
Macroeconomic Dynamics, 24, 2020, 882–919. Printed in the United States of America.
doi:10.1017/S1365100518000524

HOW POWERFUL ARE NETWORK
EFFECTS? A SKILL-BIASED
TECHNOLOGICAL CHANGE
APPROACH

OSCAR AFONSO
Universidade do Porto

MANUELA MAGALHÃES
The Center for Advanced Studies in Management and Economics (CEFAGE)

Even for the standard skill-biased technological change (SBTC) literature, the generic rise
in the skill premium in the face of the relative increase in skilled workers since the 1980s
seems a little puzzling. We develop a general equilibrium SBTC growth model that allows
the dominance of either the price channel or the market-size channel mechanism through
which network spillovers affect the technological-knowledge bias and, thus, the paths of
intra-country wage inequality. The proposed mechanisms can accommodate facts not
explained by the earlier literature.
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1. INTRODUCTION

Using different proxies for skills, several studies document the rise in the relative
wage of skilled workers (the skill premium) since the 1980s. For example, in the
case of developed countries, Katz and Murphy (1992) report the increase of the
relative wage of college graduates when compared to high-school graduates in
the USA; Juhn et al. (1993) describe the rise in hourly and weekly wage differen-
tials between the 90th wage percentile (skilled workers) and 10th wage percentile
(unskilled workers) also in the USA; and Nickell and Bell (1996) illustrate the
enlargement of the earnings differential between high- and low-educated males
in Germany, the UK, and the USA—see also Machin and Van Reenen (1998),
Acemoglu (2003), Goldin and Katz (2008), Autor et al. (2008), and Autor (2014),
among others. The increase in the skill premium is also documented for some
newly industrialized (developing) countries. Zhu and Trefler (2005) show that
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this occurred in Hong Kong, India, Thailand, and Uruguay, among other coun-
tries; Avalos and Savvides (2006) confirm the increase in wage inequality in Latin
America and East Asia; and Brainerd (1998) verifies that the wage differential
between the 90th and 10th wage percentiles widened in Russia.

In addition to these changes in wages, many developed countries have also
experienced a steady increase in the relative supply of skilled workers over time.
For example, Kranz (2006) shows that the share of workers with more than
high-school education increased in Italy, Germany, the UK, and the USA; and
Acemoglu (2003) attests that the same occurred in other developed countries
(e.g. The Netherlands, Sweden, Norway, Belgium, and Finland)—see also, for
example, He (2012). In developing countries the generic rise in the proportion of
skilled workers is also observed [e.g. Zhu and Trefler (2005)].

The generic rise in the skill premium in many developed and developing coun-
tries since the 1980s seems, however, a bit puzzling. We would expect a fall in
the skill premium in the face of the relative increase in the scale or market size
of skilled workers. Concerning the related literature, the skill-biased technologi-
cal change (SBTC) literature attempts to work out the contradiction between the
rise in the skill premium and the relative increase in the supply of skills [e.g.
Juhn et al. (1993), Acemoglu (1998), Acemoglu and Zilibotti (2001), Acemoglu
(2002), Akerman et al. (2015), and McAdam and Willman (2018)]. In partic-
ular, Acemoglu (1998), Acemoglu and Zilibotti (2001), and Acemoglu (2002)
consider that technological-knowledge change responds positively to shifts in
labor supply, which, in turn, increases the demand. That is, when the supply of a
type of labor increases, the market for technologies that complement it broadens
(scale or market size), and this creates additional incentives for R&D aimed at
those technologies. As a result, technological-knowledge change steers toward
those technologies, which increases the demand for the complementary labor
type. Hence, the SBTC literature interprets the rise in the skill premium as a direct
consequence of the increase in the relative supply of skilled workers, which, by
affecting the technological-knowledge change, induces an increase in the relative
demand of skilled workers that exceeds the increase in the relative supply, thereby
increasing the skill premium.

However, in theoretical terms, by stressing the market-size channel on
technological-knowledge change, the SBTC literature contradicts the dominant
literature on scale effects ever since Jones (1995a,b), who emphasized the (mod-
ern) evidence against scale effects on steady-state economic growth; indeed,
growth rates have not always accelerated globally as population increased and
bigger countries do not grow systematically at higher rates than smaller ones. In
particular, scale effects arise through market size, measured by workers, and can
be removed by considering a complexity effect in R&D, a cost-of-market-size,
such that the difficulty of introducing new products and replacing old ones is pro-
portional to the market size, often linked with population [e.g. Ha and Howitt
(2007), Afonso (2012), and Ang and Madsen (2015)]: The greater the latter,
the greater the costs to discover, develop, and market the associated technology
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(e.g. costs pertaining to the construction of prototypes and samples, new assem-
bly lines and training of workers, and generic coordination, organizational, and
transportation costs). These complexity costs, cost-of-market-size, offset the pos-
itive effect of scale on the (expected) profits of the successful innovator. In this
way, the scale does not influence the steady-state growth rate because the proba-
bility of successful research is also independent of the scale [e.g. Dinopoulos and
Thompson (1999, 2000), Barro and Sala-i-Martin (2004), and Afonso (2012)].

Moreover, in empirical terms, some evidence seems to contradict the explana-
tion proposed by the SBTC literature. Acemoglu (2003), for example, documents
a decline in the skill premium in the Netherlands between the early 1980s and the
mid-1990s, in a scenario with relative increase of skills, and an increase in the skill
premium in Canada between the late 1980s and the late 1990s, in a scenario with
stable relative supply of skills. Moreover, data from developing countries reveal
additional problematic evidence. For example, Crino (2005) shows that Hungary
and the Czech Republic experienced an increase in the skill premium between
1993 and 2004, while at the same time the relative employment of skilled work-
ers fell; Robertson (2004) detects that wage differential between the 90th and 10th
wage percentiles decreased in Mexico between 1994 and 2002, even with the rel-
ative increase of skilled workers; and Zhu and Trefler (2005) reveal that the same
situation occurred in Bolivia, South Korea, and the Philippines.

By paying special attention to the SBTC literature, we build a framework
to address some new mechanisms that can accommodate the effective occur-
rences observed in different countries. It is closely related to the contributions
of Acemoglu (1998), Acemoglu and Zilibotti (2001), Acemoglu (2002), Afonso
(2006), and Afonso (2008), but it is built in order to:

• assess the implications arising from the total or partial removal of scale effects
associated with the market size in the SBTC framework, then stressing fully or
partially the price of goods (price channel) as determinant of the direction of
technological knowledge since more expensive goods command higher profits
for the producers of the respective inputs1;

• include three additional findings observed in the literature, which by producing
a learning-by-interacting effect in the R&D technology affect the direction of
the technological-knowledge change—the complementarity between the inten-
sity of R&D activity and (R&D) cooperations, the (R&D) cooperations as a
mechanism to promote learning and knowledge diffusion and to internalize
technological-knowledge spillovers, and the complementarity between R&D
activity and skilled labor/technology.

Detailing a little more each one of these three findings, we observe that the posi-
tive link between R&D intensity and cooperations/alliances/connections/linkages
has a very long tradition [Arrow (1962) and Spence (1984)]. Sectors in which
R&D activity is relatively intense, such as pharmaceuticals, chemical, computer
software, electronic components, and communication equipments, whose pro-
duction is relatively intensive in skilled labor, have a relatively high number
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of cooperations and are intensively connected [Hagedoorn and Duysters (2002),
Riccaboni and Pammolli (2002), Powell et al. (2005), and Roijakkers and
Hagedoorn (2006)]. Firms in these sectors have thus formed R&D cooperation2

that occurs among firms within the same market product and among firms from
other sectors [König et al. (2014)], sharing knowledge and becoming more spe-
cialized in one technology [Weitzman (1998)]. Cooperation intensity is then an
important mechanism through which spillovers flow and allows the propaga-
tion of learning, knowledge diffusion, and technological-knowledge spillovers
through the network [König et al. (2014) and Tomasello et al. (2016)].3 The non-
internalization of technological-knowledge spillovers reduces R&D incentives,
and learning and knowledge diffusion promote R&D. Hence, (R&D) coopera-
tions arise as a mechanism to internalize spillovers and to emphasize learning
and knowledge diffusion. Consequently, R&D cooperations also promote R&D
activity [D’Aspremont and Jacquemin (1988), Kamien (1992), Kamien and Zang
(2000), Bloom et al. (2013), and Tomasello et al. (2015)].

The complementarity between R&D activity and skills has been illustrated by
the Industrial Organization literature, by Schumpeterian models, and by North–
South models [Parello (2008) and Cozzi and Galli (2009)]. These different
branches of the literature demonstrate that both applied and basic R&D invest-
ments are intensive in employed skilled workers. Firms that are intensive in
skilled workers enjoy higher productivity, which can be interpreted as evidence
of spillovers among firms. Even firms that do not make R&D investments benefit
from higher productivity when they operate in the skill-intensive sector [Leiponen
(2005) and O’Mahony and Vecchi (2009)]. This complementarity between skills
and R&D is also observed for the firms’ innovation rate [Mohnen and Röller
(2005)] and for the internal and cooperative R&D absorptive capacity [Leiponen
(2005) and Cohen and Frazzini (2008)]. Thus, the entire innovation organiza-
tion (profitability of R&D cooperations, innovation rate, absorptive capacity, and
knowledge spillovers) benefits from strong and positive skill effects.

To sum up, the literature has shown the importance of R&D cooperations in
terms of R&D profitability due to the propagation of learning and knowledge
diffusion effects as well as due to technological-knowledge spillovers through
the network. Simultaneously, the literature demonstrates that these effects are
positively related with the connectivity between firms and intensity of skills. In
spite of the importance illustrated in the literature on the relationship between
network connectivity, skills intensity, and knowledge spillovers, studies incorpo-
rating R&D collaboration network to analyze the impact on economic growth,
technological-knowledge bias, and income inequality have not been developed.
Exploring these relationships is an important objective of the paper.

