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Coefficient drivers are observable variables that feed into time-varying coefficients
(TVCs) and explain at least part of their movement. To implement the TVC approach, the
drivers are split into two subsets, one of which is correlated with the bias-free coefficient
that we want to estimate and the other with the misspecification in the model. This split,
however, can appear to be arbitrary. We provide a way of splitting the drivers that takes
account of any nonlinearity that may be present in the data, with the aim of removing the
arbitrary element in driver selection. We also provide an example of the practical use of
our method by applying it to modeling the effect of ratings on sovereign-bond spreads.
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1. INTRODUCTION

Time-varying-coefficient (TVC) estimation is a way of estimating parameters of
a model even when (i) the true functional form is unknown, (ii) there are missing
important regressors, and (iii) the included variables contain measurement errors.1

Several successful applications of this technique have appeared in the recent
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literature, including Hall et al. (2008, 2009a, 2009b, 2012, 2013, 2015) and Swamy
et al. (2015). However, an important assumption is needed to make the technique
operational. This assumption concerns the choice of what are called “coefficient
drivers” (formally defined later) and the separation of these drivers into subsets.
This separation allows us to derive estimates of bias-free coefficients. Intuitively,
coefficient drivers are a set of variables that feed into the TVCs and explain at least
part of their movement. As explained in what follows, the set of drivers is split
into two subsets, one of which is correlated with the bias-free coefficient that we
want to estimate and the other with the misspecification in the model. This split
can appear to be somewhat arbitrary [much as in the case of choosing instrumental
variables) and has been a source of criticism of the TVC approach—see Hall et al.
(2013)]. The problem here is that different driver sets will give different results and
there is very little guidance as to which set of drivers should be preferred, much
as is true for instrumental variable estimation. The objective of this paper is to put
forward a method for producing this split that takes account of the nonlinearity
that may be present in the original data. As we argue in the following, this method
provides a natural split in the driver set.

The remainder of this paper is divided into four sections. Section 2 presents
a summary of the TVC approach and formally defines the concept of coefficient
drivers and the need to split the drivers into two sets. Section 3 then proposes a
method for determining this split. Section 4 provides an example of the practical
use of the technique by applying it to modeling the effect of rating agencies ratings
on sovereign bond spreads. Section 5 concludes.

2. TVC ESTIMATION

Here, we summarize the approach to TVC estimation that has been formalized in
Swamy et al. (2010). TVC estimation proceeds from an important theorem that
was first established by Swamy and Mehta (1975) and that has subsequently been
confirmed by Granger (2008). This theorem states that any nonlinear functional
form can be exactly represented by a model that is linear in variables, but that
has time-varying coefficients. The implication of this result is that, even if we do
not know the correct functional form of a relationship, we can always represent
this relationship as a TVC relationship and thus estimate it. Hence, any nonlinear
relationship may be stated as

yt = γ0t + γ1t x1t + · · · + γK−1,t xK−1,t (t = 1, . . . , T ), (1)

where x1t , ..., xK−1,t are K-1 observed determinants of yt . Consequently, this
theorem leads to the result that, if we have the complete set of relevant variables
with no measurement error, then by estimating a TVC model we will get reasonable
estimates of the true partial derivatives of the dependent variable with respect to
each of the independent variables given the unknown nonlinear functional form.
Another theorem that is used to derive (1) should also be stated.
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THEOREM. A necessary condition for a model to be true is that its coefficients
and error term, having the correct functional forms, are unique.

To explain this theorem, we need to introduce some appropriate terminology.
The term “true model” is taken to mean the original real-world relationship un-
derlying (1), which does not permit spurious relations.2 A compressed real-world
relationship is taken to mean the original real-world relationship compressed to
have fewer regressors than the original relationship. The included regressors are
those that are included in both original and compressed relationships. Omitted
regressors are those that are included in the original relationship but not in the
compressed relationship. No relevant regressors, including relevant preexisting
conditions, are omitted from the original relationship, and hence it does not have
an error term. The coefficients and error term of the compressed real-world rela-
tionship are unique if they are invariant under the changes made in the real-world
relationships between each omitted regressor and the included regressors such that
the equality signs in these relationships are unchanged; the unique coefficients on
nonconstant regressors have the form of the sums of partial derivatives of the
true value of the dependent variable with respect to the true values of included
regressors and the corresponding omitted-regressors bias; the unique error term
has the form of a function (with the correct functional form) of certain “sufficient
sets” of omitted regressors; the coefficients cannot be unique unless they have
the correct functional forms. These explanations of the theorem and its proof are
given in Swamy et al. (2014). If we allow for the fact that we do not know the
full set of independent variables and that some, or perhaps all, of them may be
measured with error, then the TVCs become biased (for the usual reasons). What
we would like to have is some way to decompose the full set of biased TVCs into
two parts—the biased component and the remaining part; the latter would be a
bias-free true component. Although this is asking a great deal of an estimation
technique, it is precisely what TVC estimation aims to provide [see Swamy et al.
(2010)]. This technique builds from the Swamy and Mehta theorem, mentioned
earlier, to produce such a decomposition.3

