
Mathematical Structures in Computer Science (2020), 30, pp. 892–951
doi:10.1017/S0960129520000250

PAPER

Dynamic game semantics
Norihiro Yamada1,∗ and Samson Abramsky2

1The University of Minnesota, Minneapolis, USA and 2The University of Oxford, Oxford, UK
∗Corresponding author. Email: yamad041@umn.edu

(Received 25 October 2018; revised 21 September 2020; accepted 23 September 2020; first published online 18 December 2020)

Abstract
The present work achieves a mathematical, in particular syntax-independent, formulation of dynamics
and intensionality of computation in terms of games and strategies. Specifically, we give game semantics
of a higher-order programming language that distinguishes programmes with the same value yet differ-
ent algorithms (or intensionality) and the hiding operation on strategies that precisely corresponds to the
(small-step) operational semantics (or dynamics) of the language. Categorically, our games and strate-
gies give rise to a cartesian closed bicategory, and our game semantics forms an instance of a bicategorical
generalisation of the standard interpretation of functional programming languages in cartesian closed cat-
egories. This work is intended to be a step towards a mathematical foundation of intensional and dynamic
aspects of logic and computation; it should be applicable to a wide range of logics and computations.

Keywords: Game semantics; categorical logic; intensionality of computation

1. Introduction
Girard et al. (1989) mention the dichotomy between the static and the dynamic viewpoints in logic
and computation; the former identifies terms (i.e., proofs or programmes) with their denotations
(i.e., results of their computations in an ideal sense), while the latter focuses on their senses (i.e.,
algorithms or intensionality) and dynamics (i.e., proof-normalisation or reduction). This distinc-
tion has been reflected in the two mutually complementary semantics of programming languages:
denotational and operational ones (Amadio and Curien, 1998; Gunter, 1992; Winskel, 1993).

Then, Girard et al. (1989) point out that a mathematical formulation of the former has been
well developed by Scott’s beautiful domain theory (Abramsky and Jung, 1994; Gierz et al., 2003;
Scott, 1976), but it is not the case for the latter; the treatment of senses has been based on ad hoc
syntactic manipulations. They thus emphasise the importance ofmathematics of senses:

The establishment of a truly operational semantics of algorithms is perhaps the most
important problem in computer science (Girard et al., 1989, p. 14).

The present work addresses this fundamental problem. Specifically, it gives an interpretation
�_�D of a programming language L with a small-step operational semantics → and a syntax-
independent operation H that satisfies the following dynamic correspondence property (DCP):

(M1 →M2)⇒ (�M1�D �= �M2�D ∧ H (�M1�D)= �M2�D)
for all programmes M1 and M2 in L . Note that this ‘only if ’ direction of the DCP cor-
responds to certain soundness of the interpretation H of →. (N.b., the opposite or com-
pleteness does not hold: (λx. ff)((λy. y)tt)→ (λx. ff)tt and (λx. ff)((λy. y)tt) �→ (λx. ff)ff, but

© The Author(s), 2020. Published by Cambridge University Press

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250
https://orcid.org/0000-0003-1253-8943
https://orcid.org/0000-0003-3921-6637
mailto:yamad041@umn.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129520000250&domain=pdf
https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 893

H (�(λx. ff)((λy. y)tt)�D)= �(λx. ff)tt�D = �(λx. ff)ff �D , where tt and ff are programmes of the
evident truth values. The lack of completeness, however, is not necessarily negative because it
implies that the interpretation ignores some superficial syntactic differences as in the example.)
Note also that the interpretation �_�D is finer than the usual denotational semantics since
M1 →M2 implies �M1�D �= �M2�D . Therefore, the interpretation �_�D and the operation H
capture intensionality and dynamics of computation, respectively.

Although our framework is intended to be a general approach, being applicable to a wide range
of logics and computations, as the first step, we focus on a finite fragment of the programming
language PCF (Plotkin, 1977; Scott, 1993) customised for our aim.

1.1 Game semantics
Our approach is based on game semantics (Abramsky et al., 1997; Abramsky and McCusker,
1999; Hyland, 1997), a particular kind of denotational semantics of logic and computation, in
which formulas (or types) and proofs (or programmes) are interpreted as games and strategies,
respectively.

We employ game semantics primarily for its conceptual naturality, which has so far led to
a deeper understanding of logic and computation, and mathematical precision, which has been
demonstrated by various full completeness/abstraction results (Curien, 2007) in the literature. Also,
game semantics is very flexible: It has modelled a wide range of formal systems and programming
languages by simply varying constraints on strategies (Abramsky and McCusker, 1999), which
enables us to compare and relate various concepts in logic and computation syntax-independently.
We utilise game semantics for the present work with the hope that these advantages of game
semantics are also true for intensionality and dynamics of logic and computation.

A game, roughly, is a certain kind of a directed rooted forest whose branches represent possible
‘developments’ or (valid) positions of a ‘game in the usual sense’ (such as chess, poker, etc.).Moves
of a game are nodes of the game, where some moves are distinguished and called initial; only
initial moves can be the first element or occurrence of a position of the game. Plays of a game are
(finitely or infinitely) increasing sequences (ε,m1,m1m2, . . .) of positions of the game, where ε is
the empty sequence. For our purpose, it suffices to focus on rather standard sequential (as opposed
to concurrent (Abramsky and Melliès, 1999)), negative (as opposed to positive (Laurent, 2004))
games played by two participants, Player, representing a ‘computational agent,’ and Opponent,
representing an ‘environment,’ in each of which Opponent always starts a play (i.e., negative),
and then they alternately and separately perform moves (i.e., sequential) allowed by the rules of
the game. Strictly speaking, a position of each game is not just a finite sequence of moves: Each
occurrencem of Opponent’s or O- (resp. Player’s or P-) non-initial move in a position is assigned
or points to a previous occurrence m′ of P- (resp. O-) move in the position, meaning that m is
performed specifically as a response to m′. The pointers are necessary to distinguish similar yet
distinct computations (Abramsky and McCusker, 1999; Hyland and Ong, 2000).

A strategy on a game, on the other hand, is what tells Player which move (together with a
pointer) she should make at each of her turns in the game. Hence, game semantics �_�G of a
programming language L interprets a type A in L as a game �A�G that specifies possible plays
between Player and Opponent, and a term M : A1 in L as a strategy �M�G on the game �A�G that
describes for Player how to play on �A�G . An execution of the term M is then modelled as a play
in the game �A�G in which Player follows �M�G .

Let us consider simple examples. The simplest game is the terminal game T, which has no
moves, and thus it has only the trivial position ε and the trivial strategy� := {ε}.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

894 N. Yamada and S. Abramsky

As another example, consider the natural number game N, which is the following rooted tree
(infinite in width):

q

. . .

0

�

1

�

2
�

3

�

. . .

in which a play starts with Opponent’s question q (‘What is your number?’) and ends with Player’s
answer n ∈N (‘My number is n!’), where N is the set of all natural numbers, and n points to
q (though this pointer is omitted in the above diagram). Henceforth, we usually skip drawing
arrows that represent edges of a game. A strategy 10 on N, for instance, that corresponds to the
natural number 10 ∈N can be represented by the map q
→ 10 equipped with the pointer from 10
to q (though it is the only choice for the pointer). In the following, pointers of most strategies are
obvious, and therefore we often omit them.

As yet another example, consider the game N �N of linear functions (Girard, 1987),
written informally N[0] �N[1] too, on natural numbers, whose typical maximal position is
q[1]q[0]n[0]m[1], where n,m ∈N, and the subscripts (_)[i] for i= 0, 1 are unspecified ‘tags’ to dis-
tinguish the two copies of N (in the rest of the paper, we employ a similar notation for three or
more copies of a game in the obvious manner too), or diagrammatically:2

N[0] � N[1]

q[1]
q[0]
n[0]

m[1]

which can be read as follows:

(1) Opponent’s question q[1] for an output (‘What is your output?’);
(2) Player’s question q[0] for an input (‘Wait, what is your input?’);
(3) Opponent’s answer, say, n[0] to q[0] (‘OK, here is an input n.’);
(4) Player’s answer, say,m[1] to q[1] (‘Alright, the output is thenm.’).

A strategy succ on this game that corresponds to the (linear) successor function is represented by
the map q[1]
→ q[0], q[1]q[0]n[0]
→ n+ 1[1], where n ranges over N, or diagrammatically:

N[0]
succ
� N[1]

q[1]
q[0]
n[0]

n+ 1[1]

1.2 Static game semantics
Game semantics is often said to be intensional and dynamic because a category of games and
strategies is usually not well pointed, and plays in a game can be regarded as ‘intensional, dynamic
interactions’ between the participants of the game. However, it has been employed as denotational
semantics, and hence it is in particular sound: If two programmes evaluate to the same value, then

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 895

their denotations in conventional game semantics are identical. Consequently, the conventional
game semantics �_�G is actually extensional and static in the sense that if there is a reduction
M1 →M2 in syntax, then the equation �M1�G = �M2�G holds in the semantics (i.e., it does not
capture the dynamicsM1 →M2 or the intensional difference betweenM1 andM2). In other words,
the conventional game semantics is not intensional or dynamic in the sense that it does not satisfy
the DCPs.

Therefore, to establish mathematics of senses (Girard et al., 1989), we need a more dynamic,
intensional refinement of game semantics, so that it satisfies the DCPs. To get insights to develop
such refined game semantics, let us see how the conventional game semantics fails to be dynamic
or intensional. The point in a word is that ‘internal communication’ between strategies for their
composition is a priori ‘hidden,’ and thus the resulting strategy is always in ‘normal form.’ For
instance, the composition succ; double :N �N of strategies succ :N �N and double :N �N,
implementing the successor and the doubling (linear) functions, respectively,

N[0]
succ
� N[1] N[2]

double
� N[3]

q[1] q[3]
q[0] q[2]
m[0] n[2]

m+ 1[1] 2n[3]
is formed as follows. First, by ‘internal communication,’ we mean that Player plays the role of
Opponent as well in the intermediate component games N[1] and N[2] just by ‘copy-catting’ her
last moves, resulting in the play

N[0]
succ
� N[1] N[2]

double
� N[3]

q[3]
q[2]

q[1]
q[0]
n[0]

n+ 1[1]
n+ 1[2]

2(n+ 1)[3]
where each move for ‘internal communication’ is marked by a square box just for clarity, and
the pointer from q[1] to q[2] is added because the move q[1] is no longer initial. Importantly, it is
assumed that Opponent plays on the game N[0] �N[3], ‘seeing’ only moves of N[0] or N[3]. That
is, the resulting play is to be read as follows:

(1) Opponent’s question q[3] for an output in N[0] �N[3] (‘What is your output?’);
(2) Player’s question q[2] by double for an input in N[2] �N[3] (‘What is your input?’);

(3) q[2] triggers the question q[1] for an output in N[0] �N[1] (‘What is your output?’);

(4) Player’s question q[0] by succ for an input in N[0] �N[1] (‘What is your input?’);
(5) Opponent’s answer, say, n[0] to q[0] in N[0] �N[3] (‘Here is an input n.’);

(6) Player’s answer n+ 1[1] to q[1] by succ in N[0] �N[1] (‘The output is then n+ 1.’);

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

896 N. Yamada and S. Abramsky

(7) n+ 1[1] triggers the answer n+ 1[2] to q[2] in N[2] �N[3] (‘Here is the input n+ 1.’);

(8) Player’s answer 2(n+ 1)[3] to q[3] by double in N[2] �N[3] (‘The output is then 2(n+ 1)!’).

Next, ‘hiding’ means to hide or delete every move with the square box from the play, resulting
in the strategy for the (linear) function n
→ 2(n+ 1) as expected:

N[0]
succ; double

� N[3]

q[3]
q[0]
n[0]

2(n+ 1)[3]

Note that it is ‘hiding’ that makes the resulting play a valid one in the game N[0] �N[3].
Now, let us plug in the strategy 5T : q[5]
→ 5[5] on the game T[4] �N[5], which coincides

with N up to ‘tags.’ The composition 5T ; succ; double : T�N3 is computed again by ‘internal
communication’

T[4]
5T
� N[5] N[0]

succ
� N[1] N[2]

double
� N[3]

q[3]
q[2]

q[1]
q[0]

q[5]
5[5]

5[0]
6[1]

6[2]
12[3]

plus ‘hiding’

T[4]
5T ; succ; double

� N[3]

q[3]
12[3]

In syntax, on the other hand, assuming that there are a (ground) type ι of natural numbers,
the numeral n of type ι for each n ∈N, and the constructors succ and double on type ι for
the successor and the doubling functions, respectively, equipped with the operational seman-
tics succ n→ n+ 1 and double n→ 2n for all n ∈N in an arbitrary functional programming

language, the programme p1
df.≡ λx. (λy. double y)((λz. succ z)x) represents the syntactic compo-

sition succ; double of succ and double. When it is applied to the numeral 5, we have the chain of
reductions

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 897

p15→∗ (λx. double (succ x))5
→∗ double (succ 5)
→∗ double 6
→∗ 12

Therefore, it seems that reduction in syntax corresponds in game semantics to ‘hiding inter-
nal communication.’ As seen in the above example, however, this game-semantic reduction is
a priori executed and thus invisible in the conventional game semantics �_�G . Consequently,
the two programmes p15 and 12 are interpreted by �_�G as the same strategy. Furthermore,
observe that moves with the square box describe intensionality or step-by-step processes to com-
pute an output from an input, but they are invisible after ‘hiding.’ Thus, e.g., a programme
p2

df.≡ λx. (λy. succ y)(λv. (λz. succ z)((λw. double w)v)x), representing the same function as p1 yet
a different algorithm double; succ; succ, is modelled as

�p2�G = �double; succ; succ�G = �succ; double�G = �p1�G .
To sum up, we have observed the following three points:

(1) (REDUCTION AS HIDING). Reduction in syntax corresponds in game semantics to ‘hiding
intermediate moves (i.e., moves with the square box)’;

(2) (A PRIORI NORMALISATION). However, the ‘hiding’ process is a priori executed in the
conventional game semantics, and hence strategies are always in ‘normal form’;

(3) (INTERMEDIATE MOVES AS INTENSIONALITY). Finally, ‘intermediate moves’ constitute
intensionality of computation; however, they are not captured in the conventional game
semantics again due to the a priori execution of the ‘hiding’ operation.

1.3 Dynamic games and strategies
From these observations, we have obtained a promising solution: to define a variant of games and
strategies, in which ‘intermediate moves’ are not a priori ‘hidden,’ representing intensionality of
logic and computation, and the hiding operations H on the games and the strategies that ‘hide
intermediate moves’ in a step-by-step fashion, interpreting dynamics of logic and computation.
Let us call such a variant of games (resp. strategies) dynamic games (resp. dynamic strategies).

In doing so, we shall develop new mathematical structures that are conceptually natural and
mathematically elegant. This effort is to inherit the natural, intuitive nature of the conventional
game semantics, so that the resulting interpretation would be insightful, convincing and useful.
Also, mathematics often leads to a ‘correct’ formulation: If a definition gives rise to neat mathe-
matical structures, then it is likely to succeed in capturing the essence of concepts and phenomena
of concern and subsume various instances (n.b., recall that our aim is to establish mathematics
of senses). In fact, dynamic games and strategies are a natural generalisation of the conventional
games and strategies, and they satisfy some beautiful algebraic laws. As a result, they form a carte-
sian closed bicategory (CCB) in the sense of Ouaknine (1997)4 LDG (Definition 4.1), in which
0- (resp. 1-) cells are certain dynamic games (resp. dynamic strategies), and 2-cells are the exten-
sional equivalence between 1-cells. The countably-infinite iteration of the hiding operationsH on
dynamic games and strategies induces the 2-functor H ω :LDG→LMG, where the CCC LMG

of conventional games and strategies can be seen as the ‘extensionally collapsed’ LDG.

1.4 Dynamic game semantics
We then give, as the main result of the present work, game semantics �_�DG of finitary PCF (i.e.,
the simply-typed λ-calculus equipped with the boolean type) in LDG that together with the hid-
ing operation H satisfies the DCP (Corollary 4.6). We call the pair (�_�DG ,H) dynamic game

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

898 N. Yamada and S. Abramsky

semantics because it captures dynamics and intensionality of computation better than the con-
ventional game semantics. We select finitary PCF as our target language since a simple language
would be appropriate for the first work on dynamic game semantics.

At this point, note that it does not make much sense to ask whether full abstraction holds for
dynamic game semantics because its aim is to capture intensionality of computation.

Also, note that our dynamic game semantics is not faithful: Equality (on the nose) between
dynamic strategies is of course finer than β-equivalence but also coarser than α-equivalence, e.g.,
non-α-equivalent terms (λx. ff)tt and (λx. ff)ff are interpreted to be the same dynamic strategy
in the dynamic game semantics. It is because an equation between dynamic strategies captures
algorithmic difference of the interpreted terms, while α-equivalence distinguishes how the terms
are constructed even if their algorithms coincide. This point justifies our (syntax-independent)
mathematics of senses without the completeness property explained before.

On the other hand, it makes sense to ask if full completeness holds for dynamic game semantics.
In fact, we shall establish our dynamic full completeness result (Corollary 4.7).

1.5 Our contribution and related work
To the best of our knowledge, the present work is the first syntax-independent characterisation of
dynamics and intensionality of computation in the sense of the DCPs.

The work closest in spirit is Girard’s geometry of interaction (GoI) (Girard, 1989, 1990, 1995,
2003, 2011, 2013). However, GoI appears mathematically ad hoc because it does not conform to
the standard categorical semantics of type theories (Jacobs, 1999; Lambek and Scott, 1988; Pitts,
2001). Also, it does not capture the step-by-step process of reduction in the sense of the DCPs. In
contrast, dynamic game semantics refines the standard semantics and does satisfy the DCP.

Next, the idea of exhibiting ‘intermediate moves’ in the composition of strategies is nothing
new; there have been game-semantic approaches (Dimovski et al., 2005; Greenland, 2005; Ong,
2006) that give such moves an ‘official status.’ However, because their aims are rather to develop a
tool for programme analysis and verification, they do not study in depth mathematical structures
thereof, give an intensional game semantics that refines the standard categorical semantics or
formulate the step-by-step ‘hiding’ process. Therefore, our contribution for this point is in studying
the algebraic structures of games and strategies when we do not a priori ‘hide intermediate moves’
and refining the standard categorical semantics in such a way that it satisfies the DCP.

Also, there are several approaches to model dynamics of computation by 2-categories (Hilken,
1996; Mellies, 2005; Seely, 1987). In these papers, however, the horizontal composition of 1-cells
is the normalising one, which is why the structures are 2-categories rather than bicategories.5 In
addition, the 2-cells of their 2-categories are rewriting, while the 2-cells of our bicategory are the
external equivalence between 1-cells. Note that 2-cells in a bicategory cannot interpret rewriting
unless the horizontal composition is normalising since the associativity of non-normalising com-
position on such 2-cells does not hold.6 Thus, although their motivations are similar to ours, our
bicategorical approach seems novel, interpreting an application of a term by the non-normalising
composition, the extensional equivalence of terms by 2-cells, and rewriting by the hiding opera-
tion H . Moreover, their frameworks are categorical, while we instantiate our categorical model
by game semantics. Furthermore, neither of the previous work satisfies the DCP.

Finally, the present work has some implications from theoretical as well as practical viewpoints.
From the theoretical perspective, it enables us to study dynamics and intensionality of computa-
tion as purely mathematical (or semantic) concepts, just like any concepts in pure mathematics
such as differentiation and integration in calculus, homotopy in topology, etc. Thus, we would
be able to rigorously analyse the essence of these concepts, ignoring superfluous syntactic details.
From the practical point, on the other hand, it might become a useful tool for language analysis
and design, e.g., our variant of finitary PCF would not exist without the present work.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 899

1.6 Structure of the paper
The rest of the present paper proceeds as follows. First, this introduction ends with fixing some
notations. Then, Section 2 defines our target programming language, viz., the finitary PCF, and its
bicategorical semantics that satisfies the DCP, so that it remains to establish its game-semantic
instance. Next, Section 3 introduces dynamic games and strategies, and studies their basic
algebraic structures. Then, Section 4 gives dynamic with game semantics of the programming
language. Finally, Section 5 draws a conclusion and proposes some future work.

