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We present the stability analysis of a plane Couette flow which is stably stratified
in the vertical direction orthogonal to the horizontal shear. Interest in such a flow
comes from geophysical and astrophysical applications where background shear and
vertical stable stratification commonly coexist. We perform the linear stability analysis
of the flow in a domain which is periodic in the streamwise and vertical directions
and confined in the cross-stream direction. The stability diagram is constructed as
a function of the Reynolds number Re and the Froude number Fr, which compares
the importance of shear and stratification. We find that the flow becomes unstable
when shear and stratification are of the same order (i.e. Fr ∼ 1) and above a
moderate value of the Reynolds number Re & 700. The instability results from a
wave resonance mechanism already known in the context of channel flows – for
instance, unstratified plane Couette flow in the shallow-water approximation. The
result is confirmed by fully nonlinear direct numerical simulations and, to the best
of our knowledge, constitutes the first evidence of linear instability in a vertically
stratified plane Couette flow. We also report the study of a laboratory flow generated
by a transparent belt entrained by two vertical cylinders and immersed in a tank
filled with salty water, linearly stratified in density. We observe the emergence of a
robust spatio-temporal pattern close to the threshold values of Fr and Re indicated
by linear analysis, and explore the accessible part of the stability diagram. With the
support of numerical simulations we conclude that the observed pattern is a signature
of the same instability predicted by the linear theory, although slightly modified due
to streamwise confinement.

Key words: channel flow, instability, internal waves

1. Introduction
Shear and density stratification are ubiquitous features of flows on Earth and

can strongly affect the dynamics of different fluids such as air in the atmosphere
or water in the ocean. More generally, interest in the stability of parallel flows
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dates back to the second half of the nineteenth century (Helmholtz 1868; Kelvin
1871) and the first crucial statement came from Rayleigh (1879), who gave his
name to the famous inflexion point theorem proving a necessary criterion for an
inviscid homogeneous parallel flow to be unstable. The first laboratory experiments
performed by Reynolds (1883) showed that also inflexion-free flows can run unstable
at sufficiently high Re, thus highlighting the need for a viscous analysis. Still more
than a century ago, Orr (1907) provided a viscous equivalent of the Rayleigh principle.
Nevertheless, as reviewed by Bayly, Orszag & Herbert (1988), providing a solution of
the Orr–Sommerfeld equation at large Re number turns out to be exceedingly difficult
and has since drawn the attention of many studies (Heisenberg 1924; Schlichting
1933; Lin 1966). Interestingly, even for the simplest profile of parallel flow, a
conclusive answer has been lacking for almost a century, as reported by Davey
(1973): ‘It has been conjectured for many years that plane Couette flow is stable to
infinitesimal disturbances although this has never been proved [. . .] We obtain new
evidence that the conjecture is, in all probability, correct’. Since then the stability
analysis of plane Couette (PC) flow continues to be of great interest in studying the
transition to turbulence via nonlinear mechanisms (Barkley & Tuckerman 2005), but
its linear stability is nowadays no longer questioned (Romanov 1973). In the present
work we show that by adding a vertical linear (stable) density stratification, the PC
flow becomes unstable, at strikingly moderate Re numbers, typically Re & 700. The
observed instability relies on the same resonance mechanism shown by Satomura
(1981) for shallow water waves, here extended to the case of internal gravity waves.
An interesting feature of this finding is that density stratification is generally thought
to be stabilizing as it inhibits vertical motion. Nevertheless, our counter-intuitive result
does not come as a prime novelty. In the close context of rotating-stratified (and
sheared) flows, Molemaker, McWilliams & Yavneh (2001) and Yavneh, McWilliams
& Molemaker (2001) questioned the other Rayleigh celebrated criterion (Rayleigh
1917) and showed that Rayleigh-stable Taylor–Couette flows may become unstable
when adding linear density stratification. The strato-rotational instability, as it was
successively named by Dubrulle et al. (2005), was observed in the laboratory a few
years later (Le Bars & Le Gal 2007) and is still the subject of experiments (Ibanez,
Swinney & Rodenborn 2016). The stability analysis of parallel flows where shear
coexists with stratification also has a long tradition. The most famous shear instability
(i.e. the Kelvin–Helmholtz instability) was indeed found in the context of a two-layer
fluid endowed with different velocities and densities (Helmholtz 1868; Kelvin 1871).
This work was extended to the three-density-layers configuration, with constant
shear in the middle layer, by Taylor (1931) and Holmboe (1962), who identified
two different instability mechanisms, and later by Caulfield (1994), who isolated a
third possibility. Howard (1961) and Miles (1961) gave the stability criterion of the
Kelvin–Helmholtz instability, for the case of continuous linear stratification. Since
then, most studies have focused on the configuration where the density gradient
and shear are parallel. In contrast, only a few studies (e.g. Deloncle, Chomaz
& Billant 2007; Arratia 2011; Candelier, Le Dizès & Millet 2011) have recently
considered the case of non-alignment as reviewed by Chen (2016), who also showed
(Chen, Bai & Le Dizès 2016) that a free-inflexion boundary layer profile is linearly
unstable when linear stratification is added. In the case of a vertically stratified and
horizontally sheared PC flow, Bakas & Farrell (2009) already considered the problem
of the linear stability while investigating the interaction between gravity waves and
potential vorticity. Nevertheless, their study focused mainly on an unbounded flow,
and modal analysis of the equivalent bounded flow was limited to low Reynolds
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number (Re = 150), for which the flow is linearly stable. We perform the linear
stability analysis of the same flow using a pseudo-spectral method (i.e. with the
same approach as Chen et al. 2016) and find that exponentially growing modes
appear at moderate Re number, Re ∼ 700 and Fr ' 1, for non-vanishing vertical
and horizontal wavenumber kx/kz ∼ 0.2. Results are confirmed by fully nonlinear
direct numerical simulations (DNS). We also analyse the laboratory flow produced
by a shearing device immersed in a rectangular tank filled with salty water, linearly
stratified in density. We verify that a quasi-parallel PC flow can be generated and
observe that, beyond a moderate Re number Re & 1000 and for Fr number close
to 1, a robust velocity pattern appears in the vertical midplane parallel to the shear,
where no motion is expected for a stable PC flow. In particular, perturbations grow
in an exponential manner, and looking at how their saturation amplitude varies in
the (Re, Fr) space, we find that an abrupt transition is present close to the marginal
stability limit predicted by linear stability analysis. The quantitative agreement of
the observed spatio-temporal pattern with the linear theory is only partial, which we
claim to be a consequence of the finite streamwise size of our device. This hypothesis
is largely discussed and supported by the results of additional DNS confirming that
the finite size of the domain only weakly affects the base flow, but does modify the
shape of the perturbation pattern. We conclude that the observed instability indeed
corresponds to the linear instability of the vertically stratified PC flow modified by
finite-size effects and that a redesigned experiment may reproduce more faithfully the
spatio-temporal pattern predicted by the linear theory.

The paper is organized as follows. In § 2 we introduce the governing equations and
describe the linear stability approach. In § 3 we report the results of linear analysis
and in § 4 those of direct numerical simulations. The experiments are described in § 5
and the experimental results compared with the linear theory and direct numerical
simulations in § 6. In § 7 we summarize our study and briefly discuss possible
applications and future developments of the present work.

2. Theoretical frame
We consider the PC flow generated by two parallel walls moving with opposite

velocities for a fluid which is stably stratified in density, as sketched in figure 1. We
denote x̂ as the streamwise direction, ŷ as the cross-stream direction (i.e. the direction
of the shear) and ẑ as the vertical direction (i.e. the direction of the stratification).
The vector g denotes gravity while red arrows sketch the shape of the constant shear
profile U(y) and red shading mimics vertical stratification ρ̄(z). In the Boussinesq
approximation we obtain the following system of equations:

∂u
∂t
+ (u · ∇)u=−

∇p′

ρ0
−
ρ ′

ρ0
gẑ+ ν∇2u, (2.1)

∇ · u= 0, (2.2)
∂ρ ′

∂t
+ (u · ∇)ρ ′ −

N2

g
ρ0wẑ= k∇2ρ ′, (2.3)

where we decompose the pressure and density fields p and ρ into a perturbation
p′ and ρ ′ and a stationary part p̄ = p0 + ρ0gz − N2z2ρ0/2 and ρ̄ = ρ0(1 − N2z/g),
with p0 and ρ0 two constant reference values. We indicate with N =

√
−∂zρ̄(g/ρ0)

the background Brunt–Väisälä frequency, while ν and k denote constant viscosity and
density diffusivity.
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FIGURE 1. (Colour online) Sketch of the analysed flow in a Cartesian reference frame x̂,
ŷ, ẑ. The base flow is aligned with the streamwise direction x̂, the constant shear is aligned
with the cross-stream direction ŷ, while density stratification and gravity are aligned with
the vertical direction ẑ. We highlight no-slip lateral boundaries in grey. Open periodic
boundaries are not coloured.