Swamy et al. (2010) show what happens to the TVCs as other forms of mis-
specification are added to the model. If we compress a real-world relationship,
then the true TVCs get contaminated by a term that involves the relationship
between the omitted and included regressors. If we also allow for measurement
error, then the TVCs become further contaminated by a term that allows for the
relationship between the included regressors and their measurement errors. Thus,
as one might expect, the estimated TVCs are no longer the true partial derivatives
of the nonlinear function. Instead, they are biased because of the effects of omitted
regressors and measurement error. There is no estimation so far. There are exact
mathematical proofs for our statements up to this point.

To make TVC estimation fully operational, we need to make two key parametric
assumptions. First, we assume that the time-varying coefficients themselves are
determined by a set of stochastic linear equations, which makes them a function of
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a set of variables we call driver (or coefficient-driver) variables. This is a relatively
uncontroversial assumption. The only restrictive assumption is that the relationship
is linear; this may be viewed as a good first approximation. It would be possible
to generalize this assumption to any other nonlinear parametric function without
great difficulty. Second, we assume that some of these drivers are correlated
with the misspecification in the model and some of them are correlated with the
time variation coming from the nonlinear (true) functional form. Having made this
assumption, we can then simply remove the bias from the time-varying coefficients
by removing the effect of the set of coefficient drivers that are correlated with
the misspecification. This procedure, then, yields a reasonable set of estimates
of the true partial derivatives of the unknown compressed real-world nonlinear
relationship, which may then be tested by constructing t tests in the usual way.
An important difference between coefficient drivers and instrumental variables
is that for a valid instrument we require variables that are uncorrelated with the
misspecification. Such variables often prove hard to find. For a valid driver, we
need variables that are correlated with the misspecification. We would argue that
this is much easier to achieve than finding instruments that are uncorrelated with
the misspecification.

To formalize the idea of the coefficient drivers, we assume that each of the
TVCs in (1) is generated in the following way.

Assumption 1 (Auxiliary Information). Each coefficient is linearly related to
certain observable drivers plus a random error,

γjt = πj0z0t +
p−1∑

d=1

πjdzdt + εjt (j = 0, 1, . . . , K − 1), (2)

where the π s are fixed parameters, the zdt are what we call the observed coefficient
drivers, and z0t = 1. Different coefficients of (1) can be functions of different sets
of coefficient drivers.

Assumption 2. For all t, E[εt = (ε0t, ε1t, . . . , εK−1,t)′|zt= (1, z1t, . . . , zp−1,t)]
= 0. The regressors and the coefficients of (1) are conditionally independent of
each other given the coefficient drivers.4

These coefficient drivers alone are merely a set of variables that, to a reasonable
extent, jointly explain the movement in γjt . It should be noted that there are two
sources of variation in yt . The regressors and the coefficients of (1) jointly explain
the movement in yt . Under our method, the coefficient drivers included in equation
(2) have two uses. Insertion of equation (2) into equation (1) parameterizes the
latter equation. This is the first use of the coefficient drivers. Here, the issue of
identification of the parameterized model (1) is important.5 The other important
use of the drivers allows us to separate the bias and bias-free components of the
coefficients.
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Assumption 3. The set of coefficient drivers and the constant term in equation
(2) divide into three different subsets, A1j , A2j , and A3j such that the first set is
correlated with any variation in the true parameter that is due to the underlying
relationship being nonlinear, the second set is correlated with bias in the parameter
coming from any omitted regressors, and the final set is correlated with bias coming
from measurement error.

This assumption allows us to identify separately the bias-free, omitted-variables,
and measurement-error bias components of the coefficients of equation (1). As-
sumption 3 is the key to making our procedure operational; it is the assumption that
we can associate the various forms of specification biases with setsA2j andA3j ,
which means that set A1j simply explains the time variation in the coefficients
caused by the nonlinearity in the true functional form of the compressed real-
world relationship underlying (1). If this relationship is linear, then all that will
be required for set A1j is to contain the constant z0t of (2). If this relationship
is nonlinear, then the bias-free components should be time-varying and the set
of drivers belonging to A1j will explain the time variation in these components.
There are essentially two sets of variables here—the A1j, which is associated with
the true nonlinearity in (1), and the A2j and A3j, which are associated with the
misspecification. For ease of notation, hereafter we will refer to A1j as S1, and we
will refer to the joint set of A2j and A3j as S2.