In order to better understand the mechanism, we model a standard (in endoge-
nous R&D-growth theory) economic structure. The production of perfectly com-
petitive final goods uses labor together with quality-adjusted intermediate goods,
which, in turn, use innovative designs under monopolistic competition. Each final
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good is produced by one of two technologies. One uses skilled labor together with
a continuum set of skilled-specific intermediate goods (the skilled technology).
The other brings together unskilled labor and a continuum set of unskilled-specific
intermediate goods (the unskilled technology). This production function, with
complementarity of inputs and substitutability between technologies, is adapted
from Acemoglu and Zilibotti (2001), where the market-size channel is empha-
sized, and from Afonso (2006), where the price channel is stressed. Moreover,
since innovation hardly ever takes place in isolation, we consider the literature
on R&D intensity and collaboration network, and include in our SBTC context
the importance of R&D cooperations owing to the propagation of learning and
knowledge diffusion effects as well as due to technological-knowledge spillovers
through the network (learning-by-interacting effect).

Bearing in mind the literature, we conjecture that the learning-by-interacting
effect is positively related with the connectivity between firms and the intensity of
skills4; that is, the increasing linkages favor learning and knowledge diffusion as
well as the internalization of technological-knowledge spillovers reflected in the
reduction of R&D costs, thus speeding up the technological-knowledge progress.
In practice, the measure of the linkage/cooperation effects is captured by the net-
work degree, which, in our case and in line with the literature [Leiponen (2005)
and O’Mahony and Vecchi (2009)], is assessed in relative terms from the skilled
to the unskilled technology. Hence, through the learning-by-interacting effect,
the technological-knowledge progress is not balanced between technologies, with
the bias leaning toward the skilled technology positively related with the number
of final goods produced with this technology. Moreover, to meet this effect, we
also follow Cohen and Levinthal (1989), Bloom et al. (2013), and Aghion and
Jaravel (2015) and look at the input–output interconnections established between
firms/sectors in the network structure.

For instance, in a case with complete removal of scale effects, by including a
strong adverse cost-of-market-size in the R&D technology, the relative abundance
of skilled labor increases the competitive price of goods produced by unskilled
workers and, thus, the demand for R&D directed toward improvements in goods
produced by unskilled labor (price channel). However, even when the price chan-
nel dominates the market-size channel, the rise in the skill premium can emerge
due to the opportunities created by the learning-by-interacting effect in skilled
technology, which, by capturing the relatively stronger benefits of productive
cooperations/linkages in skilled technology, redirects technological knowledge in
favor of intermediate goods used with skilled labor. We thus propose a framework
in which the learning-by-interacting effect can have negative consequences on
the unskilled wages and is capable of generating predictions compatible with
the trend described above of the skill premium in all countries. To sum up, the
more rapid rise in the demand for skills due to SBTC should be affected by
the relatively stronger benefits of productive cooperations/linkages in skilled
technology. The transmission of technological change intra-(skilled) technology
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through knowledge spillovers has important implications for our understanding
of the innovation process in an economy, and we intend to analyze how these
knowledge linkages affect the technological-knowledge bias, the skill premium,
and the economic growth.

Although our model abstracts from important determinants of the skill pre-
mium in, for example, the US economy (including changes in the domestic
supply of skills), it is consistent with the qualitative picture emerging from several
decades of changes in the US wage structure. The first wave of strong cooper-
ations/linkages in the 1980s, following the increase in skilled labor, coincides
with a sharp increase in the skill premium, but as linkages continue to expand at
decreasing rates in the late 1990s and 2000s, the skill premium rose smoothly and
began stabilizing [Acemoglu and Autor (2011)].

Our analysis of transitional dynamics further shows that the process is basi-
cally governed by two conflicting channels/effects: The price channel due to
the (partial) removal of scale effects and the learning-by-interacting effect,
eventually helped by the market-size channel, which favors the capacity to inter-
nalize spillovers and benefit from the exchange of knowledge. For example,
an increase in skilled labor implies that more final goods are produced with
this technology, creating/reinforcing the learning-by-interacting effect, which,
however, start to be sold at a relatively low price. The overall effect on the
technological-knowledge bias and thus on the skill premium during the transi-
tional phase depends on the magnitude of the contradictory channels/effects since,
by reason of complementarity between inputs in the production of final goods,
changes in the skill premium are closely related to the technological-knowledge
bias.

After these introductory remarks the paper proceeds in Section 2 with some
empirical motivation for the relationship between the relative skilled wage and
the network intensity. Section 3 presents the setup of the theoretical model. In
Section 4, the dynamic general equilibrium is derived and some transitional
dynamics and steady-state growth effects are analyzed. Section 5 presents sup-
portive quantitative results, discussing the calibration, and performing the tran-
sitional dynamics toward the steady state and the sensitivity analysis. Section 6
concludes the paper with an assessment of the current state of this research.

2. EMPIRICAL MOTIVATION

The literature reveals that (R&D) cooperations allow learning and knowledge
diffusion as well as the internalization of technological-knowledge spillovers
through the network, thus contributing to the intensification of R&D activity,
which, in turn, is positively related with skilled labor. However, the effects of
network intensity on technological-knowledge direction and on the skill premium
have not been investigated and, as stated above, this is an important goal of the
paper. Hence, our motivation stems from the gap observed in the aforementioned
literatures as well as from the following empirical evidence.
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Notes: The left panel plots relative skilled hours (y-axis) against the network distance (x-axis). The
right panel plots the relative skilled wages (y-axis) against the network distance (x-axis).

FIGURE 1. Relative skilled wages and hours against network distance.

Our argument is supported by the empirical evidence shown in Figure 1, which
plots the relative skilled wages and the relative skilled hours for the USA in
2007 against the network distance (x-axis) of each sector, at two-digit level (see
Table C1 in Appendix C for detail), to every other sector in the network, where the
relative skilled wages is the ratio between the hourly wage of skilled workers, that
is, workers with college degree, or its vocational equivalent, and above, and the
hourly wage of unskilled workers, that is, workers with education below a college
degree. Similarly, the relative skilled hours is the ratio between the skilled and
unskilled working hours. Remember that the network distance is the sum of the
distance along the shortest path of a sector to every other sector of the network.5

Thus, the higher is the network intensity, that is, the higher the connectivity or the
closeness among agents, which captures the learning-by-interacting effect, the
higher is the relative skilled wage and the higher are the relative skilled hours.

The sign of the relationship between the network intensity and the relative
skilled wages, and between the network intensity and the skilled hours, is not
a exclusive feature of the US economy or a year-specific feature. The same rela-
tionship is found in the US economy for the period 1995–2009, as well as for
a representative set of 40 countries, 27 EU countries, and 13 major countries,
that we test from 1995 to 2009 using the world input–output database (WIOD).6

Thus, defining wH
wL

as the relative skilled wages, and reminding that Di represents

the network degree [equation (A1) in Appendix A] and �−1
i the inverse of the

network distance, that is, the network closeness [equation (A2) in Appendix A],
we estimate the following equation:

wH

wL jit
= β1 + β2NIjit + vji + δt + μjit, (1)

where NIjit is the network intensity of sector i in country j and period t, which
we approximate by Djit or �−1

jit , vji is the i-sector, j-country fixed effect, δt is the
time fixed effect. We also estimate an identical equation for the relative skilled
hours. The estimation results are summarized in Table 1. The columns (1)–(2) and
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(5)–(6) of Table 1 show the relationship between the inter-sector network inten-
sity and the relative skilled wages for the period 1995–2009. The columns (1)–(4)
report the estimation results for the US economy, while the columns (5)–(9)
report the estimation results for the 40 countries considered in our sample. Using
either the network degree or the inverse of the network distance as measures
of the network intensity [columns (1), (2), (5), and (6)], we observe a positive
and significant effect of the network intensity on the relative skilled wages. The
higher the sectors’ connectivity (or network degree) and closeness (or inverse of
the network distance) are, the higher is the skilled wage relative to unskilled.
The columns (3), (5), and (7) of Table 1 show the network intensity effect on
skilled hours relative to unskilled. The effect is also positive and significant, show-
ing that the higher is the network intensity, the higher is the number of hours
worked by skilled workers relative to unskilled. When we use the network degree
as proxy of the network intensity, column (8), we find a negative relationship, but
after introducing the squared degree, column 9 of Table 1, we conclude that there
is a U-shaped relationship between network intensity and relative high-skilled
hours for the set of 40 countries.7 That is, after some degree level we also observe
a positive relationship between the network degree and the relative high-skilled
hours. Thus, both network measures favor our argument that the network intensity
promote an intensification of the relative high-skilled hours.

3. THEORETICAL SETUP

This section describes the theoretical economic setup, which is based on
Acemoglu and Zilibotti (2001), and the equilibrium analysis, stressing the law
of motion of technological knowledge, the transitional dynamics, and the steady-
state growth. A fixed number of infinitely lived households inelastically supply
labor, maximize utility, and invest in firm’s equity. The economy produces final
goods in perfect competition and intermediate goods in monopolistic competi-
tion. Successful R&D activities result in innovations used by the intermediate
goods sector, which drive the economic growth and the technological-knowledge
bias, and thus the path of wage inequality. Labor and quality-adjusted intermedi-
ate goods are the inputs of final goods. The fraction of the aggregate final good
that is not consumed is, in turn, used in the production of intermediate goods and
in R&D.

3.1. Consumers

The economy is populated by a fixed number of infinitely lived households
who consume and collect income from investments in financial assets and from
labor. Households inelastically supply unskilled, L, or skilled labor, H. Total
labor supply, L + H, is therefore exogenous and constant. We assume that con-
sumers have perfect foresight concerning the technological change over time and
choose the path of final good aggregate consumption {C(t), t ≥ 0} to maximize
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TABLE 1. Evidence of networks intensity on relative skilled wages and hours

Relative skilled wages Relative skilled hours Relative skilled wages Relative skilled hours

(1) (2) (3) (4) (5) (6) (7) (8) (9)

�−1
jit 0.041** 0.011*** 0.03*** 0.06***

(2.22) (3.23) (7.02) (8.44)
Djit 0.086*** 0.082** 0.0658*** −0.105*** −0.856***

(2.62) (2.56) (11.76) (−11.41) (−34.39)
D2

jit 0.355***

(32.28)
Const. 1.841*** 1.779*** 0.087 0.257*** 1.494*** 1.497*** 0.010 0.220*** 0.547***

(24.54) (31.35) (1.46) (3.71) (88.26) (101.37) (0.689) (9.08) (21.48)
Country FE

√ √ √ √ √
Time FE

√ √ √ √ √ √ √ √ √

No. of obs. 510 525 510 525 13,251 13,315 13,252 13,331 13,331
R2 0.08 0.12 0.08 0.03 0.65 0.66 0.13 0.13 0.19

Notes: The columns (1)–(4) report the results for the USA, and the columns (5)–(9) report the results for the 40 countries specified in Table B1 in Appendix B. ∗p < 0.10, ∗∗p < 0.05, and
∗∗∗p < 0.01. FE means Fixed Effects.
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discounted lifetime utility. With a constant intertemporal elasticity of substitu-
tion instantaneous utility function, the infinite horizon lifetime utility is U =∫ ∞

0 ( C(t)1−θ −1
1−θ

)e−ρtdt, where ρ > 0 is the subjective discount rate and θ > 0 is the
inverse of the intertemporal elasticity of substitution.

