediction (Ju et al. 2000). In fact,
the DF and the slow-burning flame respectively reduce to the fast- and slow-burning
regimes of the planar propagating flames in the limit of zero stretch rates. It is
well known that for the planar propagating flame, the fast mode is stable and the
slow mode is unstable. Therefore, the present result is consistent with the previous
finding in the limit of zero stretch rates. On the NSF branch ((c) in figure 2),
the non-dimensional real and imaginary parts of the growth rates are plotted as
functions of the stretch rate in figure 7(a). The calculation shows that the growth rate
of symmetric perturbations has positive real and non-zero imaginary parts within
some range of moderate stretch rates. The imaginary part of the growth rate of
anti-symmetrical perturbations is zero. The lower boundary of instability is defined
by symmetrical perturbations whereas the upper boundary is defined by anti-
symmetrical perturbations that dominate at stretch rates close to the upper boundary
of instability. It is seen that the real part of the growth rate becomes positive only at
moderate stretch rates and that there are no solutions with positive real part at small
and large stretch rates. Therefore, the NSF is stable at both small and large stretch
rates, and only becomes pulsating at moderate stretch rates.
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Figure 7. (a) Non-dimensional imaginary ω (open circles) and real γ (filled circles and filled
squares) parts of growth rates vs. velocity gradient a for Le = 0.9, σ = 0.23, n = 0. The curve
marked by squares refers to the asymmetric instability. (b) The dimensional growth rate vs.
dimensional velocity gradient corresponding to (c).

The above results agree with the numerical prediction of Ju et al. (2000), in which it
is found that the flame is stable near both the radiation extinction limit (small stretch
rate) and the stretch extinction limit, and is unstable only at moderate stretch rates.
Again, the present analysis shows that the mechanism of oscillations in sub- and
near-limit stretched flames is different from the instability analysed by Sivashinsky
(1977) and Joulin & Clavin (1979), in which pulsating instability is predicted for either
very large Lewis numbers or close to the extinction limit. The dimensional growth
rate corresponding to figure 7(a) is given in figure 7(b). It is seen that the oscillation
frequency (ω/2π) is between 2.5 and 4.5 Hz. By recalling that the frequency predicted
in a detailed numerical simulation (Ju et al. 2000) is between 2 and 3 Hz and the
observed frequency in microgravity experiments (Maruta et al. 1998) is 1.5 Hz, it can
be concluded that the present analysis yields the correct description of the pulsating
instability of sub-limit flames.
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0
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�, �

0.025

Figure 8. Imaginary part ω (open circles) and real part γ (filled circles and filled squares) of
the growth rate vs. velocity gradient a for Le = 0.9, σ = 0.22, n = 0. The curve with squares
refers to the asymmetric instability. The vertical dashed lines denote the boundaries of the
pulsating instability.

For the near-limit flame regime (figure 3), calculations performed for both n = 0
and 1 show that the growth rates for symmetric and asymmetric perturbations are
negative on the normal flame branch (e) and there are positive roots of (52) on the
slow burning branch (b). This result is consistent with previous theoretical predictions
(Joulin & Clavin 1979; Sivashinsky & Law 1982). However, oscillatory instability is
found on the weak flame branch (d) close to its jump limit. Figure 8 shows, for the
weak flame with n = 0, the dependence of the real and imaginary parts of the growth
rate on the stretch rate in the vicinity of the turning point. The non-uniqueness
of unstable solutions of the dispersion equation (52) leads to the possibility of
simultaneous excitation of anti-symmetrical and symmetrical perturbations. During
the development of such an instability, the pulsating flame fronts will be shifted from
their symmetrical locations to either side of the stagnation plane. One of the possible
scenarios of the flame behaviour in the case of excitation with both non-symmetrical
and symmetrical perturbations is shown in figure 9, in which the flame front trajectory
in the phase plane (dxf /dt, xf ) is plotted. This trajectory resembles to that given in
Maruta et al. (1998). This example is presented only as illustration of the complicated
flame behaviour associated with the development of this kind of instability because
nonlinear analysis is need to describe the evolution of finite-amplitude perturbations.

With the further reduction of the stretch rate, the real part of the growth rate
becomes negative, indicating that the weak flame is stable at small stretch rates.
Therefore, on the weak flame branch, the pulsating instability only occurs in a regime
near the jump limit, which corresponds to the interval between the two dashed lines
in figure 8. This prediction agrees well with the direct numerical solution (Ju et al.
2000).

By plotting the upper and lower boundaries (stretch rate) of the pulsating instability
in figures 7 and 8 as functions of the reduced adiabatic flame temperature or fuel
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xf

dxf

dt

Figure 9. Trajectory of the flame front in the phase diagram of flame propagation velocity
and flame location for the combined asymmetric and symmetric flame front perturbations:
xf (t) = −0.14 exp(0.1t + i5.3t) − 0.1 exp(0.7t).

concentration 1/(σ −1), the pulsating zone in the plane of stretch rate versus reduced
flame temperature is shown in figure 10. It is seen that pulsating instability only
occurs within the closed curve. This result supports the results from the direction
numerical simulation, where a close unstable region was not obtained.