3. A SUGGESTION FOR THE CHOICE OF COEFFICIENT DRIVERS

Clearly, Assumptions 1–3 are crucial for the successful implementation of the
TVC approach. As noted earlier, the split of coefficient drivers stemming from
these assumptions has been a problematic part of the TVC-estimation procedure.
There are, however, certain requirements that can help in selecting both the sets of
variables that make a good driver set and the split into two subsets inherent under
Assumption 3.

3.1. Selecting the Complete Driver Set

Consider, first, the broad requirements that a complete set of drivers should ful-
fill; these relate to predictive power and relevance. To explain, we again present
equation (2),

γjt = πj0z0t +
p−1∑

d=1

πjdzdt + εjt (j = 0, 1, . . . , K − 1),

where z0t ≡ 1. For this set of drivers to be a good set, the drivers must explain
most of the variation in γjt . Hence, we can define an analog of the conventional
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R2 for the estimated counterparts to these equations as follows:

R2 = 1 − SSεjt

SSγjt

, (3)

where SSεjt and SSγjt are the sum of squared residuals and the total variation of the
dependent variable, respectively. A main difficulty with (3) is that if E(εjt εj ′t ′) �= 0
for j �= j ′ or t �= t ′and we use a fully efficient estimator such as GLS, then
(3) will have a range from −∞ to 1 and it will be difficult to interpret it as
the proportion of variation in γjt explained by equation (2) [see Judge et al.
(1985, pp. 31–32)]. To deal with this problem, let εt = (ε0t , ε1t , ..., εK−1,t )

′. Then
assume that, given zt = (z0t , z1t , ..., zp−1,t )

′, εt = �εt−1 + ut , where E(ut |zt )

= 0 and E(utu
′
t ′ |zt ) = {σ 2

u �u if t=t ′

0 if t �=t′ , �u being a non-negative matrix. With these
assumptions, the covariance matrix of ε = (ε′

1, ..., ε
′
T )′ can be represented as

E(εε′|z1, ..., zT ) = σ 2
u �u. The elements of this covariance matrix are displayed

in Chang et al. (1992). A goodness of fit measure for (2) that resembles Judge
et al.’s (1985, p. 32) goodness measure is

R2
γ = 1 − ε′�−1

u ε

(γ − ιT K γ̄ ∗
w)′�−1

u (γ − ιT K γ̄ ∗
w)

, (4)

where (2) is written in matrix form as γt = 
zt + εt , γt = (γ0t , γ1t , ..., γK−1,t )
′

is K × 1, 
 is a K × p matrix of the π ’s in (2), zt is p × 1, εt is K × 1,
γ = (IT ⊗ 
)z + ε, γ is a T K × 1 vector of γ ’s in (2), z = (z′

1, ..., z
′
T )′, ε =

(ε′
1, ..., ε

′
T )′, ιT K is a T K × 1 vector of unit elements, and γ̄ ∗

w = ι′T K�−1
u γ

ι′T K�−1
u ιT K

is a

weighted mean of the dependent variable of (2). Like Judge et al.’s (1985, p. 32,
(2.3.16)) newly defined R2, R2

γ in (4) also lies between 0 and 1 and its value can
be interpreted as the proportion of weighted variation in γ explained by regression
(2). However, the methods of estimation of (4) and Judge et al.’s newly defined
R2 are not the same.

We will now show how to compute measure (4). Substitute the right-hand side
of (2) for γjt in (1). Doing this for all j gives the fixed coefficient version of (1). The
unknown coefficients (π ’s) and the unobserved errors (ε’s) in (2) and the unknown
�u in (4) can be estimated for all j and t, using an iteratively rescaled generalized
least squares (IRSGLS) method [see Chang et al. (1992, 2000)]. Inserting these
estimates into (2) gives the estimates of γ in (2) for all j. These estimates can be
used in (4) to evaluate R2

γ . Here, we require R2
γ to be as close to 1 as possible6

so that the drivers explain a large proportion of variation in the TVC. This result
could, of course, be achieved simply by having a very large number of drivers.
Therefore, we also require the drivers to be relevant in the sense that the πjd ’s
are significantly different from zero. Estimation of the full TVC model produces
a covariance matrix for the estimated πjd , so that conventional t statistics and
probability levels may be produced in the standard way.
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These two conditions are closely analogous to the idea of relevance in instru-
mental variable estimation, where the instruments must be highly correlated with
the variables being instrumented. If the R2

γ in (4) is low, then we can infer that
we have a weak set of coefficient drivers. There is, however, no requirement for
the drivers to be independent of the coefficient γjt , as there is for instruments to
be independent of the error term under an IV estimation procedure. Finally, we
also do not require the coefficient drivers to be independent of the errors in the
model. In fact, we need to pick drivers that are highly correlated with the errors,
and hence the misspecification.