2.1. Linear stability analysis
We perform the linear stability analysis of (2.1)–(2.3) in a Cartesian box of dimensions
(Lx, Ly, Lz) centred at x = y = z = 0. With this aim we introduce the buoyancy b =
ρ ′g/ρ0 and decompose the velocity u into a base flow U=−U0yx̂ and a perturbation
u′. Boundary conditions are periodic in the streamwise and vertical directions and no
slip, i.e. u′= 0, at the rigid walls y=±Ly/2. Buoyancy perturbations b are also set to
0 at the walls. The system is made non-dimensional using the length L0 = Ly/2, the
density ρ0 and the velocity U0=σL0, where σ =−∂yU(y) is the shear rate. This choice
is consistent with Chen et al. (2016) and gives the same set of dimensionless numbers,
which are the Reynolds number Re=L0U0/ν, the Froude number Fr=U0/L0N= σ/N
and the Schmidt number Sc = ν/k. The dimensions of the box are fixed to (Lx =

131, Ly= 2, Lz= 14). We then look for solutions of the non-dimensional perturbations
ũ, p̃ and b̃ in the form of normal modes

ũ, p̃, b̃= (u(y), p(y), b(y))eikxx+ikzz−iωt, (2.4)

where we again use symbols u, p and b to simplify notations. Substituting in (2.1)–
(2.3) and retaining only the first-order terms we obtain:

−iωu= ikxuy+ v − ikxp+
1

Re
∆yu, (2.5)

−iωv = ikxvy−
dp
dy
+

1
Re
∆yv, (2.6)

−iωw= ikxwy−
b

Fr2
− ikzp+

1
Re
∆yw, (2.7)

0= ikxu+ ikzw+
dv
dy
, (2.8)

−iωb= ikxby+w+
1

ReSc
∆yb, (2.9)
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where we denote with ∆y the Laplacian operator ∆y = d2/dy2
− k2

x − k2
z . The system

of equations above is solved using a pseudo-spectral approach similar to Chen et al.
(2016), the only difference being that discretization is made on the Gauss–Lobatto
collocation points of the Chebyshev polynomials (i.e. instead of Laguerre polynomials)
because this choice is well adapted to a two-side bounded domain. The generalized
eigenvalue problem Af = ωBf for f = [u, v,w, b, p] is solved with the QZ algorithm.
In parallel we also consider the inviscid approach, which consists in neglecting both
viscous dissipation and salt diffusion, thus reducing the system (2.5)–(2.9) to one
equation for the pressure:

∂2p
∂y2
−

2kx

ω∗

∂p
∂y
+

(
k2

z
ω2
∗

1− Fr2ω2
∗

− k2
x

)
p= 0, (2.10)

where ω∗ = ω + kxy. The equation above is analogous to that provided by Kushner,
McIntyre & Shepherd (1998), who previously studied the stability of a vertically
stratified PC flow in the presence of rotation f . In the limit of no rotation ( f→ 0) we
verify that the two equations are the same, but contrary to Kushner et al. (1998) we
could not find a meaningful limit in which our equation (2.10) becomes autonomous
in y. As a consequence we cannot provide a compact form for the dispersion relation.
Nevertheless, looking at (2.10) is still extremely instructive. First, one observes
that the second term in (2.10) possibly diverges at y= 0 when considering stationary
modes which are marginally stable (e.g. ω= 0). This corresponds to the existence of a
barotropic critical layer, which happens to be regularized because, from the symmetry
of the base flow, we expect ∂p/∂y to be null in y= 0 for a stationary mode. Similarly
the third term of (2.10) becomes critical in y∗ = ±1/kxFr when ω = 0. These are
baroclinic critical layers, i.e. the locations where the Doppler-shifted frequency ω∗ of
internal waves matches the Brunt–Väisälä frequency N. In different contexts critical
layers can be excited and have been observed in experiments (Boulanger, Meunier
& Le Dizès 2008) and numerical simulations (Marcus et al. 2013). However, in our
configuration, the most unstable mode is always observed to be stationary and at
wavenumbers kmax < 1/Fr, which implies that the corresponding critical layers y∗max
are always situated outside the numerical domain, |y∗max|> 1.

3. Linear stability results

We have already mentioned that for unstratified fluids (i.e. Fr = ∞) the PC
(unperturbed) profile is linearly stable for any value of the Reynolds number Re, thus
we expect the flow to be potentially unstable only for finite values of the Froude
number. The values of the Schmidt number for common salty water (i.e. in our
experiments) is Sc ∼ 700, thus we first consider the limit Sc = ∞ and discuss the
quality of this approximation at the end of this section.

As a first result we report that one stationary growing mode (i.e. Im(ω) > 0,
Re(ω)= 0) appears at Fr . 1, wavenumbers kx∼ 0.8, kz∼ 5 and remarkably moderate
Reynolds number Re' 700. In figure 2 we report the value of the imaginary part and
the real part of the most unstable eigenmode for Re= 103 and Fr = 1 as a function
of kx and kz. Looking at the imaginary part in figure 2(a) one sees that the flow
is unstable over a narrow elongated region centred in kx ∼ 0.8, kz ∼ 5 and stable
elsewhere. Correspondingly the real part in figure 2(b) is zero whenever the flow
is unstable and non-zero elsewhere. In figure 2(c) we also report the values of the
temporal frequency ω for all the eigenvalues and two numbers of collocation points
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FIGURE 2. (Colour online) (a) Growth rate Im(ω) of the most unstable mode in the space
(kx, kz) at Fr= 1 and Re= 103. (b) Oscillation frequency Re(ω) of the most unstable mode
in the space (kx, kz) at Fr = 1 and Re = 103. Note that unstable modes (Im(ω) > 0) are
stationary (Re(ω)= 0). (c) Full spectrum at the most unstable mode kx = 0.815 and kz =

4.937, Fr= 1 and Re= 103. Crosses refer to Ny = 129 collocation points and triangles to
Ny=513 collocation points. The inset at the bottom right coincides with the area delimited
by the red rectangle.

(Ny = 129 and 513) for the most unstable wavenumbers (kx = 0.815, kz = 4.937).
Eigenvalues which are well resolved correspond to the points where two different
symbols are superposed, all other points are not well resolved, presumably because of
the infinite value of Sc considered here. The inset close to the origin of the diagram
shows that a unique eigenvalue is present for which Im(ωc) > 0. The value of ωc
is stable to the variation of Ny, the number of collocation points, which indicates
that the mode is well resolved. Finally, we remark that as our flow is bounded at
y = ±1, we do not have to deal with the problem of neutral or stable non-physical
eigenvalues encountered by Chen et al. (2016), which arises when prescribing the
boundary condition at infinity.

When increasing Re, the unstable region in the (kx, kz) space increases and unstable
modes exist over a larger range of Froude number. In figure 3(a,b) we report the value
of Im(ω) and C for the most unstable mode at Re= 104 and Fr= 1, where we define
C as the quantity C=Re(ω)/kx. In the same figure we report similar graphs for Im(ω)
at Re= 104, Fr= 0.2 (panel c) and Fr= 5 (panel d). Note that at these values of Fr
number there is no unstable mode at Re= 103.

One sees that at Fr = 1 (panel a) the diagram is now richer: besides the original
unstable branch constituted by stationary modes (a), new unstable branches appear at
larger kx which correspond to oscillatory (b, c, e) and stationary (d) modes, as visible
from the value of Re(ω)/kx (panel b). Note that within a particular branch the value of
Re(ω)/kx varies very little, while the value of Im(ω) shows a maximum, and smoothly
decreases to zero at the branch boundaries. The quantity Re(ω)/kx then characterizes
each different branch. A new oscillating branch (f) also appears at smaller kx but it
is still very weak and poorly visible at this Re number. In figure 3(c,d) we report
the value of Im(ω) in the space (kx, kz) at Fr numbers smaller than and larger than
one. When the Froude number is reduced to Fr= 0.2 (panel c) we recover almost the
same scenario, even if different branches now seem more spaced from one another
and appear at larger kx and kz, similar to other kinds of shear flows (Deloncle et al.
2007; Park & Billant 2013). In contrast when the Froude number is increased to
Fr = 5 (panel d) the unstable region is drastically reduced, as well as the growth
rate, which decreases by an order of magnitude. Also the most unstable mode moves
towards lower values of kx while kz changes only slightly. As a general remark we
observe that the unstable branches, i.e. the continuous regions defined by Im(ω) > 0,
show an elongated shape. To be more precise, unstable regions appear extended when
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FIGURE 3. (Colour online) (a,b) Growth rate Im(ω) (a) and C=Re(ω)/kx (b) of the most
unstable modes in the space (kx, kz) at Re = 104 and Fr = 1. Red dots and letters label
modes of different shapes. The inset in (a) shows the value of Im(ω) as a function of kx
for a constant value of kz = 10.77. (c,d) Growth rate Im(ω) of the most unstable modes
at Re = 104, with Fr = 0.2 (c) and Fr = 5 (d). The red contours distinguish stationary
branches from oscillating branches. The black lines refer to the theoretical prediction we
discuss in § 3.2, i.e. (3.2) for n= 1, 2. Note that horizontal and vertical axes have different
scales depending on the Fr number.

moving along the curve kxkz = const. while they are quite narrow in the orthogonal
direction. Also unstable modes always appear at kz, kx 6= 0, i.e. the flow is linearly
unstable only to three-dimensional perturbations, which is different from the studies of
Deloncle et al. (2007) and Lucas, Caulfield & Kerswell (2017), performed on different
vertically stratified and horizontally sheared flows (the hyperbolic tangent shear profile
and Kolmogorov flow, respectively).