The maximization is subject to the flow budget constraint ȧ(t) = r(t) · a(t) +
wL(t) · L + wH(t) · H − C(t), where a denotes households’ real financial assets
holdings. The initial level of wealth a(0) is given and the non-Ponzi games
condition limt→∞e− ∫ t

0 r(s)dsa(t) ≥ 0 is also imposed. The Euler equation for
consumption is standard:

Ċ(t)

C(t)
= 1

θ
· (r(t) − ρ) , (2)

as is the transversality condition: lim
t→∞e−ρt · C(t)−θ · a(t) = 0.

3.2. Production, Price Decisions, and R&D Activity

Following Acemoglu and Zilibotti (2001), Afonso (2012), Gil et al. (2016), and
Neto et al. (2017), each final good, indexed by n ∈ [0, 1], is produced by one of
two technologies. The L-technology uses L complemented with a continuum of
L-specific intermediate goods indexed by j ∈ [0, J]. The H-technology’s inputs are
H complemented with a continuum of H-specific intermediate goods indexed by
j ∈ [J, 1]. The constant returns to scale production function at time t is8

Yn(t) =

⎧⎪⎨
⎪⎩

[∫ J
0 zn( j, t)1−αdj

]
[(1 − n) lLn]α , if n ≤ n(t)[∫ 1

J zn( j, t)1−αdj
]
(n h Hn)

α , if n > n(t)
. (3)

By considering zn( j, t) = qk( j,t)xn( j, t) in equation (3), the integral terms are the
contributions to production of quality-adjusted intermediate goods. The size of
each quality upgrade obtained with each success in R&D is q, an exogenously
constant greater than 1. The rungs of the quality ladder are indexed by k, with
higher ks denoting higher quality. At time 0, the top-quality good in each inter-
mediate good has a quality index k = 0. At t, the highest quality good produced
by j has a quality index k( j, t), which is used due to profit maximizing limit pric-
ing by the monopolist producers of intermediate goods. The quantity xn( j, t) of j
is used, together with its specific labor, to produce Yn(t). The term (1 − α) is the
intermediate-goods input share, and α ∈ (0, 1) is the labor share.

In equation (3), the labor terms include the quantities employed in the pro-
duction of the nth final good, Ln and Hn, and two corrective, but important,
factors accounting for productivity differentials. An absolute productivity advan-
tage of skilled over unskilled labor is accounted for by assuming h > l ≥ 1.
A relative productivity advantage of either labor type is captured by the adjust-
ment terms n and (1 − n). These adjustment terms transform the index n into an
ordering index, meaning that final goods indexed by larger ns are relatively more
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intensive in skilled labor. Since n ∈ [0, 1], there is a threshold final good, n(t),
endogenously determined, at which the switch from one technology to another
becomes advantageous. Hence, n(t) defines the structure of final-goods produc-
tion—at each time t, there are n(t) final goods produced with the L-technology
and 1 − n(t) final goods produced with the H-technology. Moreover, n is used to
measure the network intensity in each technology and, as a result, the learning-
by-interacting effect. Indeed, as emphasized by the literature, skill-intensive
sectors (e.g. pharmaceuticals, computer software, electronic components, and
communication equipment), thus produced with the H-technology, are relatively
more intensive in network cooperations. Thus, to accommodate this result, we
consider that the network intensity in each technology at each time t is measured
by the respective (endogenous) average value of the ordering index n; that is,
network intensity in the L-technology is evaluated by n

2 , while in H-technology
is given by ( n+1

2 ). These measures will be used later in R&D activities car-
ried out within each technology, L and H, to assess the spread and consequent
internalization of technological-knowledge spillovers.

The production function (3) combines complementarity between inputs and
substitutability between the two technologies. The optimal choice of technology
is reflected in the equilibrium (endogenous) threshold final good, n(t), obtained
from profit maximization (by perfectly competitive final-goods producers and by
intermediate-goods monopolists) and full-employment equilibrium in factor mar-
kets, given the labor supply and the current state of technological knowledge [e.g.
Acemoglu and Zilibotti (2001), Afonso (2012), Gil et al. (2016), and Neto et al.
(2017)]:

n(t) =
{

1 +
[

QH(t) h H

QL(t) lL

] 1
2
}−1

, (4)

where

QL(t) ≡
∫ J

0
q

k( j,t)
[

1−α
α

]
dj and QH(t) ≡

∫ 1

J
q

k( j,t)
[

1−α
α

]
dj (5)

are aggregate quality indexes of the technological-knowledge stocks and the ratio
B = QH

QL
is the appropriate measure of the technological-knowledge bias.

Fact 1. The threshold final good, n(t), is small, meaning that the fraction of final
goods using the H-technology in equation (3) is large, when the technological
knowledge, B, is highly H-biased, the relative supply of H, H

L , is large and the
absolute advantage of the skilled labor, h

l , is strong. In this case, the relative
network intensity in the H-technology is stronger.

Proof. Directly from equation (4). �
Thus, optimally only L-technology is used to produce final goods indexed by

n ≤ n(t), and only H-technology is used to produce goods with n > n(t); that is,
in production function (3), Hn(t) = xn( j, t) = 0, for 0 ≤ j ≤ J, ∀0 ≤ n ≤ n(t) and
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Ln(t) = xn( j, t) = 0, for J < j ≤ 1, ∀n(t) ≤ n ≤ 1; and the demand for each j by
the representative producer of nth final good is xn( j, t) = (1 − n)lLn[ pn(t)·(1−α)

p( j,t) ]
1
α

qk( j,t)[ 1−α
α ] if 0 < j ≤ J, ∀ 0 ≤ n ≤ n(t), and xn( j, t) = nhHn[ pn(t)·(1−α)

p( j,t) ]
1
α qk( j,t)[ 1−α

α ]

if J < j ≤ 1, ∀ n(t) ≤ n ≤ 1, where pn(t) is the price of final good n, and p( j, t) is
the price of intermediate good j (prices given for the perfectly competitive pro-
ducers of final goods). Plugging these demand functions into equation (3), the
supply of n, Yn, depends on QL, QH , parameters and exogenous variables:

Yn(t) =
[

pn(t) (1 − α)

p( j, t)

] 1−α
α

[(1 − n) l Ln QL(t) + n h Hn QH(t)], (6)

which clearly shows how final-production growth—the economic growth rate—is
driven by the technological-knowledge growth/progress. The threshold n(t) can be
implicitly expressed in terms of price indexes. This is achieved by considering that
in the production of the threshold n = n(t) a firm that uses L-technology and a firm
that uses H-technology should break even. This turns out to yield, at each time,
the following ratio of index prices of goods produced with H and L technologies:

pH(t)

pL(t)
=

(
n(t)

1 − n(t)

)α

. (7)

Fact 2. The relative price of final goods produced with the H-technology,
pH
pL

, is low when the threshold final good, n, is small; that is, when the rela-
tive network intensity in the H-technology is stronger. In this case, the demand
for H-intermediate goods is low, which, as we see below, discourages (encour-
ages) R&D activities aimed at improving their quality by the price channel
(learning-by-interacting effect). Thus, by affecting the threshold final good, the
labor structure influences the direction of R&D.

Proof. Directly from equation (7). �
Moreover, since the aggregate (or composite) final good is obtained by inte-

gration over final goods, “summing-up” homogenous physical quantities: Y(t) =∫ 1
0 pn(t) Yn(t) dn and equations (4) and (7), the price indexes of L and H final

goods are, respectively, pL(t) = pn (1 − n)α = exp(−α)n(t)−α and pH(t) = pnnα =
exp(−α) [1 − n(t)]−α . The composite final good is the numeraire of the economy;
that is, the appropriate price (index) is one by definition: exp

∫ 1
0 ln pn(t) dn = 1.

Economic resources measured in terms of Y can then be used in production
of the intermediate goods, X, in the R&D sector, R, or consumed, C; that is,
Y(t) = X(t) + R(t) + C(t).

Full employment in the labor market, implicit in n, yields the following
equilibrium-skilled premium, measuring intra-country wage inequality (or the
skill premium):
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wH(t)

wL(t)
=

(
QH(t) h

QL(t) l

L

H

) 1
2

, (8)

where wH(t) and wL(t) are, respectively, wages per unit of H- and L-type labors.

Fact 3. The skill premium, wH
wL

, is greater when the technological knowledge,

B = QH
QL

, is more skill biased, the absolute advantage of the skilled labor, h
l , is

strong, and skilled labor, L
H , is relatively scarcer.

Proof. Directly from equation (8). �
Equations (4), (7), and (8) are useful in foreseeing the operation of the price

(of final goods) channel and of the relative network intensity from the stocks (of
labor and technological knowledge) to the flows of resources used in R&D and
to wage inequality. For example, in a country relatively H-abundant and (or) with
a large technological-knowledge bias, n(t) is small, that is, many final goods are
produced with the H-technology and thus:

• On the one hand, final goods produced with the H-technology are sold at a
relatively low price (Fact 2). Profit opportunities in the production of interme-
diate goods used by the relatively high-priced L-technology final goods induce
a change in the direction of R&D against the technological-knowledge bias
and in favor of unskilled wages, that is, there are stronger incentives to develop
technologies when the final goods produced by these technologies command
higher prices.9

• On the other hand, the network intensity in the H-technology is stronger, which,
as will be clear further below, favors the capacity to internalize spillovers
and benefit from the exchange of knowledge learning-by-interacting effect,
which re-directs R&D toward designs that improve the quality of intermedi-
ate goods used together with skilled labor, increasing its relative demand and
thus benefiting the skilled wages.