Notation 1.1. We use the following notations throughout the present article:

• We write N for the set of all natural numbers and define N+ :=N \ {0};
• We use bold letters s, t, u, v,w, etc. for sequences, in particular ε for the empty sequence, and
letters a, b, c, d,m, n, x, y, z, etc. for elements of sequences;

• Given a natural number k ∈N, we write k for the finite set {1, 2, . . . , k } ⊆N (n.b., 0=∅);
• We often abbreviate a finite sequence s= (x1, x2, . . . , x|s|) as x1x2 . . . x|s|, where |s| denotes the
length (i.e., the number of elements) of s, and write s(i) as another notation for xi (i ∈ |s|);

• A concatenation of sequences is represented by the juxtaposition of them, but we often write as,
tb, ucv for (a)s, t(b), u(c)v, etc., and also write s.t for st if it increases readability;

• We define sn := ss · · · s︸ ︷︷ ︸
n

for a sequence s and a natural number n ∈N;

• We write Even(s) (resp.Odd(s)) if a sequence s is of even length (resp. odd length);
• We define SP := { s ∈ S | P(s) } for a set S of sequences and a predicate P ∈ {Even,Odd};
• s� tmeans s is a prefix of t, i.e., t= s.u for some sequence u, and given a set S of sequences, we
define Pref(S) := { s | ∃t ∈ S . s� t };

• For a poset P= (P,�) and a subset S⊆ P, we write SupP(S) (usually abbreviated as Sup(S))
for the supremum of S with respect to P;

• Given a set X, we define X∗ := { x1x2 . . . xn | n ∈N, ∀i ∈ n . xi ∈ X };
• Given a function f :A→ B and a subset S⊆A, we define f � S : S→ B to be the restriction of f
to S, and f ∗ :A∗ → B∗ by f ∗(a1a2 . . . an) := f (a1)f (a2) . . . f (an) ∈ B∗ (a1a2 . . . an ∈A∗);

• Given sets X1, X2, . . . , Xn, and i ∈ n, we write πi (or π (n)
i) for the ith-projection function X1 ×

X2 × · · · × Xn → Xi that maps (x1, x2, . . . , xn)
→ xi;
• Given a function f : X→ Y and a subset Z⊆ X, we write f � Z : X \ Z→ Y for the restriction
of f to the set difference X \ Z⊆ X.

2. Dynamic Bicategorical Semantics
Let us first present in this section a categorical description of how dynamic games and strategies
model dynamics and intensionality of our target language and show that it refines the standard
categorical semantics of type theories (Jacobs, 1999; Lambek and Scott, 1988; Pitts, 2001).

2.1 Beta-categories of computation
The categorical structure for our interpretation of logic and computation is β-categories of com-
putation (BoCs), a certain kind of bicategories whose 2-cells are equivalence relations between
1-cells, equipped with an evaluation (function) on 1-cells such that the equivalence relations are
the equality between 1-cells modulo the evaluation. Note that we do not take the quotient of 1-cells
modulo the equivalence relation (so that the BoC becomes a category) since otherwise we would
identify 1-cells with the same value even if they have different senses (or algorithms), unable to
establish mathematics of senses.

Let us first introduce an auxiliary notion of β-categories, which are more general than BoCs.
Roughly, β-categories are categories up to an equivalence relation on morphisms:

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

900 N. Yamada and S. Abramsky

Definition 2.1 (β-categories). A β-category is a pair C = (C ,�) that consists of

• A class ob(C) of objects, where we usually write A ∈ C for A ∈ ob(C);
• A class C (A, B) of β-morphisms from A to B for each pair A, B ∈ C , where we often write
f :A→ B for f ∈ C (A, B) if the underlying β-category C is obvious from the context;

• A (class) function C (A, B)× C (B, C)
;A,B,C→ C (A, C), called the β-composition on β-morphisms

from A to B and those from B to C, for each triple A, B, C ∈ C ;
• A β-morphism idA ∈ C (A,A), called the β-identity on A, for each object A ∈ C ;
• An equivalence (class) relation �A,B on C (A, B), called the equivalence on β-morphisms from
A to B, for each pair A, B ∈ C ,

where we also write C (B, C)× C (A, B)
◦A,B,C→ C (A, C) for the β-composition ;A,B,C and often omit

the subscripts (_)A,B,C on ; (◦) and�, such that it satisfies the four equations
(f ; g); h� f ; (g; h) f ; idB � f idA; f � f f � f ′ ∧ g � g′ ⇒ f ; g � f ′; g′

for any A, B, C,D ∈ C , f , f ′ :A→ B, g, g′ : B→ C and h : C→D.
Moreover, the β-category C is cartesian closed if

• There is an object T ∈ C , called a β-terminal object, equipped with a β-morphism !A :A→ T,
called the canonical β-morphism on A, for each object A ∈ C , that satisfies !A � t for any
β-morphism t :A→ T;

• There is an object A× B ∈ C for each pair A, B ∈ C , called a β- (binary) product of A and
B, equipped with β-morphisms πA,B

1 :A× B→A and πA,B
2 :A× B→ B, called the first and

the second β-projections on A× B, respectively, and an assignment 〈_, _〉 of a β-morphism
〈a, b〉CA,B : C→A× B, called the β-pairing of a and b, to given object C ∈ C and β-morphisms
a : C→A and b : C→ B, that satisfies

〈a, b〉CA,B; πA,B
1 � a 〈a, b〉CA,B; πA,B

2 � b 〈h; πA,B
1 , h; πA,B

2 〉CA,B � h

(a� a′ ∧ b� b′)⇒〈a, b〉 � 〈a′, b′〉,
where h : C→A× B, a′ : C→A and b′ : C→ B are arbitrary β-morphisms;

• There are an object CB ∈ C and a β-morphism evB,C : CB × B→ C, called the β-exponential
and the β-evaluation of B and C, respectively, for each pair B, C ∈ C , equipped with an assign-
ment �A,B,C (also written �B,C

A (k) or �A(k)) of a β-morphism �A,B,C(k) :A→ CB, called the
β-currying of k, to any object A ∈ C and β-morphism k :A× B→ C, that satisfies

〈πA,B
1 ;�A,B,C(k), πA,B

2 〉A×B
CB,B ; evB,C � k �A,B,C(〈πA,B

1 ; l, πA,B
2 〉A×B

CB,B ; evB,C)� l

k� k′ ⇒�A,B,C(k)��A,B,C(k′),

where l :A→ CB and k′ :A× B→ C are arbitrary β-morphisms. We frequently omit the
sub/superscripts on πA,B

i , 〈_, _〉CA,B, evB,C and�A,B,C.

That is, a (resp. cartesian closed) β-category C = (C ,�) is a (resp. cartesian closed) category
up to � (i.e., the equation = on morphisms is replaced with the equivalence relation � on 1-
cells), where the prefix ‘β-’ signifies the compromise ‘up to �.’ Alternatively, regarding objects
and β-morphisms of C as 0-cells and 1-cells, respectively, and defining 2-cells by C (A, B)(d, c) :={
{�} if d� c;
∅ otherwise

for any objects A, B ∈ C and β-morphisms d, c :A→ B, where {�} denotes
an arbitrary singleton set, we may identify C with a (resp. cartesian closed (Ouaknine, 1997))
bicategory whose 2-cells are only the trivial one.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 901

We are now ready to define β-categories of computation (BoCs):

Definition 2.2 (BoCs). A β-category of computation (BoC) is a β-categoryC = (C ,�) equipped
with a (class) function E on β-morphisms of C , called the evaluation (of computation), that satisfies

• (SUBJECT REDUCTION). E (f) :A→ B for all A, B ∈ C and f :A→ B;
• (TERMINATION). f ↓ for all A, B ∈ C and f :A→ B;
• (β-IDENTITIES). idA ∈ VC (A,A) for all A ∈ C ;
• (EVALUATION). f � f ′ ⇔ ∃v ∈ VC (A, B). f ↓ v∧ f ′ ↓ v for all A, B ∈ C and f , f ′ :A→ B,

where VC (A, B) := { v ∈ C (A, B) | E (v)= v }, whose elements are called values from A to B in C ,
and we write f ↓, or specifically f ↓ E n(f), if E n(f) ∈ VC (A, B) for some n ∈N.7

A BoC C is cartesian closed, which we call a cartesian closed BoC (CCBoC), if so is C as a β-
category, all the canonical β-morphisms, the β-projections and the β-evaluations of C are values,
and both of the β-pairing and the β-currying of C preserve values.

Convention. Since the equivalence � of a BoC C may be completely recovered from the evalua-
tion E , we usually specify the BoC by a pair C = (C , E). If f ↓ E n(f) holds for some n ∈N, then
we call E n(f) the value of f and also write E ω(f) for it.

The intuition behind Definition 2.2 is as follows. In a BoC C = (C , E), β-morphisms are (pos-
sibly intensional but not necessarily ‘effective’) computations with the domain and the codomain
(objects) specified, and values are extensional computations such as functions (as graphs). The β-
composition is ‘non-normalising composition’ or concatenation of computations, and β-identities
are unit computations (they are just like identity functions). The execution of a computation f is
achieved by evaluating it into a unique value E ω(f), which corresponds to dynamics of computa-
tion.8 We regard E ω as the operation on β-morphisms that maps them into their values, where the
superscript (_)ω indicates that it is equivalent to iterating E by ω (i.e., the least transfinite num-
ber) times. In addition, the equivalence relation � witnesses the extensional equivalence between
β-morphisms modulo E ω. The four axioms then should make sense from this perspective. In this
way, each BoC provides a ‘universe’ of dynamic, intensional computations.

It is easy to see that each BoC C = (C , E) induces the category VC such that

• Objects are those of C ;
• Morphisms A→ B are elements in VC (A, B), i.e., values from A to B in C ;
• The composition of morphisms u :A→ B and v : B→ C is the value E ω(u; v) :A→ C;
• Identities are β-identities in C .

Regarding the BoC C as the trivial bicategory specified above, and the category VC as the trivial
2-category, the evaluation E induces the 2-functor E ω : C → VC that maps A
→A for 0-cells
A, f
→ E ω(f) for 1-cells f and �
→= for (unique) 2-cells �. Clearly, VC is cartesian closed if
so is C , where canonical morphisms into a terminal object, projections, evaluations, pairing and
currying of VC come from the corresponding ‘β-ones’ in C , respectively.

The point here is that we may now decompose the standard interpretation �_�S of functional
programming languages in a CCC VC (Jacobs, 1999; Lambek and Scott, 1988; Pitts, 2001) into a
more intensional interpretation �_�D in a CCBoC C = (C , E) and the full evaluation E ω : C →
VC , i.e., �_�S = E ω(�_�D), and talk about intensional difference between computations: Terms
M and M′ are interpreted to be intensionally equal if �M�D = �M′�D and extensionally equal if
�M�D � �M′�D . Also, the one-step evaluation E is to capture the small-step operational semantics
of the target language, i.e., to satisfy the DCP; see Definition 2.16 for the precise definition of the
DCP specialised to our target language.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

902 N. Yamada and S. Abramsky

2.2 Finitary PCF
Next, let us introduce our target programming language for dynamic game semantics.

Recall first that there is a one-to-one correspondence between PCF Böhm trees (i.e., terms of
PCF in η-long normal form) (Amadio and Curien, 1998) and innocent, well bracketed strategies
(Abramsky and McCusker, 1999; Curien, 2006; Hyland and Ong, 2000). This technical highlight
in the literature of game semantics is called strong definability. Naturally, we would like to exploit
the strong definability result to establish the first instance of dynamic game semantics because the
task would be easier than otherwise.

On the other hand, the higher-order programming language PCF (Plotkin, 1977; Scott, 1993)
has the natural number type and the fixed-point combinators, which make PCF Böhm trees infini-
tary in width and depth, respectively. However, we would like to select, as the first target language
for dynamic game semantics, the simplest one possible because then the idea and the mecha-
nism would be most visible. For this reason, let us choose finitary PCF, i.e., the finite fragment of
PCF that has only the boolean type as a ground type (or equivalently, the simply-typed λ-calculus
(Church, 1940; Sørensen and Urzyczyn, 2006) equipped with the boolean type).

We then define small-step operational semantics (or a reduction strategy) on finitary PCF
as follows. We restrict terms to those built from PCF Böhm trees via application and currying
(hence, e.g., the language does not have the usual variable rule), where PCF Böhm trees are nor-
malised, and application generates non-normalised terms, and define operational semantics that
normalises applications occurring in such a restricted term in the order from older to newer
ones. A main virtue of the resulting language is that we may exploit the strong definability result
straightforwardly, so that we may achieve a tight correspondence between syntax and semantics.

Remark.Note that an execution of linear head reduction (LHR) (Danos and Regnier, 2004) corre-
sponds in a step-by-step fashion to an ‘internal communication’ between strategies (Danos et al.,
1996). Hence, one may wonder if it would be better to employ LHR as the operational semantics
of finitary PCF. However, note that

• The correspondence is not between terms and strategies;
• LHR is executed by linear substitution, whichmakes the calculus very different from the usual
λ-calculus equipped with β-reduction.

For these two points, we conjecture that it would require significantly more work than the present
work to establish the game-semantic DCP with respect to LHR, and so we leave it as future work.

In the following, we give the precise definition of the resulting target programming language
(viz., finitary PCF equipped with the small-step operational semantics).

Notation 2.3. We employ the following notations:

• Let V be a countably infinite set of variables, written x, y, z, etc., for which we assume the
variable convention (or Barendregt’s convention Hankin 19949);

• We use sans-serif letters such as
, A and a for syntactic objects and≡ for syntactic equality up
to α-equivalence, i.e., up to renaming of bound variables.

Definition 2.4 (FPCF). The finitary PCF (FPCF) is a functional programming language defined
as follows:

• (TYPES). A type A is an expression generated by the grammar

A
df.≡ o | A1 ⇒ A2

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 903

where o is the boolean type, and A1 ⇒ A2 is the function type from A1 to A2 (n.b., ⇒ is right
associative). We write A, B, C, etc. for types. Note that each type may be written uniquely of the
form A1 ⇒ A2 ⇒· · ·⇒ Ak ⇒ o (k ∈N).

• (RAW-TERMS). A raw-term M is an expression generated by the grammar

M
df.≡ x | tt | ff | case(M)[M1; M2] | λxA. M |M1M2

where x ranges over variables, and A over types. We call tt, ff, case(M)[M1; M2], λxA. M and
M1M2 respectively true, false, a case statement, an abstraction and an application. We write
M, P,Q, R, etc. for raw terms and often omit A in an abstraction λxA. M. An application is always
left associative, e.g.,M1M2M3 may be written informally (M1M2)M3. The set FV (M)⊆ V of all
free variables occurring in a raw-term M is defined by the following induction on M:

FV (x) := {x} FV (tt) := FV (ff) := ∅
FV (case(M)[M1; M2]) := FV (M)∪ FV (M1)∪ FV (M2)

FV (λx. M) := FV (M) \ {x} FV (M1M2) := FV (M1)∪ FV (M2).

• (CONTEXTS). A context is a finite sequence x1 : A1, x2 : A2, . . . , xk : Ak of (variable : type)-pairs
with xi �= xj if i �= j (i, j ∈ k). We write
,�,�, etc. for contexts.

• (TERMS). A term is an expression of the form
 �M : B, where
 is a context, M is a raw-term,
and B is a type, generated by the following typing rules:

 ≡�,�
A≡ A1 ⇒ A2 ⇒· · ·⇒ Ak ⇒ o

∀i ∈ k.
 � Vi : Ai ∧ (Vi)= 0∧ x �∈ FV (Vi)
∀j ∈ 2.
 �Wj : o∧ (Wj)= 0∧ x �∈ FV (Wj)(C1)

�, x : A,�� case(xV1V2 . . . Vk)[W1; W2] : o

 �M : o ∀j ∈ 2.
 � Pj : o(C2)

 � case(M)[P1; P2] : o

, x : A�M : B(L)

 � λxA. M : A⇒ B

 �M1 : A⇒ B
 �M2 : A(A)

 �M1M2 : B

b ∈ {tt, ff}(B)

 � b : o

where Vi (i= 1, 2, . . . , k) andWj (j= 1, 2) range over values defined below, and (
 �M : B) ∈
N, often abbreviated as (M), is the execution number of each term
 �M : B defined by the
following induction on the derivation of
 �M : B:
– (b) := 0 if b ∈ {tt, ff};
– (case(xV1V2 . . . Vk)[W1; W2]) := 0;
– (case(M)[P1; P2]) := 0;
– (λxA.M) := (M);
– (M1M2) :=max ((M1), (M2))+ 1.

A subterm of a term
 �M : B is a term that occurs in the deduction of
 �M : B, where a
deduction (tree) of each term of FPCF is clearly unique. Execution numbers are to assign, to
each subterm of a term, the priority order of the subterm during the execution of the term, i.e.,
they inform the operational semantics of how to reduce the term, which is made precise below.
We write
 � {M}e : B for the term
 �M : B such that (M)= e. Also, we often omit the context
and/or the type of a term if it does not bring confusion. A programme (resp. a value) is a term
generated by the rules B, C1, L and A (resp. B, C1 and L), where the rule C2 is redundant here,
but it is necessary to define the operational semantics given below.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

904 N. Yamada and S. Abramsky

Remark. The rules C2 (above) and ϑ4 (below) are auxiliary concepts and only necessary for
‘intermediate terms’ during an evaluation of a programme into a value.

• (βϑ-REDUCTION). The βϑ-reduction→βϑ on terms is the contextual closure, i.e., the closure
with respect to the typing rules, of the union of the rules

(λx. M)P→β M[P/x]
case(tt)[M1; M2]→ϑ1M1
case(ff)[M1; M2]→ϑ2M2

case(case(xV)[W1; W2])[M1; M2]→ϑ3case(xV)[case(W1)[M1; M2]; case(W2)[M1; M2]]
case(case(M)[P1; P2])[Q1; Q2]→ϑ4case(M)[case(P1)[Q1; Q2]; case(P2)[Q1; Q2]]

where M[P/x] denotes the capture-free substitution (Barendregt et al., 1984; Hankin, 1994) of
P for x in M, and xV abbreviates xV1V2 . . . Vk in the rule C1. We write nf(M) for the normal
form of each term M with respect to →βϑ , i.e., nf(M) is a term such that M→∗

βϑ nf(M) and
nf(M) �→βϑ M′ for any term M′, which uniquely exists by Theorems 2.11 and 2.12 given below.
The parallel βϑ-reduction⇒βϑ on terms is defined to evaluate each term M in a single-step to
its normal form nf(M).

• (OPERATIONAL SEMANTICS). The (small-step) operational semantics (or the reduction strat-
egy)→ on programmesM is the ‘simultaneous execution’ of⇒βϑ on all subterms ofM with the
execution number 1, or more precisely→ is defined by

M→

⎧⎪⎨⎪⎩
V if M≡M1M2, (M1M2)= 1 and M1M2⇒βϑ V;
M′
1M

′
2 if M≡M1M2, (M1M2)� 2 and Mi →M′

i for i= 1, 2;
λxA.M̃′ if M≡ λxA.M̃ and M̃→ M̃′.

We write Eq(FPCF) for the equational theory that consists of judgements
 �M=M′ : B, where

 �M : B and
 �M′ : B are programmes of FPCF, such that nf(M)≡ nf(M′).