3.1. Stability diagram
We have explored the (Re, Fr) parameter space over two decades around Fr= 1 and
for Re from 500 to 50 000. For each combination (Re,Fr), we solve the system (2.5)–
(2.9) in the discretized wavenumber space kx ∈ [0, 2], kz ∈ [0, 30], and look for all the
possible linearly growing (Im(ω) > 0) modes. The (kx, kz) domain is suitably moved
towards lower (respectively higher) wavenumbers when the Fr number is significantly
higher (respectively lower) than 1. In figure 4 we report the stability diagram. Each
point in the diagram corresponds to the most unstable mode, whose relative kx and
kz generally vary. One observes that at Re = 103 the unstable region is relatively
constrained around Fr = 1 (i.e. 0.5 . Fr . 2), but already covers two decades in Fr
at Re= 104. This indicates that instability first (i.e. at low Re number) appears where
density stratification and horizontal shear are comparable, i.e. N ∼ σ , but is likely to
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FIGURE 4. Growth rate Im(ω) of the most unstable mode in the space (Re, Fr). Each
point is obtained by taking the maximum value of Im(ω) over a collection of runs at
fixed (Re, Fr) and variable wavenumbers (kx, kz). White dashed contours correspond to
Im(ω) = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06. Black dashed lines correspond to Re = 104

and Fr= 0.4. White circles correspond to the points of the diagram analysed in figures 2
and 3.

be observed in a sensibly wider range of the ratio σ/N provided that the Re number
is large enough.

The critical Reynolds number (Rec ∼ 700) appears quite moderate compared to
other unstratified parallel flows such as plane Poiseuille flow (Rec = 5772 according
to Orszag (1971)). The value we find is comparable to the one found by Chen (2016)
for a plane Poiseuille flow in the presence of vertical stratification, but still sensibly
lower than the one indicated by the same authors (Chen et al. 2016) for the boundary
layer (vertically stratified) profile Rec ∼ 1995. The growth rate is moderate even at
high Re number, indicating that the observed instability is not only constrained in
(kx, kz) but also relatively slow to establish.

Finally, we want to discuss how the most unstable mode changes as a function of
the Re and Fr numbers separately. In figure 5 we analyse how the growth rate Im(ω)
of the most unstable mode (shown in panel a) changes with the Re number at fixed
Fr = 0.4. One sees that Im(ω) rapidly saturates at a constant value. This result was
confirmed by solving the eigenvalue problem (in panel b) at very high Re number (up
to 108) with (kx, kz) fixed. In figure 6(a,b) we report the value of kx and kz for the
most unstable mode as a function of Re at fixed Fr= 0.4. One sees that both kx and
kz tend to a constant value. Thus we conclude that the observed instability must rely
on an inviscid mechanism and that the inviscid approximation is sufficient to capture
the spatial (kx, kz) and temporal (ω) features of the most unstable mode.

In figure 6(c,d) we report the value of kx and kxkz for the most unstable mode as a
function of the Fr number at Re=104. Panel (c) shows that kx is always slightly lower
than 1/Fr (dashed line), which means that, for the most unstable mode, baroclinic
critical layers (i.e. y=±1/kxFr) fall close to the boundaries but slightly outside the
domain boundaries y=±1, and are likely not involved in the instability mechanism.
In panel (d) we see that all solutions seem to collapse on the curve A/Fr, where
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FIGURE 5. (Colour online) (a) Im(ω) (growth rate) of the most unstable mode as a
function of the Reynolds number at Fr= 0.4. The dashed line corresponds to the inviscid
solution as obtained by solving the eigenvalue problem. (b) Solutions of the eigenvalue
problem at Fr = 0.4 with fixed kx = 1.29 and kz = 8.53. Different symbols correspond to
different Re numbers. The inset corresponds to the thin rectangular region indicated by the
red dashed line in the main graph. We highlight in red the two lowest Re numbers. One
sees that starting from the third lowest one (Re= 5× 104) the value of Im(ω) saturates
to an asymptotic value.

1.0

1.5(a) (b) (c) (d)

0 5

Re

0 5
7

8

9

1

2

Re

0 5 10

Fr

0 5 10

Fr

10

20

FIGURE 6. (Colour online) (a) kx as a function of Re at Fr= 0.4, (b) kz as a function of
Re at Fr = 0.4, (c) kx as a function of Fr at Re= 104 and (d) kxkz as a function of Fr
at Re= 104. In all the panels, circles correspond to the most unstable mode. The dashed
line corresponds to a constant in (a,b) and to 1/Fr in (c,d).

A= kxkz|Fr=1, which provides a rule for the spatial pattern of the most unstable mode
and an interesting limit for further analysis of the pressure equation (2.10). Finally,
one should note that, according to this relationship, in exploring the stability diagram
(Re, Fr), the discretization of the wavenumber (i.e. the step size of the grid kx, kz)
becomes critical at low Fr, while the size of the domain (kx, kz) becomes critical at
high Fr.

3.2. The instability mechanism
So far we have focused only on the features of the most unstable mode for a
given combination of the dimensionless numbers Re, Fr and a typical domain in
the wavenumber space (kx, kz). This characterizes the instability from an operational
point of view but gives no information about the underlying mechanism. To this end
we now analyse the shape of unstable modes. We have seen that the asymptotic
behaviour of the instability at large Re number indicates that it relies on an
inviscid mechanism. In the inviscid limit the pseudo-spectral approach is far less
intelligible because the solution of the eigenvalue problem contains a large number
of spurious modes with Im(ω)> 0, which makes detection of genuine unstable modes
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FIGURE 7. Eigenfunctions of the most unstable mode at Fr = 1, Re = 104 and
wavenumbers kx= 0.767, kz= 4.937. Velocity fields and buoyancy are rescaled by dividing
by the maximum value of the perturbation u. Solid lines refer to the absolute value, while
dashed and dashed-dotted lines refer to the real and imaginary parts, respectively.
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FIGURE 8. (Colour online) Modulus of the pressure eigenmodes for Re= 104, Fr= 1 at
kz= 10.77 with kx= 0.432 (a), kx= 0.624 (b), kx= 0.719 (c), kx= 0.815 (d). (e) Modulus
of the pressure mode with kx = 1.055 and kz = 8.078. ( f ) Modulus of the pressure mode
with kx= 0.432 and kz= 2.693. In (a) the red dashed line corresponds to the most unstable
mode, i.e. the same as in figure 7(e). One observes that two modes belonging to the same
branch are very close.

extremely difficult. The idea is then to consider a finite Re number to keep the
eigenvalue problem manageable but also large enough to capture all the possible
features of the instability diagram. It turns out that the choice Re = 104 responds
reasonably well to these criteria; thus we focus on the case Fr = 1 and Re = 104

as a reference case. In figure 7 we report the eigenfunctions of the most unstable
mode at Fr = 1 and Re = 104, which corresponds to the wavenumbers kx = 0.767
and kz = 4.937. One observes that the perturbations of the vertical velocity w and
buoyancy b are more important close to the boundaries y = ±1, while at the centre
of the domain y= 0, the velocity perturbation is mainly horizontal.

We now consider a sample mode for each different unstable branch – for example,
corresponding to the red spots we labelled (a–f) in figure 3. In figure 8 we compare
the pressure eigenmode for all different branches. One observes that the shape of the
eigenmodes is significantly different in each panel. Not surprisingly, modes from the
two stationary branches (panels a,d) are symmetric in the cross-stream direction y.
Conversely, travelling modes (panels b,c,e,f ) are asymmetric but always appear in
pairs, at ω±=±Re(ω)+ i Im(ω), each mode in a pair being the y-mirror of the other
with respect to y = 0. Also in panel (a) we superpose the pressure eigenfunction of
the most unstable mode at kx = 0.767 and kz = 4.937, i.e. the same as figure 7(e).
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One should note that two pressure eigenmodes belonging to the same branch have
basically the same shape.

The scenario we described above is strikingly similar to that presented by Satomura
(1981) (see, for example, his figure 6), who analysed the stability of a non-stratified
PC flow in the shallow-water approximation. In this case the pressure p is replaced
by the elevation of the free surface h in the analogous equation to (2.10). The author
suggested that the instability is produced by the resonance of two Doppler-shifted
shallow-water waves. In this picture the (streamwise) phase velocity C=Re(ω)/kx of
a shallow-water wave which travels close to one boundary can be approximated to
that of a shallow-water wave in a fluid at rest plus a Doppler shift, say Ud, which has
the sign of the velocity of the considered boundary. Two distinct counterpropagating
waves situated at opposite boundaries can then have the same phase speed and
become resonant. Moreover, the resonant wavenumbers constitute a discrete spectrum
because rigid walls make the dispersion relation of (non-sheared) waves discrete.
More recently, the same mechanism was also reported to be responsible for linear
instabilities in stratified, rotating PC (Vanneste & Yavneh 2007) and stratified
Taylor–Couette (Park & Billant 2013) flows. We suggest and show below that this
interpretation remains valid in our case if we replace shallow-water gravity waves
with internal gravity waves. The dispersion relation of the latter is also discrete and
given by:

C(n)
±
=±

1
kxFr

√
1−

k2
z

k2
x + k2

z + n2π2
, (3.1)

where we use a notation slightly different from Satomura (1981) (our C corresponds
to Cr). Subscript + (−) refers to waves propagating in the positive (respectively
negative) direction of the x axis, while superscript n labels different channel modes.
Note that here the velocity C does not correspond to the phase velocity (by definition
this is Re(ω)k̂/|k|) of the wave nor to its horizontal component, but it is still the
relevant quantity to describe the resonance mechanism.