The overall effect on the technological-knowledge bias thus depends on the
magnitude of the two contradictory channels—price channel and learning-
by-interacting effect. To sum up, an increase in skilled labor causes an imme-
diate steep drop in the skilled premium since its relative supply decreases its
relative wage [see equation (8)], but this immediate effect is reversed in the transi-
tional dynamics toward the (constant) steady-state skilled premium if the stimulus
to the demand for skilled labor resulting from the technological-knowledge bias
dominates, which occurs with a sufficiently strong learning-by-interacting effect.

In turn, firms in the intermediate-goods sector use one unit of aggregate output
to obtain one unit of j and its marginal cost is thus one. Moreover, each qual-
ity of j is exclusively produced by the owner of its patent. This monopolist at t
obtains a profit flow π ( j, t) = (p( j, t) − 1) X ( j, t), where X( j, t) = ∫ 1

0 xn( j, t) dn
represents the aggregate demand for the top quality, obtained from the demand
by final-goods producers at each t. Since intermediate goods, bought by the
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producers of final goods, fully depreciate at the end of each t, the monopolist faces
no dynamic constraints and every t chooses p( j, t) so as to maximize π , obtain-
ing: p( j, t) = p = 1

1−α
, for all j ∈ [0, 1], which is a mark-up over the marginal

cost, 0 < α < 1, constant across t, j, and k [e.g. Acemoglu and Zilibotti (2001)].
Whether or not a monopolist can price its output according to this price depends
on the substitutability between qualities of j and on the value of q; following
Barro and Sala-i-Martin (2004, Chapter 7), we assume that q > 1

1−α
and, thus,

monopolists set p = 1
1−α

.10

Firms in the intermediate-goods sector carry out R&D activities in order to
improve their qualities. Let I( j, t) denote the probability of the kth quality of j
being introduced at t, thereby improving the quality level of that good from qk to
qk+1, which is given by11

I( j, t) = y( j, t)· ζ−1q−α−1k( j,t)· m−ξ · βqk( j,t)· f (n(t)), for all j ∈ [0, 1] , (9)

where:
(i) y( j, t) is the total amount of R&D spending (in terms of Y) aimed at

improving j.
(ii) ζ−1q−α−1k( j,t) is an adverse cost-of-complexity R&D effect, since ζ is a pos-

itive constant [e.g. Afonso (2012)]. This effect reflects an increasing difficulty in
improving the quality of intermediate goods [e.g. Barro and Sala-i-Martin (2004,
Chapter 7)].

(iii) m−ξ is an adverse cost-of-market-size, which is measured by m = L and
m = H, due to the complementarity between inputs in equation (3). Given that
scale effects are often considered implausible [e.g. Jones (1995a)], m−ξ , ξ ≥ 0,
implies that an increase in market scale, measured by L or H, dilutes the effect
of R&D outlays on the innovation rate, due to training, coordination, organiza-
tional, and transportation costs related to market size [e.g. Afonso (2012)], which
can partially (0 < ξ < 1), totally (ξ = 1), or over counterbalance (ξ > 1) the scale
benefits on profits, and thus allows us to remove scale effects on the economic
growth rate. This contrasts with the usual knife-edge assumption that either ξ = 0
or ξ = 1 [e.g. Barro and Sala-i-Martin (2004, Chapter 7)].

(iv) βqk( j,t) is a positive learning-by-past R&D effect, which relates past suc-
cessful R&D in j with the current probability of success [e.g. Afonso (2012)].
Through this effect we take into account that technological knowledge is non-rival
and that the legal system gives protection only to production rights.12 Thus, firms
learn from past innovations in j (measured by qk( j,t)) since the learning parameter
β is greater than zero.

(v) f (n(t)) is a positive learning-by-interacting (R&D) effect, capturing the
benefits of network intensity due to allowed productive linkages. Thus, the prob-
ability of successful R&D in each intermediate good j is related to the existing
network intensity in final goods sector which serves as input. We then intro-
duce an absolute advantage of the H-technology over the L-technology; that is,
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we consider that there is a relatively high number of R&D network cooperations
in the H-technology, which facilitates the access to a broader level of techno-
logical knowledge. This sharing of technological knowledge allows that the R&D
activity aimed at improving intermediate goods used by the H-technology benefits
relatively more from the internalization of technological-knowledge spillovers. To
operationalize this idea, we consider the meaning of the index n in the production
function (3) and, as already stated, we assume that the probability (9) in each j
is positively related to the average value of the ordering index n in the respective
technology, L and H, and thus with: (i) n

2 if j ∈ [0, J] belongs to L-technology,
n ≤ n(t); (ii)

(
n+1

2

)
if j ∈ [J, 1] belongs to H-technology, n > n(t). Since n is a

value between 0 and 1, we maintain the quality of the results by normalizing n
2 to

1 and thus ( n+1
2 ) to (1 + 1

n(t) ) in function f (n(t)):

f (n(t)) =
{

1, if n ≤ n(t); i.e. j ∈ [0, J](
1 + 1

n(t)

)φ

, if n > n(t); i.e. j ∈ [J, 1]
. (10)

We also introduce the parameter φ ∈ [0, 1] to regulate how quickly the learning-
by-interacting R&D effect increases as the threshold final good changes. The
range of possible values for this parameter is limited, between 0 and 1, to obtain
reasonable values for the main macroeconomic variables in our research; that is,
n, B, wH

wL
and the economic growth rate. In particular, the probability of success-

ful R&D in intermediate goods j ∈ [J, 1] increases when, ceteris paribus, skilled
labor increases since, in this case, n decreases and, as a result, there are more
network linkages, thereby speeding up the technological-knowledge bias.

4. GENERAL EQUILIBRIUM

As the countries’ economic structure has been characterized for given states of
technological knowledge, we now proceed to include the equilibrium dynamics
of the technological knowledge, which, in the absence of labor or human-capital
accumulation, drives economic growth—see, for example, equation (6)—and
wage dynamics—see equation (8). Bringing into consideration R&D activities,
we first derive the aggregate spending in R&D and the law of motion of techno-
logical knowledge. Then, we use these results to characterize the dynamic general
equilibrium in which it is embodied that households and firms are rational and
solve their problems, free-entry R&D conditions are met, and markets clear. With
this procedure we are able to depict the transitional dynamics and the steady-state
growth.

4.1. R&D Equilibrium

Assuming that leader firms have no advantage over followers in R&D activities
(as this is indifferent to our results), then, independently of j and the respective qk,
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it is more profitable to introduce a new quality of j by a follower firm than by
the current monopolist.13 Indeed, follower/outside firms gain a one-rung quality
advantage over their closest competitor and profits jump from zero (prior to the
innovation) to π ( j, t) when the new quality is introduced. Let τ (τ + d) be the
time when a firm introduces the quality qk (qk+1) for j. The firm that introduces
qk becomes the monopolist between τ and τ + d in j and earns a sum of profits
given by V ( j, t) = ∫ τ+d

τ
π ( j, t) e−r(t) dt. Since innovations arrive randomly, d is

undetermined and the reward for introducing qk, that is, the true value of V ( j, t)
is unknown. However, if the interest rate is constant between τ and τ + d, which
will be the case in equilibrium, then V ( j, t) = ∫ ∞

t π ( j, t) e[− ∫ s
t (r(τ )+I( j,τ ))dτ]ds =

π( j,t)
r(t)+I( j,t) ; that is, the expected value of introducing qk in j depends positively on
the dimension of the profits at each t, π ( j, t), and negatively on the interest rate,
r (t), and on the probability of successful innovation, I( j, t), which captures the
Schumpeterian idea of “creative destruction.”

By considering free entry in R&D activities, free access to the R&D technol-
ogy, and a proportional relationship between successful innovation and the share
of R&D effort, the R&D spending aimed at improving j should equal the expected
payoff generated by the innovation, that is, y( j, t) = I( j, t) · V ( j, t). Then, using
equation (9), the equilibrium probabilities of successful R&D, IL and IH , which
are independent of j and k for each t: Im = � − r, where � ≡ { β

ζ
· ( q−1

q )· m· (1 −
α)

1
α · pm(t)

1
α︸ ︷︷ ︸

Price channel

· m1−ξ︸︷︷︸
Market-size channel

· f (n(t))︸ ︷︷ ︸
Network-intensity channel

}, m = L or m = H, and m = l

or m = h, incorporate the three available channels if 0 ≤ ξ < 1. The equilib-
rium m-specific Im turns out to be independent of j and k due to the removal
of technological-knowledge scale effects—the positive influence of the quality
rung on profits and on the learning-by-past effect is exactly offset by its influence
on the cost-of-complexity effect. Additional scale effects could arise through mar-
ket size, as has been discussed in the R&D endogenous growth literature since
Jones (1995a,b) critique. Due to the technological complementarity in the pro-
duction function (3), the size of the market for m-specific intermediate goods is
the m-type labor. The scale effect is thus apparent in the size of the profits. The
cost-of-market-size due to the scale difficulty of introducing new quality inter-
mediate goods can be designed to offset the scale effect on profits by assuming
ξ = 1. Finally, the equilibrium can be translated into the path of technological
knowledge, resulting in following expression—where the equilibrium m-specific
probability of successful R&D, Im, given r, pm, and n is plugged in—for the
equilibrium m-specific growth rate14:

Q̇m(t)

Qm(t)
= Im(t) ·

(
q

1−α
α − 1

)
, (11)

where m = {L, H} and m = {l, h}. The total equilibrium aggregate R&D spending
is given by R(t) = ∫ J

0 y( j, t) dj + ∫ 1
J y( j, t) dj = f (QL(t), QH(t), R).
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4.2. Transition Dynamics and Steady-State Growth

Since all macroeconomic aggregates (Y , X, R, C, and also, e.g. wH
wL

) are multi-

ples of QL and QH ,15 the path of all relevant variables outside the steady state
relies on the single differential equation that governs the path of technological-
knowledge bias, that is, Ḃ(t)

B(t) = Q̇H (t)
QH (t) − Q̇L(t)

QL(t) . Thus, equation (11), we obtain the
required expression:

Ḃ(t)

B(t)
=

[
β

ζ

(
q − 1

q

)
· (1 − α)

1
α · exp(−α)

]

·
{

h · H1−ξ ·
(

1 + 1

n(t)

)φ

·
[

1 +
(

B(t)
hH

lL

)−1/2
]α

(12)

−l · L1−ξ ·
[

1 +
(

B(t)
hH

lL

)1/2
]α}

,

which can be used to quantitatively analyze the impact of some shocks—for
example in β, ζ , α, φ, ξ , q, h, l, L, and H—on the technological-knowledge bias
and consequently on the threshold final good and on the skill premium—indeed,
equation (12) can be used in equations (4) and (8) to obtain the dynamics of those
variables.