Estimating the components of the coefficients of (1) is our next task.

3.2. Splitting the Driver Set

The more difficult issue is how to perform the split in the coefficient drivers
into the two sets outlined under Assumption 3—that is, S1, which contains the
variables correlated with the bias-free coefficient, and S2, which is the set of
drivers correlated with the misspecification. The suggestion being made here is
that certain drivers should be chosen to explicitly capture any nonlinearities that
may exist in the compressed real-world relationship underlying (1). We will discuss
later exactly how this should be done. All other driver variables would then be
assumed to be associated with misspecification and should therefore be removed
when obtaining the bias-free component. The following examples should make
this clear. Let us assume that the original real-world relationship underlying (1) is
given by

y∗
t = f (x∗

1t , ..., x
∗
mt t

). (5)

This function meets all relevant preexisting conditions, as some of its ar-
guments are such that their values are automatically held constant when the
partial derivatives of y∗

t with respect to the included regressors other than the
preexisting conditions are taken.7 The true functional form of model (5) is un-
known and all of its variables are unknown and unobserved. We are interested in
estimating

∂y∗
t

∂x∗
j t

for j = 1, ..., K − 1, (6)

where the values of all the arguments of f (x∗
1t , ..., x

∗
mt t

) other than x∗
j t are held

constant.
To understand how the split of drivers may be accurately done, consider the

following.

Example 1

If (5) is linear, then the S1 set consists of just the constant z0t ≡ 1, and all other
drivers explain the biases that stem from missing regressors and measurement
error.
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Example 2

Suppose that (5) is a polynomial, such as a quadratic form. Consider, for sim-
plicity, the case of only two explanatory variables. Then the original real-world
relationship becomes8

y∗
t = β0 + β1x

∗
1t + β2x

∗2
1t + β3x

∗
2t + β4x

∗2
2t (7)

We are interested in treating x∗
2t as an omitted regressor and also in estimating

∂y∗
t

∂x∗
1t

= β1 + 2β2x
∗
1t . (8)

If the true functional form of equation (6) were unknown to us, we would need
to rely on the TVC model y∗

t = ∂y∗
t

∂x∗
1t
x∗

1t + ∂y∗
t

∂x∗
2t
x∗

2t + (y∗
t − ∂y∗

t

∂x∗
1t
x∗

1t − ∂y∗
t

∂x∗
2t
x∗

2t ) =
α∗

1t x
∗
1t + α∗

2t x
∗
2t + α∗

0t , where α∗
1t = ∂y∗

t

∂x∗
1t

= β1 + 2β2x
∗
1t , α∗

2t = ∂y∗
t

∂x∗
2t

= β3 + 2β4x
∗
2t ,

and α∗
0t = (y∗

t − ∂y∗
t

∂x∗
1t
x∗

1t − ∂y∗
t

∂x∗
2t
x∗

2t ). Substituting in this TVC model the right-hand

side of the second equality sign in the equation x∗
2t = ∂x∗

2t

∂x∗
1t
x∗

1t + (x∗
2t − ∂x∗

2t

∂x∗
1t
x∗

1t )

= λ∗
1t x

∗
1t + λ∗

0t gives y∗
t = (α∗

0t + α∗
2t λ

∗
0t ) + (α∗

1t + α∗
2t λ

∗
1t )x

∗
1t , where α∗

2t λ
∗
0t is

the function with the correct functional form of the “sufficient set” λ∗
0t of the

omitted regressor x∗
2t ; it is unique and is treated as the error term. The coefficient

(α∗
1t + α∗

2t λ
∗
1t ) of x∗

1t is unique, being the sum of the partial derivative α∗
1t in

(8), and the omitted-regressor bias α∗
2t λ

∗
1t ; α∗

1t is the bias-free component of the
coefficient of x∗

1t . y∗
t = (α∗

0t + α∗
2t λ

∗
0t ) + (α∗

1t + α∗
2t λ

∗
1t )x

∗
1t is the compressed real-

world relationship, which treats x∗
2t as an omitted regressor. The reason that we

call both this compressed equation and the original equation in (7) real-world
relationships is that no approximation is followed in going from the original to the
compressed form. Place the measurement errors, yt = y∗

t +ν∗
0t and x1t = x∗

1t +ν∗
1t ,

at the appropriate places in the compressed real-world relationship. Doing so gives
yt = (α∗