In figure 9(a) we report the value of C(n)
± as a function of kx at kz = 10.77 and

Fr= 1. In panel (b) we show both Doppler-shifted velocities Cd=C(n)
± ∓Ud, where we

consider prograde and retrograde waves moving upstream close to opposite boundaries
and transported by the local mean flow. At this stage the value of Ud is an adjustable
parameter −1 6 Ud 6 1 and was fixed to Ud = 0.6. This choice is somewhat arbitrary
and can be avoided if one solves (2.10) and thus provides the exact dispersion relation
in the presence of shear (Satomura 1981; Vanneste & Yavneh 2007; Park & Billant
2013). In the present study we restrict ourselves to the phenomenological approach
proposed by Satomura (1981), and Ud was taken as the flow velocity U(y) at the y
coordinate where the pressure eigenfunctions of the first (a) and second (b) unstable
modes appear to oscillate the most (see figure 8).

One can note that in the fixed frame (i.e. Ud = 0), prograde waves (solid lines) are
well separated from retrograde waves (dashed lines). In contrast, for Doppler-shifted
waves, there exists a discrete set of resonant kx where two curves of different type
cross each other. At Fr= 1 the first crossing (resonance) happens at Cd = 0 and close
to kx= 0.4, which is consistent with the appearance of the first stationary mode (a) in
the stability map of figure 3. The next two resonances happen at a non-zero value of
Cd which coherently recovers the appearance of the first two oscillating modes (b)
and (c) at larger kx in figure 3. The following crossing happens again at Cd = 0,
which confirms the appearance of a fourth (stationary) unstable branch in figure 3(b).
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FIGURE 9. (Colour online) (a,b) Velocity C(n)
± as a function of kx as given by (3.1) at kz=

10.77 and Fr= 1 and for the first n= 1–20 prograde (solid lines) and retrograde (dashed
lines) confined internal gravity waves in the absence of mean flow (a), and the Doppler
shifted velocities C(n)

± ∓Ud, where we set arbitrarily Ud = 0.6 (b). The red lines indicate
the limit of the dispersion relation for n→∞, the crossing is situated at kx = 1/FrUd.
We indicate with letters the resonances (crossing points) corresponding to different modes.
Note that resonances (b) and (c) come in symmetric pairs. The single dashed-dotted line
corresponds to C(1)

+ , i.e. a non-transported prograde n= 1 mode. (c,d) Same as (b) but at
Fr= 0.2, kz = 18 (c) and Fr= 5, kz = 3 (d).

Note that the appearance of the four modes a,b,c and d is clearly visible in the inset
of figure 3(a), which reports Im(ω) as a function of kx and at constant kz = 10.77.
Looking back at figure 8 the mode (f) appears to be the first half of mode (a), thus we
speculate that the corresponding resonance originates from the crossing of a Doppler-
shifted wave and a non-transported wave (i.e. one for which Ud = 0) situated at the
centre of the domain (i.e. the dashed-dotted lines in figure 9). Mode (e) does not
originate from a resonance, consequently it is not indicated in figure 9. A closer
inspection of the velocity field suggests that in this case the baroclinic critical layers
are excited, and the instability relies on a different mechanism. This hypothesis is
consistent with the fact that the mode (e) (see figure 3) belongs to a region which
mainly extends at kx > 1/Fr where critical layers can fit within the domain.

Now that we have explained the origin of all the distinct modes as resulting from
a degeneracy of the Doppler-shifted frequency, we want to show that this picture
allows us to fully capture the shape of the unstable branches presented in figure 3.
First, one should recall that for a given channel mode (i.e. n= const.), the dispersion
relation of internal gravity waves (3.1) is a function of two variables kx and kz, and
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hence is a surface. It follows that degeneracy occurs indeed on the intersection of
two surfaces (i.e. not two curves), which is a curve (i.e. not a single point). The
latter explains why the shape of the unstable branches presented in figure 3 appears
elongated in one direction and constrained in the orthogonal direction. In the particular
case of a stationary mode, one can easily deduce the equation of such a curve from
the dispersion relation (3.1) modified by the Doppler shift Ud. We find

kz =F(kx, n, Fr,Ud)=

√
n2π2

U2
dFr2k2

x

− k2
x − n2π2 +

1
Fr2U2

d
. (3.2)

In figure 3 we have superimposed the value of F on the map of the growth rate
Im(ω) at different Fr numbers and for n = 1 and 2. The agreement is not only
qualitative – for example F reproduces the trend kxkz ≈ const. observed before – but
also quantitative, because fixing a unique value of Ud = 0.6, we are able to predict
the position of almost all the unstable stationary branches.

Finally, we show that the mechanism we describe above allows one to predict the
boundaries of the unstable region. If we look back at figure 9 one observes that
instability appears at a finite value of kx, say kinf

x , where

C(1)
+
(kx = kinf

x , n= 1, kz, Fr)=Ud (3.3)

and must disappear when the envelopes of prograde and retrograde modes (red lines)
cross each other, at ksup

x = 1/FrUd. Note that the latter upper boundary is independent
of kz. Conversely the lower boundary can be arbitrarily reduced – for example, taking
the limit kinf

x → 0 in (3.2) one has kz → ∞. Nevertheless, any finite Re number
will likely inhibit an instability appearing at large wavenumber kz. We conclude
that according to the proposed resonance mechanism, the instability is triggered
by perturbations which are not streamwise invariant (i.e. kx 6= 0), and at streamwise
wavenumber kx<1/FrUd. Looking at the growth rate diagrams of figure 3 one actually
sees that ksup

x tends to overestimate the upper bound of the unstable region. We
suspect that a better prediction would be obtained by computing the exact dispersion
relation in the presence of shear, as already done in analogous works (Satomura
1981; Vanneste & Yavneh 2007; Park & Billant 2013) about Doppler-induced wave
resonances. Figure 9(c,d) illustrates the same resonance mechanism for Fr = 0.2
and Fr = 5. Panel (c) (Fr = 0.2) confirms that the instability range is extended and
pushed at larger kx for small Fr number (i.e. high stratification). Conversely, panel
(d) (Fr = 5) shows that the region where resonances take place both shrinks and
is constrained to smaller kx. Ultimately, kinf

x and ksup
x collide in the limit Fr →∞

and the instability likely disappears or at least reduces to an infinitely narrow range
in kx. Note that the results above suggest that the upper boundary of the unstable
region in figure 4 is intrinsic to the instability mechanism, while the lower boundary
is controlled by the Re number: at small Fr, instability appears at larger kx, which
corresponds to larger kz and is then more sensitive to viscous dissipation. To conclude
this section we recall that if the growth rate varies with the Re number, and different
branches appear at different Re numbers, the value of C on a particular branch is
approximately constant and is almost constant with the Re number. This supports
the hypothesis of a resonance and confirms that the appearance of the most unstable
stationary and oscillating modes relies on an inviscid mechanism.
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FIGURE 10. (Colour online) (a) Eigenvalues in the complex space for the reference case
Re= 966, Fr= 0.82, kx = 0.96, kz = 5.16 and Sc=∞ (circles), Sc= 700 (crosses), Sc= 7
(squares), Sc = 1 (diamonds and stars). (b) Zoom on the region enclosed by the dashed
red line in (a), Sc= 7 symbols are reported in red.

3.3. Effect of the Schmidt number
All the results presented above correspond to solutions of the eigenvalue problem
where mass diffusivity was completely neglected, that is Sc=∞. We have modified
the eigenvalue problem and tested the relevance of a finite Sc number for the reference
case Re=966 and Fr=0.82, which will serve as a comparison between linear analysis,
experiments and direct numerical simulations. All the computations are performed at
the wavenumbers kx = 0.96, kz = 5.16, where the most unstable mode appears in the
Sc =∞ case. The results are reported in figure 10. First, we report that at Sc =∞
(circles) and Sc= 700 (crosses) the eigenvalues are well superimposed. This suggests
that our non-diffusive approximation is qualitatively and quantitatively adequate to
compare linear theory with experiments performed with salty water, for which Sc =
700. Second, we note that at Sc = 7 (squares) there is still an unstable mode, and
close to the origin the distribution of eigenvalues has the same form. For example,
looking at the close up in figure 10(b), one sees that all the eigenvalues at Sc = 7
(in red) are located close to a non-diffusive eigenvalue. This result makes possible
the comparison between linear analysis, experiments and direct numerical simulations
which will be performed at Sc = 7. Finally, we observe that at Sc = 1 (diamonds
and stars) the eigenvalues are distributed on three distinct Y-shaped branches, which
is consistent with the previous study of Bakas & Farrell (2009) and Chen (2016),
who found analogous branches at Sc = 1 in the case of the PC flow and the plane
Poiseuille flow, respectively. We also remark that at Sc= 1, Re= 966 (diamonds) there
is no unstable mode, nonetheless instability is promptly recovered at Re= 2000 (stars).
We conclude that the threshold value is not severely affected when increasing mass
diffusion, as long as Sc& 7, although it may change when Sc is of the order of unity.