Values of FPCF are PCF Böhm trees except that the bottom (term) ⊥ and the natural number
type ι are excluded. The βϑ-reduction→βϑ is taken from Section 6 of Amadio and Curien (1998).
Hence, as announced before, programmes of FPCF are constructed from (finitary) PCF Böhm
trees via currying and application, where non-programme terms (i.e., the rules C2 and ϑ4) are
auxiliary and only necessary for the operational semantics→.

Remark. Let A≡ A1 ⇒ A2 ⇒· · ·⇒ Ak ⇒ o be an arbitrary type of FPCF. Note that an expression
�, x : A,�� x : A is not a term of FPCF, but instead there is another, �, x : A,�� xA : A, where
xA

df.≡ λxA11 x
A2
2 . . . x

Ak
k . case(xx1

A1x2A2 . . . xkAk)[tt; ff], which is a programme of FPCF. We often
abbreviate x as xA if it does not bring confusion.

Given a term
 �M : B, an execution number is assigned to each subterm ofM. These execution
numbers represent the priority order of the subterms with respect to the operational semantics→
applied to M in the sense that those with the execution number 1 are normalised in one step M→
M′, where positive execution numbers are subtracted 1. In this manner, the operational semantics
→ reduces applications occurring in a given programme in the order from older to newer ones.

As we have mentioned before, programmes of FPCF are built from (finitary) PCF Böhm trees
via application and currying, where PCF Böhm trees are normalised, and only application gener-
ates non-normalised programmes. This point is reflected as follows. The typing rules B and C1,
corresponding to PCF Böhm trees, are assigned the execution number 0, the rule L, corresponding
to currying, preserves execution numbers, and the rule A, corresponding to application, increases

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 905

execution numbers by 1. The last rule C2 is only to take care of non-programme terms gener-
ated during the execution of programmes with respect to the parallel βϑ-reduction ⇒βϑ (it is
why C2 is excluded from the construction of programmes), which in turn defines the operational
semantics→.10

In summary, FPCF computes as follows. Given a programme
 � {M}e : B, it produces a finite
chain of finitary rewriting

M→M1 →M2 →· · ·→Me (1)
where Me is a value. Note that the programme M is constructed from values by a finite number of
applications, and the computation (1) is executed in the first-applications-first-evaluated fashion,
e.g., if M≡ (V1V2)((V3V4)(V5V6)), where V1, V2, . . . , V6 are values, then e= 3, and the computation
(1) would be of the form

(V1V2)((V3V4)(V5V6))→ V7(V8V9)→ V7V10 → V11
where V7 ≡ nf (V1V2), V8 ≡ nf (V3V4), V9 ≡ nf (V5V6), V10 ≡ nf (V8V9) and V11 ≡ nf (V7V10).

The rest of the present section is devoted to showing that the computation (1) of FPCF in fact
correctly works (Corollary 2.14).

First, by the following Proposition 2.5 and Theorem 2.9, it makes sense that the βϑ-reduction
→βϑ is defined on terms (not on raw-terms):

Proposition 2.5 (Unique typing). If
 � {M}e : B and
 � {M}e′ : B′, then e= e′ and B≡ B′.

Proof. By induction on the construction of
 �M : B.

Lemma 2.6 (Free variable lemma). If
 �M : B, and x ∈ V occurs free in M, then x : A occurs in

 for some type A.

Proof. By induction on the construction of
 �M : B.

Lemma 2.7 (EW-lemma). If x1 : A1, x2 : A2, . . . , xk : Ak � {M}e : B, then

(1) xσ (1) : Aσ (1), xσ (2) : Aσ (2), . . . , xσ (k) : Aσ (k) � {M}e : B for any permutation σ on k;
(2) x1 : A1, x2 : A2, . . . , xk : Ak, xk+1 : Ak+1 � {M}e : B for any variable xk+1 ∈ V and type Ak+1

such that xk+1 �≡ xi for i= 1, 2, . . . , k.

Proof. By induction on the construction of x1 : A1, x2 : A2, . . . , xk : Ak �M : B.

Lemma 2.8 (Substitution lemma). If
, x : A� {P}e : B and
 �Q : A, then
 � {P[Q/x]}e : B.

Proof. By induction on the length |P| with the help of Lemmas 2.6 and 2.7.

Theorem 2.9 (Subject reduction). If
 �M : B and M→βϑ R, then
 � R : B.

Proof. By induction on the structure of M→βϑ R with the help of Lemma 2.8.

Next, we show that the parallel βϑ-reduction⇒βϑ is well defined (Theorems 2.11 and 2.12).

Lemma 2.10 (Hindley-Rosen). Let R1 and R2 be binary relations on the setT of all terms, and let
us write →Ri for the contextual closure of Ri for i= 1, 2. If →R1 and →R2 are Church–Rosser, and
for any M, P,Q ∈ T the conjunction of M→∗

R1 P and M→∗
R2 Q implies the conjunction of P→∗

R2 R
and Q→∗

R2 R for some R ∈ T , then→R1∪R2 is Church–Rosser.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

906 N. Yamada and S. Abramsky

Proof. By a simple ‘diagram chase’; see Hankin (1994) for the details.

Theorem 2.11 (Church–Rosser). The βϑ-reduction→βϑ is Church–Rosser.

Proof. First, it is easy to see that the ϑ-reduction→ϑ := ⋃4
i=1→ϑi satisfies the diamond property,

and thus it is Church–Rosser.
Next, let us show that the implication

M→β P∧M→ϑ Q⇒∃R. P→∗
ϑ R∧Q→β R (2)

holds for all terms M, P and Q, where note the asymmetry between →ϑ and →β in (2), by the
following case analysis on the relation between β- and ϑ-redexes in M:

• If the β-redex is inside the ϑ-redex, then it is easy to see that (2) holds;
• If the ϑ-redex is inside the body of the function subterm of the β-redex, then it suffices to
show that→ϑ commutes with substitution, but it is straightforward;

• If ϑ-redex is inside the argument of the β-redex, then it may be duplicated by a finite number
n, but whatever the number n is, (2) clearly holds;

• If the β- and ϑ-redexes are disjoint, then (2) trivially holds.

It then follows from (2) that the implication

M→β P∧M→∗
ϑ Q⇒∃R. P→∗

ϑ R∧Q→β R (3)

holds, which in turn implies that the implication

M→∗
β P∧M→∗

ϑ Q⇒∃R. P→∗
ϑ R∧Q→∗

β R (4)

holds for all terms M, P and Q. Applying Lemma 2.10 to (4) (or equivalently by the well-known
‘diagram chase’ argument on →∗

β and →∗
ϑ), we may conclude that the βϑ-reduction →βϑ=→β

∪→ϑ is Church–Rosser, completing the proof.

Now, we show strong normalisation of→βϑ , i.e., there is no infinite chain of→βϑ :

Theorem 2.12 (SN). The βϑ-reduction→βϑ is strongly normalising (SN).

Proof. By a moderate, straightforward modification of the proof of strong normalisation of the
simply-typed λ-calculus given in Hankin (1994).

Therefore, it follows from Theorems 2.11 and 2.12 that the normal form nf(M) of each term M
of FPCF (with respect to the βϑ-reduction→βϑ) uniquely exists. Moreover, we have

Theorem 2.13 (Normal forms are values). The normal form nf(M) of every programme M (with
respect to the βϑ-reduction→βϑ) is a value.

Proof. The theorem has been shown in Amadio and Curien (1998) during the proof to show that
PCF Böhm trees are closed under composition.

Therefore, we have shown that the operational semantics→ is well defined:

Corollary 2.14 (Correctness of operational semantics). If
 � {M}e : B is a programme, and
e> 1 (resp. e= 1), then there is a unique programme (resp. value)
 � {M′}e−1 : B that satisfies
M→M′.

Proof. By Theorems 2.9, 2.11, 2.12 and 2.13.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 907

2.3 Dynamic bicategorical semantics of finitary PCF
Now, let us present a general, categorical recipe to give semantics of FPCF in a CCBoC in such a
way that satisfies the DCP, specifically in the sense of Definition 2.16.

Definition 2.15 (Structures for FPCF). A structure for FPCF in a CCBoC C = (C , E) is a tuple
S = (B, 1,×, π ,⇒, ev, tt, ff, ϑ) such that

• B ∈ C ;
• 1, (×, π1, π2) and (⇒, ev) are, respectively, a β-terminal object, a β-product (with
β-projections) and a β-exponential (with β-evaluations) in C ;

• tt, ff : 1→ B and ϑ : B × (B × B)→ B are values in C .

The interpretation �_�SC of FPCF induced by S in C assigns an object �A�SC ∈ C to each type
A, an object �
�SC ∈ C to each context
 and a β-morphism �M�SC : �
�SC → �B�SC to each term

 �M : B inductively as follows:

• (TYPES). �o�SC := B and �A⇒ B�SC := �A�SC ⇒ �B�SC ;
• (CONTEXTS). �ε�SC := 1 and �
, x : A�SC := �
�SC × �A�SC ;
• (TERMS).

�
 � tt : o�SC := E ω(!�
�S
C
; tt)

�
 � ff : o�SC := E ω(!�
�S
C
; ff)

�
 � λx. M : A⇒ B�SC :=��
�S
C ,�A�S

C ,�B�S
C
(�
, x : A�M : B�SC)

�
 �MN : B�SC := 〈�
 �M : A⇒ B�SC , �
 � N : A�SC 〉�
�S
C

�A⇒B�S
C ,�A�S

C

; ev�A�S
C ,�B�S

C

�
 � case(xV)[W1; W2] : o�SC := E ω(〈�
 � xV : o�SC , 〈�
 �W1 : o�SC , �
 �W2 : o�SC 〉〉; ϑ)
�
 � case(M)[P1; P2] : o�SC := E ω(〈�
 �M : o�SC , 〈�
 � P1 : o�SC , �
 � P2 : o�SC 〉〉; ϑ),

where �
 � x : A�SC : �
�SC → �A�SC (n.b.,
 � x : A is not a term of FPCF, but we need it for
the application xV) is the obvious (possibly iterated) β-projection.

Moreover, the structure S is standard if it satisfies the following three axioms:

(1) The maps�A,B,C and 〈_, _〉CA,B in C are bijections for each triple A, B, C ∈ C ;
(2) Each β-composition that occurs as the interpretation of a term is not a value;
(3) If
 � L : A⇒ B and
 � R : A such that L→ L′ ∧ R→ R′, L≡ L′ ∧ R→ R′ or L→ L′ ∧ R≡

R′ in FPCF, then

〈�L�SC , �R�SC 〉�
�S
C

�A⇒B�S
C ,�A�S

C

; ev�A�S
C ,�B�S

C
�= 〈�L′�SC , �R′�SC 〉�
�S

C

�A⇒B�S
C ,�A�S

C

; ev�A�S
C ,�B�S

C
. (5)

Remark. Recall that PCF Böhm trees are normalised, while β-composition in a BoC is non-
normalising. It is why the evaluation E ω is applied to the interpretation of each PCF Böhm tree of
FPCF in Definition 2.15.

It is easy to see that the interpretation �_�SC followed by E ω, i.e., E ω(�_�SC), coincides with the
standard categorical interpretation of the equational theory Eq(FPCF) in the CCC VC (Jacobs,
1999; Lambek and Scott, 1988; Pitts, 2001). In this sense, we have refined the standard categorical
semantics of simple type theories in CCCs.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

908 N. Yamada and S. Abramsky

At this point, let us recall the central concept of DCPs (see Section 1), specifically tailored for
the interpretation of FPCF induced by a structure in a CCBoC:

Definition 2.16 (DCP for FPCF). The interpretation �_�SC of FPCF induced by a structure S
for FPCF in a CCBoC C = (C , E) satisfies the dynamic correspondence property (DCP) ifM1 →M2
implies �M1�SC �= �M2�SC and E (�M1�SC)= �M2�SC .

Now, we reduce the DCP for FPCF to the following:

Definition 2.17 (PDCP for FPCF). The interpretation �_�SC of FPCF induced by a structure
S for FPCF in a CCBoC C = (C , E) satisfies the pointwise dynamic correspondence property
(PDCP) if for each term
 � {M}e : B it satisfies

E (�M�SC)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
� ◦ E (�P�SC) if M≡ λx.P;
�W�SC such that �W�SC �= �M�SC if M≡ UV, e= 1 and UV→W;
〈E (�L�SC), E (�R�SC)〉; ev if M≡ LR and e> 1;
�M�SC otherwise.

Theorem 2.18 (Standard semantics of FPCF). The interpretation �_�SC of FPCF induced by a
standard structure S for FPCF in a CCBoC C = (C , E) satisfies the DCP if it does the PDCP.

Proof. In the following, we abbreviate �_�SC as �_�. Assume that �_� satisfies the PDCP. We show
that M→M′ implies the conjunction of �M� �= �M′� and E (�M�)= �M′� for any programmes
 �
{M}e : B and
 � {M′}e′ : B in FPCF by induction on the construction of the programme M:

• If M≡ tt, M≡ ff or M≡ case(xV1V2 . . . Vk)[W1; W2], then there is no M′ such that M→M′.
• If
 �M≡ λxA. P : A⇒ C, then

M→M′ ⇒M′ ≡ λx. P′ ∧ P→ P′ for some programme P′ and variable x
⇒M′ ≡ λx. P′ ∧ �P� �= �P′� ∧ E (�P�)= �P′� for some P′ and x
(by the induction hypothesis)
⇒ �P� �=�−1(�M′�)∧ E (�P�)=�−1(�M′�)
⇒�−1(�M�) �=�−1(�M′�)∧�−1 ◦ E (�M�)= E ◦�−1(�M�)=�−1(�M′�)
⇒ �M� �= �M′� ∧ E (�M�)= �M′�.

• If M≡ LR, (L)� 1 and (R)� 1, then

M→M′ ⇒M′ ≡ L′R′ ∧ L→ L′ ∧ R→ R′ for some programmes L′ and R′

⇒M′ ≡ L′R′ ∧ �L� �= �L′� ∧ E (�L�)= �L′� ∧ �R� �= �R′� ∧ E (�R�)= �R′�
for some L′ and R′ (by the induction hypothesis)
⇒ �M′� = 〈E (�L�), E (�R�)〉; ev∧ �L� �= E (�L�)∧ �R� �= E (�R�)
⇒ �M′� = E (�M�)∧ E (�M�)= 〈E (�L�), E (�R�)〉; ev �= 〈�L�, �R�〉; ev= �M�

⇒ �M� �= �M′� ∧ E (�M�)= �M′�.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 909

• If M≡ LR, (L)= 0 and (R)� 1, then we have

M→M′ ⇒M′ ≡ LR′ ∧ R→ R′ for some programme R′

⇒M′ ≡ LR′ ∧ �R� �= �R′� ∧ E (�R�)= �R′� for some R′

(by the induction hypothesis)
⇒ �M′� = 〈�L�, E (�R�)〉; ev= E (�M�)∧ �R� �= E (�R�)
⇒ �M′� = E (�M�)∧ E (�M�)= 〈�L�, E (�R�)〉; ev �= 〈�L�, �R�〉; ev= �M�

⇒ �M� �= �M′� ∧ E (�M�)= �M′�.
• If M≡ LR, (L)� 1 and (R)= 0, then it is handled similarly to the above case.
• If M≡ LR, (L)= 0 and (R)= 0, then, by the PDCP, we have

M→M′ ⇒ �M� �= �M′� ∧ E (�M�)= �M′�,

which completes the proof.

To summarise the present section, we have defined bicategorical ‘universes’ of dynamic, inten-
sional computations, viz., (CC)BoCs, presented the language FPCF, and given an interpretation of
the latter in the former and a sufficient condition, viz., the PDCP, for the interpretation to satisfy
the DCP. Consequently, our research problem (described in Section 1) has been reduced to giving
a standard structure for FPCF in a game-semantic CCBoC that satisfies the PDCP.

3. Dynamic Games and Strategies
Main contributions of the present work start from this section, which introduces dynamic games
and strategies, and studies their algebraic structures. The idea of dynamic games and strategies
is to introduce the distinction between internal and external moves to conventional games and
strategies. External moves correspond to ordinary moves in conventional games; internal moves
constitute the ‘internal communication’ between dynamic strategies, representing intensionality
of computation, and they are to be a posteriori ‘hidden’ by the hiding operation, capturing dynam-
ics of computation. Conceptually, external moves are ‘official’ ones for the underlying dynamic
game, while internal moves are supposed to be ‘invisible’ to Opponent because they represent
how Player ‘internally’ computes the next external move.

Dynamic games and strategies are based on the variant given in Abramsky and McCusker
(1999), which we call static games and strategies (more generally, to distinguish our ‘dynamic
concepts’ from conventional ones, we add the word static in front of the corresponding notions
given in Abramsky and McCusker (1999), e.g., static arenas, static legal positions, etc.). This
choice is because their variant combines good points of the two best-known variants: AJM-games
(Abramsky et al., 2000) andHO-games (Hyland and Ong, 2000): It has the linear decomposition of
implication (Girard, 1987), and also it is flexible enough to model a wide range of programming
features systematically (Abramsky and McCusker, 1999). We have chosen this variant with the
hope that our framework is also applicable to various formal systems and programming languages.

3.1 Dynamic arenas and legal positions
First, just like static games (Abramsky and McCusker, 1999), dynamic games are based on (the
‘dynamic generalisations’ of) arenas and legal positions. An arena defines the basic components of
a game, which in turn induces its legal positions that specify the basic rules of the game. Let us
first introduce these two preliminary concepts.

Definition 3.1 (Dynamic arenas). A dynamic arena is a triple G= (MG, λG,�G) such that

• MG is a set, whose elements are calledmoves;

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

910 N. Yamada and S. Abramsky

• λG is a function MG →{O, P} × {Q, A} ×N, called the labelling function, where O, P, Q and A
are arbitrarily fixed, pairwise distinct symbols, that satisfies

μ(G) := Sup({ λNG(m) |m ∈MG }) ∈N;

• �G is a subset of ({�} ∪MG)×MG, where � is an arbitrarily fixed element such that � �∈MG,
called the enabling relation, that satisfies
– (E1). If ��G m, then λG(m)=OQ0 and n= � whenever n�G m;
– (E2). If m�G n and λQAG (n)= A, then λQAG (m)=Q and λNG(m)= λNG(n);
– (E3). If m�G n and m �= �, then λOPG (m) �= λOPG (n);
– (E4). If m�G n, m �= � and λNG(m) �= λNG(n), then λOPG (m)=O,

where we define λOPG := π1 ◦ λG :MG →{O, P}, λQAG := π2 ◦ λG :MG →{Q, A} and λNG := π3 ◦ λG :
MG →N. A move m ∈MG is initial if ��G m, an O-move (resp. a P-move) if λOPG (m)=O (resp.
if λOPG (m)= P), a question (resp. an answer) if λQAG (m)=Q (resp. if λQAG (m)= A), and internal
or λNG(m)-internal (resp. external) if λNG(m)> 0 (resp. if λNG(m)= 0). Any finite sequence s ∈M∗

G of
moves is d-complete if it ends with amovem such that λNG(m)= 0 or λNG(m)> d, where d ∈N∪ {ω},
and ω is the least transfinite ordinal.

Recall that a static arena G (Abramsky and McCusker, 1999) determines possible moves of
a game, each of which is Opponent’s/Player’s question/answer, where the third parity λNG is not
included, and specifies which move n can be performed for each move m by the relation m�G n
(and ��G mmeans thatm can initiate a play). The axioms on a static arena are the following:

• (E1). An initial move must be Opponent’s question, and an initial move cannot be enabled
by any move;

• (THE FIRST PART OF E2). An answer must be performed for a question;
• (E3). An O-move must be performed for a P-move, and vice versa.