0t + α∗
2t λ

∗
0t + ν∗

0t ) + (α∗
1t + α∗

2t λ
∗
1t )(1 − ν∗

1t

x1t
)x1t , where the intercept and the

coefficient of x1t are the same as γ0t and γ1t , respectively, in the following. Clearly
because of the treatment given to x2, OLS applied to the compressed equation
would give biased estimates of the parameter. The TVC model to be estimated is
then given by

yt = γ0t + γ1t x1t . (9)

Now, if we include an explicit driver to capture the nonlinearity of (7), we will get
the equations

γ0t = π00z0t + π01z1t + π02z2t + π03z3t + π04z4t + π05z5t + π06z6t + ε0t , (10)

γ1t = π10z0t + π11z1t + π12z2t + π13z3t + π14z4t + π15z5t + π16z6t + ε1t , (11)

where we need to choose z1t , z2t , z3t , z4t , z5t , and z6t such that they are highly
correlated with α∗

0t , α∗
2t λ

∗
0t , ν∗

0t , α∗
1t , α∗

2t λ
∗
1t , and (α∗

1t + α∗
2t λ

∗
1t )(− ν∗

1t

x1t
), respectively,

and set π04 = π05 = π06 = 0 and π11 = π12 = π13 = 0. Note that each of the
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z’s in equations (10) and (11) need not be a single coefficient driver. For example,
for j = 0, 1, h = 1, . . ., 6, πjhzht can be equal to

∑
g πjhgzhtg . Now the question

is, how do we find such z’s when the true functional form of (7) is unknown? Had
we known the true functional form of (7) we would have understood that α∗

1t is a
linear function of x∗

1t , α∗
2t is a linear function of x∗

2t , α∗
2t λ

∗
1t is a nonlinear function

of x∗
2t and ∂x∗

2t

∂x∗
1t

, and (α∗
1t +α∗

2t λ
∗
1t )(− ν∗

1t

x1t
) is a nonlinear function of all the variables:

x∗
1t , x∗

2t ,
∂x∗

2t

∂x∗
1t

, and the measurement error in x1t . Suppose that we could somehow
guess this and based on this guess we set z4t = x1t . Let us substitute the right-hand
sides of equations (10) and (11) for γ0t and γ1t in equation (9), respectively. Then

yt = π00z0t + π01z1t + π02z2t + π03z3t +(π10z0t + π14z4t+π15z5t + π16z6t )x1t

+ ε0t + ε1t x1t . (12)

In this equation, the sum π00z0t +(π10z0t +π14z4t )x1t gives a quadratic function
in x1t if z4t = x1t . This quadratic function can represent the sum of the first three
terms on the right-hand side of (7) well if data on x1t contain negligible magni-
tudes of measurement error. The coefficients of equation (12) can be estimated
consistently by applying an IRSGLS method to (12). With the choice z4t = x1t , the
estimates of the coefficients of (12) may give better estimates of the components of
the coefficients of equation (9) than other choices. If this is true, then an estimate
of α∗

1t is a kernel density estimate given by π̂10 + π̂14x1t , t = 1, . . ., T, where
π̂10 and π̂14 are the IRSGLS estimates of π10 and π14, respectively. If the central
tendencies of this kernel density estimates are unreasonable, then the estimates of
the other terms of (11) can be added to the estimate π̂10 + π̂14z4t (= x1t ). The large
sample properties of kernel density estimates are given in Lehmann (1999). It is
a good idea to study the robustness of these kernel density estimates to changes
in the set of coefficient drivers. Because we would not know whether the true
model was quadratic, we could include higher-order polynomial terms and test
their significance in the usual way to see how many polynomial terms would
be needed. If the nonlinearity was not, in fact, a polynomial, then there are two
possible courses of action.

1. We could include a number of polynomial terms and think of this as a Taylor series
approximation to the true unknown form.