At the end of transitional dynamics, the economy reaches the steady state,
which is unique and stable, and all relevant macroeconomic variables grow at
the same constant rate. The steady-state growth rate, g∗, is

g∗ ≡ Q̇∗
L

Q∗
L

= Q̇∗
H

Q∗
H

= Ẏ∗

Y∗ = Ẋ∗

X∗ = Ṙ∗

R∗ = Ċ∗

C∗ = r∗ − ρ

θ
. (13)

By equating equations (11) and (13), we can obtain the steady-state interest rate,
r∗, which is unique and also ensures that the steady-state growth rate is unique.
To prove that the steady state is stable, we start by noting that the dynamics of the
economy can be represented by a two-dimensional dynamic system in detrended
variables B and D = C/QL—see equations (11)–(13). This dynamic system has
a recursive structure since the dynamic of B depends only on itself—see again
equation (12). Hence, it suffices to show that equation (12) implies that Ḃ(t)

B(t) =
Z(B(t)), where Ż(B∗(t)) < 0; thus, the steady state is asymptotically stable.

To see the economic mechanism in more detail, let us consider that the econ-
omy is initially out of the steady state where, for example, IH > IL. From equation

(11), this implies that PH
PL

>
P∗

H
P∗

L
; that is, that n > n∗, meaning that Q̇H

QH
>

Q̇L
QL

and,

since from equation (7) PH
PL

= (QHhH
QLlL

)− α
2 , ṗH

PH
− ṖL

PL
< 0. Thus, PH

PL
(or n) is decreas-

ing toward
P∗

H
P∗

L
(or n∗). Notice that the decrease in PH

PL
(or n) attenuates the rate

at which the technological-knowledge bias is increasing. Thus, due to market
incentives, while Q̇H

QH
>

Q̇L
QL

, Q̇H
QH

− Q̇L
QL

is decreasing until the unique and stable
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steady state is achieved, where
( Q̇H

QH

)∗ − ( Q̇L
QL

)∗ = 0. The argument to show that the

economy starting with IH < IL converges to
P∗

H
P∗

L
is identical. Hence, the economy

starting out at the steady state converges to this state and, without any exogenous
disturbance, it remains there.

Moreover, from equations (11) and (7),
( Q̇H

QH

)∗
and

( Q̇L
QL

)∗
rise at the same

rate if
(

1+n∗
n∗

)φ n∗
1−n∗ = (

L
H

)1−ξ l
h , which, by using second-order Taylor expansion,16

implies that17:

n∗  1

6 − 2φ
·
[

2(ξ − 1) · ln

(
H

L

)
− 2 · ln

(
h

l

)
− 3(φ − 1)

]
. (14)

PROPOSITION 1. In steady state, the stable and unique endogenous thresh-
old final good, n∗, relies on specific parameters and exogenous variables: φ,
ξ , h

l , and H
L . An increase in either φ, ξ , h

l , or H
L for 0 ≤ ξ < 1 decreases n∗,

strengthening the learning-by-interacting effect. The reinforcement of either of
the other channels—price or market size—decreases n∗: If ξ increases toward 1,
the removal of scale effects is stronger and the price channel is reinforced; in
turn, if H

L increases and 0 ≤ ξ < 1, the (skilled) market-size channel is reinforced;
however, if H

L increases and ξ = 1, the market-size channel is neutralized since
scale effects are removed and there is no effect on n∗.

Proof. Directly from equation (14), bearing in mind that H
L < 1 and h

l > 1. �
In addition, from the stable n∗ we also find that final goods price indexes, p∗

H ,

p∗
L, and

( pH
pL

)∗
remain stable; that is,

( ṗH
pH

)∗ = ( ṖL
pL

)∗ = (
ṅ
n

)∗ = 0. Hence, bearing in
mind equations (11), (13), and (14), the steady-state growth rate is – considering
m = L:

g∗ = exp(−1) β

ζ

(
q−1

q

)
(6 − 2φ)(1 − α)

1
α L1−ξ l

(
q

1−α
α − 1

) − ρ
[
2(ξ − 1) · ln

(
H
L

) − 2· ln
(

h
l

) − 3(φ − 1)
]

[
θ

(
q

1−α
α − 1

)
+ 1

] [
2(ξ − 1) · ln

(
H
L

) − 2 · ln
(

h
l

) − 3(φ − 1)
] ,

(15)

PROPOSITION 2. In steady state, the stable and unique endogenous economic
growth rate, g∗, relies on specific parameters and exogenous variables: φ, ξ , h

l ,
H
L , θ , ρ, β, ζ , q, and α.

(i) As stated in Proposition 1, an increase in either φ, h
l , ξ , or H

L for 0 ≤ ξ < 1
decreases n∗, strengthening in particular the learning-by-interacting effect and
thus affecting positively g∗. When ξ = 1, scale effects are removed and changes
in H

L therefore have no effect on g∗. (ii) As to the R&D parameters, the higher
the learning parameter, β, and the smaller the fixed cost parameter, ζ , the greater
become the incentives to do R&D, and so the higher the growth rate. (iii) An
increase of either ρ or θ decreases g∗: If present consumption is more highly
valued than future consumption (following the properties of the utility function),
then this will lead to less need for private investment and so to less dispersion over
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time; in other words, the more patient—that is, the smaller the value of ρ—and
the less keen the individuals are on consumption smoothing—that is, the smaller
the value of θ—the higher is g∗. (iv) Finally, the labor share in the production
function, α, has a negative impact on g∗.

Proof. Directly from equation (15). In particular, the negative impact of α on
g∗ is because it increases the size of each quality upgrade, q = 1

1−α
, which requires

more resources to obtain each successful research and this acts as a disincentive
to R&D activities. But, a greater q also increases the size of profits. Thus, the intu-
ition is the following: Intermediate-good firms take into account the probability of
losing the monopoly, and so discount profits at a rate higher than the interest rate.
The discount rate is higher when α is greater, which discourages R&D activities
and thereby influences negatively the growth rate. �

Then, from equations (4) and (14), the stable steady-state technological-
knowledge bias is

B∗ 
(

hH

lL

)−1
[

6 − 2φ

2(ξ − 1) · ln
(

H
L

) − 2 · ln
(

h
l

) − 3(φ − 1)
− 1

]2

. (16)

PROPOSITION 3. In steady state, the stable and unique endogenous
technological-knowledge bias also depends on φ, ξ , h

l , and H
L . An increase in

either φ, h
l , ξ , or H

L with ξ → 0 increases B∗.

Proof. Directly from equation (16). Indeed, an increase in: (i) φ starts by
increasing the learning-by-interacting effect (Proposition 1), which improves the
relative profitability of skilled technological knowledge and thus biases the tech-
nological knowledge in favor of H-intermediate goods; (ii) h

l starts by decreasing
the threshold final good (Fact 1), which reinforces the learning-by-interacting
effect (Proposition 1) and decreases the relative price of final goods produced
with H-technology—equation (7). The former effect dominates the latter and
becomes more profitable to improve the skilled technological knowledge, thus
biasing the technological knowledge in favor of H-intermediate goods; (iii) ξ

starts by increasing the cost-of-market-size—equation (9)—thus reinforcing the
price channel through which there are stronger incentives to improve techno-
logical knowledge embodied in goods produced with higher prices; that is, the
technological knowledge embodied in goods produced with the scarce labor—
equation (7) and note that H

L < 1—biasing the technological knowledge in favor of
H-intermediate goods; (iv) H

L , with ξ → 0, starts by decreasing the threshold final
good (Fact 1), which reinforces the learning-by-interacting effect (Proposition 1)
and decreases the relative price of final goods produced with H-technology—
equation (7). The former effect dominates the latter and becomes more profitable
to improve the skilled technological knowledge, thus biasing the technological
knowledge in favor of H-intermediate goods—the chain of effects is domi-
nated by the learning-by-interacting effect and there is also influence of the
market-size channel, by which technologies that use the more abundant type of
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labor are favored. (v) H
L , with ξ → 1, starts by decreasing the threshold final good

(Fact 1), reinforcing the learning-by-interacting effect (Proposition 1), and by
decreasing the relative price of final goods produced with H-technology—(7)—
as well as by increasing the cost-of-market-size—equation (9). By removing the
scale effects, the price channel dominates the market-size channel and, ceteris
paribus, the demand for H-intermediate goods decreases, which discourages
R&D activities aimed at improving their quality; that is, B∗ decreases since the
technological knowledge that uses the decreasing type of labor is favored. �

Moreover, from equations (8) and (16), the stable steady-state wage premium is

(
wH

wL

)∗


(
H

L

)−1
[

6 − 2φ

2(ξ − 1) · ln
(

H
L

) − 2 · ln
(

h
l

) − 3(φ − 1)
− 1

]
. (17)

PROPOSITION 4. In steady state, the stable and unique endogenous skill pre-
mium also depends on φ, ξ , h

l , and H
L . An increase in φ, h

l , or ξ increases ( wH
wL

)∗,
since in each one of these cases there is an increase in B∗—see Proposition 2. In
turn, an increase in H

L has an immediate negative effect on
(wH

wL

)∗
—see (8)—which

can positively affect B∗ over the transitional dynamics toward the new steady
state; the final effect on

(wH
wL

)∗
can be positive or negative, depending on the

magnitude of the two effects: If ξ → 0, the final effect on ( wH
wL

)∗ is positive (the

latter effect dominates the former one); if with ξ → 1, the final effect on
(wH

wL

)∗
is

negative as both the immediate effect and the effect on B∗ are negative.