The current study is concerned with a stability analysis of one-dimensional
perturbations. The development of unsteady two-dimensional perturbations may lead
to the formation of complex non-planar and time-dependent modes of the flame
front. Recent experiments (Kaiser, Liu & Ronney 2000) conducted with a counterflow
slot-jet apparatus demonstrate a large variety of non-planar flame structures, such
as travelling waves propagating along strips of the flame, stationary and moving
single ‘flame tubes’, and structures resemble chains of the ‘flame tubes’. It would be
interesting to explain the phenomena of travelling waves by a linear stability analysis
extended to the two-dimensional case. Mathematically, the development of small
spatial perturbations with non-zero imaginary and positive real parts of growth rate
may result in the formation of travelling waves or more complex pulsating spatial
modes of the stretched flame front.

5. Numerical simulation
In the direct simulation of Ju et al. (2000), although the dependence of the instability

on stretch rate was demonstrated for CH4–air flames, the dependence of the insta-
bility on the equivalence ratio was not examined because of computational limitations.
In order to prove the validity the present analysis, we need to demonstrate numerically
that the near-limit pulsating stability is also bounded to the equivalence interval (the
horizontal boundary of instability in figure 10). We again employ axisymmetric
counterflow premixed flames with a CH4–air mixture, together with C1 chemical
kinetics and optically thin radiation model. Details and justification of these models
can be found in our previous work (Ju et al. 1997, 2000). The unburned temperature
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Figure 10. The diagram of flame instability plotted as the instability onset velocity gradients
a as a function of the reduced flame temperature 1/(σ − 1) for Le = 0.9 and n = 0. The
region of pulsating instability of stretched flames lies inside the isola. The vertical dashed line
corresponds to the lean flammability limits of the unstretched planar propagating flame. In
the inset, the thick line denotes the stretch extinction limit of the stretched flame.

of the mixture is 300 K and the pressure is 1 atm, which are the same as those
used in the analysis. Unsteady solutions were obtained using a point implicit upwind
scheme with an adaptive grid. The initial perturbation is 1% of the local temperature
difference with the unburned mixture. The second-order Crank–Nicholson method is
employed for time marching. The minimum time step is 1 ms. The time evolution
of the flame temperature at a constant stretch rate (4 s−1) for different equivalence
ratios is plotted in figure 11. It is seen that, at small equivalence ratio (0.43), the
initial perturbation decays rapidly and the flame is stable. As the equivalence ratio is
increased to 0.48, the flame initially oscillates when subjected to a small perturbation,
but this oscillation decays with time. When the equivalence ratio is increased to 0.485,
pulsating instability occurs. This oscillation also exists at an equivalence ratio of 0.487,
but disappears at an equivalence ratio of 0.50. Although it is difficult for numerical
simulation to exactly define the oscillation boundary, figure 11 clearly shows that
there is a window of equivalence ratio within which the flame becomes unstable. This
result confirms the validity of the analysis in the previous section.

6. Conclusions
Analytical relations of flame bifurcations and a dispersion equation for the stability

of sub- and near-limit stretched flames are derived with both symmetrical and
asymmetrical perturbations. In contrast to the classical thermal-diffusion pulsating
instability, which only occurs at large Lewis numbers, a new kind of radiation-induced
pulsating instability is found to exist for stretched flames at Lewis number close to
unity. It is shown that radiation-induced instability occurs at moderate stretch rates
on the weak flame and near-stagnation flame branches, rather than near the radiation
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Figure 11. Time history of flame temperature for a = 4 s−1 and Le = 0.967 for typical
equivalence ratios (detailed numerical simulation).

and stretch extinction limits. A diagram showing the establishment of pulsation insta-
bility in terms of the stretch rate and flame temperature is presented. The analytical
results agree with numerical simulations, and give a good explanation for the
observations of microgravity experiments.
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K. Maruta of Akita Prefecture University for many interesting discussions. This
work was partly supported by AFOSR under the technical monitoring of Dr J. M.
Tishkoff, and the Petroleum Research Fund of the American Society of Chemistry
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Appendix
Here we show the general exact solution of (43), various forms of which were

employed in the study. The equation can be written in the form

−2ς
dφ

dς
=

d2φ

dς2
− 2Λφ, (A 1)
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where Λ is a complex number. We restrict ourselves to the case when Re(Λ) > −1.
Substituting

φ(ς) = exp(−ς2)G(ς) (A 2)

into (A 1), we have

2ς
dG

dς
=

d2G

dς2
− 2(Λ + 1)G. (A 3)

The general solution of (A 3) can be written as

G(ς) = K1J
−(ς, Λ) + K2J

+(ς, Λ), (A 4)

J −(ς, Λ) =

∫ ∞

0

ηΛ exp

(
−η2

4
− ςη

)
dη, (A 5)

J +(ς, Λ) =

∫ ∞

0

ηΛ exp

(
−η2

4
+ ςη

)
dη, (A 6)

where K1, K2 are arbitrary constants. As one can see from (A 5) and (A 6), the
restriction of Re(Ω) > −1 is necessary for the integrals to converge near zero.