2. We could try a range of specific nonlinear forms, again testing one form against
another.

With regard to the second option, by using this option the standard TVC model
is able to nest a number of popular nonlinear models within a single framework,
which also allows for measurement error and missing variables. This procedure
is very different from other standard procedures. For example, a popular non-
linear model is the smooth transition autoregressive model (STAR). This allows
a parameter to move smoothly between two values according to a function that
responds to some threshold variable. If we were estimating a TVC such as (9) but
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believed the true nonlinearity followed a STAR form, then we could specify the
driver equations as

β0t = π00 +
p∑

i=1

π01+izit + ε0t , (13)

β1t = π10 + π11G(zt , ζ, c) + π12(1 − G(zt , ζ, c)) +
p∑

i=1

π12+izit + ε1t , (14)

where G(zt , ζ, c) is the transition function—typically a logistic function for the
LSTAR model, an exponential function for the ESTAR model, or a second-order
logistic function, z is the transition variable, and ζand c are parameters [Ahmad
and Lo (2014)]. The model given by (14) is more general than the standard STAR
model, as it includes the drivers associated with measurement error and missing
variables and will hence correct for these misspecifications. Model (14) also has
a stochastic error term and thus becomes a stochastic STAR model. The split into
the two subsets is again obvious, as the two terms capturing the STAR effect are
clearly the set that is appropriate for S1.

Another interesting nonlinearity would be to use a set of combinations of simple
nonlinear functions such as the log or exponential function. In this case the TVC
model would begin to encompass a neural net and the universal approximation
theorems of Hal White would suggest that with sufficient complexity the model
could then approximate any unknown functional form to any degree of accuracy.

Under certain conditions, the IRSGLS estimators of the π ’s in (2) are consistent
and asymptotically efficient [see Swamy et al. (2010)].9 The distributional theory
underlying this estimation technique and the method for constructing inference
are given in Swamy et al. (2010). However, this software is not used widely,
and so here we point out a way in which these models may be estimated using
standard software such as EVIEWS. The preceding models are written in a form
that exactly corresponds to the state space form. Although the usual interpretation
of state space models is rather different from the TVC procedure being discussed
here, the mathematics of the Kalman filter goes through exactly to yield minimum
least-squares estimates [Harvey (1989)]. If the errors of the driver equations are not
normal with a constant variance, then the Kalman filter will not yield maximum
likelihood estimates; they may, however, be interpreted as quasi-maximum likeli-
hood estimates [White (1980)], and they will be consistent, although not generally
as efficient as the IRSGLS technique mentioned earlier. (This means that all of
these models may be estimated using the Kalman filter, which can estimate all
of the parameters of the model by maximizing the quasi-likelihood function. The
Kalman filter and the state space form must be linear in the state variables, but
they can easily handle nonlinearities in the other variables; all of the preceding
variants may be estimated in standard software such as EVIEWS. An Appendix
to this paper provides the EVIEWS code that was used to estimate the example
following.
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4. AN APPLICATION

In this section, we investigate the effects of rating-agency decisions on the
sovereign bond spread between Greece and Germany. The underlying hypothesis
is that this relationship is highly nonlinear—for example, a decline in ratings by
one notch, from, say, AA to A, will have a relatively small effect on spreads,
whereas a decline from, say, B-minus to CCC will have a much larger effect on
spreads. Thus, as the rating goes down, the effect on spreads becomes propor-
tionally larger. We will be undertaking quasi-maximum likelihood estimation to
illustrate the application of these techniques in standard software (EVIEWS).

The intuition underlying this mechanism is as follows. Consider a world that
includes two rating agencies, X and Y. In assigning ratings to a particular sovereign,
both agencies have access to essentially identical information sets composed of
the (present and projected) fundamentals, including spreads, competitiveness, real
growth, inflation, fiscal and external positions, and, perhaps, noneconomic vari-
ables such as measures of political stability. Suppose that, based on its assessment
of the information set of a particular country, rating agency X moves to downgrade
the sovereign debt of the country in question. The announcement of the downgrade
will very likely trigger a rise in the sovereign’s interest rate. In addition, under
the ECB’s collateral framework, haircuts on sovereigns rise if ratings fall to a
specified (triple-B) level and are ineligible as collateral below single-B minus. For
these reasons, the very action by rating agency X changes the information set of
rating agency Y, because that information set now includes X’s downgrade, the
resulting higher interest rates, and possibly higher haircuts on collateral, lower
projected growth (because of the rise in interest rates), and less sustainable fiscal
balances for the country in question. Consequently, rating agency Y, which may
have been content with the rating it had assigned to the sovereign in question
prior to X’s downgrade, may move to downgrade the sovereign’s rating based
on the changed information set. In this way, X’s original action can precipitate a
downgrade by Y, triggering self-perpetuating feedback loops between ratings and
spreads.