Hence, a dynamic arena is a static arena equipped with the priority order λNG on moves that
satisfies additional axioms on the priority order. The priority order λNG determines the ‘priority
order’ of moves to be ‘hidden’ by the hiding operations on dynamic games (Definition 3.26) and
dynamic strategies (Definition 3.66), which explains the terminology. We need all natural num-
bers for λNG , not only the internal/external (I/E) distinction, to define a step-by-step execution of
the hiding operations, as we shall see. Conversely, dynamic arenas are generalised static arenas:
A static arena is equivalent to a dynamic arena whose moves are all external.

The additional axioms for dynamic arenas G are intuitively natural ones:

• We require a finite upper bound μ(G) of the priority orders since it is conceptually natural
and technically necessary for concatenation of dynamic games (Definition 3.47) to be well
defined and for the hiding operation on dynamic games to terminate;

• The axiom E1 adds the equation λNG(m0)= 0 for all m0 ∈MInit
G := {m ∈MG | ��m } since

Opponent cannot ‘see’ internal moves;
• The second requirement of the axiom E2 states that the priority orders between a ‘QA-pair’
must coincide, which is intuitively reasonable;

• The additional axiom E4 states that only Player can make a move for a previous one if they
have different priority orders because internal moves are ‘invisible’ to Opponent (as we shall
see, if λNG(m1)= k1 < k2 = λNG(m2), then after the k1-many iteration of the hiding operation,
m1 and m2 become external and internal, respectively, i.e., the I/E-parity is relative, which is
why E4 is not only concerned with the I/E-parity but more fine-grained priority orders).

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 911

Technically, the additional axioms are vital for Lemma 3.13, which is in turn a key step towards
a main theorem: closure of dynamic games under the hiding operation (Theorem 3.28).

Convention.Henceforth, an arena refers to a dynamic arena by default.

Example 3.2. The terminal arena T is given by T := (∅, ∅, ∅).

Example 3.3. The flat arena flat(S) on a given set S is given byMflat(S) := {q} ∪ S, where q is any
element such that q �∈ S; λflat(S) : q
→OQ0, (m ∈ S)
→ PA0; �flat(S) := {(�, q)} ∪ {(q,m) |m ∈ S }.
For instance, N := flat(N) is the arena of natural numbers, and 2 := flat(B), where B := {tt, ff }, is
the arena of booleans (tt and ff are arbitrarily fixed elements for ‘true’ and ‘false,’ respectively).

As mentioned before, interactions between Opponent and Player in a (dynamic or static) game
are represented by finite sequences of moves of the underlying arena, equipped with pointers
(Definition 3.5) that specify the occurrence of a move in the sequence for which each occurrence
of a non-initial move in the sequence is performed. Technically, pointers are to distinguish similar
yet different computations; see Abramsky and McCusker (1999), Curien (2006) for this point.

Let us now introduce such finite sequences equipped with pointers, called j-sequences:

Definition 3.4 (Occurrences of moves). Given a finite sequence s ∈M∗
G of moves of an arena G,

an occurrence (of a move) in s is a pair (s(i), i) such that i ∈ |s|. More specifically, we call the pair
(s(i), i) an initial occurrence (resp. a non-initial occurrence) in s if ��G s(i) (resp. otherwise).

Definition 3.5 (J-sequences (Abramsky and McCusker, 1999; Hyland and Ong, 2000)). A
justified (j-) sequence in an arena G is a pair s= (s,Js) of a finite sequence s ∈M∗

G and a
map Js : |s|→ {0} ∪ |s| − 1 such that, for all i ∈ |s|, ��G s(i) if Js(i)= 0, and 0<Js(i)< i and
s(Js(i))�G s(i) otherwise. The occurrence (s(Js(i)),Js(i)) is called the justifier of a non-initial occur-
rence (s(i), i) in s. We also say that (s(i), i) is justified by (s(Js(i)),Js(i)), or there is a pointer from
the former to the latter.

The idea is that each non-initial occurrence in a j-sequence must be performed for a specific
previous occurrence, viz., its justifier, in the j-sequence.

Convention. By abuse of notation, we usually keep the pointer structure Js of each j-sequence
s= (s,Js) implicit and often abbreviate occurrences (s(i), i) in s as s(i). Also, we usually write
Js(s(i))= s(j) if Js(i)= j. This convention is mathematically imprecise, but it does not bring any
serious confusion in practice. In fact, it has been the standard convention in the literature.

Notation 3.6. We write JG for the set of all j-sequences in an arena G. We write s= t for any
s, t ∈ JG if s and t are the same j-sequence in G, i.e., s= t and Js =Jt.

Next, for technical convenience, we introduce a substructure relation between j-sequences.
A j-sequence t is a substructure, or a j-subsequence, of a j-sequence s if t is a subsequence of s,
and its pointer is obtained from that of s by ‘concatenating’ it. Formally, we define

Definition 3.7 (J-subsequences). Let G be an arena. A justified (j-) subsequence of a j-sequence
s ∈ JG in G is a j-sequence t ∈ JG such that t is a subsequence of s, and, for all i, j ∈N, Jt(i)= j if
and only if J n

s (i)= j for some n ∈N+.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

912 N. Yamada and S. Abramsky

Let us now consider justifiers, j-sequences and arenas from the ‘external point of view’:

Definition 3.8 (External justifiers). Let G be an arena and assume s ∈ JG and d ∈N∪ {ω}. Note
that each non-initial occurrence n in s has a unique sequence of justifiers mm1m2 . . .mkn (k�
0), i.e., Js(n)=mk, Js(mk)=mk−1, . . . , Js(m2)=m1 and Js(m1)=m, such that λNG(m)= 0 or
λNG(m)> d, and 0<λNG(mi)� d for i= 1, 2, . . . , k. We call m the d-external justifier of n in s.

Notation 3.9. We write J�d
s (n) for the d-external justifier of a non-initial occurrence n in a

j-sequence s.

Note that d-external justifiers are a simple generalisation of justifiers because 0-external justi-
fiers coincide with justifiers (as there is no ‘0-internal’ move). More generally, d-external justifiers
become justifiers after the d-times iteration of the hiding operation, as we shall see shortly.

Definition 3.10 (External j-subsequences). Let G be an arena, s ∈ JG and d ∈N∪ {ω}. The d-
external j-subsequence of s is the j-subsequence H d

G (s) of s obtained from s by deleting occurrences
of internal moves m such that 0<λNG(m)� d and equipping the pointerJH d

G (s) : n
→J�d
s (n) (n.b.,

strictly speaking, JH d
G (s) is the restriction of J�d

s).

Definition 3.11 (External arenas). Let G be an arena, and d ∈N∪ {ω}. The d-external arena of
G is the arena H d(G) given by

• MH d(G) := {m ∈MG | λNG(m)= 0∨ λNG(m)> d };
• λH d(G) := λ�d

G �MH d(G), where

λ
�d
G := 〈λOPG , λQAG , n
→ λNG(n)� d〉 x� d :=

{
x− d if x� d;
0 otherwise

(x ∈N);

• m�H d(G) n
df.⇔∃k ∈N,m1,m2, . . . ,m2k ∈MG \MH d(G).m�G m1 ∧ ∀i ∈ 2k− 1.mi �G

mi+1 ∧m2k �G n (⇔m�G n if k= 0).

That is, the d-external arena H d(G) is obtained from the arena G by deleting internal moves
m such that 0<λNG(m)� d, decreasing by d the priority orders of the remaining moves and
‘concatenating’ the enabling relation to form the ‘d-external’ one.

Convention.Given d ∈N∪ {ω}, we regard H d as an operation on dynamic arenas G, and H d
G as

an operation on j-sequences s ∈ JG.

Example 3.12. Define an arena G byMG := {a, b, c, d}, λG : a
→OQ0, b
→ PQ1, c
→OQ1, d
→
PQ0, �G := {(�, a), (a, b), (b, c), (c, d)}, PG := Pref({abcd}) and �G:= { (s, t) ∈ PG × PG | s= t }. A
j-sequence s in G consists of the sequence abcd and the pointer d
→ c, c
→ b, b
→ a. The 1-
external j-subsequenceH 1

G (s) consists of the sequence ad and the pointer d
→ a. Note thatH 1
G (s)

is a j-sequence of the 1-external arena H 1(G). It is not a coincidence; see Lemma 3.13.

Now, let us establish the following key technical lemma towards defining the hiding operation
on dynamic games:

Lemma 3.13 (External closure lemma). If G is an arena, then, for all d ∈N∪ {ω}, so is H d(G),
and H d

G (s) ∈ JH d(G) for all s ∈ JG.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 913

Proof. The case d= 0 is trivial; thus, assume d> 0. Clearly, the setMH d(G) and the map λH d(G)
satisfy the required axioms. Now, let us verify the axioms for the enabling relation �H d(G):

• (E1). We have ��H d(G) m⇔ ��G m (because ⇐ is immediate, and ⇒ holds by E4 on G as
initial moves are all external). Thus, if ��H d(G) m, then λH d(G)(m)= λ�d

G (m)=OQ0, and
n�H d(G) m⇒ n= �.

• (E2). Assume m�H d(G) n and λQA
H d(G)(n)= A. If m�G n, then λQA

H d(G)(m)= λQAG (m)=Q
and λN

H d(G)(m)= λNG(m)� d= λNG(n)� d= λN
H d(G)(n). Otherwise, i.e., there are some k ∈

N+, m1,m2, . . . ,m2k ∈MG \MH d(G) such that m�G m1, mi �G mi+1 for all i ∈ 2k− 1 and
m2k �G n, then in particularm2k �G n and λQAG (n)= A, but λNG(m2k) �= λNG(n), a contradiction.

• (E3). Assumem�H d(G) n andm �= �. Ifm�G n, then

λOP
H d(G)(m)= λOPG (m) �= λOPG (n)= λOP

H d(G)(n).

If there are some k ∈N+,m1,m2, . . . ,m2k ∈MG \MH d(G) such that m�G m1, mi �G mi+1

for all i ∈ 2k− 1 andm2k �G n, then

λOP
H d(G)(m)= λOPG (m)= λOPG (m2)= λOPG (m4)= · · · = λOPG (m2k) �= λOPG (n)= λOP

H d(G)(n).

• (E4). Assume m�H d(G) n, m �= � and λN
H d(G)(m) �= λN

H d(G)(n). Then λ
N
G(m) �= λNG(n). If

m�G n, then it is trivial; otherwise, i.e., there are k ∈N+, m1,m2, . . . ,m2k ∈MG \MH d(G)
with the same property as in the case of E3 above, we have λOP

H d(G)(m)= λOPG (m)=O by E3
on G since λNG(m) �= λNG(m1).

Hence, we have shown that the structure H d(G) forms a well defined arena.
Next, let s ∈ JG; we have to show H d

G (s) ∈ JH d(G). Assume that m is a non-initial occurrence
in H d

G (s). By the definition, the d-external justifier m0 :=JH d
G (s)(m) occurs in H d

G (s). If m is a
P-move, then the sequence of justifiers m0 �G m1 �G · · · �G mk �m satisfies Even(k) by E3 and
E4 on G, so thatm0 �H d(G) m by the definition. Ifm is an O-move, then the justifierm′

0 :=Js(m)
satisfies λNG(m′

0)= λNG(m) by E4 on G, and som′
0 �H d(G) m by the definition. Sincem is arbitrary,

we have shown that H d
G (s) ∈ JH d(G), completing the proof.

Let us proceed to introduce a useful lemma:

Lemma 3.14 (Stepwise hiding on arenas). Given an arena G, we have H̃ i(G)= H i(G) for all
i ∈N, where H̃ i denotes the i-times iteration of H 1.

Proof. By induction on i.

Thus, we may just focus on H 1: Henceforth, we write H for H 1 and call it the hiding
operation (on arenas); H i for each i ∈N denotes the i-times iteration of H .

We may establish a similar inductive property for j-sequences:

Lemma 3.15 (Stepwise hiding on j-sequences). Given a j-sequence s ∈ JG in an arena G, we have
H i+1

G (s)= H 1
H i(G)(H

i
G(s)) for all i ∈N.

Proof. By induction on i, where H i+1
G (s),H 1

H i(G)(H
i
G(s)) ∈ JH i+1(G) by Lemmas 3.13

and 3.14.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

914 N. Yamada and S. Abramsky

Lemma 3.15 implies that the equation

H i
G(s)= H 1

H i−1(G) ◦ H 1
H i−2(G) ◦ · · · ◦ H 1

H 1(G) ◦ H 1
G (s) (6)

holds for any arena G, s ∈ JG and i ∈N (n.b., the equation (6) means s= s if i= 0). Thus, we may
focus on the operation H 1

G on j-sequences, where G ranges over all arenas. Henceforth, we write
HG for H 1

G and call it the hiding operation on j-sequences in G; H i
G for each i ∈N denotes the

operation on the right-hand side of the equation (6).
Now, to deal with external j-subsequences in a mathematically rigorous manner, let us extend

the hiding operation on j-sequences to that on j-subsequences (Definition 3.7):

Definition 3.16 (Pointwise hiding on j-sequences). Let s be a j-sequence in an arena G. Given
an occurrence m in s, we define another j-sequence Ĥ m

G (s) in G by case analysis: If m is 1-internal,
then Ĥ m

G (s) is the j-subsequence of s that consists of occurrences in s that differ from m, and it is s
otherwise. Moreover, given a subsequence t=m1m2 . . .mk of (the underlying finite sequence of) s
and a permutation σ on k, we define Ĥ t,σ

G (s) := Ĥ
mσ (k)
G ◦ · · · ◦ Ĥ

mσ (2)
G ◦ Ĥ

mσ (1)
G (s).

The point here is that the hiding operation on j-sequences can be executed in the ‘move-wise’
fashion in any order:

Lemma 3.17 (Move-wise lemma). Let G be an arena, and s ∈ JG.

(1) Ĥ t,σ1
G (s)= Ĥ t,σ2

G (s) for any subsequence t of s and permutations σ1 and σ2 on |t|;
(2) Ĥ s,σ

G (s)= HG(s) for any permutation σ on |s|.

Proof. Immediate from the definition.

Lemma 3.17 gives a ‘move-wise’ procedure to execute the hiding operation HG on j-sequences
in a given arena G, where the order of deleting occurrences is irrelevant. Then, e.g., it follows that
HG(stuv)= Ĥ v,ν

G ◦ Ĥ
u,μ
G ◦ Ĥ t,τ

G ◦ Ĥ s,σ
G (stuv) for any arena G, stuv ∈ JG and permutations σ ,

τ , μ and ν on |s|, |t|, |u| and |v|, respectively, which is useful in the rest of the paper.

Convention. By Lemma 3.17, we henceforth dispense with the notation Ĥ s,σ
G , where G ranges

over arenas, s over j-sequences inG and σ over permutations on |s|, admitting any order of ‘move-
wise’ execution of HG. We also write, abusing notation, HG(s).HG(t).HG(u).HG(v) for Ĥ v,ν

G ◦
Ĥ

u,μ
G ◦ Ĥ t,τ

G ◦ Ĥ s,σ
G (stuv) given above, so that HG(stuv)= HG(s).HG(t).HG(u).HG(v).

Next, let us recall the notion of ‘relevant part’ of previous moves, called views:

Definition 3.18 (Views (Abramsky and McCusker, 1999)). Given a j-sequence s in an arena G,
the Player (P-) view �s�G and the Opponent (O-) view s"G (we often omit the subscript G) are
given by the following induction on |s|:

• �ε�G := ε;
• �sm�G := �s�G.m if m is a P-move;
• �sm�G :=m if m is initial;
• �smtn�G := �s�G.mn if n is an O-move with Jsmtn(n)=m;
• ε"G := ε;
• sm"G := s"G.m if m is an O-move;
• smtn"G := s"G.mn if n is a P-move with Jsmtn(n)=m,

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 915

where the justifiers of the remaining occurrences in �s� (resp. s") are unchanged if they occur in �s�
(resp. s"), and undefined otherwise. A view is a P- or O-view.

The idea behind Definition 3.18 is as follows. For a j-sequence tm in an arena G such thatm is
a P-move (resp. an O-move), the P-view �t� (resp. the O-view t") is intended to be the currently
‘relevant part’ of t for Player (resp. Opponent). That is, Player (resp. Opponent) is concerned only
with the last O-move (resp. P-move), its justifier and that justifier’s P-view (resp. O-view), which
then recursively proceeds.

We are now ready to introduce a ‘dynamic generalisation’ of static legal positions:

Definition 3.19 (Dynamic legal positions). Given an arena G, a dynamic legal position in G is
a j-sequence s ∈ JG that satisfies

• (ALTERNATION). If s= s1mns2, then λOPG (m) �= λOPG (n);
• (GENERALISED VISIBILITY). If s= tmu with m non-initial, and d ∈N∪ {ω} satisfy λNG(m)=
0 or λNG(m)> d, then J�d

s (m) occurs in �H d
G (t)�H d(G) if m is a P-move, and it occurs in

 H d
G (t)"H d(G) if m is an O-move;

• (IE-SWITCH). If s= s1mns2 with λNG(m) �= λNG(n), then m is an O-move.

Notation 3.20. LG denotes the set of all dynamic legal positions in a dynamic arena G.

Recall that a static legal position (Abramsky and McCusker, 1999) in a static arena is a j-
sequence in the arena that satisfies alternation and visibility, i.e., generalised visibility only for
d= 0. It specifies the basic rules of a static game in the sense that every ‘development’ or (valid)
position in the game must be a legal position in the underlying arena (but the converse does not
necessarily hold):

• In a position in the static game, Opponent always makes the first move by a question, and
then Player and Opponent alternately play (by alternation), in which every non-initial move
must be made for a specific previous move (viz., its justifier);

• The justifier of each non-initial move occurring in the position must belong to the ‘relevant
part’ of previous moves occurring in the position (by visibility).

The additional axioms on dynamic legal positions are conceptually natural ones:

• Generalised visibility is a generalisation of visibility, which requires that visibility must hold
after any number of iterations of the hiding operation on j-sequences;

• IE-switch states that only Player can change a priority order during a play as internal moves
are ‘invisible’ to Opponent, where the same remark as the one for the axiom E4 is applied to
the distinction of priority orders in IE-switch which is finer than I/E-parity.

Note that a dynamic legal position in a static arena, seen as a dynamic arena whose moves are
all external, is clearly a static legal position, and vice versa. Hence, dynamic legal positions are in
fact a generalisation of static legal positions.

Convention.Henceforth, a legal position refers to a dynamic legal position by default.

3.2 Dynamic games
We are now ready to define the central notion of dynamic games:

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

916 N. Yamada and S. Abramsky

Definition 3.21 (Dynamic games). A dynamic game is a tuple G= (MG, λG,�G, PG,�G) such
that

• The triple (MG, λG,�G) forms an arena (Definition 3.1);
• PG is a subset of LG, whose elements are called (valid) positions in G, that satisfies
– (P1). PG is nonempty and prefix-closed;
– (DP2). Given tr, t′r′ ∈ POddG and i ∈N such that i<λNG(r)= λNG(r′), if H i

G(t)= H i
G(t′), then

H i
G(tr)= H i

G(t′r′);
• �G is an equivalence relation on PG, called the identification of positions in G, that satisfies
– (I1). s�G t⇒|s| = |t|;
– (I2). sm�G tn⇒ s�G t∧ λG(m)= λG(n)∧Jsm(|sm|)=Jtn(|tn|);
– (DI3). ∀d ∈N∪ {ω}. s�d

G t∧ sm ∈ PG ⇒∃tn ∈ PG. sm�d
G tn, where

u�d
G v df.⇔∃u′, v′ ∈ PG. u′ �G v′ ∧ H d

G (u′)= H d
G (u)∧ H d

G (v′)= H d
G (v)

for all u, v ∈ PG.