Proof. Directly from equation (17). �
Thus,

( ẇH
wH

)∗ − ( ẇL
wL

)∗ = 0 and wages rise steadily in line with the technological-

knowledge progress; that is,
( ẇH

wH

)∗ = ( ẇL
wL

)∗ = ( Q̇H
QH

)∗ = ( Q̇L
QL

)∗
. From the previous

analysis, it is also worth noting that an increase in φ, 0 < ξ < 1, h
l , and β as well

as a decrease in θ , ρ, ζ , and α increases g∗ and increases or has no impact on(wH
wL

)∗
. Hence, any change in these parameters in the sense referred to implies

that all workers will earn higher wages in the new steady state (i.e. welfare gains
emerge). The variation in the opposite direction of each of these parameters slows
down the economic growth rate and can be used to align with Gordon (2012)
who anticipates scenarios of long anemic economic growth or even stagnation in
the 21st century. This slowdown can be more or less pronounced depending, for
example, on the parameterization of the complexity parameter, ζ , and the regula-
tor of network effects, φ. This is in line with, for example, Kasparov et al. (2012),
who emphasize the secular stagnation in innovations, with Fernald (2015), who
presents evidence in favor of the slowdown in the pace of progress in informa-
tion technologies after the mid-1990s, and with Gordon (2012), who also argues
that the slowdown stems from the features of the innovations (computers, web,
and mobile phones) of the late 20th century, the spillovers of which were less
long-lasting than those of the innovations of the second industrial revolution.
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TABLE 2. Parameter values

Description Parameter Value

Labor share α 0.60
Subjective discount rate ρ 0.02
Inter-temporal elasticity of substitution θ 2
Fixed cost of innovation ζ 2
Learning-by-past parameter β 1.4
Learning by interacting parameter φ 0.14

Relative skilled-labor supply H
L 0.64

Relative skilled productivity h
l 1.3

Scale effects ξ 0.45

5. QUANTITATIVE RESULTS

In this section, we calibrate the model results to today’s equilibrium, having as
reference the current levels of R&D, networks intensity, and labor-market fea-
tures. This allows us to compute the transitional dynamics toward the steady-state
ratios and to perform comparative static and dynamic analysis in face of changes
in parameters—β, ζ , α, φ, and ξ—and in the relative labor supply, H

L , and relative
labor productivity, h

l .

5.1. Calibration

The calibrated values for parameters and exogenous variables in the baseline case,
which are summarized in Table 2, were chosen bearing in mind standard values
in the literature, model assumptions, estimated values, and a steady-state growth
rate of around 2%, which approximately matches the average per capita growth
rate of the USA in the postwar period [e.g. Jones (1995b)].

The subjective discount rate, ρ, and the inverse of the inter-temporal elastic-
ity of substitution, θ , are set equal to 0.02 and 2, respectively, as in Jones and
Williams (2000), Afonso (2006), and Grossmann et al. (2013). The technology
parameter α, which under our assumptions, has two interpretations (the labor
share, α, and the mark-up ratio, q = 1

1−α
) and is set to 0.6, such that the size of

quality improvement, q, makes it equal to 2.5, which is in line with the mark-up
estimates given by Hall et al. (1986) and Kwan and Lai (2003).

The relative supply of skilled labor, H
L , and the relative supply of skilled-labor

productivity, h
l , are defined equal to 0.64 and 1.3, respectively. The former value

is obtained from the OECD’s Education at Glance 2014 data for the US economy
in the period 2000–2010, in which skilled labor means individuals who have at
least some tertiary education.18 The relative skilled-labor productivity is in line
with Acemoglu and Zilibotti (2001) and Afonso (2006).19
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TABLE 3. Effects of the network intensity in R&D activity

(1) (2) (3) (4) (5) (6) (7)
Specification OLS OLS OLS Newey–West Tobit Tobit Tobit

Si 0.139 0.143 0.139 0.099 0.142 0.146 0.090
(2.438) (2.423) (2.171) (2.475) (2.491) (2.607) (2.571)

Const. −0.017 −0.017 −0.018 −0.060 −0.019 −0.021 −0.052
(−0.566) (−0.515) (−0.473) (−2.142) (−0.655) (−0.583) (−0.208)

Time FE
√ √ √ √

Sector FE
√ √

No. of obs. 213 213 213 213 213 213 213

Notes: Dependent variable is the share of R&D spending in the value-added output of each sector. Independent
variable is the network in-strength. Standard errors are robust and allow for the first-order serial correlation in model
(4). For the network metrics distance we also obtain an estimate of around 0.14. OLS means Ordinary Least Squares.

Concerning the measure of the strength of network intensity in R&D activ-
ity, φ ∈ [0, 1], we follow Cohen and Levinthal (1989), Bloom et al. (2013), and
Aghion and Jaravel (2015) to estimate the learning-by-interacting parameter. We
identify this parameter by the input–output interconnections established between
firms and sectors in the production network structure. By definition, learning-
by-interacting effects are proportional to the interconnections between firms that
we measure using social network metrics as, for example, the network in-strength,
Si, which gives us the intensity of the inward connections of each firm/sector—see
Appendix A.20 Given the straight and direct relationship between the probability
of innovating in the intermediate-goods sector and the R&D spending, see equa-
tion (9), we use the share of R&D spending of each sector/firm in terms of the
sector’s value added, R&Di

V Ai
, as proxy of the probability of successful innovation.

Thus, one can estimate the learning-by-interacting effects in R&D by the equa-
tion: R&Di

V Ai
= αo + α1Si + εi, for each sector/firm i. Table 3 contains the estimate

results for the impact of the strength of network intensity in R&D activities for
the US economy21 over the period 1995–2009. Bearing in mind the literature
concerning the heteroscedasticity and serial correlation problems [e.g. Cohen and
Levinthal (1989) and Bloom et al. (2013)], different estimation methods are pre-
sented in Table 3 in order to check the results’ robustness. Since the estimates α1

are quite robust, we set φ = 0.14 in line with the result proposed in Table 3.
Finally, to calibrate the regulator of the cost-of-market-size, ξ ≥ 0, we use the

US data and equation (17). We take the US average values of H
L = 0.64 and

wH
wL

= 1.98 for the period 2000–2010,22 and the calibrate value of h
l = 1.3, as cor-

responding to the steady-state value, and then by using equation (17) we obtain
the value of ξ = 0.45. This value is an interesting result that emerges from the
calibration of the model, pointing to a significant but not total removal of scale
effects, in line with the dominant evidence against (large) scale effects on growth
[e.g. Alesina et al. (2005)].
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Notes: The solid line describes the transitional dynamics for the baseline parameter and labor endow-
ment values. The dashed, dot, dash-dot lines describe the transitional dynamics for an increase in H

L

with φ = 0.14, φ = 0, and φ = 0.28, respectively.

FIGURE 2. The transitional dynamics to the steady state.

5.2. Transitional Dynamics

To analyze the transitional dynamics of the technological-knowledge bias and
its repercussions in the threshold final good, n̄, the relative price of final goods
produced with the H-technology, pH

pL
, and the skill premium, wH

wL
, we use the dif-

ferential equation of the technological-knowledge bias, equation (12), and then
characterize the behavior of the remaining variables using equations (4), (7), and
(8), respectively.

Figure 2 summarizes the variables’ transitional time path for: (i) the baseline
values of the parameters and labor endowments (solid line); and (ii) an increase, at
time t = 0, in the skilled-labor supply from 0.64 to 0.75: (ii.a) φ = 0.14 (baseline,
dashed line); (ii.b) φ = 0 (dot line); (ii.c) φ = 0.28 (dash-dot line).

As explained in Proposition 3, due to an increase in the skilled-labor sup-
ply, from H

L = 0.64 to H
L = 0.75, with partial removal of scale effects, ξ = 0.45,
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three immediate effects emerge: The threshold final good decreases—see equa-
tion (4)—which reinforces the learning-by-interacting effect; the skilled market
size widens then operating the market-size channel; the relative price pH

pL
decreases

then operating the price channel—see equation (7). The operation of the set of
the effects/channels during the transitional dynamics toward the new steady state
implies that the technological-knowledge bias, B∗, changes from 1.87 to 2.05 in
case (ii.a), from 1.87 to 1.36 in case (ii.b), and from 1.87 to 3.28 in case (ii.c).
That is, cases (ii.a) and (ii.c) favor the technological-knowledge bias toward
H-technology. During the transition dynamics, the set of effects/channels con-
tinue to coexist so that n̄ and pH

pL
are changing at decreasing rates until the new

steady state; n̄ has changed from 0.44 to 0.41 in case (ii.a), to 0.47 in case (ii.b),
and to 0.36 in case (ii.c); pH

pL
from 0.88 to 0.81 in case (ii.a), to 0.92 in case (ii.b),

and to 0.71 in case (ii.c).
The skill premium falls instantly from 0.41 to 0.36 due to the rise in the rel-

ative supply of skilled labor without new endogenous technological-knowledge
progress, and thus without change in the technological-knowledge bias. By
reason of complementarity between inputs in the production of final goods—
see equation (3)—changes in the skill premium are thus closely related to the
technological-knowledge bias, as equation (8) clearly shows. When the increase
in the supply of skilled labor induces technological-knowledge bias due to the set
of effects/channels, as in cases (ii.a) and (ii.c), the immediate effect on the level
of the skill premium ends up being reversed in the transition toward the steady
state. That is, in cases (ii.a) and (ii.c), the stimulus to the demand for skilled labor
arising from the technological-knowledge bias increases the skill premium. Once
in steady state, with a constant technological-knowledge bias, the skill premium
remains constant. Moreover, we must highlight that if:

• the effects/channels are not strong enough to reverse the initial effect, as in case
(ii.a), the steady-state skill premium is smaller than that which prevailed under
the baseline case: wH

wL
has changed from 1.95 to 1.88;

• the learning-by-interacting effect is neutralized, as in case (ii.b), B∗ decreases,
which also negatively affects the skill premium that is then given by 1.53;

• the learning-by-interacting effect is reinforced, as in case (ii.c), the increase of
B∗ is also reinforced and, as a result, the skill premium is positively affected
and given by 2.38.