Of course, there are many other things that might affect spreads, such as debt,
deficits, relative prices, and politics. Therefore, if we examined a simple rela-
tionship between spreads and ratings, omitted variables would cause bias for a
standard OLS regression.

The data used are monthly and cover the period 1998m1 to 2012m6. In cases for
which the original data are quarterly, the data have been interpolated to a monthly
frequency; where appropriate, variables are measured relative to the corresponding
variables for Germany. As mentioned, the dependent variable, sp, is the yield
spread between the 10-year benchmark government bond yield of Greece and
that of Germany. Our explanatory variables are measures of macroeconomic and
political fundamentals, as follows:

pol represents political stability. We use the IFO World Economic Survey Index of
Political Stability. A rise in the index implies greater stability.
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dgdp is real GDP growth. A relatively high rate of economic growth suggests that a
country’s existing debt burden will become easier to service over time.

cnewssq is “fiscal news.” To capture the news (or surprise) element that has figured
strongly in Greece’s experience, we use real-time fiscal data. In particular, using the
European Commission Spring and Autumn forecasts, we use a series of forecast revi-
sions. For example, the revision in the Spring 2001 forecasts is the 2001 deficit/GDP
ratio in the spring compared to the forecast for 2001 made in the autumn of 2000. This
procedure generates a series of revisions, which, when cumulated over time, provides
a cumulative fiscal news variable.

relp is relative prices. To help capture relative changes in competitiveness, we use
Greece’s Harmonized Index of Consumer Prices (HICP, all items index) relative to
that of Germany.

debtogdp is the debt-to-GDP ratio. A higher debt burden should correspond to a higher
risk of default. We include the general government consolidated gross debt-to-GDP
ratio (expressed as a percentage), interpolated from a quarterly to a monthly frequency.

rate is the agencies’ credit rating for Greek government debt. The ratings of three
agencies are used: Fitch, Moody’s, and Standard & Poor’s. To capture the effects
of ratings on spreads, we include ordinal ratings to allow for nonlinearities in the
relationship between ratings and spreads. For example, the dummy variable triple-A
takes a value of 1 for the period for which the rating was triple-A, and a value of zero
otherwise. We date rating changes by identifying the agency that made the first move
from one rating to another, on the assumption that the first mover would cause the
subsequent reaction. In other words, if rating agency A downgraded Greece from A-
to BBB+ in April, say, and subsequently rating agency B downgraded Greece from
A to A- in June, then the second downgrade would not register. Our basic TVC model
is

spt = α0t + α1t rate. (15)

Our coefficient driver equations take the form

α0t=π00+π01pol+π02dgdp+π03cnewssq+π04relp+π05debtogdp+ε0t, (16)

α1t=π10+π11rate+π12pol+π13dgdp+π14cnewssq+π15relp+π16debtogdp+ε1t.

(17)
In this driver set, rate gives a quadratic effect to the coefficient on ratings,

allowing for a strong nonlinearity. We begin by estimating this general model, to
obtain the following results (where t-stats are in parentheses):

α0t= −4.2 − 0.05pol−0.9dgdp + 0.03cnewssq + 23.27relp + 0.05debtogdp+ε1t

(0.6)(0.4) (13.4) (2.9) (3.2) (1.6),
(16′)

α1t= −0.6+0.07rate + 0.004pol + 0.27dgdp − 0.005cnewssq − 3.5relp + 0.0004debtogdp+ε2t

(1.2)(17.4) (0.1) (0.18) (3.2) (3.35) (0.12).
(17′)

As mentioned in Section 3, selection of drivers should be made on the basis of
the explanatory power of the driver equations and the significance of the individual
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FIGURE 1. Time profiles of α1t in equation (15) and its bias-free component.

drivers. For equation (16′), the R2 is 0.80; for equation (17′), the R2 is 0.84. Thus,
both sets of drivers produce a reasonably high degree of explanatory power for the
two TVCs. A number of drivers in each equation are insignificant, however, so we
simplify the model to exclude insignificant drivers, obtaining the following more
parsimonious model (note we do not exclude the constants even if insignificant):

α0t= −3.5 + 0.03cnewssq + 15.6relp + 0.04debtogdp+ε1t

(2.0)(2.9) (3.9) (2.7).
(18)

α1t= −0.64 + 0.05rate − 0.005cnewssq − 2.3relp + ε2t

(1.8) (20.9) (3.8) (4.2)
(19)

The coefficient of interest is α1t , that is, the effect of ratings on the two-year
spread. Effectively, we have taken the variable “rate” from the basic equation for
spreads—i.e., equation (15)—and used it as the driver. Then, by substituting back
into the basic equation, we obtain a quadratic effect in the basic equation. Figure 1
shows the total value of this TVC, along with the bias-free effect that is given by
subtracting the error term and the effect from rate and cnewssq.