4. Direct numerical simulations

In addition to the linear stability analysis, we have performed direct numerical
simulations (DNS) of the full set of equations (2.1)–(2.3). The aim of a complementary
DNS approach is to validate the linear theory and characterize the flow when retaining
all the nonlinearities. Equations are solved in a rectangular box of dimensions
(Lx, Ly, Lz). The boundary conditions are periodic in both the streamwise and vertical
directions, with rigid no-slip insulating boundaries in the cross-stream direction,
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FIGURE 11. (Colour online) (a) Vertical kinetic energy (w2)1/2 as a function of time at
Re= 966, Fr= 0.82 and Sc= 7. The thick line refers to the DNS simulation while the thin
line refers to the growth of the most unstable mode as indicated by linear stability analysis.
(b) Horizontal velocity perturbation u at x= y= 0 as a function of t and z for the same
DNS. One observes that a stationary pattern appears close to t= 500. (c) Instantaneous 3D
map of the buoyancy perturbation once the flow has become unstable (DNS). As predicted
by the linear analysis the selected mode is mainly modulated in the vertical direction but
still not streamwise invariant (i.e. kx 6= 0). Note also that perturbations are concentrated
near the boundaries y=±1.

i.e. u(y = ±1) = ∓x̂ and db/dy = 0 at y = ±1. In order to keep the computational
time reasonable, while still focusing on the high-Sc-number regime of the experiment
described in § 5, we fix Sc= 7. We have seen in § 3.3 that this particular choice does
not qualitatively affect the results, and in any case, ad hoc solutions of the linear
problem at Sc= 7 can be considered for a quantitative comparison. In order to ensure
that the linear instability is well captured by the numerical simulation, we choose
a box of size (Lx = 2 × π/kx, Ly = 2, Lz = 6 × π/kz), where kx and kz are the most
unstable wavenumbers as predicted by the linear stability analysis presented above.

We performed DNS using the spectral element solver Nek5000 (Fischer 1997;
Fischer et al. 2007; see also http://nek5000.mcs.anl.gov). The use of spectral elements
instead of more classical pseudo-spectral methods will be justified later (see § 5)
where we add the effect of the streamwise confinement to mimic the experimental
set-up. The global geometry is partitioned into hexahedral elements, with refinement
close to the boundaries. Velocity, buoyancy and pressure variables are represented
as tensor product Lagrange polynomials of order N and N − 2 based on Gauss or
Gauss–Lobatto quadrature points. The total number of grid points is given by EN3,
where E is the number of elements. For all the results discussed in this paper, the
number of elements is E = 6336 and we use a polynomial order from N = 7 up to
N = 11 for the highest Reynolds number case. Time integration is performed with
a backward difference explicit scheme for the advection and buoyancy terms, while
viscous and dissipative terms are integrated using an implicit third-order scheme. The
simulations are initialized with a small-amplitude buoyancy perturbation and with an
established linear PC flow.

In order to validate the eigenvalue problem we choose the reference case Re= 966,
Fr= 0.82, which will serve later as a comparison to experiments. In figure 11(a) we
report the time evolution of the rms vertical velocity (thick line), which is defined as:
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(w2)1/2 =

(
1
V

∫
V

w2 dV
)1/2

, (4.1)

where V refers to the volume of the simulation box. The quantity (w2)1/2 is
appropriate since (w2)

1/2
t=0 = 0 for the base flow. One observes that (w2)1/2 increases

exponentially, and superposing the exponential growth predicted by the linear analysis
one obtains an excellent agreement, with a relative discrepancy on the growth rate σc
of less than 1 %. In panel (b) we report the spatio-temporal diagram of the horizontal
perturbation u at x = y = 0. One observes that a stationary pattern has established
around t=500, which has a well-defined vertical wavelength. In figure 11(c) we report
a visualization of the buoyancy perturbation b once the instability has saturated. One
observes a weakly inclined layering of the density field, which is a common feature
in stratified, shear flows (see Thorpe 2016, for a review). Again we have a very good
agreement with the linear theory: a distinct spatial pattern appears and both vertical
and horizontal wavelengths correspond to the predicted values. One can notice that
the spatial pattern perfectly fits in the simulation domain. This condition is indeed
necessary to observe the instability, and no relevant growth of the vertical kinetic
energy is observed when none of the unstable wavenumbers fits inside the simulation
domain.

5. Experiments
5.1. Experimental apparatus

Now, we want to study whether or not this linear instability of the stratified PC
flow does appear in a ‘real’ configuration, and to do so, we look for some of
its signatures in an experimental set-up, intrinsically limited in size. The flow is
produced with a shearing device which is placed on the diagonal of a transparent
tank (50 cm × 50 cm × 70 cm) made of acrylic. The tank is filled with salty water
linearly stratified in density. The shearing device is sketched in figure 12(a). The
device consists of a PVC transparent belt (0.8 mm thick) which is closed on a loop
around two vertical entraining cylinders made of dense sponge (we use standard
spares entraining cylinders for commercial swimming-pool robots). Two additional
pairs of cylinders (inox, 2 cm diameter) constrain the two sides of the loop to be
parallel and at a controlled distance d. All cylinders are mounted on a system of
acrylic plates which allows the distance to be varied between the entraining cylinders
(i.e. to tighten the belt) through two pairs of coupled screws (i.e. one pair for the
bottom and one for the top). The top acrylic plates also prevent the existence of a
free surface which would affect any imaging from the top. The motion of the belt is
provided by a motor which is mounted on the top of the device and joined to the
axis of one of the entraining cylinders. Finally, two PVC rigid plates are mounted
vertically in front of the two entraining cylinders in order to reduce at most any
perturbations coming from the entrainment system. The distance between the edges
of the plates and the belt is a few millimetres. Thus we look at the flow in the area
shaded in light grey (figure 12a). In the present work we consider two values of the
gap width d = 2L0 = 5.8 and 9.8 cm, while the distance between the PVC plates D
was respectively 34 cm and 24 cm, leading to a values of the aspect ratio (D/d) of
5.7 and 2.4, respectively.

The tank is filled with salty water of variable density. As a general rule, a water
column of height H = 10–20 cm linearly stratified in density always occupies the
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(a) (b)

FIGURE 12. (Colour online) (a) Sketch of the experimental shearing device seen from the
side and from above. The two green shaded area correspond to two laser sheets which
illuminate the mid vertical plane (i.e. y= 0) and the horizontal midplane (i.e. z= 0). Two
cameras allow imaging of the flow in the illuminated areas. (b) Schematic of confined
DNS experiments. Two rigid lateral walls entrain the fluid at constant velocity and two
rigid walls confine the flow in the streamwise direction. Vertical boundary conditions are
periodic.

volume delimited by the belt and the confining barriers, while above and below
the density stratification was generally weaker or negligible. The density profile is
obtained by the double-bucket method (Oster 1965). To measure the density profile
we collect small samples of fluid (∼10 ml) at different heights and analyse them with
a density-meter Anton Paar DMA 35. The Brunt–Väisälä frequency N is constant for
each experiment with a value between 0.5 rad s−1 and 3.0 rad s−1. We measure the
stratification before and after each experiment. The shearing motion clearly affects
the stratification, especially through the small-scale features of the rotating part of the
device, which necessarily produce some mixing. Also, in our highest-Re experiments
we observe optical distortion which indicates the presence of high-density gradients
and thus layering similar to that observed in turbulent stratified experiments performed
in Taylor–Couette devices (Oglethorpe, Caulfield & Woods 2013). Nevertheless we
observe that the density profile at the end of an experiment is weakly perturbed
and the relative discrepancy with respect to the initial profile in the area of interest
is approximately 5 %. Finally we assume the viscosity to be ν = 10−6 m2 s−1, and
neglect any change associated with variable salt concentration.

The fluid is seeded with (10 µm – diameter) hollow glass spheres and two laser
sheets illuminate the particles in the vertical plane y= 0 and the horizontal plane z= 0,
as shown in figure 12. The flow is then recorded from the side by a 4 Mpx camera at
a frame rate of 8 fps and from the top by a 2 Mpx camera at a frame rate of 30 fps.
The velocity field is obtained with a particle image velocimetry (hereafter PIV) cross-
correlation algorithm (Meunier & Leweke 2003). Note that the mid vertical plane y=0
is the appropriate place to detect the possible onset of an instability because, in the
ideal PC regime, the velocity should be zero there. The current set-up permits only
single illumination and recording of the flow, thus movies from the top and from the
side are always taken at different times.
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FIGURE 13. (Colour online) (a,c) Top view of the z= 0 plane. We show a superposition
of 40 images (i.e. ∼1.3 s) as captured by the camera (with only light contrast enhanced
to show PIV particle trajectories) (a) and the velocity field (u, v) as reconstructed via
the PIV algorithm (c). The velocity plot is obtained by averaging over the 40 PIV
fields (i.e. ∼1.3 s). (b) Velocity cross-section at x = 0. Symbols refer to experimental
observations, here Re= 533 and Fr= 0.82. Each profile corresponds to the time average of
the horizontal velocity fields over 0.03Tν . Solid lines refer to the value of the expression
(5.1) expected for the two-infinite-walls problem (increasing time from clear grey to black).
The dashed line refers to the asymptotic t=∞ solution.