A play in G is an finitely or infinitely increasing sequence of positions (ε,m1,m1m2, . . .) in G. A
dynamic game whose moves are all external is said to be normalised.

Recall that a static game (McCusker, 1998) is a tuple similar to a dynamic game except that
the underlying arena is static, and it only satisfies the axioms P1, I1, I2 and I3, i.e., DI3 only
for d= 0. The axiom P1 captures the phenomenon that a nonempty ‘moment’ or position in a
game must have a previous ‘moment.’ Identifications of positions are originally introduced in
Abramsky et al. (2000) and also employed in Section 3.6 of McCusker (1998). They are meant to
identify positionsmodulo inessential details of ‘tags’ for disjoint union, particularly for exponential
! (Definition 3.41): Each position s ∈ PG in a game G is a representative of the equivalence class
[s] := { t ∈ PG | t �G s } ∈ PG/�G which we take as primary. For this underlying idea, the three
axioms I1, I2 and I3 should make sense.

The additional axiom DP2 is to enable Player to ‘play alone,’ i.e., Opponent does not have to
choose odd-length positions, for the internal part of a play since conceptually Opponent cannot
‘see’ internal moves. Technically, the axiom DP2 is for external consistency of dynamic strate-
gies: A dynamic strategy behaves always in the same manner from the viewpoint of Opponent,
i.e., the external part of a play by a dynamic strategy does not depend on the internal part
(Theorem 3.62). Note that the axiom DP2 is slightly involved to be preserved under the hiding
operation (Theorem 3.28); it is necessary to generalise the axiom I3 to DI3 for the same reason.

Remark. It is certainly simpler to dispense with the identification�G of positions for each gameG
by adopting a simpler variant of exponential ! as inMcCusker (1998). However, it would bemathe-
matically ad hoc since the cartesian closed structure of games and strategies would not arise via the
standard Girard translation (Girard, 1987). Recall that the aim of the present work is to establish
mathematics for dynamics and intensionality of logic and computation, where ‘good’ mathematics
should be robust and general, not ad hoc. Also, it is interesting as future work to extend the present
work to linear logic and computation. For these reasons, we retain�G as a structure of each game
G. Moreover, we shall establish various reasonable properties on identifications of positions, which
adds credibility to the notions of dynamic games and strategies.

Convention.Henceforth, a game refers to a dynamic game by default.

Example 3.22. The terminal game T := (∅, ∅, ∅, {ε}, {(ε, ε)}) is the simplest game.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 917

Example 3.23. The flat game flat(S) on a given set S is defined as follows. The triple flat(S)=
(Mflat(S), λflat(S),�flat(S)) is the flat arena given in Example 3.3, Pflat(S) := {ε, q} ∪ { qm |m ∈ S }, and
�flat(S) := {(s, s) | s ∈ Pflat(S)}. For instance, N := flat(N) is the game of natural numbers given in
the introduction, 2 := flat(B) is the game of booleans, and 0 := flat(∅) is the empty game.

Also, let us define a substructure relation between games:

Definition 3.24 (Subgames). A game H is a (dynamic) subgame of a game G, written H �G, if
MH ⊆MG, λH = λG �MH, �H ⊆�G ∩ (({�} ∪MH)×MH), PH ⊆ PG, �d

H =�d
G ∩ (PH × PH) for

all d ∈N∪ {ω} and μ(H)=μ(G).

For H �G, the condition on the identifications of positions is required for all d ∈N∪ {ω},
so that the relation � is preserved under the hiding operation (Theorem 3.28). The last
equation μ(H)=μ(G) is to preserve the relation � under concatenation on dynamic games
(Definition 3.47).

We shall later focus on well founded games:

Definition 3.25 (Well founded games (Claimrambault and Harmer, 2010)). A game G is well
founded if �G is well founded downwards, i.e., there is no countably infinite sequence (mi)i∈N of
moves mi ∈MG such that ��G m0 and mi �G mi+1 for all i ∈N.

Now, let us define the hiding operation on games:

Definition 3.26 (Hiding operation on games). Given d ∈N∪ {ω}, the d-hiding operation
(on games)maps each game G to its d-external game H d(G) defined by

• The triple (MH d(G), λH d(G),�H d(G)) is the d-external arena H d(G) of the underlying arena
G (Definition 3.11);

• PH d(G) := { H d
G (s) | s ∈ PG };

• H d
G (s)�H d(G) H d

G (t) df.⇔ s�d
G t (Definition 3.21).

Example 3.27. Let us revisit the game N[0] �N[3] of linear maps on natural numbers sketched
in the introduction, where we replace the ‘tag’ (_)[1] with (_)[3] for convenience. Formally, the
game consists of the setMN[0]�N[3] := {m[i] |m ∈MN , i ∈ {0, 3} } of moves, the labelling function
λN[0]�N[3] that maps q[0]
→ PQ0, q[3]
→OQ0, n[0]
→OA0 and n′[3]
→ PA0 (n, n′ ∈N), the
enabling relation �N[0]�N[3] := {(�, q[3])} ∪ {(q[3], q[0])} ∪ { (m[0], n[0]) |m�N n } ∪ { (m′

[3], n
′
[3]) |

m′ �N n′}, the set PN[0]�N[3] := Pref({ q[3]n[3] | n ∈N′ } ∪ { q[3]q[0]n[0]n′[3] | n, n′ ∈N }) of posi-
tions and the identification�N[0]�N[3] := { (s, t) ∈ PN[0]�N[3] × PN[0]�N[3] | s= t } of positions.

The game underlying the composition of succ and double ‘without hiding’ given in the
introduction, which we write G, consists of the set MG := {m[i] |m ∈MN , i ∈ {0} ∪ 3} of moves,
the labelling function λG that maps m[i]
→ λN[0]�N[3] (m[i]) (i= 0, 3), q[2]
→ PQ1, n[2]
→OA1,
q[1]
→OQ1 and n′[1]
→ PA1 (n, n′ ∈N), the enabling relation �G := {(�, q[3])} ∪ {(q[3], q[2])} ∪
{(q[2], q[1])} ∪ {(q[1], q[0])} ∪ { (m[i], n[i]) |m�N n, i ∈ {0} ∪ 3 }, the set PG := Pref({ q[3]n[3] |
n ∈N } ∪ {q[3]q[2]q[1]q[0]n[0]m[1]m[2]n′[3] | n,m, n′ ∈N }) of positions and the identifica-
tion �G := { (s, t) ∈ PG × PG | s= t } of positions. It is then easy to see that the equation
H (G)=N[0] �N[3] holds as in the introduction. We shall introduce general constructions on
games that include this example in the next section.

Now, we give the first main theorem of the present work, which shows that the hiding operation
on games is in fact well defined:

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

918 N. Yamada and S. Abramsky

Theorem 3.28 (External closure of games). Given d ∈N∪ {ω}, games (resp. well founded ones)
are closed under the operation H d (Definition 3.26), and H �G implies H d(H)� H d(G).

Proof. Let G be a game and assume d ∈N∪ {ω}; we have to show that H d(G) is a game. By
Lemma 3.13, it suffices to show that j-sequences in PH d(G) are legal positions in the arenaH d(G),
the set PH d(G) satisfies P1 and DP2, and the relation�H d(G) is an equivalence relation on PH d(G)
that satisfies I1, I2 and DI3. Since μ(G) ∈N, we assume d ∈N without loss of generality.

For alternation, let s1mns2 ∈ PH d(G); we have to show λOP
H d(G)(m) �= λOP

H d(G)(n). We
have H d

G (t1mm1m2 . . .mknt2)= s1mns2 for some t1mm1m2 . . .mknt2 ∈ PG, where H d
G (t1)=

s1, H d
G (t2)= s2 and H d

G (m1m2 . . .mk)= ε. Note that λNG(m)= 0∨ λNG(m)> d, λNG(n)= 0∨
λNG(n)> d and 0<λNG(mi)� d for i= 1, 2, . . . , k. By E3 and E4 on G, k must be even, and thus
λOP

H d(G)(m)= λOPG (m)= λOPG (m2)= λOPG (m4)= · · · = λOPG (mk) �= λOPG (n)= λOP
H d(G)(n).

For generalised visibility, let tmu ∈ PH d(G) with m non-initial. We have to show, for each e ∈
N∪ {ω}, that if tm is e-complete, then

• ifm is a P-move, then the justifier (J�d
s)�e(m) occurs in �H e

H d(G)(t)�H e(H d(G));
• ifm is an O-move, then the justifier (J�d

s)�e(m) occurs in H e
H d(G)(t)"H e(H d(G)).

Again, for μ(G) ∈N, we may assume without loss of generality that e ∈N. Note that the two
conditions just given are then equivalent to

• ifm is a P-move, then the justifier J�(d+e)
s (m) occurs in �H d+e

G (t′)�H d+e(G);
• ifm is an O-move, then the justifier J�(d+e)

s (m) occurs in H d+e
G (t′)"H d+e(G),

where t′m ∈ PG such that H d
G (t′m)= tm. They hold by generalised visibility on G.

For IE-switch, let s1mns2 ∈ PH d(G) such that λN
H d(G)(m) �= λN

H d(G)(n). Then, there is some
t1munt2 ∈ PG such that H d

G (t1munt2)= s1mns2, where note that λNG(m) �= λNG(n). Therefore, if
u= ε, then we clearly have λOP

H d(G)(m)=O by IE-switch on G; otherwise, i.e., u= lu′, then we
have the same conclusion because λNG(m) �= λNG(l).

We have established PH d(G) ⊆ LH d(G). Let us proceed to verify P1 and DP2 on H d(G):

• (P1). Because ε ∈ PG, we have ε = H d
G (ε) ∈ PH d(G); thus, PH d(G) is nonempty. For prefix-

closure, let sm ∈ PH d(G); we have to show s ∈ PH d(G). There must be some tm ∈ PG such that
sm= H d

G (tm)= H d
G (t), m. Hence, s= H d

G (t) ∈ PH d(G).
• (DP2). Assume tr, t′r′ ∈ POdd

H d(G), i ∈N, i<λN
H d(G)(r)= λNH d(G)(r

′) and H i
H d(G)(t)=

H i
H d(G)(t

′). We have some ur, u′r′ ∈ PG with H d
G (u)= t and H d

G (u′)= t′. Then,

H d+i
G (u)= H i

H d(G)(H
d
G (u))= H i

H d(G)(t)= H i
H d(G)(t

′)= H i
H d(G)(H

d
G (u′))= H d+i

G (u′).

Thus, by DP2 on G, we have r= r′ and J�i
tr (r)=J�(d+i)

ur (r)=J�(d+i)
u′r′ (r′)=J�i

t′r′ (r
′),

establishing DP2 on H d(G).

Next, �H d(G) is a well-defined relation on PH d(G) since H d
G (s)�H d(G) H d

G (t) does not
depend on the choice of representatives s, t ∈ PG. Also, it is straightforward to see that �H d(G)
is an equivalence relation. Now, let us show that �H d(G) satisfies I1, I2 and DI3. Note that I1
and I2 on �H d(G) follow from those on �G. For DI3 on �H d(G), if H d

G (s)�e
H d(G) H d

G (t) and

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 919

H d
G (s).m ∈ PH d(G), where we may assume e �=ω, then ∃s′m ∈ PG.H d

G (s′m)= H d
G (s).m, and so

H d+e
G (s′)= H d+e

G (s)�H d+e(G) H d+e
G (t). By DI3 on�G, we have ∃tn ∈ PG. s′m�d+e

G tn, whence
H d

G (t).n ∈ PH d(G) such that H d
G (s).m= H d

G (s′m)�e
H d(G) H d

G (tn)= H d
G (t).n.

Finally, the preservations of well founded games and the dynamic subgame relation � under
the operation H d are clear from the definitions, completing the proof.

Corollary 3.29 (Stepwise hiding on games). For any game G and natural number i ∈N, we have

H 1(H i(G))= H i+1(G).

Proof. By Lemmas 3.14 and 3.15, it suffices to show the equation�H 1(H i(G)) =�H i+1(G). Then,
given s, t ∈ PG, we have

H 1
H i(G)(H

i
G(s))�H 1(H i(G)) H 1

H i(G)(H
i
G(t))

⇔ ∃H i(s′),H i(t′) ∈ PH i(G).H i(s′)�H i(G) H i(t′)∧ H 1
H i(G)(H

i(s′))= H 1
H i(G)(H

i(s))

∧ H 1
H i(G)(H

i(t′))= H 1
H i(G)(H

i(t))

⇔ ∃s′′, t′′ ∈ PG. s′′ �G t′′ ∧ H i+1
G (s′′)= H i+1

G (s)∧ H i+1
G (t′′)= H i+1

G (t)
⇔ H i+1

G (s)�H i+1(G) H i+1
G (t),

which establishes the required equation.

By the corollary just given, we may focus on H 1:

Convention. We write H for H 1 and call it the hiding operation (on games); H i denotes the
i-times iteration of H for all i ∈N.

Corollary 3.30 (Hiding operation on legal positions). Given an arena G and a number d ∈
N∪ {ω}, we have { H d

G (s) | s ∈ LG } = LH d(G).

Proof. Since there is an upper bound μ(G) ∈N, it suffices to consider the case d ∈N. Then, by
Lemmas 3.14 and 3.15, we may just focus on the case d= 1.

The inclusion {HG(s) | s ∈ LG } ⊆ LH (G) is immediate by Theorem 3.28. To show the other
inclusion, let t ∈ LH (G); we shall find some s ∈ LG such that

(1) HG(s)= t;
(2) 1-internal moves in s occur as even length consecutive segments m1m2 . . .m2k (k ∈N),

wheremi justifiesmi+1 for i= 1, 2, . . . , 2k− 1;
(3) s is 1-complete.

We proceed by induction on the length |t|. The base case t = ε is trivial. For the inductive step, let
tm ∈ LH (G). Then, t ∈ LH (G), and by the induction hypothesis there is some s ∈ LG that satisfies
the three conditions (n.b., the first one is for t).

If m is initial, then sm ∈ LG, and sm satisfies the three conditions. Hence, assume that m is
non-initial; we may then write tm= t1nt2m, wherem is justified by n.

We then need the following case analysis:

• Assume n�G m. We take sm, wherem points to n. Then, sm ∈ LG because

– (JUSTIFICATION). It is immediate from n�G m.
– (ALTERNATION). By the condition 3 on s, the last moves of s and t just coincide. Thus, the
alternation condition holds for sm.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

920 N. Yamada and S. Abramsky

– (GENERALISED VISIBILITY). It suffices to establish the visibility on sm since the other cases
are included as the generalised visibility on tm. It is straightforward to see that, by the
condition 2 on s, if the view of t contains n, then so does the view of s. And since tm ∈
LH (G), the view of t contains n. Hence, the view of s contains n as well.

– (IE-SWITCH). Again, the last moves of s and t coincide by the condition 3 on s; thus, IE-
switch on tm can be directly applied.

Moreover, it is easy to see that sm satisfies the three conditions.
• Assume n �= �, and there are some k ∈N+ and m1,m2, . . . ,m2k ∈MG \MH (G) such that
n�G m1, mi �G mi+1 for all i ∈ 2k− 1 and m2k �G m. We then take sm1m2 . . .m2km, in
which m1 points to n, mi points to mi−1 for i= 2, 3, . . . , 2k, and m points to m2k. Then,
sm1m2 . . .m2km ∈ LG because

– (JUSTIFICATION). Obvious.
– (ALTERNATION). By the condition 3 on s, the last moves of s and t just coincide. Thus, the
alternation condition holds for sm1m2 . . .m2km.

– (GENERALISED VISIBILITY). By the same argument as the above case.
– (IE-SWITCH). It clearly holds by the axiom E4.

Finally, it is easy to see that sm1m2 . . .m2km satisfies the three conditions.

We have completed the case analysis.

3.3 Constructions on dynamic games
In this section, we show that dynamic games accommodate all the standard constructions on static
games (Abramsky and McCusker, 1999), i.e., they preserve the additional axioms for dynamic
games, as well as some new constructions. This result implies that the notion of dynamic games
(Definition 3.21) is in some sense ‘correct.’

Convention.We omit ‘tags’ for disjoint union of sets. For instance, we write x ∈A+ B if and only
if x ∈A or x ∈ B (not both); also, given relations RA ⊆A×A and RB ⊆ B× B, we write RA + RB
for the relation on the disjoint union A+ B such that (x, y) ∈ RA + RB

df.⇔ (x, y) ∈ RA ∨ (x, y) ∈ RB.

Let us begin with tensor (product)⊗. Roughly, a position of the tensor A⊗ B of games A and B
is an interleaving mixture of a position in A and that in B, in which an AB-parity change is made
always by Opponent. Formally:

Definition 3.31 (Tensor of games (Abramsky andMcCusker, 1999)). Given games A and B, the
tensor (product) A⊗ B of A and B is defined by

• MA⊗B :=MA +MB;
• λA⊗B := [λA, λB];
• �A⊗B := �A + �B;
• PA⊗B := { s ∈ LA⊗B | s �A ∈ PA, s � B ∈ PB };
• s�A⊗B t

df.⇔ s �A�A t �A∧ s � B�B t � B∧ ∀i ∈N. s(i) ∈MA ⇔ t(i) ∈MA,

where s �A (resp. s � B) denotes the j-subsequence of s that consists of occurrences of moves of A
(resp. B).

In fact, as shown in Abramsky et al. (1997), only Opponent can switch between the component
games A and B (by alternation) in a position in a tensor A⊗ B.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 921

(PI,OE) � A (OE,OE) B � (OE, PI)

(OI,OE)

A
�
�

A� (PE,OE)

�

A �

(OE, PE) �B

�
B
�

(OE,OI)

B
�
�

Figure 1. The double parity diagram for the tensor A⊗ B.

Example 3.32. Consider the tensor N ⊗N of the natural number game N with itself, whose
maximal position is either of the following forms:

N[0] ⊗ N[1]

q[0]
n[0]

q[1]
m[1]

N[0] ⊗ N[1]

q[1]
m[1]

q[0]
n[0]

where n,m ∈N, and (_)[i] (i= 0, 1) are again arbitrary, unspecified ‘tags’ such that [0] �= [1] just
to distinguish the two copies of N, and the arrows represent pointers. Henceforth, however, we
usually omit the ‘tags’ (_)[i] unless it is strictly necessary.

Theorem 3.33 (Well defined tensor of games). Games (resp. well founded ones) are closed under
tensor⊗.

Proof. Since static games are closed under tensor ⊗ (Abramsky and McCusker, 1999), it suffices
to show that ⊗ preserves the condition on labeling function and the axioms E1, E2, E4, DP2 and
DI3 (n.b., ⊗ clearly preserves well foundedness of games). However, nontrivial ones are just DP2
and DI3; hence, we just focus on these two axioms.