5.3. Sensitivity Analysis

In this subsection, we analyze the sensitivity of the threshold final good, n̄∗, the
economic growth rate, g∗, the relative technological-knowledge bias, B∗, and the
skill premium, wH

wL

∗ to changes in parameters α (labor share), β (learning-by-past
parameter), ζ (fixed cost-of-complexity parameter), φ (learning-by-interacting
parameter), and ξ (regulator of cost-of-market-size), as well as to changes in
skilled-labor supply, H

L , and skilled productivity, h
l .
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FIGURE 3. The impact of labor share, α, and scale effects, ξ .

5.3.1. Impact of labor share, α, and cost-of-market-size, ξ , parameters. We start
by analyzing the sensitivity of the model results to variations of the labor share
in the interval α ∈ (0.5, 1) and variations of the regulator of cost-of-market-size in
the interval of two standard deviation from the baseline value of ξ .23

Figure 3 presents the model results in steady state for: (i) the baseline param-
eters (dashed line), (ii) a two-times standard deviation increase of ξ (solid line),
and (iii) a two-times standard deviation decrease of ξ (dot line). The first observa-
tion is that the labor share, α, has no impact on n̄∗, B∗, or wH

wL

∗, as directly shown
by equations (14), (16), (17), and Propositions 1, 3, and 4, respectively. The only
effect of the labor share is the negative impact on g∗. An increase of α makes the
size of each quality upgrade greater, q = 1

1−α
, requiring more resources in order to

obtain successful research, which discourages R&D activities. On the other hand,
the greater is q, the greater are the profits. Thus, intermediate-goods firms take
into account the probability of losing profits and discount profits at a higher rate
than the interest rate decreasing R&D and, consequently, g∗—see equation (15)
and Proposition 2.
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As for the effects of scale, an increase in ξ (solid line), for 0 < ξ < 1, that
is, a decrease of the scale effects’ importance, reduces n̄∗, reinforcing the
learning-by-interacting effect and slightly increasing g∗ as shown by equation
(14) and Proposition 1, and by equation (15) and Proposition 2, respectively. As ξ

increases, it raises the cost-of-market-size, raising the relative probability of suc-
cessful R&D of H-intermediate goods type (note that H

L < 1)—see equation (9),
biasing technological knowledge in favor of H-technology, that is, raising B∗, as
shown by equation (16) and Proposition 3, and thus the skill premium, as shown
by equation (17) and Proposition 4.

5.3.2. Impact of learning-by-past R&D, β, cost-of-complexity R&D, ζ , and cost-
of-market-size, ξ , parameters. Figure 4 presents the model results’ sensitivity
to variations of the learning-by-past R&D parameter, β, and cost-of-complexity,
ζ , parameters for the three values of the scale-effects parameter considered pre-
viously. Again, the dashed line denotes the effects for the baseline parameters
and the solid and dot lines denote the two times standard deviations increase and
decrease of ξ , respectively.

The steady-state values of n̄∗, B∗, or wH
wL

∗ are not affected by changes in β or
ζ , as directly shown by equations (14), (16), (17), and Propositions 1, 3, and 4,
respectively. The only effect is the positive (negative) impact in β (ζ ) in g∗: The
steady-state growth rate increases with β and decreases with ζ since the for-
mer encourages and the latter discourages R&D activities—see equation (15) and
Proposition 2. An increase in β, for example, raises the learning-by-past R&D
effect and thus the current probability of success—see equation (9)—since tech-
nological knowledge is non-rival (and partly excludable). As the learning-by-past
R&D parameter and the cost-of-complexity parameter are offset in equilibrium,
no impact arises in B∗ or wH

wL

∗.

5.3.3. Impact of learning-by-interacting, φ, and cost-of-market-size, ξ ,
parameters. In this subsection we analyze the model results’ sensitivity to vari-
ations of φ in the interval (0, 0.5), considering again the previously defined three
different values for ξ . As illustrated in Figure 5, an increase in the regulator of
the learning-by-interaction effect, φ, reinforces the effect and thus raises the prof-
itability of skilled technological knowledge. The bias in technological knowledge,
favoring H-intermediate goods (i.e. B∗ increases), reduces n̄∗ and affects posi-
tively the skill premium, wH

wL

∗, and the growth rate, g∗—see equations (15)–(17),
and Propositions 2–4.

5.3.4. Impact of relative skilled-labor supply, H
L , and relative skilled productiv-

ity, h
l , and cost-of-market-size, ξ , parameters. In this subsection, we analyze the

model results’ sensitivity to variations in the relative skilled-labor supply, H
L , and

skilled-labor productivity, h
l , again for the previously defined three different scale

values of ξ . These results are shown in Figure 6.
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FIGURE 4. The impact of learning-by-past R&D, β, cost-complexity, ζ , and scale effects,
ξ , parameters.
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FIGURE 5. The impact of learning by interacting, φ, and scale effects, ξ , parameters.

Concerning the relative labor supply, an increase in H
L raises the probabil-

ity of successful R&D via the market-size channel and, by decreasing n̄∗, via
the learning-by-interacting effect, and consequently increases g∗—see equa-
tions (9), (14), (15), and Propositions 1 and 2. As n̄∗ decreases, the relative
price of final goods produced with H-technology diminishes—see equation (7).
However, the learning-by-interacting effect and the market-size channel dominate
the price channel and, thus, the profitability of skilled technological knowl-
edge is improved. This technological-knowledge bias in favor of H-intermediate
goods improves the skill premium. Nevertheless, despite the bias in favor of the
H-technology, the effect of the initial increase in the relative skilled-labor sup-
ply on the skill premium is stronger and thus wH

wL

∗ decreases—see equations (16)
and (17), and Propositions 2–4. It is also worth mentioning that as ξ → 1, the
scale effects are less and the price channel dominates the market-size channel,
discouraging R&D activities toward the H-technology and decreasing B∗.
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FIGURE 6. The impact of relative skilled-labor supply, H
L , relative skilled productivity, h

l ,
and scale effects, ξ , parameters.
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Concerning the skilled-labor productivity, h
l , also reduces n̄∗, reinforcing

the learning-by-interaction effect, increases g∗, and reduces the relative price
of final goods produced with H-technology—see equation (7). The learning-
by-interaction effect dominates the price-channel effect and the profitability of
the skilled technological knowledge rises, biasing the technological knowledge in
favor of H-intermediate goods. As a consequence, the skill premium goes up—see
equations (16) and (17), and Propositions 2–4.

6. CONCLUDING REMARKS

In this paper we have proposed an endogenous SBTC growth model: individ-
uals decide between consumption and savings on income allocation and two
productive technologies of perfectly competitive final goods are used. One com-
bines unskilled labor with unskilled-specific (complementary) quality-adjusted
intermediate goods and the other uses skilled labor complemented with a contin-
uum of skilled-specific quality-adjusted intermediate goods. Intermediate goods,
which are improved in the R&D sector, are as usual produced in monopolistic
competition.

The model is closely related to the contributions of Acemoglu and Zilibotti
(2001) and Afonso (2006). However, by considering complementarity between
R&D intensity and R&D cooperations, which, in turn, emerge as a mecha-
nism to internalize technological-knowledge spillovers (through the network) and
to learn with shared knowledge (in the network), as well as complementarity
between R&D activity and skilled labor, we propose a new mechanism (learning-
by-interacting effect) that affects the direction of technological-knowledge change
and thus the relative demand of skilled labor and the skill premium. Labor
endowments are linked with the intensity of network cooperations/linkages to
evaluate a learning-by-interacting effect. Hence, the firms’ benefit per amount of
R&D spending rises with the network intensity and, consequently, the respective
technological-knowledge progress rises as well. This increase in technological-
knowledge progress induces an increase in the relative demand of skilled workers
that ceteris paribus increases the skill premium.

To sum up, we argue that the greater the firms’ network intensity, the greater is
the capacity to internalize and benefit from others’ knowledge and, consequently,
the higher is the relative demand for labor. Since skilled-intensive sectors have
a relative high number of R&D network cooperations, the skilled labor tends
to be increasingly demanded and better paid. Moreover, the parameterization of
the regulator of the learning-by-interacting effect, governed by network effects,
can also contribute to the explanation of the economic growth and skill-premium
slowdown that seem to characterize the current generation.

In terms of transition dynamics, suppose that there is an increase in skilled
labor. This increase causes an immediate steep drop in the skill premium since
its relative supply decreases its relative wage. However, this immediate effect can
be reversed in the transitional dynamics toward the (new) constant steady-state
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skill premium, due to the stimulus to the demand for skilled labor resulting from
the technological-knowledge bias. Moreover, with a sufficiently strong learning-
by-interacting effect, the steady-state skill premium can be greater than the
previous one.

Finally, we have estimated the learning-by-interacting parameter by the
input–output interconnections established between firms/sectors in the produc-
tion network structure, and we have used the US data to calibrate the regulator
of scale effects. The value of this regulator points to a significant, but not total,
removal of scale effects.

NOTES

1. In the SBTC literature two standard forces can determine the direction of the technological-
knowledge change. The (dominant) market-size channel: a larger market for a technology, measured
for workers who use it, leads to more innovations. The (neutralized) price channel: there will be
more innovations for more expensive goods. Ceteris paribus, the former (latter) force encourages
innovations for the more abundant (scarce) type of labor.

2. We distinguish between R&D cooperation and R&D network. In the latter case firms cooperate
with respect to their innovative activities [e.g. Hagedoorn and Duysters (2002), Powell et al. (2005),
and Roijakkers and Hagedoorn (2006)] and will not been explicitly considered.

3. For additional details on the theoretical insight of the networks literature see Appendix A.
4. The importance of the interconnections between different technologies on the technological-

knowledge progress has long been recognized by economic historians [e.g. Landes (1969), Rosenberg
(1982), and David (1990)].

5. See Appendix B for details on data source and construction of the variables of wages and
hours; and see Appendix A and equation (A2) for details on definition of network distance and its
construction.

6. See Table B1 in Appendix B for the full list of countries. These 40 countries produce 85% of
the world GDP.

7. This U-shaped suggests the presence of a threshold level for the degree of sector connectivity.
As this threshold value is around 1.2 and almost all sectors have at least two connections, we can state
that the positive relationship between network degree and demand for relative skilled labor is also
positive for the 40 countries of our sample.