5.2. Base flow
First we report that a PC flow can be observed in the region confined between the
belt and the PVC barriers. In figure 13(a) we superpose 40 images of the z = 0
plane exactly as captured by the camera. Only the contrast was altered to enhance
streamlines. Both the intersections of the belt with the laser sheet and the left barrier
edge can be easily recognized as brighter lines. One also sees that streamlines close
up near the PVC barriers and recirculations are present. This is confirmed by the
velocity field given by the PIV algorithm shown in panel (c). The velocity plot is
obtained by averaging over 40 PIV fields (∼1.3 s), also we plot only one arrow out
of four in the horizontal direction, to make the diagram readable. One can note that
up to 10 cm from the centre the flow is nicely parallel and the velocity gradient is
linear. Both streamlines and PIV fields refer to an experiment where the base flow was
already stationary. Now, any experiment necessarily implies a transient phase where
the flow evolves from a first stationary phase, e.g. the whole fluid is at rest, to a
second stationary phase which is the forced parallel flow. We expect the base flow
to become established via viscous entrainment starting from the fluid layers which
are close to the walls, thus the viscous time Tν = d2/ν seems to be an appropriate
time scale for the transient. In order to verify this we need some more quantitative
prediction and consider the transient flow generated by two infinite walls treated by
Acheson (1990). As a first step, recirculations are neglected. If the flow is initiated at
t = 0 the horizontal velocity has the form U(y, t)= U0(y)− UT(y, t), where U0(y) is
the asymptotic base flow and the transient part UT(y, t) reads:

UT(y, t)= (U0 −Ui)

∞∑
j=1

2
π

(−1)j

j
e−π2j2t/Re sin jπy, (5.1)

where Ui is the velocity of the belt at t= 0; for example, Ui= 0 if the experiment is
started with the fluid at rest. In figure 13 we compare the value of U(y, t) as expected
from (5.1) with the average value of the horizontal velocity as observed in a typical
experiment. The value of U is plotted as a function of y at four different times.
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First, the velocity profile collapses on the expected PC flow (dashed line) around
t = Tν , which confirms that the base flow is established via viscous entrainment.
Also at t = Tν/3 (circles), the value of the average horizontal velocity is already
very close to the PC flow. Second, one can note an excellent agreement of the
experimental observations with the infinite-walls approximation, which suggests that
the recirculation does not significantly affect the shape of the transient flow. With
regard to this, one should notice that knowing the time the base flow needs to become
established is crucial when determining the growth rate of the instability, which will
be discussed later.

Once the PC profile is established we want to detect possible deviations from the
base flow. With this aim we mainly focus on the midplane y= 0, where no motion is
expected for the base flow. As a standard protocol we initiate the flow at low shear
rate σ and then increase σ by a small fraction (typically 15 %). Top views of the plane
z= 0 are also taken to verify the shape of the parallel base flow. In each experiment
the flow was observed for at least one viscous time Tν = d2/ν, which may be taken as
an upper bound for establishing the base flow. First we report that starting from very
moderate Reynolds number Re& 300 the observed fluid oscillates coherently at a well-
defined frequency. These bulk oscillations show a trivial pattern (i.e. kx = ky = kz = 0)
and are due to the periodic impact of the belt junction (which has some roughness) on
the entraining cylinder. In the following we discuss how perturbations become more
finely structured at higher Re number, and we give a criterion to distinguish these
initial deviations from a truly unstable pattern.

5.3. Instability
When the Re number is sufficiently high Re & 1000 and for Froude number Fr ∼ 1,
an exponentially growing motion is observed to form in the midplane y = 0. The
horizontal velocity perturbation u shows a well-defined spatial pattern where horizontal
and vertical wavelengths λx, λz can be detected reasonably well, with λx/λz ∼ 8.
Results for this reference case are summarized in figure 14. On figure 14(a) we plot
the horizontal velocity perturbation u at x = y = 0 as a function of the time t and
vertical direction z. At t ∼ 73.5σ−1 the imposed shear has changed from a lower
value of σ = 0.34 s−1 to 1.15 s−1, and at t ∼ 550σ−1 one observes the appearance
of a vertical wavelength. One also observes that the t-periodic and z-invariant bulk
motion described in the previous section is present since the very beginning, and is
still visible at large time, superposed on the instability pattern. In figure 14(b), we
consider the time evolution of the order parameter (u2)1/2 for the same unstable case
as above (black line) and for another case (red line) where the imposed shear, σ is
15 % smaller. The average square of the horizontal perturbation u2 is computed at
the centre vertical line x = 0, y = 0 in three steps starting from the spatio-temporal
diagram of u in panel (a). At each time we take the average of u over a short interval
∼4σ−1, subtract the linear regression in z, compute the square, and finally average
over the vertical direction. We stress that subtracting the linear regression allows us
to get rid of the bulk oscillations and of any possible top–bottom anisotropy due
to a non-perfect verticality of the laser sheet. First, one can note that the unstable
case (black line) shows a clear growth event of the order parameter which does not
happen for the stable case (red line), thus indicating the appearance of an instability.
Focusing on the unstable case one clearly sees that a first increase of (u2)1/2 occurs
during the interval of ∼0.3Tν after the change in the imposed shear, where the value
of the viscous time is Tν ∼ 103σ−1. At larger time, u2 increases again, now in an
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FIGURE 14. (Colour online) (a) Horizontal velocity perturbation u at x = y = 0 as a
function of time. The colour bar is set to ±15 % of the wall speed. Here σ = 1.15 s−1,
Fr = 0.82, Re = 969. All quantities are dimensionless. At t = 73.5 the imposed shear
switched from 0.34 s−1 to 1.15 s−1. (b) Evolution of the mean horizontal perturbation
(u2)1/2 as a function of time for the same experiment (black line) and for a stable
experiment where both Fr and Re are reduced by 15 % (red line). The inset shows
log (u2)1/2 for the unstable case. At each time, u2 is obtained by averaging over a
short interval ∼4σ−1, taking the square and finally averaging over the vertical direction.
(c) Snapshot of the horizontal velocity perturbation u in the plane y= 0; here t∼ 900.

exponential way (see the inset on a semilog scale), and finally saturates at a constant
value. The exponential growth rate is approximately ω ∼ 0.06σ (although the noise
makes a precise measurement of the growth rate difficult). We claim that the first
growth phase coincides with the smooth progressive installation of the base PC flow
at the imposed shear while the second growth phase corresponds to the onset of a
linear instability. Note that for the stable case (red line) the first phase is less visible,
because the shear σ is imposed starting from a slightly lower value. Finally, on
figure 14(c) we present a snapshot of the u field in the plane y = 0. One observes
a regular periodic pattern characterized by a vertical wavelength λz ∼ 0.7L0 and a
horizontal wavelength λz ∼ 5.5L0, where we recall that L0 is half the width of the
channel.

Below we consider the stability of our experimental flow in the (Re, Fr) space,
which is the same for the linear stability analysis performed in § 3.1. To this aim
we need to define a common protocol to assess the presence or not of the instability.
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One criterion may be the appearance of a vertical wavelength. Unfortunately the latter
is a smooth process; for example, a vertical wavelength was often visible at a shear
σ lower than what we assess to be the unstable case. Nevertheless, the associated
signal was generally weak and no growth process was observed. The existence of
the latter seems to be the most reliable criterion, but demands longer experiments
and generally requires starting from very small σ , which then requires slowing down
the flow after each experiment. As a general rule we rather look at the saturated
amplitude of the order parameter (u2)1/2 as a function of σ and detect if an abrupt
change occurs, as is clearly visible in figure 14 at large time. In particular (u2)1/2 is
computed once the instability has saturated or alternatively after a time of the order
of the viscous time Tν after the actual value of the shear is imposed, to get rid of
the base flow transient. We choose the control parameter σ (i.e. the imposed shear)
as the most suitable one, because it can be varied continuously, simply by controlling
the speed of the entraining motor. As a drawback, both Re and Fr are linear in σ ,
thus the stability diagram must be explored moving on tilted straight lines for which
the ratio Fr/Re = ν/Nd2 is constant. Any change in the vertical stratification N and
gap width d is considerably more laborious, which constrains the exploration of the
(Re, Fr) space to a few different Fr/Re = const. lines. In figure 15 we report six
series of experiments performed at different values of Fr/Re corresponding to different
values of N and d. Experimental results are superposed on the linear stability diagram
(figure 4). Experiments labelled L1–L3 refer to large-gap experiments (D/d = 2.4)
while those labelled N1–N3 refer to narrow-gap experiments (D/d = 5.7). The value
of N ranges between 0.5 and 3.0 rad s−1. In the inset of the same figure we report
the evolution of the quantity (u2)1/2 as a function of σ for the experiment N1. One
sees that the order parameter abruptly increases when the imposed shear σ crosses
a threshold value σc. This allows one to assess that the experimental flow is stable
(closed symbols) for σ < σc and unstable (open symbols) for σ > σc.