Let A and B be any games. To verify DP2 on A⊗ B, let slmn, s′l′m′n′ ∈ POddA⊗B and i ∈N such
that H i

A⊗B(slm)= H i
A⊗B(s′l′m′) and i<λNA⊗B(n)= λNA⊗B(n′). Note that λNA⊗B(m)= λNA⊗B(n)=

λNA⊗B(n′)= λNA⊗B(m′) by IE-switch. At a first glance, it seems that A⊗ B does not satisfy DP2 as
Opponent may play in A or B at will. It is, however, not the case for internal moves since slmn ∈
POddA⊗B with m internal implies m, n ∈MA or m, n ∈MB. This property immediately follows from
Figure 1, which shows all possible transitions of OP- and IE-parities for a play in A⊗ B, where a
state (XY , ZW) means that the next move of A (resp. B) has the OP-parity X (resp. Z) and the IE-
parity Y (resp. W). Note that m=m′ and J�i

slm(m)=J�i
s′l′m′(m′) as H i

A⊗B(sl).m= H i
A⊗B(slm)=

H i
A⊗B(s′l′m′)= H i

A⊗B(s′l′).m′. Thus, m, n, m′ and n′ belong to the same component
game. If m, n,m′, n′ ∈MA, then (sl �A).mn, (s′l′ �A).m′n′ ∈ POddA , H i

A((sl �A).m)= H i
A⊗B(slm) �

H i(A)= H i
A⊗B(s′l′m′) �H i(A)= H i

A((s′l′ �A).m′) and i<λNA(n)= λNA(n′); thus, by DP2 on A,
we conclude that n= n′ and J�i

slmn(n)=J�i
(sl�A).mn(n)=J�i

(s′l′�A).m′n′(n
′)=J�i

s′l′m′n′(n
′) hold. The

other case is completely analogous, showing that A⊗ B satisfies DP2.
Finally, to show that A⊗ B satisfies DI3, assume s�d

A⊗B t and sm ∈ PA⊗B for some d ∈
N; we have to find some tn ∈ PA⊗B such that sm�d

A⊗B tn. Assume m ∈MA since the other
case is symmetric. Because s�d

A⊗B t, we have some s′ �A⊗B t′ such that H d
A⊗B(s′)= H d

A⊗B(s)
and H d

A⊗B(t′)= H d
A⊗B(t). Thus, s′ �A�A t′ �A, H d

A (s �A)= H d
A⊗B(s) �H d(A)= H d

A⊗B(s′) �
H d(A)= H d

A (s′ �A) and H d
A (t �A)= H d

A⊗B(t) �H d(A)= H d
A⊗B(t′) �H d(A)= H d

A (t′ �A),
whence s �A�d

A t �A. Similarly, s � B�d
B t � B with s′ � B�B t′ � B, H d

B (s � B)= H d
B (s′ � B) and

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

922 N. Yamada and S. Abramsky

H d
B (t � B)= H d

B (t′ � B). Now, since (s �A).m= sm �A ∈ PA, we have some (t �A).n ∈ PA such
that (s �A).m�d

A (t �A).n, i.e., some u�A v such that H d
A (u)= H d

A ((s �A).m) and H d
A (v)=

H d
A ((t �A).n). By Figure 1, we may obtain a unique s̃ ∈ PA⊗B from u and s′ � B and a unique

t̃ ∈ PA⊗B from v and t′ � B such that s̃�A⊗B t̃, H d
A⊗B(s̃)= H d

A⊗B(sm) and H d
A⊗B(t̃)= H d

A⊗B(tn),
establishing sm�d

A⊗B tn.

Next, recall linear implication �, which has been illustrated by examples in the introduction.
The linear implication A� B is meant to be the ‘space’ of linear maps from A to B in the sense of
linear logic (Girard, 1987), i.e., they consume exactly one input in A to produce an output in B.
Strictly, a play in A� B consumes at most one input to produce an output since it is possible that
no moves of A are performed at all during a play in A� B. That is, A� B is actually the ‘space’
of affine maps from A to B. Nevertheless, we follow the convention to call it linear implication.

One additional point for dynamic games is that we need to apply the ω-hiding operation H ω

to the domain A of each linear implication A� B since otherwise the linear implication A� B
may not satisfy the axiom DP2. It conceptually makes sense too because the roles of Player and
Opponent in A are exchanged, and thus Player should not be able to ‘see’ internal moves of A.

Definition 3.34 (Linear implication between games (Abramsky and McCusker, 1999)). The
linear implication A� B from a game A to another B is defined by

• MA�B :=MH ω(A) +MB;
• λA�B := [λH ω(A), λB], where λH ω(A) := 〈λOPH ω(A), λ

QA
H ω(A), λ

N

H ω(A)〉 and for any game G

λOPG (m) :=
{
P if λOPG (m)=O;
O otherwise;

• ��A�B m
df.⇔ ��B m;

• m�A�B n (m �= �) df.⇔ (m�H ω(A) n)∨ (m�B n)∨ (��B m∧ ��H ω(A) n);
• PA�B := { s ∈ LH ω(A)�B | s �H ω(A) ∈ PH ω(A), s � B ∈ PB };
• s�A�B t

df.⇔ s �H ω(A)�H ω(A) t �H ω(A)∧ s � B�B t � B∧ ∀i ∈N. s(i) ∈MH ω(A) ⇔
t(i) ∈MH ω(A),

where pointers from an initial occurrence of H ω(A) to that of B in s are deleted.

Dually to A⊗ B, it is easy to see that during a play in A� B only Player may switch between
H ω(A) and B (again by alternation); see Abramsky et al. (1997) for the details.

Example 3.35. The examples of linear implication in Section 1 illustrate how Definition 3.34
works.

Theorem 3.36 (Well defined linear implication between games). Games (resp. well founded
ones) are closed under linear implication�.

Proof. Again, it suffices to show preservation of the additional conditions on the labelling function
and the axioms E1, E2, E4, DP2 and DI3. For brevity, assume that A is normalised and consider
A� B. Again, nontrivial conditions are just DP2 and DI3, but DI3 may be shown in a way similar
to the case of tensor⊗ and thus is omitted.

To verify DP2, let i ∈N and slmn, s′l′m′n′ ∈ POddA�B such that H
i
A�B(slm)= H i

A�B(s′l′m′) and
i<λNA�B(n)= λNA�B(n′). Again, m and m′ are both internal, and so m, n, m′ and n′ all belong

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 923

to B. Thus, (sl � B).mn, (s′l′ � B).m′n′ ∈ POddB such that H i
B ((sl � B).m)= H i

A�B(slm) �H i(B)=
H i

A�B(s′l′m′) �H i(B)= H i
B ((s′l′ � B).m′) and i<λNB (n)= λNB (n′). Then, by DP2 on B, we may

conclude that n= n′ and J�i
slmn(n)=J�i

(sl�B).mn(n)=J�i
(sl�B).mn(n

′)=J�i
slmn(n

′).

Next, product & forms product in the categories of static games and strategies (Abramsky and
McCusker, 1999). A position in the product A&B is simply a position in A or B:

Definition 3.37 (Product of games (Abramsky and McCusker, 1999)). Given games A and B,
the product A&B of A and B is defined by

• MA&B :=MA +MB;
• λA&B := [λA, λB];
• �A&B := �A +�B;
• PA&B := { s ∈ LA&B | (s �A ∈ PA ∧ s � B= ε)∨ (s �A= ε ∧ s � B ∈ PB) };
• s�A&B t

df.⇔ s�A t∨ s�B t.

Example 3.38. A maximal position in the product 2&N is either of the following forms:

2 & N
q
b

2 & N
q
n

where b ∈B and n ∈N.

Now, for our game-semantic CCBoC (given in Section 4), let us generalise product as follows:

Definition 3.39 (Pairing of games). The pairing 〈L, R〉 of games L and R that satisfy H ω(L)�
C�A and H ω(R)� C� B for some normalised games A, B and C is defined by

• M〈L,R〉 :=MC + (ML \MC)+ (MR \MC), where ‘tags’ for the disjoint union is chosen in such
a way that H ω(〈L, R〉)� C�A&B holds;

• λ〈L,R〉 := [λC, λL �MC, λR �MC];
• m�〈L,R〉 n

df.⇔ (att〈L,R〉(m)= att〈L,R〉(n)∨ att〈L,R〉(m)= C ∨ att〈L,R〉(n)= C)∧ (peel〈L,R〉(m)
�L peel〈L,R〉(n)∨ peel〈L,R〉(m)�R peel〈L,R〉(n));

• P〈L,R〉 := { s ∈ LL&R | (s � L ∈ PL ∧ s � B= ε)∨ (s �A= ε ∧ s � R ∈ PR) };
• s�〈L,R〉 t

df.⇔ (s �A= ε ⇔ t �A= ε)∧ s � L�L t � L∧ s � R�R t � R,

where the map peel〈L,R〉 :M〈L,R〉 →ML ∪MR is the obvious left inverse of the ‘tagging’ for M〈L,R〉,
s � L (resp. s � R) is the j-subsequence of s that consists of moves x such that peel〈L,R〉(x) ∈ML (resp.
peel〈L,R〉(x) ∈MR) yet changed into peel〈L,R〉(x), and the map att〈L,R〉 :M〈L,R〉 → {L, R, C} is given by

att〈L,R〉(m) :=

⎧⎪⎨⎪⎩
L if peel〈L,R〉(m) ∈ML \MC;
R if peel〈L,R〉(m) ∈MR \MC;
C otherwise (i.e., if peel〈L,R〉(m) ∈MC).

Pairing of games is indeed a generalisation of product because we have 〈T�A, T� B〉 = T�
A&B for any games A and B, where note that each game G coincides with the linear implication
T�G up to ‘tags.’ The point is that the (generalised) pairing 〈σ , τ 〉 of strategies σ : L and τ : R
forms a strategy on the pairing 〈L, R〉 (Definition 3.91).

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

924 N. Yamada and S. Abramsky

Theorem 3.40 (Well defined pairing of games). If games (resp. well founded ones) L and R satisfy
H ω(L)� C�A and H ω(R)� C� B for normalised games A, B and C, then the pairing 〈L, R〉
is a game (resp. well founded one) that satisfies H ω(〈L, R〉)� C�A&B.

Proof. Similar to and simpler than the case of tensor⊗.

Now, let us recall exponential !, which is essentially the countably infinite iteration of tensor⊗,
i.e., !A and A⊗A⊗ . . . coincide up to ‘tags.’ More precisely, it is defined as follows:

Definition 3.41 (Exponential of games (Abramsky et al. 2000;McCusker, 1998)). Given a game
A, the exponential !A of A is defined by

• M!A :=MA ×N;
• λ!A : (a, i)
→ λA(a);
• ��!A (a, i) df.⇔ ��A a;
• (a, i)�!A (a′, i′) df.⇔ i= i′ ∧ a�A a′;
• P!A := { s ∈ L!A | ∀i ∈N. s � i ∈ PA };
• s�!A t df.⇔∃ϕ ∈ P(N). ∀i ∈N. s � ϕ(i)�A t � i∧ π∗

2 (s)= (ϕ ◦ π2)∗(t),
where s � i is the j-subsequence of s that consists of occurrences of moves of the form (a, i) yet changed
into a, and P(N) is the set of all permutations of natural numbers.

Example 3.42. A typical position in the exponential !2 is as follows:

!2
(q, 10)
(tt, 10)
(q, 100)
(ff, 100)

It is now clear, from the definition of �!A, why we equip each game with an identification of
positions: A particular choice of the ‘tag’ (_, i) for an exponential !A should not matter; since the
identification may occur locally in games in a nested form, e.g., !(!A⊗ B), !!A� !B, etc., it gives
a neat solution to define a tailored identification �G of positions as part of the structure of each
game G. Identifications of positions are originally introduced by Abramsky et al. (2000) and later
employed in McCusker (1998, Section 3.6).

Exponential ! enables us, viaGirard’s translation (Girard, 1987)A⇒ B := !A� B, to model the
construction⇒ of the usual implication (or the function space).

Example 3.43. In the linear implication 2&2� 2, Player may play in at most only one copy of 2
out of the domain 2&2:

2 & 2 � 2
q

q
b(1)

b(2)

2 & 2 � 2
q

q
b(1)

b(2)

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 925

where b(1), b(2) ∈B. On the other hand, positions in the implication 2&2⇒ 2= !(2&2)� 2 are
of the expected form; for instance:

!(2 & 2) � 2
q

(q, 0)
(b(1), 0)

(q, 1)
(b(2), 1)

b(3)

!(2 & 2) � 2
q

(q, 10)
(b(1), 10)

(q, 7)
(b(2), 7)
(q, 4)
(b(3), 4)

(q, 100)
(b(4), 100)

b(5)

where b(1), b(2), b(3), b(4), b(5) ∈B. Hence, e.g., Player may play as conjunction ∧ :B×B→B

or disjunction ∨ :B×B→B on the implication 2&2⇒ 2 in the obvious manner, but not on
the linear implication 2&2� 2. This example illustrates why the standard notion of functions
corresponds in game semantics to implication⇒, not linear one�.

For the game-semantic CCBoC, let us generalise exponential of games as follows:

Definition 3.44 (Promotion of games). Fix once and for all an arbitrary bijection 〈_, _〉 :N×
N

∼→N. Given a game G such that H ω(G)� !A� B for some normalised games A and B, the
promotion G† of G is defined by

• MG† := ((MG \M!A)×N)+M!A;
• λG† : ((m, i) ∈ (MG \M!A)×N)
→ λG(m), ((a, j) ∈M!A)
→ λG(a, j);
• ��G† (m, i) df.⇔ ��G m for all i ∈N;
• m�G† n df.⇔ attG† (m)= attG† (n)∧ peelG† �G peelG† , where attG† (resp. peelG†) is a function
MG† →N (resp. MG† →MG) that maps

attG† : (a, 〈i, j〉) ∈M!A
→ i ∈N, (x, i) ∈ (MG† \M!A)×N
→ i ∈N

peelG† : (a, 〈i, j〉) ∈M!A
→ (a, j) ∈M!A, (x, i) ∈ (MG† \M!A)×N
→ x ∈MG \M!A;

• PG† := { s ∈ LG† | ∀i ∈N. s � i ∈ PG };
• s�G† t df.⇔∃ϕ ∈ P(N). ∀i ∈N. s � ϕ(i)�G t � i∧ π∗

2 (s)= (ϕ ◦ π2)∗(t),
where s � i is the j-subsequence of s that consists of moves (m, i) with m ∈MG \M!A, or (a, 〈i, j〉) with
a ∈MA ∧ j ∈N, yet changed into m or (a, j), respectively.

Note that the equation (!T�A)† = !T� !A holds for any game A, and therefore promotion
(_)† is indeed a generalisation of exponential !. The point is that the (generalised) promotion φ† of
a strategy φ :G forms a strategy on the promotion G† (Definition 3.93).

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

926 N. Yamada and S. Abramsky

Example 3.45. Let us consider the promotion (!A� B)†, whereA and B are arbitrary normalised
games. If there is the position

!A � B
b(1)

(a(1), i)
(a(2), i)

b(2)

in !A� B, then there is the position

!A � !B
(b(1), j)

(a(1), 〈i, j〉)
(a(2), 〈i, j〉)

(b(2), j)
(b(1), j′)

(a(1), 〈i, j′〉)
(a(2), 〈i, j′〉)

(b(2), j′)

in the promotion (!A� B)†, where note that the ‘tags’ j, j′ ∈N are chosen by Opponent.

Theorem 3.46 (Well defined promotion of games). If a (well founded) game G satisfies
H ω(G)� !A� B for some normalised games A and B, then G† is a (well founded) game that
satisfies H ω(G)† � !A� !B.

Proof. Similar to the case of tensor⊗.

Now, let us introduce a new construction on games, which formalises the construction for
‘internal communication’ between strategies sketched in the introduction:

Definition 3.47 (Concatenation and composition of games). Given games J and K such that
H ω(J)�A� B and H ω(K)� B� C for some normalised games A, B and C, the concatenation
J ‡K of J and K is defined by

• MJ‡K :=MJ +MK, where ‘tags’ for the disjoint union is chosen in such a way that the subgame
relation H ω(J ‡K)�A� C holds;

• λJ‡K := [λJ �MB[1] , λ
+μ
J �MB[1] , λ

+μ
K �MB[2] , λK �MB[2]], where B[1] and B[2] are the copies of

B that belong to J and K, respectively, λ+μG := 〈λOPG , λQAG , n
→ λNG(n)+μ〉 (G is J or K), and
μ :=max (μ(J),μ(K))+ 1 (see Definition 3.1 for μ(J) and μ(K));

• ��J‡K m df.⇔ ��K m;
• m�J‡K n (m �= �) df.⇔m�J n∨m�K n∨ (��B[2] m∧ ��B[1] n);
• PJ‡K := { s ∈ JJ‡K | s � J ∈ PJ , s �K ∈ PK , s � B[1], B[2] ∈ prB };
• s�J‡K t df.⇔ (∀i ∈N. s(i) ∈MJ ⇔ t(i) ∈MJ)∧ s � J �J t � J ∧ s �K �K t �K,

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 927

where prB := { s ∈ PB[1]�B[2] | ∀t� s. Even(t)⇒ t � B[1] = t � B[2] }.
Moreover, the composition J;K (also written K ◦ J) of J and K is defined by

J;K := H ω(J ‡K).

Example 3.48. A typical position in the concatenation (N �N) ‡ (N �N) is

(N[0] � N[1]) ‡ (N[2] � N[3])
q[3]

q[2]
q[1]

q[0]
n(1)[0]

n(2)[1]

n(2)[2]

n(3)[3]

where n(1), n(2), n(3) ∈N. We have marked internal moves by a square box just for clarity. Note
that this game coincides with the game given in Example 3.27.

We shall see that the ‘non-hiding composition’ or concatenation ι ‡ κ of dynamic strategies
ι : J and κ :K is a dynamic strategy on the concatenation J ‡K. It generalises the particular case
such that J =A� B and K = B� C, so that ι; κ = H ω(ι ‡ κ) : H ω(J ‡K)= J;K =A� C holds
(as we shall establish), which reformulates the conventional composition of static strategies as
concatenation plus hiding of dynamic strategies.

Theorem 3.49 (Well defined concatenation and composition of games). Games (resp. well
founded ones) are closed under concatenation and composition.

Proof. By Theorem 3.28, it suffices to focus on concatenation, where well foundedness of games is
clearly preserved under concatenation. We first show that the arena J ‡K is well defined. The set
MJ‡K and the function λJ‡K are clearly well defined, where the finite upper bounds μ(J) and μ(K)
are crucial. For the relation �J‡K , E1 and E3 clearly hold. For E2, if m�J‡K n and λQAJ‡K(n)= A,
then m, n ∈MK \MB[2] , m, n ∈MB[2] , m, n ∈MB[1] or m, n ∈MJ \MB[1] . In either case, we have
λ
QA
J‡K(m)=Q and λNJ‡K(m)= λNJ‡K(n).
For E4, letm�J‡K n,m �= � and λNJ‡K(m) �= λNJ‡K(n). We proceed by the following case analysis.

If (m�K n)∧ (m, n ∈MK \MB[2] ∨m, n ∈MB[2]), then we may just apply E4 on K. It is similar if
(m�J n)∧ (m, n ∈MJ \MB[1] ∨m, n ∈MB[1]). Note that the case ��B[2] m∧ ��B[1] n cannot hap-
pen. Now, consider the casem�K n∧m ∈MK \MB[2] ∧ n ∈MB[2] . Ifm is external, thenm ∈MC,
and so E4 on J ‡K is satisfied by the definition of B� C; if m is internal, then we may just
apply E4 on K. The case m�K n∧ n ∈MK \MB[2] ∧m ∈MB[2] is simpler as m must be inter-
nal. The remaining casesm�J n∧m ∈MJ \MB[1] ∧ n ∈MB[1] andm�J n∧ n ∈MJ \MB[1] ∧m ∈
MB[1] are analogous. Hence, we have shown that the arena J ‡K is well defined.

Next, we show that PJ‡K ⊆ LJ‡K holds. For justification, let sm ∈ PJ‡K with m non-initial. The
nontrivial case is whenm is initial in J. But in this case,m is initial in B[1], and so it has a justifier in
B[2]. For alternation and IE-switch, similarly to Figure 1 for tensor ⊗, we have Figure 2 for J ‡K,

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

928 N. Yamada and S. Abramsky

(OE,OE) C � (OE, PI)

(PI,OE) �................
B[1]B[2]

(OE, PE)

C
�

C�

� K (OE,OI)

K
�

K�

(OI,OE)

J
�

J�

J � (PE,OE)

B[2]
B[1] �

.......
B[2]
B[1]
�
.......