Because the scaling of the two coefficients is quite different, Figure 2 shows
just the bias-free coefficient. This makes the strong nonlinearity clear as ratings
start to rise (that is, deteriorate). After 2008, the effect of ratings on spreads
becomes increasingly powerful. We therefore have found a very strong quadratic
link between ratings and spreads.
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FIGURE 2. Time profile of the bias-free component of α1t .

5. CONCLUSIONS

This paper has proposed a new way of deriving the split between coefficient
drivers when deriving the bias-free estimate of a coefficient within the TVC
estimation framework. We have argued that, if a model with unique coeffi-
cients and error term is linear, then only the constant in the coefficient driver
set should be retained. If a model with unique coefficients and error term is
nonlinear, however, then an explicit set of drivers that capture the nonlinearity
should be chosen. In the absence of any specific information about the precise
form of the nonlinearity, this can best be achieved by using a set of polyno-
mials in the explanatory variables. These drivers are then the only ones that
should be retained when the bias-free component is derived. We have also argued
that two conditions should be applied to the drivers, which we call predictive
power and relevance; that is, the drivers should explain a large proportion of
the movement in the TVCs and they should be statistically significant. We illus-
trated this process by estimating a nonlinear relationship between country-risk
ratings and sovereign bond spreads for Greece. We showed that there is a highly
nonlinear effect here. Finally, the procedure can be implemented using standard
software such as EVIEWS. The code for the estimated model is provided in
Appendix A.

NOTES

1. The development of a type of variable coefficient estimation is due to Swamy (1970, 1974). See
also Swamy and Tavlas (2001, 2007) and Swamy et al. (2010).
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2. For a definition of real-world relationships, see Basmann (1988). See also Swamy et al. (2014,
p. 196).

3. Mathematically, this model may appear to be a state space one. However, the interpretation
of the coefficients is quite different from the standard state space representation. Omitted-variable
biases, measurement-error biases, and the correct functions of certain “sufficient sets of excluded
variables” are not considered parts of the coefficients of the observation equations of state-space models.
This is the major difference between (1) and the observation equations of a standard state-space
model.

4. The distributional assumptions about the errors in (2) are given in Swamy et al. (2010).
5. To handle this issue, we use Lehmann and Casella’s (1998, pp. 24 and 57) concept of identifi-

cation.
6. Note that, as (5) is computed using the estimates of its unknown quantities, this cannot be given

a formal test interpretation. Instead, we use R2
γ as a simple descriptive statistic.

7. Spurious relationships disappear when we control for all relevant preexisting conditions [see
Skyrms (1988, p. 59)].

8. The real-world relationships with more than two explanatory variables are considered in our
previous work [see Chang, Swamy, Hallahan, and Tavlas (2000)].

9. A computer program that implements this technique is available at http://www.le.ac.uk/
ec/sh222/soft.htm.
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APPENDIX A: EVIEWS CODE FOR THE REPORTED
MODEL IN SECTION 4

@signal sp gr = sv1 + sv2∗rate gr
@state sv1 = c(1) +c(6)∗pol gr+c(7)∗dgdp gr+c(8)∗cnewssq gr+c(9)∗relp gr

+c(10)∗debtogdp gr+sv3(-1)+c(16)∗sv4(-1)
@state sv2 = c(2)+c(3)∗rate gr+c(11)∗pol gr+c(12)∗dgdp gr+c(13)∗cnewssq gr

+c(14)∗relp gr+c(15)∗debtogdp gr +sv5(-1)+c(17)∗sv6(-1)

@state sv3 = [var = exp(c(18))]
@state sv4 = sv3(-1)
@state sv5 = [var = exp(c(19))]
@state sv6 = sv5(-1)
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In this code, SP gr is the spread between Greek and German ten-year government bond
yields; Rate gr is the rating on country risk, denoted as a variable scaled from 1 to 20,
where 1 is equivalent to a AAA rating; pol gr is an indicator of political unrest in Greece;
cnewssq is an indicator of news about Greek GDP derived from ECB forecasts; relp gr is
the relative process between Greece and Germany; and debtogdp gr is the debt-to-GDP
ratio for Greece.

This model is also coded to have a first-order moving average error process on the two
time-varying coefficients sv1 and sv2, which is usual in TVC models.

The c(?) parameters are the usual EVIEWS notation for parameters to be estimated by
maximum likelihood.
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