6. Discussion
In this section we compare experimental results with those of linear stability

analysis. Looking at figure 15 one observes that the transition of the quantity (u2)1/2

(i.e. from close to open symbols) happens close to the marginal contour where linear
growing modes appear according to linear stability analysis. This strongly supports
the claim that we experimentally observe the signature of the instability predicted by
the linear analysis.

Below we compare the temporal behaviour of the observed instability with the
linear analysis. Besides the growth rate, which precisely characterizes the instability
onset, we want to discuss first what happens during the transient phase that necessarily
comes with each experiment. This constitutes a difference from the linear analysis,
where the base flow is always constant, and may affect the estimation of the observed
growth rate. In other words, one may wonder at what time since the beginning of
an experiment the instability is expected to grow. The question becomes particularly
relevant when considering that the expected growth rate is comparable to and even
smaller than the viscous time. Also we want to rule out the possibility that the
appearance of the unstable pattern is due rather to the transient profile of our flow –
for example, a non-constant shear profile like that considered by Chen et al. (2016).
The temporal diagram of figure 14 shows that the exponential growth starts at t∼Tν/3,
which seems to be consistent with the description of the base flow given in § 5.2.
In order to give a more quantitative explanation we solved a modified eigenvalue
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FIGURE 15. (Colour online) Growth rate of the most unstable mode in the space (Re,Fr)
exactly as in figure 4. Now we superpose the results of experiments (symbols). One sees
that transition from stable (closed symbols) to unstable (open symbols) cases happens
close to the marginal contour Im(ω)= 0. The vertical dashed line corresponds to Re= 230,
at which the non-stratified flow (i.e. pure water) becomes unstable. The inset represents
the evolution of the order parameter (u2)1/2 as a function of σ for the experiment N1.

problem where the base flow is now given by the expression (5.1) for a collection
of different times and with the same set of parameters as the reference experiment
presented in figure 14. The results are presented in figure 16, where we report
the eigenvalues of the most unstable mode focusing close to the transition region
Im(ω) = 0. One remarks that no unstable eigenvalue is present for t < 0.2Tν while
one unstable mode appears for t > 0.3Tν , thus confirming that the base flow must be
sufficiently established for the instability to develop. This result was confirmed by
specific DNS where the initial condition is not the PC flow, but where the flow is
initially at rest and the shear profile is progressively established through the no-slip
boundaries. Also in this case the growth of perturbations is delayed to the moment
when the shear profile has become almost constant. We then conclude that what we
observe is associated with a constant shear PC profile.

Besides determining the instability threshold in the Re, Fr space we also want to
compare the shape of the mode selected in our experimental device with the unstable
mode predicted by linear theory. If we focus again on the reference case described
in figure 14, we note that both kx and kz are larger than the values predicted by
the linear theory for the most unstable mode, and the perturbation is oscillatory in
time while linear theory predicts a stationary mode. One can note that oscillations
are quite regular and relatively slow, with a typical period T = 43± 3σ−1, where the
uncertainty is taken as the width at mid height of the peak in the average temporal
spectrum. We recall that, according to linear analysis, oscillatory branches also exist
(see figure 3) which appear at higher Re number, typically Re & 2000. Interestingly
the period associated with the first oscillating branch is always long; for example,
with the Fr of the reference experiment N1 and Re = 2500 one has T ∼ 42σ−1.
Moreover, this branch happens at larger wavenumbers more compatible with the
experimentally observed ones. In this scenario what we look at may be either a
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FIGURE 16. (Colour online) Solutions of the modified eigenvalue problem for a base
flow given by expression (5.1). Here we choose the same Re, Fr, and Ui (i.e. the belt
velocity at t= 0) as the reference experiment. The eigenvalues problem is solved for the
combination (kx, kz), which is the most unstable according to linear analysis, and at seven
different transient times shown by different symbols. The dashed line marks the limit for
instability.

single propagative mode, for example of type (b), as is visible in the lower part of
the spatio-temporal diagram (panel a of figure 14), or a standing wave generated by
two counterpropagating modes of type (b) as is visible in the upper part of the same
diagram. These elements suggest that, experimentally, the instability is activated close
to the absolute threshold (i.e. where first stationary modes appear) predicted by linear
analysis, but a different non-stationary mode is selected in the end.

In any case one should recall that our linear and experimental problems are
different, thus unstable modes are not expected to share the same features. The major
difference between the theoretical system and our experimental set-up is the finite
size of the domain. In principle, to mimic periodic boundary conditions imposed in
linear calculations, one wants to take the horizontal and vertical aspect ratio D/d� 1
and H/d � 1, while our best realization (i.e. narrow gap) of this hypothesis was
D/d = 5.7 and H/d = 2.4. We observe that the impact of physical confinement is
twofold. First, from the point of view of modal analysis only the wavelengths which
fit in the domain may have a chance to develop. This was confirmed by periodic
DNS that show no instability whenever the box size does not fit the spatial shape
of unstable modes. We notice that the eigenvalue problem is solved by assigning
an arbitrary value of kx and kz; thus when comparing to DNS and experiments one
should retain that the (kx, kz) grid of figure 2 is coarsed grain, especially at low kx

and kz. Thus the ideal constraints for the aspect ratio are D/d� λx and H/d� λz,
where λx and λz are the non-dimensional wavelengths of the unstable mode we
want to observe. A second problem appears in the streamwise direction because the
streamlines must turn and close up when getting close to the walls that close the
domain in the streamwise direction, as is clearly visible in the snapshot reported in
figure 13. We mentioned before that this feature does not significantly modify the
shape of the base flow in the bulk, but it may locally destabilize the flow (i.e. close
to the corners) and successively affect the stability of the whole domain.
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FIGURE 17. (Colour online) (a,c) Spatio-temporal diagram of the perturbation u at the
centre line x = 0, y = 0 for the reference case Re = 969, Fr = 0.82 for confined DNS
(a) and the reference experiment (c). Spurious bulk oscillations are filtered from the
experimental data. (b,d) Perturbation u in the plane y = 0 once the flow has become
unstable for confined DNS (b) and the reference experiment (d). The red dashed rectangle
indicates the area accessible to experimental measurements.

6.1. Simulations in a finite domain
In order to more closely investigate finite size effects, we perform new DNS where
the computational domain is now closed in the streamwise direction by two solid
walls with no-slip insulating boundary conditions, as sketched in figure 12(b), while
boundary conditions remain periodic in the vertical direction. Note that compared
with the periodic case discussed in § 4 the mesh is further refined close to the two
additional streamwise boundaries, in order to properly solve for the boundary layers.
In addition, the corners of the domain are now singular due to the incompatibility
between the velocity imposed at the side boundaries and the fixed streamwise walls.
This is naturally smoothed by viscosity but is nevertheless an inevitable source of
vorticity. In figure 17(a,b) we report the results of a confined DNS which reproduces
both the control parameters (Fr, Re) and the aspect ratio of the reference experiment
illustrated in figure 14. For a direct comparison we report again the results of the
reference experiment (c,d) already shown in figure 14, with the only difference
that bulk oscillations are now filtered from the spatio-temporal diagram of u at
x = y = 0 and the origin of time axis is shifted forward to t = Tν/3, which is
when we estimate that the PC flow is well established. One observes a strikingly
good agreement between our DNS and experimental results on both the spatial and
temporal shapes of the selected mode. Computing the temporal spectrum we find that
the temporal frequency predicted by DNS is T = 50± 5σ−1, which is compatible with
the experimental one, while the consistency of spatial wavelengths is evident because
in both cases an integer number of velocity maxima fit in the vertical midplane y= 0.
Finally, we observe that as a whole the transition from the initial noise to the final
nonlinear pattern takes almost the same time in DNS and in the experiment. As
a summary, figure 17 indicates that we correctly isolated the crucial factor which
possibly alters the selection of the unstable mode, that is the streamwise confinement.
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FIGURE 18. (Colour online) Vertical kinetic energy density (w2)1/2 as a function of time,
for five different DNS. Black lines correspond to supercritical simulations (Re = 966)
performed at Fr = 0.82 (solid line), Fr =∞ (dashed line) and Fr = 0.82 with periodic
boundary conditions in the streamwise direction (dash-dotted line). Red lines refer to
subcritical simulations (Re= 629) performed at Fr= 0.53 (solid line) and Fr=∞ (dashed
line). The thin black line corresponds to the growth of the most unstable mode at Re=966,
Fr= 0.82 as predicted by the linear theory. Horizontal dashed lines highlight the saturation
level of supercritical unstratified and stratified DNS, respectively.

Incidentally we also report that additional DNS show that the form of the late
nonlinear stage is quite sensitive to initial and boundary conditions. For example,
slightly varying the box dimensions or the amount of initial noise the spatial shape
of the selected mode is different and travelling waves or standing waves patterns can
be alternatively present. To better investigate the role of streamwise boundaries we
performed additional DNS with a non-stratified (Fr =∞) PC flow with exactly the
same confined geometry with the same Re number as the one we just described. We
recall that perturbations do not grow when considering periodic boundary conditions
at Fr = ∞, as expected by the fact that the unstratified PC flow is linearly stable.
One observes that vertical kinetic energy (black dashed line in figure 18) grows in
an exponential way and in a shorter time compared to both the stratified DNS and
experiment in figure 17, while the typical vertical length scale is larger. A similar
pattern is also observed in the unstratified experiment as soon as Re& 300. A detailed
investigation of the nature of this instability of a confined and unstratified PC flow
is beyond the scope of the present work. Nevertheless, the shape of the flow at the
corners suggests that it may locally destabilize via centrifugal instability, which will
be studied in further investigations.