................
B[1]B[2]

� (OE, PI)

K
�

K�

(PI,OE)

J
�

J�

� A (OE,OE)

A
�

A�

Figure 2. The double parity diagram for the concatenation J ‡ K.

in which the first (resp. the second) component of each state is about the OP- and IE-parities
of the next move of J (resp. K). For readability, some states are written twice, and the dotted
arrow indicates two necessarily consecutive moves of B. Then, alternation and IE-switch on J ‡K
immediately follow from this diagram and the corresponding axioms on J and K.

For generalised visibility, let sm ∈ PJ‡K with m non-initial and d ∈N∪ {ω} such that sm is
d-complete. Without loss of generality, we may assume d ∈N since s is finite. It is not hard to
see thatH d

J‡K(sm) ∈ PH d(J)‡H d(K) holds ifH d(J ‡K) is not normalised; thus, this case is reduced
to the (usual) visibility onH d(J) ‡H d(K). Otherwise, it is no harm to select the least d ∈N+ such
that H d(J ‡K) is normalised; then H d−1

J‡K (sm) ∈ P(A�B[1])‡(B[2]�C) holds, and thus the visibility
of H d

J‡K(sm)= HH d−1(J‡K)(H
d−1
J‡K (sm)) can be shown completely in the same way as the proof

that shows the composition of static strategies is well defined (in particular it satisfies visibility)
(Harmer, 2004; McCusker, 1998). As a consequence, it suffices to consider the case d= 0, i.e., to
show the (usual) visibility.

For this, we need the following:

Lemma 3.50 (Visibility lemma). Assume that t ∈ PJ‡K and t �= ε.

(1) If the last move of t is of MJ \MB[1] , then �t � J�J � �t�J‡K � J and t � J"J � t"J‡K � J;
(2) If the last move of t is of MK \MB[2] , then �t �K�K � �t�J‡K �K and t �K"K � t"J‡K �K;
(3) If the last move of t is an O-move of MB[1] ∪ MB[2] , then �t � B[1], B[2]�B[1]�B[2] � t"J‡K �

B[1], B[2] and t � B[1], B[2]"B[1]�B[2] � �t�J‡K � B[1], B[2].

Proof of the lemma. By induction on |t| with case analysis on the last move of t.

Note that we may write sm= s1ns2m, where n justifiesm. If s2 = ε, then it is trivial; so assume
s2 = s′2r. We then proceed by the following case analysis onm:

• Assumem ∈MJ \MB[1] . By Figure 2, n ∈MJ and r ∈MJ . By Lemma 3.50, �s � J� � �s� � J and
 s � J" � s" � J. Also, by (s � J).m ∈ PJ and visibility on J, n occurs in �s � J� (resp. s � J") ifm
is a P- (resp. O-) move. Thus, n occurs in �s� (resp. s") ifm is a P- (resp. O-) move.

• Assumem ∈MK \MB[2] . This case can be handled in a completely analogous way to the above
case.

• Assume m ∈MB[1] . If m is a P-move, then n, r ∈MJ and so it can be handled in the same
way as the case m ∈MJ \MB[1] ; thus, assume that m is an O-move. Then, r ∈MB[2] , and
it is a ‘copy’ of m. Since r is an O-move in B[1] � B[2], by Lemma 3.50, �s � B[1], B[2]� �

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 929

 s" � B[1], B[2]. Note that n is a move of B[1] or an initial move of B[2]. In either case,
(s � B[1], B[2]).m ∈ PB[1]�B[2] ; thus, n occurs in �s � B[1], B[2]�. Hence, n occurs in s".

• Assumem ∈MB[2] . Ifm is a P-move, then n, r ∈MK ; so it can be dealt with in the same way as
the case m ∈MK \MB[2] . Thus, assume m is an O-move. By Figure 2, we have r ∈MB[1] , and
it is an O-move in B[1] � B[2]. Thus, by Lemma 3.50, �s � B[1], B[2]� � s" � B[1], B[2]. Then
again, (s � B[1], B[2]).m ∈ PB[1]�B[2] ; thus, n occurs in �s � B[1], B[2]�, and so n occurs in s".

Next, we verify P1 and DP2. For P1, ε ∈ PJ‡K is clear; for prefix-closure, let sm ∈ PJ‡K . If
m ∈MJ \MB[1] , then (s � J).m= sm � J ∈ PJ ; thus, s � J ∈ PJ , s �K = sm �K ∈ PK and s � B[1], B[2] =
sm � B[1], B[2] ∈ prB, whence s ∈ PJ‡K . The other cases may be handled similarly.

For DP2, let i ∈N and sm, s′m′ ∈ POddJ‡K such that i<λNJ‡K(m)= λNJ‡K(m′) and H i
J‡K(s)=

H i
J‡K(s′). Without loss of generality, we may assume i= 0 and λNJ‡K(m)= 1= λNJ‡K(m′) because

if λNJ‡K(m)= λNJ‡K(m′)= j> 1, then we may consider H
j−1
J‡K (sm),H j−1

J‡K (s′m′) ∈ PH j−1(J)‡H j−1(K)
(n.b., the justifiers of m and m′ have the same priority order). Thus, s= s′ and m,m′ ∈
MJ ∨m,m′ ∈MK . If m,m′ ∈MJ (resp. m,m′ ∈MK), then (s � J).m, (s′ � J).m′ ∈ POddJ (resp. (s �
K).m, (s′ �K).m′ ∈ POddK), and so we may just apply DP2 on J (resp. K).

Finally, I1, I2 and DI3 on�J‡K can be verified similarly to the case of tensor⊗, completing the
proof.

For completeness, let us explicitly define the rather trivial currying of games:

Definition 3.51 (Currying of games). Given a game G such that H ω(G)�A⊗ B� C for some
normalised games A, B and C, the currying �(G) of G is G up to ‘tags’ that satisfies H ω(�(G))�
A� (B� C).

Trivially, games (resp. well founded ones) are closed under currying.
Next, we show that these constructions as well as the hiding operation preserve the subgame

relation � (Definition 3.24):

Notation 3.52. We write ♣i∈I , where I is {1} or {1, 2}, for any of the constructions on games
introduced so far, i.e., ♣i∈I is either⊗,�, 〈_, _〉, (_)†, ‡ or�.

Lemma 3.53 (Preservation of subgames). Let♣i∈I be a construction on games and assume Hi �
Gi for all i ∈ I. Then, ♣i∈IHi � ♣i∈IGi.

Proof. Let us first consider tensor ⊗. It is trivial to check the conditions on the sets of moves and
the labelling functions, and so we omit them. For the enabling relations, we calculate

�H1⊗H2 =�H1 +�H2

⊆ (�G1 ∩ (({�} ∪MH1)×MH1))+ (�G2 ∩ (({�} ∪MH2)×MH2))
= (�G1 ∩ (({�} ∪MH1⊗H2)×MH1⊗H2))+ (�G2 ∩ (({�} ∪MH1⊗H2)×MH1⊗H2))
= (�G1 +�G2)∩ (({�} ∪MH1⊗H2)×MH1⊗H2)
=�G1⊗G2 ∩ (({�} ∪MH1⊗H2)×MH1⊗H2).

For the positions, we calculate

PH1⊗H2 = { s ∈ LH1⊗H2 | ∀i ∈ {1, 2}. s �Hi ∈ PHi }
⊆ { s ∈ LG1⊗G2 | ∀i ∈ {1, 2}. s �Gi ∈ PGi }
= PG1⊗G2 .

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

930 N. Yamada and S. Abramsky

For the identifications of positions, given d ∈N∪ {ω}, we calculate
s�d

H1⊗H2 t ⇔∃s′, t′∈PH1⊗H2 . s′ �H1⊗H2 t′ ∧ H d
H1⊗H2 (s

′)= H d
H1⊗H2 (s)∧H d

H1⊗H2 (t
′)= H d

H1⊗H2 (t)

⇔∀j ∈ {1, 2}. ∃s′j, t′j ∈ PHj . s′j �Hj t′j ∧ H d
Hj(s

′
j)= H d

Hj(s �Hj)

∧ H d
Hj(t

′
j)= H d

Hj(t �Hj)∧ ∀k ∈N. sk ∈MH1 ⇔ tk ∈MH1

⇔∀j ∈ {1, 2}. s �Hj �d
Hj t �Hj ∧ ∀k ∈N. sk ∈MH1 ⇔ tk ∈MH1

⇔∀j ∈ {1, 2}. s �Gj, t �Gj ∈ PHj ∧ s �Gj �d
Gj t �Gj ∧ ∀k ∈N. sk ∈MG1 ⇔ tk ∈MG1

⇔ s, t ∈ PH1⊗H2 ∧ s�d
G1⊗G2 t.

Finally, we have μ(H1 ⊗H2)=max (μ(H1),μ(H2))=max (μ(G1),μ(G2))=μ(G1 ⊗G2),
showing that H1 ⊗H2 �G1 ⊗G2.

Linear implication � and promotion (_)† are similar, and pairing 〈_, _〉 and currying � are
even simpler; thus, we omit them. Next, let us consider concatenation ‡. Assume that H ω(H1)�
A� B, H ω(H2)� B� C, H ω(G1)�D� E, H ω(G2)� E� F for some normalised games A,
B, C, D, E and F; without loss of generality, we assume that these normalised games are the
least ones with respect to �. By Theorem 3.28, H ω(H1)� H ω(G1)�D� E and H ω(H2)�
H ω(G2)� E� F, which in turn implies A�D, B� E and C � F.

First, we clearly have MH1‡H2 ⊆MG1‡G2 and λG1‡G2 �MH1‡H2 = λH1‡H2 , where μ(Hi)=μ(Gi)
for i= 1, 2 ensures that the priority orders of moves of B coincide.

Next, for the enabling relations, we have
��H1‡H2 m⇔ ��H2 m⇔ ��C m⇒ ��F m⇔ ��G1‡G2 m

as well as
m�H1‡H2 n⇔m�H1 n∨m�H2 n∨ (��B[2]m∧ ��B[1] n)

⇒m�G1 n∨m�G2 n∨ (��E[2] m∧ ��E[1] n)
⇔m�G1‡G2 n

for anym, n ∈MH1‡H2 . For the positions, we have
PH1‡H2 = { s ∈ JH1‡H2 | s �H1 ∈ PH1 , s �H2 ∈ PH2 , s � B[1], B[2] ∈ prB }

⊆ { s ∈ JG1‡G2 | s �G1 ∈ PG1 , s �G2 ∈ PG2 , s � E[1], E[2] ∈ prE }
= PG1‡G2 .

Finally, we may show, in the same manner as in the case of tensor⊗, the required condition on
the identifications of positions, completing the proof.

At the end of the present section, we establish the following useful lemma:

Lemma 3.54 (Hiding lemma on games). Let♣i∈I be a construction on games, and Gi a game for
each i ∈ I. Given d ∈N∪ {ω}, we have

(1) H d(♣i∈IGi)=♣i∈IH d(Gi) if ♣i∈I �= ‡;
(2) H d((G1) ‡ (G2))�A� C if H d(G1 ‡G2) is normalised, where A, B and C are normalised

games such that H ω(G1)�A� B and H ω(G2)� B� C, and (A� B); (B� C)=A�
C;

(3) H d(G1 ‡G2)= H d(G1) ‡H d(G2) otherwise.

Proof. Since there is an upper bound of the priority orders of each game, it suffices to consider the
case d ∈N. But then, because H i+1 = H ◦ H i for all i ∈N, we may focus on d= 1. Let us focus
on tensor⊗ since the other constructions may be handled similarly.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 931

We have to show H (G1 ⊗G2)= H (G1)⊗ H (G2). Clearly, their sets of moves and labelling
functions coincide. For the enabling relations, we calculate

��H (G1⊗G2) m⇔ ��G1⊗G2 m⇔ ��G1 m∨ ��G2 m
⇔ ��H (G1) m∨ ��H (G2) m
⇔ ��H (G1)⊗H (G2) m

as well as

m�H (G1⊗G2) n (m �= �)
⇔ (m�G1⊗G2n)∨ ∃k ∈N

+,m1,m2, . . . ,m2k ∈MG1⊗G2 \MH (G1⊗G2).m�G1⊗G2 m1

∧ ∀i ∈ 2k− 1.mi �G1⊗G2 mi+1 ∧m2k �G1⊗G2 n
⇔ (m�G1 n∨m�G2 n)∨ ∃i ∈ {1, 2}, k ∈N

+,m1,m2, . . . ,m2k ∈MGi \MH (Gi).m�Gi m1

∧ ∀j ∈ 2k− 1.mj �Gi mj+1 ∧m2k �Gi n
⇔ ∃i ∈ {1, 2}.m�Gi n∨ ∃k ∈N

+,m1,m2, . . . ,m2k ∈MGi \MH (Gi).m�Gi m1

∧ ∀j ∈ 2k− 1.mj �Gi mj+1 ∧m2k �Gi n
⇔ m�H (G1)⊗H (G2) n.

We have shown that the arenas H (G1 ⊗G2) and H (G1)⊗ H (G2) coincide.
For the positions, we have

s ∈ PH (G1⊗G2)
⇔ ∃t ∈ LG1⊗G2 .HG1⊗G2 (t)= s∧ ∀i ∈ {1, 2}. t �Gi ∈ PGi

⇔ ∃t ∈ LG1⊗G2 .HG1⊗G2 (t)= s∧ ∀i ∈ {1, 2}.HGi(t �Gi) ∈ PH (Gi)
⇔ ∃t ∈ LG1⊗G2 .HG1⊗G2 (t)= s∧ ∀i ∈ {1, 2}.HG1⊗G2 (t) �H (Gi) ∈ PH (Gi)

(⇐ is by induction on |t|)
⇔ s ∈ LH (G1⊗G2) = LH (G1)⊗H (G2) ∧ ∀i ∈ {1, 2}. s �H (Gi) ∈ PH (Gi)
⇔ s ∈ PH (G1)⊗H (G2).

Finally, for the identifications of positions, given d ∈N∪ {ω}, we have
HG1⊗G2 (s)�d

H (G1⊗G2) HG1⊗G2 (t)

⇔ ∃s′, t′ ∈ PG1⊗G2 .HG1⊗G2 (s′)�H (G1⊗G2) HG1⊗G2 (t′)∧ H d+1
G1⊗G2

(s′)= H d+1
G1⊗G2

(s)

∧ H d+1
G1⊗G2

(t′)= H d+1
G1⊗G2

(t)

⇔ ∀j ∈ {1, 2}. ∃s′j, t′j ∈ PGj .HGj(s′j)�H (Gj) HGj(t′j)∧ H d+1
Gj

(s′j)= H d+1
Gj

(s �Gj)

∧ H d+1
Gj

(t′j)= H d+1
Gj

(t �Gj)∧ ∀k ∈N.H d+1
G1⊗G2

(s(k)) ∈MH d+1(G1)

⇔ H d+1
G1⊗G2

(t(k)) ∈MH d+1(G1)

⇔ ∀j ∈ {1, 2}. s �Gj �d+1
Gj

t �Gj ∧ ∀k ∈N.H d+1
G1⊗G2

(s(k)) ∈MH d+1(G1)

⇔ H d+1
G1⊗G2

(t(k)) ∈MH d+1(G1)

⇔ HG1⊗G2 (s)�d
H (G1)⊗H (G2) HG1⊗G2 (t)∧ HG1⊗G2 (s),HG1⊗G2 (t) ∈ PH (G1⊗G2),

which completes the proof.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

932 N. Yamada and S. Abramsky

Example 3.55. For instance, as Lemma 3.54 states, we have

H (((N �N) ‡ (N �N)) ‡ (N �N))= H ((N �N) ‡ (N �N)) ‡H (N �N)
= (N �N) ‡ (N �N).

3.4 Dynamic strategies
Dynamic strategies, another central notion of the present work, are just static strategies (Abramsky
and McCusker, 1999) on dynamic games:

Definition 3.56 (Dynamic strategies). A dynamic strategy on a (dynamic) game G is a subset
σ ⊆ PEvenG , written σ :G, that is

• (S1). Nonempty and even-prefix-closed (i.e., smn ∈ σ ⇒ s ∈ σ);
• (S2). Deterministic (i.e., smn, s′m′n′ ∈ σ ∧ sm= s′m′ ⇒ smn= s′m′n′).

A dynamic strategy σ :G is said to be normalised if ∀s ∈ σ , ∀i ∈ |s|. λNG(s(i))= 0.

Therefore, a dynamic strategy is normalised if and only if it consists of external moves only.
Note that a dynamic strategy on a normalised dynamic game is necessarily normalised, and it is
equivalent to a static strategy.

Convention.Henceforth, a strategy refers to a dynamic strategy by default.

Example 3.57. The normalised strategies succ, double :N[0] �N[1] sketched in the introduction
are given formally by

succ := { q[1]q[0]n[0](n+ 1)[1] | n ∈N } double := { q[1]q[0]n′[0]2n′[1] | n′ ∈N }.
The non-normalised strategy obtained from succ and double by ‘non-hiding composition,’

which we write succ ‡ double : (N[0] �N[1]) ‡ (N[2] �N[3]), is given by

succ ‡ double := { q[3]q[2]q[1]q[0]n′′[0](n′′ + 1)[1](n′′ + 1)[2]2(n′′ + 1)[3] | n′′ ∈N }.

Since positions of a game G are identified modulo �G, we must identify strategies on G if they
behave in the same manner modulo�G, leading to

Definition 3.58 (Identification of strategies (Abramsky et al. 2000)). The identification of
strategies on a game G, written�G, is the relation between strategies σ , τ :G defined by

σ �G τ
df.⇔ ∀s ∈ σ , t ∈ τ , sm, tl ∈ PG. sm�G tl⇒ (∀smn ∈ σ . ∃tlr ∈ τ . smn�G tlr)

∧ (∀tlr ∈ τ . ∃smn ∈ σ . tlr�G smn).

We are particularly concerned with strategies identified with themselves:

Definition 3.59 (Validity of strategies). A strategy σ :G is valid if σ �G σ .

Example 3.60. The normalised strategies succ0, succ1 :N ⇒N given by:

succ0 := { q(q, 0)(n, 0)(n+ 1) | n ∈N } succ1 := { q(q, 1)(n′, 1)(n′ + 1) | n′ ∈N }
are both valid and identified with each other by the identification�N⇒N .

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 933

On the other hand, the normalised strategies succt , doublet : !N given by:

succt := { (q, i)(i+ 1, i) | i ∈N } doublet := { (q, j)(2j, j) | j ∈N }
are clearly not valid, and they are not identified by the identification�!N .

Since internal moves are ‘invisible’ to Opponent, a strategy σ :Gmust be externally consistent:
If smn, s′m′n′ ∈ σ , λNG(n)= λNG(n′)= 0 and H ω

G (sm)= H ω
G (s′m′), then n= n′ and J�ω

smn (n)=
J�ω
s′m′n′(n

′). Moreover, external consistency of strategies should hold with respect to identification
of positions as well. In fact, we now proceed to establish a stronger property (Theorem 3.62).

Lemma 3.61 (O-determinacy). Let σ , τ :G such that σ �G τ , and d ∈N∪ {ω}.
(1) If sm, s′m′ ∈ PG are d-complete, s, s′ ∈ σ , and H d

G (sm)= H d
G (s′m′), then sm= s′m′;

(2) If sm, tl ∈ PG are d-complete, s ∈ σ , t ∈ τ , and H d
G (sm)�H d(G) H d

G (tl), then sm�G tl.