8. It could be considered a positive exogenous variable A, common to both technologies, repre-
senting the productivity level dependent on the country’s domestic institutions, namely property rights,
tax laws, and government services. However, it would not affect the results and thus we have decided,
for simplicity, not to consider it.

9. This price channel shows up in various papers by Acemoglu (2002), although always dominated
by the market-size channel, which, in our case, can be removed through the cost-of-the-market size—
see the equilibrium R&D in Subsection 4.1.

10. An additional assumption underlying this result is that the monopolist of the top-quality good
has a one-rung quality advantage over its closest competitor—see Subsection 4.1.

11. This is an adaptation of the probability function for R&D success proposed by Afonso (2006,
2012).

12. That is, no protection is given to the technological knowledge.
13. This replacement effect is a common feature of Schumpeterian quality-ladder models [e.g.

Aghion and Howitt (1992) and Barro and Sala-i-Martin (2004, Chapter 7)].
14. Following Barro and Sala-i-Martin (2004, Chapter 7), for example, the introduction qk in j

implies a change in the respective aggregate quality index, resulting in equation (11).
15. Please note that X(t) = ∫ 1

0

∫ 1

0 xn(j, t) dndj = f (QL(t), QH(t), X),
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16. That is, φ[ln(1 + n) − ln n] + ln n − ln(1 − n) = (1 − ξ ) · ln
(

L
H

) + ln
(

l
h

)
and, since 0 < n < 1,

it results ln(1 + n) = ∑∞
k=1(−1)k+1 nk

k
, ln n = ∑∞

k=1(−1)k+1 (n−1)k

k
and ln(1 − n) = ∑∞

k=1
−nk

k
.

17. As a result of this second-order Taylor expansion, all the propositions abstract from third- and
higher-order effects.

18. For example, for the OECD countries the relative skilled supply is 0.55.
19. From the definition of h, the absolute advantage of H over L in production is smaller when h

is near 1. Considering that intra-country h is likely to be structural, this advantage of H over L can be
proxied by the ratio between the share of computer users in H and in L. The value 1.3 is compatible
with data on computer usage in, for example, Katz et al. (1998).

20. Bloom et al. (2013) also recognize that firms benefit from other firms “close” to them and mea-
sure this closeness effect through the “knowledge weighting matrix,” where the knowledge spillovers
from firms’ interactions are proportional to weights measured by distances.

21. The US input–output table and the R&D intensity data were collected from the WIOD database
and the STAN indicators database (OECD), respectively, for the time period 1995–2009. From the
input–output tables we compute the network (in)strength and distance for each sector and year.

22. The skill-premium wH
wL

is obtained from the Socio-Economic Accounts from the WIOD.
23. To obtain the standard deviation of ξ we use equation (17) and the estimated results obtained

for φ—see Table 3.
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APPENDIX A: THEORETICAL INSIGHT
ON NETWORKS

The network concept was introduced in Economics by studies of effects of social networks
on economic activity, namely on the transmission of information about jobs, diffusion
of new products or technologies, and transmission of political opinions [Jackson (2011,
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2016)]. This concept rapidly expanded to business and political interactions that are also
networked, as, for example, the network of relationships among firms, countries, and polit-
ical organizations that affect R&D, trade patterns, political alliances, and economic growth
[Hausmann and Hidalgo (2011), Acemoglu et al. (2012), and Fadinger et al. (2016)].

Formally, a network can be defined by the graph Gn = (Vn, En, Wn), with vertex (or
node) set Vn, edge set En, and edge weighted matrix Wn. Moreover, (i, j) ∈ En takes the
value 1 if vertices i and j are connected and 0 otherwise, and the weight of edge (i, j) ∈ En

is equal to wij; that is, the intensity of the relationship between the vertices i, j at time t.
The directed edges are ordered from i to j and called arcs in graph theory [Graph theory is
used to describe network properties and their formation. For an introduction to this theme
applied to social sciences and economics we refer to Jackson (2008)]. Consequently, the
weighted link wi,j is different from wj,i. The Wn matrix is also called an adjacency matrix.

The importance of network analysis in economics relies on the potential of the net-
work tools in analyzing the network formation and the network structure features. Network
metrics such as network degree/strength and distance are frequently used by economic
researchers as features that provide important information about the strength of connec-
tions between agents and their proximity. The degree of a vertex (or node), Di, is the
number of links/neighbors that a vertex (or node) has to other network vertices (or nodes),

Di =
n∑
j

dij, (A1)

where dij = 1 if wij > 0 and dij = 0 otherwise. Similarly, the network strength of a vertex is
the sum of weights wij of a vertex, Si = ∑n

j wij—that we use in Subsection 5.1 to estimate
the regulator of the network intensity in our theoretical model. In directed networks, we can
distinguish between incoming and outgoing degree/strength for each vertex i accounting
the former for the inward links/weights and the latter for the outward links/weights. The
distance of a vertex (or node) is the sum of the distances along the shortest path of a vertex
i to every vertex of the network:

�i =
∑

j

γij, (A2)

where γij is the geodesic distance between i and j. In weighted networks, the network
distance is obtained using the Dijkstra (1959) algorithm. It takes into account the length of
the path (the minimum number of steps between i and j) and the weight of each step. In the
same way as the network degree, we can also distinguish between incoming and outgoing
distance in directed networks if we consider the links’ directions between vertices [For
definition of additional network metrics, see, for example, Jackson (2008) as the pioneering
study on this subject].

The above network metrics provide information about the features of the network struc-
ture and agents’ position within and relative to the network. Simultaneously, theoretical
and empirical research have shown that these features help to understand how the net-
work structure affects the macroeconomic outcomes, the propagation of shock through the
network, the technology diffusion, the knowledge spillover diffusion, and the economic
growth [Montresor and Marzetti (2009), Atalay et al. (2011), Jackson (2011), Antras et al.
(2012), Acemoglu et al. (2012), Carvalho (2014), Chaney (2014), Bertolotti et al. (2015),
Guan et al. (2016), and Magalhães (2018)].
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TABLE B1. WIOD countries, regional aggregation, and income classification

Euro-zone Non-Euro EU NAFTA China East Asia BRIIAT

Austriad Italyd Bulgariaa,b Canadad Chinaa,b,c Japand Brazila,b

Belgiumd Luxembourgd Czech Republicb,d Mexicob Korea Russiaa,b

Cyprusd Maltab,d Denmarkd USAd Taiwan India
Estoniab,d Netherlandsd Hungaryb,d Indonesia
Finlandd Portugald Latvia Australiad

Franced Slovakiab,d Lithuania Turkeya,b

Germanyd Sloveniad Polandb,d

Greeced Spaind Romaniaa,b

Irelandd Swedend

UKd

Notes: The countries classification is based on World Bank Atlas method and during the sample period some coun-
tries moved from one income group to another. aDenotes low middle income. bDenotes upper middle income.
cDenotes low income. dDenotes high income.

APPENDIX B: DATA AND VARIABLES

This appendix describes data used in Figure 1 and Table 1. Data are collected from the
world input–output database (WIOD). WIOD provides input–output tables for 40 countries
classified into 35 industries from 1995 to 2011. The countries included in the database are
27 EU countries and 13 other major countries (see Table B1 for details). These 40 countries
produce 85% of world GDP. From the input–output tables, we set the production network
structure for each country. Each sector is a note and each input–output relationship is a
weighted direct arc linking two nodes. Then, using the definitions of network distance and
degree provided in Appendix A, we calculate the network distance and degree for each
sector.

The WIOD also computes the Social Economic Accounts (SEA) that contain industry-
level data on employment (workers and educational attainment) capital stocks, gross
output, and value added. The industry classification is the same as for the world input–
output tables. From the SEA we collect the following variables: high-skilled labor
compensation (share in total labor compensation); medium-skilled labor compensation
(share in total labor compensation); low-skilled labor compensation (share in total labor
compensation); hours worked by high-skilled persons engaged (share in total hours);
hours worked by medium-skilled persons engaged (share in total hours); hours worked
by low-skilled persons engaged (share in total hours); total hours worked by persons
engaged (millions); and labour compensation (in millions of national currency). The skill
is measured by schooling, using the International Standard Classification of Education
(ISCED). High-skilled workers are workers below completed upper secondary; medium-
skilled workers are workers who completed upper secondary and some tertiary, but below
a college degree; and high-skilled workers are workers with 2–4 year college degree, or its
vocational equivalent, and above.

To compute wages, we calculate the labor compensation by skills and divide it by num-
ber of hours worked by each skill group. Afterwards, we reduce the three WIOD skill
categories to two as in Timmer et al. (2014), by joining low skilled and medium skilled
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into unskilled. Thus, the relative skilled wage is the ratio between the high-skilled labor
compensation per hour worked and the unskilled labor compensation per hour worked. The
relative skilled hours is the ratio between the high-skilled working hours and the unskilled
working hours.

APPENDIX C: SECTORS

TABLE C1. List of sectors at two-digit level

c1: Agriculture, hunting,
forestry, and fishing

c2: Mining and quarrying c3: Food, beverages, and
tobacco

c4: Textiles and textile
products

c5: Leather, leather and
footwear

c6: Wood and products of
wood and cork

c7: Pulp, paper, printing,
and publishing

c8: Coke, refined petroleum,
and nuclear fuel

c9: Chemicals and chemical
products

c10: Rubber and plastics c11: Other non-metallic
mineral

c12: Basic metals and
fabricated metal

c13: Machinery, Nec c14: Electrical and optical
equipment

c15: Transport equipment

c16: Manufacturing, Nec;
Recycling

c17: Electricity, gas, and
water supply

c18: Construction

c19: Sale, maintenance, and
repair of motor vehicles

c20: Wholesale trade and
commission trade

c21: Retail trade

c22: Hotels and restaurants c23: Inland transport c24: Water transport
c25: Air transport c26: Other supporting and

auxiliary transport
activities

c27: Post and
telecommunications

c28: Financial
intermediation

c29: Real estate activities c30: Renting of M&Eq and
other business activ.

c31: Public admin and
defense

c32: Education c33: Health and social work

c34: Other community,
social, and personal
services

c35: Private households
with employed persons
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