We conclude that the presence of boundaries may destabilize the PC flow with
or without the presence of stratification. Now, the careful reader will agree that
even if DNS fully justify differences between the linear analysis and the observed
experimental pattern we are left with a cumbersome question regarding the origin of
the perturbation pattern observed in the confined and stratified configuration: does
this pattern coincide with a boundary-induced modification of the linear instability,
or rather with the pure hydrodynamic boundary-induced instability modified by the
stratification?
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The key to answer this resides in the same approach we followed with experiments:
that is to detect if and when our flow abruptly changes when varying the control
parameter σ . We then consider further DNS which copy the parameters of another
experiment of our reference series N1 where Fr and Re were 30 % smaller than
the unstable case described in figure 14. At the same time we repeat unstratified
simulations at such a lower value of the Re number. We observe that the new
unstratified case is almost unchanged while the subcritical stratified case shows
a dramatic change. In this case, perturbations are significant only close to the
boundaries, and no instability develops in the bulk. In figure 18 we report the time
evolution of the vertical kinetic energy for all the streamwise-confined DNS we have
discussed above, together with the one performed in a periodic domain. One observes
that in the unstratified case (dashed line), perturbations rapidly grow and saturate
at the same value independently of the Re number. If we add stratification (solid
lines), perturbation grows (black line) and saturates at the same value as the periodic
simulation if the Re number is beyond the threshold predicted by the linear analysis.
Conversely perturbations are damped (red line) when the Re number is below the
threshold.

We have now enough elements to conclude that what we observe both in
experiments and DNS (figure 17) is a signature of the linear instability of a PC flow,
vertically stratified in density. In addition, we observe that streamwise boundaries are
a source of instabilities and likely affect the features, or possibly just the selection,
of the unstable mode which in the end shapes the observed pattern.

Incidentally we report that additional DNS were performed in a domain which
is larger but still confined in the streamwise direction, in order to explore when
finite-size effects become negligible and suitably design a larger experiment.
Surprisingly we find that for a doubled size domain, the growth rate decreases
and almost matches that of periodic simulations, but the instability disappears (we
observe a pattern similar to the subcritical stratified case) when further increasing
the streamwise domain (i.e. four times larger). With respect to this trend, the
long computation time required to consider even larger domains prevents us being
conclusive, and further studies will be necessary. The transition from the confined
to the periodic case happens in a discontinuous way which needs to be further
investigated. At this stage we speculate that streamwise boundaries may both
introduce some forcing and inhibit the instability, perturbing the resonance of the
waves supported by the flow. The horizontal aspect ratio possibly controls the mutual
importance of these two effects in a non-trivial, non-monotonous way, thus explaining
the observed scenario.

7. Conclusions

We performed the linear stability analysis of the PC flow for a stably stratified
fluid with a constant density gradient orthogonal to the shear. The domain has rigid
closed boundaries in the direction of the shear, and open periodic boundaries in
both the vertical and streamwise directions. Unstable stationary modes are found at
strikingly moderate Reynolds number Re>700 and for a Froude number close to 1 for
non-vanishing horizontal and vertical wavenumbers with kx/kz∼ 0.2. We then explore
the stability of the flow in the (Re, Fr) space. In the region we consider, the most
unstable mode is always stationary and the growth rate remains relatively small, while
the range of unstable Fr numbers increases when increasing the Re number. Moreover,
the flow is unstable only to three-dimensional perturbations, i.e. only for kx, kz 6= 0.
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This result constitutes a fundamental difference from homogeneous shear flows,
for which the Squire theorem prescribes that the most unstable mode should be
two-dimensional. In the presence of stratification, the hyperbolic tangent profile
(Deloncle et al. 2007) and the Kolmogorov flow (Lucas et al. 2017) are also
dominated by two-dimensional perturbations. On the contrary, three-dimensional
perturbations appear on the stratified Taylor–Couette profile (Yavneh et al. 2001) as
well as in parallel flows free from inflection points but with a vertical stratification,
such as the boundary layer profile and the plane Poiseuille flow (Chen et al. 2016).
As in these latter cases, our three-dimensional instability appears close to Fr = 1,
confirming the necessary coexistence of shear and stratification. The critical Reynolds
number for the stratified PC flow turns to be at least two times smaller than for the
boundary layer and slightly larger than for the Poiseuille flow.

Looking at the most unstable mode of the linear problem, vertical velocity and
density perturbations develop close to the boundaries, which suggests that a crucial
role may be played by lateral boundaries. Nevertheless, a comparable horizontal
motion dominates in the mid vertical plane, and shows a vertically modulated pattern
which is reminiscent of the deep equatorial currents, and staircase density layering
in the Earth’s oceans (Dunkerton 1981; Dengler & Quadfasel 2002; d’Orgeville et al.
2004).

A mechanism was proposed to phenomenologically explain the onset of the
instability as the one suggested by Satomura (1981) adapted to the case of internal
gravity waves, instead of shallow-water waves. In this picture, internal gravity
waves are trapped close to the boundaries and Doppler shifted, thus allowing two
counterpropagating waves to become stationary and mutually resonant. The shape
of the unstable region in the wavenumber space and the appearance of discrete
additional resonances are also fully captured by the model, thus supporting its
relevance. An analogous mechanism was also invoked at the origin of strato-rotational
instability both in the PC (Kushner et al. 1998; Vanneste & Yavneh 2007) and the
Taylor–Couette (Yavneh et al. 2001; Park & Billant 2013) geometry. More generally
this wave interaction process identifies a class of instability which is characteristic of
shear flows (e.g. Baines & Mitsudera 1994).

The linear stability analysis was confirmed by DNS which reasonably well
reproduce the spatial pattern and the growth rate. We report that no instability is
observed when none of the unstable modes can properly fit in the domain. This
confirms that the instability sharply selects the spatial pattern of the perturbation.

We analysed the experimental flow produced by a shearing device immersed in a
tank filled with salty water, linearly stratified in density. We report that when the Fr
number is close to 1 and Re> 103, velocity perturbations grow in an exponential way.
Remarkably we observe that perturbations start to grow only when the PC profile is
almost completely established. This was confirmed by ad hoc versions of the linear
problem for a collection of transient profiles and by DNS which mimic the transient
flow of experiments. We conclude that the observed instability is crucially associated
with the shape of the shear, namely the PC profile.

Next, we explored the stability of the flow in the (Re, Fr) space by varying the
control parameter σ , which is equivalent to moving along Fr/Re = const. lines, for
a few different values of Fr/Re. For each series of experiments we observe that
an abrupt increase in the perturbation amplitude occurs, when σ is bigger than a
threshold value σc. When adding experimental data to the stability diagram predicted
by the linear theory we find that the threshold contour indicated by experiments
qualitatively matches the margin of the linearly unstable region. Also, close to
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the threshold, the velocity perturbation shows a well-organized pattern and is almost
horizontal, which is in agreement with the solution of the linear problem. Nevertheless,
the unstable mode slowly oscillates in time and appears at higher wavenumbers than
the most unstable (stationary) mode indicated by the linear analysis. These two
elements suggest that the mode selected in our experiment is not the most unstable
of those predicted by linear analysis, or that these latter are possibly not the same
when considering the finite-size experimental apparatus.

In any case we claim that the origin of the discrepancy relies on the critically low
value of the horizontal aspect ratio of our experimental domain, which is necessarily
bounded in the streamwise direction. The relevance of this hypothesis has been
tested with complementary DNS where no-slip rigid boundaries are now implemented
also in the streamwise direction. Remarkably, when copying the aspect ratio of our
experiments we minutely reproduce the perturbation pattern observed in experiments.
More generally, DNS show that streamwise confinement affects the stability of the
flow irrespective of the Fr number (i.e. also without stratification), which questions
the link between the instability observed in experiment and that predicted by the
linear analysis. We performed then DNS of a subcritical stratified experiment (i.e. Re
and Fr below the critical value) and show that the instability disappears. We then
acknowledge the unstable pattern observed in both experiments and DNS as a true
signature of the linear instability of a PC flow vertically stratified in density.

Future studies are planned to more closely investigate which is the critical aspect
ratio to recover quantitatively the results of linear theory and periodic DNS. With this
aim new DNS will be performed in a larger domain, which will possibly indicate how
to design a corresponding new set-up.

Quantitative measurements of the density field will be also performed in future
experiments to quantify the density layering whose evidence was already available
in our highest-Reynolds-number experiments in the form of regularly spaced optical
distortion. Such measurements will possibly add clues to the comprehension of the
diapycnal mixing in the presence of horizontal layering, as recently studied with
experiments (Woods et al. 2010; Oglethorpe et al. 2013) and numerical simulations
(Lucas & Caulfield 2017) in the case of the Taylor–Couette and Kolmogorov flows,
respectively.
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