The proof of the above solution is simple. We only demonstrate the validity for a
special case of K2 = 1 and K1 = 0; the reader can easily extend it to the general
case of arbitrary K1 and K2. Substituting (A 6) into the left-hand side of (A 3) and
integrating by parts, one obtains

2ς
dG

dς
= 2

∫ ∞

0

ςηΛ+1 exp

(
ςη − η2

4

)
dη = 2

∫ ∞

0

d

dη

(
ηΛ+1 exp

(
ςη − η2

4

))
dη

− 2

∫ ∞

0

exp(ςη)
d

dη

(
ηΛ+1 exp

(
−η2

4

))
dη

= −2(Λ + 1)G +

∫ ∞

0

ηΛ+2 exp

(
ςη − η2

4

)
dη (A 7)

The underlined integral in (A 7) becomes zero under the condition of Re(Λ) >

−1. The right-hand side of (A 3) is given by

d2G

dς2
− 2(Λ + 1)G = −2(Λ + 1)G +

∫ ∞

0

ηΛ+2 exp

(
ςη − η2

4

)
dη. (A 8)

A comparison between the right-hand sides of (A 7) and (A 8) proves that G is the
solution of (A 3). In view of (A 2), the general solution of (A 1) may be written as

φ(ς, Λ) = K1I
−(ς, Λ) + K2I

+(ς, Λ), (A 9)

where

I−(ς, Λ) = exp(−ς2)J −(ς, Λ), I+(ς, Λ) = exp(−ς2)J +(ς, Λ). (A 10)

Let us examine the asymptotic behaviour of logarithmic derivatives A = d ln(I−)/
dς , BS,A = d ln(I+ ± I−)/dς in the case of ς 
 1. As an example, we only show here
the estimation of A(ς, Λ). The estimation of BS,A(ς, Λ) can be obtained in the same
way.
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Using the identity

ΛJ −(ς, Λ − 1) − 1

2
J −(ς, Λ + 1) − ςJ −(ς, Λ)

=

∫ ∞

0

d

dη

(
ηΛ exp

(
−η2

4
− ςη

))
dη = 0 (A 11)

and the formula for the logarithmic derivative of J −(ς, Λ) on ς

Φ(ς, Λ) =
d

dς
ln J −(ς, Λ) = −J −(ς, Λ + 1)

J −(ς, Λ)
(A 12)

one can derive the recurrence formula for Φ(ς, Λ) and Φ(ς, Λ − 1):

Φ(ς, Λ)Φ(ς, Λ − 1) − 2ςΦ(ς, Λ − 1) − 2Λ = 0. (A 13)

In the case of Λ 
 1 and ς 
 1, the function Φ(ς, Λ − 1) is close to Φ(ς, Λ) so
(A 13) may be rewritten as a quadratic equation for the function Φ(ς, Λ):

Φ(ς, Λ)2 − 2ςΦ(ς, Λ − 1) − 2Λ = 0. (A 14)

According to (A 12), Φ(ς, Λ) is a negative function. This condition can be applied to
the solutions of (A 14) and yields the asymptotic formula for Φ(ς, Λ):

Φ(ς, Λ) = ς −
√

ς2 + 2Λ. (A 15)

By knowing Φ(ς, Λ), one can easily obtain the asymptotic formula for A(ς, Λ):

A(ς, Λ) =
d

dς
ln I−(ς, Λ) = −2ς +

d

dς
ln J −(ς, Λ)

= −2ς + Φ(ς, Λ) = −ς −
√

ς2 + 2Λ. (A 16)

In the same manner, we can derive the asymptotic formula for BA,S(ς, Λ) as

BS,A(ς, Λ) ∼=
d

dς
ln I+(ς, Λ) = −ς +

√
ς2 + 2Λ. (A 17)

In view of (A 9), (A 16) and (A 17), the second solution of (A 9) with constant K2

approaches infinity at infinitely large ς , whereas the first solution with constant K1

vanishes with increasing ς .
The selection of the constants K1 and K2 depends on the boundary conditions. To

satisfy the boundary condition dφ/dζ = 0 as ς = 0, we set K1 = K2. Solution of
(A 9) has the form (see (25)),

φ(ς, Λ) = I−(ς, Λ) + I+(ς, Λ) = 2 exp(−ς2)

∫ ∞

0

ηΛ cosh(ςη) exp

(
−η2

4

)
dη. (A 18)

In the case of φ(ς) → 0 as ς → ∞, the solution with constant K2 should be discarded
and the remaining term leads to (24) and (42).
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