Proof. Let us focus on the first clause because the second one can be proved similarly. We proceed
by induction on |s|. The base case s= ε is trivial: For any d ∈N∪ {ω}, if H d

G (sm)= H d
G (s′m′),

then H d
G (s′m′)= H d

G (sm)=m, and so s′m′ =m= sm.
For the induction step, let d ∈N∪ {ω} be fixed and assume H d

G (sm)= H d
G (s′m′). We may

suppose that sm= tlrum, where l is the rightmost O-move occurring on the left of m in s such
that λNG(l)= 0∨ λNG(l)> d. Then, H d

G (s′m′)= H d
G (sm)= H d

G (t).l.H d
G (ru).m, and so we may

write s′m′ = t′1.l.t′2.m. Now, t, t′1 ∈ σ , tl, t′1l ∈ PG, H d
G (tl)= H d

G (t′1l), and tl and t′l′ are both d-
complete. Hence, by the induction hypothesis, tl= t′1l. Therefore, t′2 is of the form rt′′2 by the
determinacy of σ . Thus, sm= tlrm and s′m′ = tlrt′′2m. Finally, if r is external, then so is m by
IE-switch, and so s′m′ = sm (n.b., t′′2 = ε in this case since otherwise H d

G (sm) �= H d
G (s′m′) by IE-

switch); if r is j-internal (j> d), then so ism, and we apply the axiom DP2 for i= j− 1 to s and s′,
concluding sm= s′m′.

Theorem 3.62 (External consistency). Let σ , τ :G such that σ �G τ , and d ∈N∪ {ω}.
(1) If smn, s′m′n′ ∈ σ are d-complete, and H d

G (sm)= H d
G (s′m′), then smn= s′m′n′;

(2) If smn ∈ σ , tlr ∈ τ are d-complete, and H d
G (sm)�H d(G) H d

G (tl), then smn�G tlr.

Proof. Let us first prove the first clause. Let σ :G be a strategy, smn, s′m′n′ ∈ σ and d ∈N∪ {ω},
and assume that smn, s′m′n′ are both d-complete and H d

G (sm)= H d
G (s′m′). By the first clause of

Lemma 3.61, we have sm= s′m′. Therefore, by the axiom S2 on σ , we have n= n′ and Jsmn(n)=
Js′m′n′(n′), whence J�d

smn(n)=J�d
s′m′n′(n

′).
Similarly, the second clause of the theorem is proved by the second clause of Lemma 3.61.

Let us also establish the following technical lemma:

Corollary 3.63 (Stepwise identification of strategies). Any strategies σ , τ :G such that σ �G τ
satisfy σ �d

G τ for all d ∈N∪ {ω}, where

σ �d
G τ

df.⇔∀s ∈ σ , t ∈ τ , sm, tl ∈ PG. sm�d
G tl⇒ (∀smn ∈ σ . ∃tlr ∈ τ . smn�d

G tlr)
∧ (∀tlr ∈ τ . ∃smn ∈ σ . tlr�d

G smn).

Proof. Immediate from Theorem 3.62.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

934 N. Yamada and S. Abramsky

Hence, given strategies σ , τ :G, we have
σ �G τ ⇔∀d ∈N∪ {ω}. σ �d

G τ ,

which will be useful later in the present article.
Let us proceed to show that the relation�G on strategies on any game G is a PER.

Lemma 3.64 (PER lemma). Given σ , τ :G such that σ �G τ , we have

(∀s ∈ σ . ∃t ∈ τ . s�G t)∧ (∀t ∈ τ . ∃s ∈ σ . t�G s).

Proof. By symmetry, it suffices to show ∀s ∈ σ . ∃t ∈ τ . s�G t. We prove it by induction on |s|. The
base case is trivial; for the inductive step, let smn ∈ σ . By the induction hypothesis, there is some
t ∈ τ such that s�G t. Then, by DI3 on �G, there is some tl ∈ τ such that sm�G tl. Finally, since
σ �G τ , there is some tlr ∈ τ such that smn�G tlr, completing the proof.

Proposition 3.65 (PERs on strategies). Given a game G, the identification �G of strategies on G
is a PER, i.e., a symmetric, transitive relation.

Proof. We just show the transitivity as the symmetry is obvious. Let σ , τ ,μ :G such that σ �G τ
and τ �G μ. Assume that smn ∈ σ , u ∈μ and sm�G up. By Lemma 3.64, there is some t ∈ τ such
that s�G t. By DI3 on �G, there is some tl ∈ PG such that sm�G tl, whence tl�G up. Also, since
σ �G τ , there is some tlr ∈ τ such that smn�G tlr. Finally, since τ �G μ, there is some upq ∈μ
such that tlr�G upq, whence smn�G upq, completing the proof.

Hence, given a game G, we may take the equivalence classes [σ] := {τ :G | σ �G τ } of valid
strategies σ :G. These equivalence classes, rather than strategies themselves, have interpreted
proofs and programmes in Abramsky et al. (2000), McCusker (1998).

At this point, let us remark that even-length positions are not necessarily preserved under
the hiding operation on j-sequences (Definition 3.10). For instance, let smnt be an even-length
position of a game G such that sm (resp. nt) consists of external (resp. internal) moves only. By
IE-switch on G,m is an O-move, and so H ω

G (smnt)= sm is of odd-length.
Taking into account this fact, we introduce

Definition 3.66 (Hiding operation on strategies). Let G be a game, and d ∈N∪ {ω}. Given
s ∈ PG, we define

s�H d
G :=

{
H d

G (s) if s is d-complete (Definition 3.1);
t otherwise, where H d

G (s)= tm.

The d-hiding operation H d (on strategies) is then given by

H d : (σ :G)
→ { s�H d
G | s ∈ σ }.

Let us then proceed to establish a beautiful fact: If σ :G, then H d(σ) : H d(G) for all d ∈N∪
{ω}. For this task, we need the following lemma:

Lemma 3.67 (Asymmetry lemma). Let σ :G be a strategy, and d ∈N∪ {ω}. Assume smn ∈
H d(σ), where smn= tmunv�H d

G with tmunv ∈ σ not d-complete. Then, we have smn=
H d(tmun)= H d(t).mn.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 935

Proof. Since tmunv ∈ σ is not d-complete, we may write v= v1lv2r with λNG(l)= 0∨ λNG(l)> d,
0<λNG(r)� d and 0<λNG(x)� d for all moves x in v1 or v2. Then, we have

smn= tmunv1lv2r�H d
G = H d

G (t)mH d
G (u)n= H d

G (t)mn,

which completes the proof.

We are now ready to establish

Theorem 3.68 (Hiding theorem). If σ :G, then H d(σ) : H d(G) for all d ∈N∪ {ω}.

Proof. We first showH d(σ)⊆ PEven
H d(G). Let s ∈ H d(σ), i.e., s= t�H d

G for some t ∈ σ . Let us write
t = t′m as the case t = ε is trivial.

• If t is d-complete, then s= t�H d
G = H d

G (t) ∈ PH d(G). Also, since s= H d
G (t′)m and m is a

P-move, smust be of even length by alternation on H d(G).
• If t is not d-complete, then we may write t = t′′m0m1 . . .mk, where mk =m, t′′m0 is d-
complete, and 0<λNG(mi)� d for i= 1, 2, . . . , k. By IE-switch, m0 is an O-move, and thus
s= H d

G (t′′) ∈ PH d(G) is of even length.

It remains to verify S1 and S2. For S1, H d(σ) is nonempty since ε ∈ H d(σ). For the even-
prefix-closure, let smn ∈ H d(σ); we have to show s ∈ H d(σ). We have some tmunv ∈ σ such
that tmunv�H d

G = smn. By Lemma 3.67, smn= H d
G (t)mn, whence s= H d

G (t). Since tm is d-
complete, so is t by IE-switch. Therefore, s= H d

G (t)= t�H d
G ∈ H d(σ).

Finally for S2, let smn, smn′ ∈ H d(σ); we have to show n= n′ andJ�d
sm (n)=J�d

sm (n′). Clearly,
smn= tmunv�H d

G , smn′ = t′mu′n′v′�H d
G for some tmunv, t′mu′n′v′ ∈ σ . Then, by Lemma 3.67,

smn= H d
G (tmu)n and smn′ = H d

G (t′mu′)n′. Therefore, by Theorem 3.62, n= n′ and J�d
smn(n)=

J�d
smn′(n

′), completing the proof.

Next, let us review standard constraints on strategies. Recall that one of the highlights of HO-
games (Hyland and Ong, 2000) is to establish a one-to-one correspondence between PCF Böhm
trees and innocent, well-bracketed static strategies (on static games modelling types of PCF). That
is, the two constraints narrow down the hom-sets of the codomain of the interpretation functor,
i.e., the category of HO-games, so that the interpretation becomes full. Roughly, a strategy is inno-
cent if its computation depends only on P-views, and well bracketed if every ‘question-answering’
in P-views by the strategy is achieved in the ‘last-question-first-answered’ fashion. Formally:

Definition 3.69 (Innocence of strategies (Hyland and Ong, 2000)). A strategy σ :G is innocent
if ∀smn, t ∈ σ , tm ∈ PG. �tm� = �sm�⇒ tmn ∈ σ ∧ �tmn� = �smn�.

Definition 3.70 (Well bracketing of strategies (Hyland and Ong, 2000)). A strategy σ :G is
well bracketed (wb) if, given sqta ∈ σ , λQAG (q)=Q, λQAG (a)= A and Jsqta(a)= q, each occurrence of
a question in t′, defined by �sqt�G = �sq�G.t′, justifies an occurrence of an answer in t′.

Next, recall that a programming language is total if its computation always terminates in a
finite period of time. This programming concept is interpreted in game semantics by totality of
strategies in a sense similar to totality of partial functions:

Definition 3.71 (Totality of strategies (Abramsky et al. 1997)). A strategy σ :G is total if it
satisfies ∀s ∈ σ , sm ∈ PG. ∃smn ∈ σ .

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

936 N. Yamada and S. Abramsky

Nevertheless, it is well known that totality of strategies is not preserved under composition due
to the problem of ‘infinite chattering’ (Abramsky et al., 1997; Clairambault and Harmer, 2010).
For this point, one usually imposes a condition on strategies stronger than totality, e.g., winning
(Abramsky et al., 1997), that is preserved under composition.Wemay certainly just apply the win-
ning condition of Abramsky et al. (1997), but it requires an additional structure on games, which
may be criticised as extrinsic and/or ad hoc; thus, we prefer another, simpler solution. A natural
idea is then to require that strategies should not contain any strictly increasing (with respect to
�) infinite sequence of positions. However, we have to relax this constraint: The dereliction derG
(Definition 3.89), the β-identity on a game G in the game-semantic CCBoC given in Section 4,
may not satisfy it, e.g., when G is an implication !A� B or a β-exponential BA.

Therefore, instead, we apply the same idea to P-views, arriving at

Definition 3.72 (Noetherianity of strategies (Clairambault and Harmer, 2010) strategy). A
strategy σ :G is noetherian if it does not contain any strictly increasing infinite sequence of P-views
in G.

It has been shown in Clairambault and Harmer (2010) that total, noetherian, innocent static
strategies are closed under composition.

Now, let us show that the standard constraints on strategies except totality are all preserved
under the hiding operation, which implies that dynamic strategies are a reasonable generalisation
of static strategies in a certain sense.

Corollary 3.73 (Preservation of constraints on strategies under hiding). If a strategy σ :G is
valid, innocent, wb or noetherian, then so is H d(σ) : H d(G), and if another τ :G satisfies σ �G τ ,
then H d(σ)�H d(G) H d(τ), for all d ∈N∪ {ω}.

Proof. Let d ∈N∪ {ω} be arbitrarily fixed. We have H d(σ) : H d(G) by Theorem 3.68.

• Preservation of validity is by Lemma 3.61, Corollary 3.63 and the axiom DI3 on�G;
• Preservation of innocence and noetherianity holds since �H d

G (sm)�H d(G) is a j-subsequence
in H d

G (�sm�G) for any sm ∈ POddG ;
• Well bracketing is preserved under the d-hiding operation H d because both of the question
and the answer of each ‘QA-pair’ are either deleted or retained.

Finally, preservation of identification of strategies is proved similarly to that of validity.

Totality of strategies is, however, not preserved under the d-hiding operation H d on strategies
for some d ∈N∪ {ω}. For instance, consider any total strategy that always performs a 1-internal
P-move, which is no longer total when the 1-hiding operation H 1 is applied. Clearly, even the
conjunction of totality and noetherianity of strategies is not preserved under H 1 for the same
reason (n.b., it is preserved only if we take the composition of total, noetherian, innocent strate-
gies). That is, recalling that composition coincides with concatenation plus hiding as sketched in
the introduction, the conjunction of totality and noetherianity is stable only under this particular
type of hiding, and not under hiding in general.

For this problem, let us introduce a new constraint on strategies:

Definition 3.74 (Strong totality of strategies). A strategy σ :G is strongly total if the strategy
H d(σ) : H d(G) is total for all d ∈N∪ {ω}.

Strong totality strengthens totality in the evident sense, and simply by the definition it is
preserved under the d-hiding operation H d for all d ∈N∪ {ω} (see Lemma 3.79).

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 937

We then introduce our notion of winning strategies, which is preserved under hiding:

Definition 3.75 (Winning of strategies). A strategy is winning if it is strongly total, innocent and
noetherian.

Corollary 3.76 (Closure of winning strategies under hiding). If a strategy σ :G is winning, then
so is the strategy H d(σ) : H d(G) for all d ∈N∪ {ω}.

Proof. Immediate from Corollary 3.73 (and Lemma 3.79 below).

Conceptually, winning strategies in the sense of Definition 3.75 can be regarded as ‘strategies
for proofs’ as follows. First, a proof should not get ‘stuck,’ and thus ‘strategies for proofs’ must
be (strongly) total. In addition, since logic is concerned with the truth of formulas, which are
invariant to ‘passage of time,’ proofs should not depended on ‘states of arguments.’ Hence, it makes
sense to impose innocence on ‘strategies for proofs.’ Finally, noetherianity is imposed because if
a play by an innocent, noetherian strategy keeps growing infinitely, then it cannot be Player’s
‘intention,’ and so it should result in a ‘win’ for Player.

Technically, we need winning and wb on strategies because they play an essential role for our
full completeness result (Corollary 4.7).

At the end of the present section, we establish an inductive property of the d-hiding operation
on strategies for each d ∈N∪ {ω}:

Notation 3.77. If σ :G and d ∈N∪ {ω}, then σ d↓ := { s ∈ σ | s is d-complete } and σ d↑ := σ \ σ d↓ .

Lemma 3.78 (Hiding and complete positions). Let σ :G. Given i, d ∈N such that i� d, we have
H i(σ)= H i(σ d↓) := { s�H i

G | s ∈ σ d↓ }.

Proof. The inclusion H i(σ d↓)⊆ H i(σ) is obvious. For the opposite inclusion, let s ∈ H i(σ), i.e.,
s= t�H i

G for some t ∈ σ ; we have to show s ∈ H i(σ d↓). If t ∈ σ d↓ , then we are done; thus, assume
otherwise. If there is no external or j-internal move with j> i other than the first move m0 in t,
then s= ε ∈ H i(σ d↓); so assume otherwise. As a result, we may write t =m0t1mnt2r, where t2r
consists only of j-internal moves with 0< j� i, and m and n are P- and O-moves, respectively,
such that λNG(m)= λNG(n)= 0∨ λNG(m)= λNG(n)> i. Take m0t1m ∈ σ d↓ such that m0t1m�H i

G =
m0H

i
G(t1)m= t�H i

G = s, whence s ∈ H i(σ d↓).

We are now ready to show

Lemma 3.79 (Stepwise hiding on strategies). Given σ :G,H i+1(σ)= H 1(H i(σ)) for all i ∈N.

Proof. We first show the inclusion H i+1(σ)⊆ H 1(H i(σ)). By Lemma 3.78, we may write any
element of the set H i+1(σ) as s�H i+1

G for some s ∈ σ i+1
↓ . Then, observe that

s�H i+1
G = H i+1

G (s)= HH i(G)(H i
G(s))= (s�H i

G)�H
1

H i(G) ∈ H 1(H i(σ)).

For the opposite inclusion H 1(H i(σ))⊆ H i+1(σ), again by Lemma 3.78, we may write
any element of H 1(H i(σ)) as (s�H i

G)�H 1
H i(G) for some s ∈ σ i↓. We have to show that

(s�H i
G)�H 1

H i(G) ∈ H i+1(σ). If s ∈ σ i+1
↓ , then it is completely analogous to the above argument;

so assume otherwise. Also, if an external or j-internal move with j> i+ 1 in s is only the first move
m0, then (s�H i

G)�H 1
H i(G) = ε ∈ H i+1(σ); thus assume otherwise. Now, we may write

s= s′mnm1m2 . . .m2kr,
https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

938 N. Yamada and S. Abramsky

where λNG(r)= i+ 1, m1,m2, . . . ,m2k are j-internal with 0< j� i+ 1, and m and n are external
or j-internal P- and O-moves with j> i+ 1, respectively. Then, we calculate

(s�H i
G)�H

1
H i(G) = H i

G(s)�H 1
H i(G)

= HH i(G)(H i
G(s′)).m

= H i+1
G (s′).m (by Lemma 3.15)

= s�H i+1
G ∈ H i+1(σ),

which completes the proof.

Consequently, as in the case of games, we may focus on the operation H 1:

Convention. Henceforth, we write H for H 1 and call it the hiding operation (on strategies); H i

denotes the i-times iteration of H for all i ∈N.

3.5 Constructions on dynamic strategies
Next, let us recall standard constructions on strategies (Abramsky andMcCusker, 1999). Note that
since (dynamic) strategies are simply ‘static strategies on (dynamic) games,’ they are clearly closed
under all the constructions on static strategies.

Nevertheless, the CCBoC of games and strategies given in Section 4 has normalised games as
0-cells and strategies φ :G such that H ω(G)�A⇒ B as 1-cells A→ B, and therefore we need
to generalise pairing and promotion of static strategies. In fact, we have generalised product and
exponential of static games, respectively, to pairing and promotion of dynamic games for this pur-
pose. Also, we shall decompose and generalise composition of static strategies into concatenation
plus hiding of dynamic strategies, for which we have introduced concatenation of dynamic games.

We postpone verifying the preservation of winning under these constructions on dynamic
strategies (Corollary 3.103) to the latter half of this section as it needs Lemma 3.102.

We begin with tensor⊗ on strategies. Roughly, the tensor φ ⊗ψ :A⊗ B� C⊗D of strategies
φ :A� C andψ : B�D plays by φ if the last O-move is ofA or C, and byψ otherwise. Formally:

Definition 3.80 (Tensor of strategies (Abramsky and McCusker, 1999)). Given games A, B, C
and D, and strategies φ :A� C and ψ : B�D, the tensor (product) φ ⊗ψ of φ and ψ is given by

φ ⊗ψ := { s ∈ LA⊗B�C⊗D | s �A, C ∈ φ, s � B,D ∈ψ }.

Example 3.81. The tensor succ⊗ double :N ⊗N �N ⊗N, where succ, double :N �N are
given in Section 1, plays, e.g., as follows:

N ⊗ N
succ⊗double

� N ⊗ N
q

q
q

q
2

4
2

3

N ⊗ N
succ⊗double

� N ⊗ N
q

q
5

10
q

q
7

8

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 939

Lemma 3.82 (Well-defined tensor of strategies). Given games A, B, C and D, and strategies
φ :A� C and ψ : B�D, the tensor φ ⊗ψ is a strategy on the game A⊗ B� C⊗D. If φ and ψ
are innocent (resp. wb, total, noetherian), then so is φ ⊗ψ . Given φ′ :A� C and ψ ′ : B�D with
φ �A�C φ′ and ψ �B�D ψ ′, we have φ ⊗ψ �A⊗B�C⊗D φ′ ⊗ψ ′.

Proof. Straightforward; see McCusker (1998), Abramsky et al. (2000).

We next recall pairing of strategies. Intuitively, the pairing 〈φ,ψ〉 : C�A&B of strategies φ :
C�A and ψ : C� B plays by φ if the play is in C�A, and by ψ otherwise. Formally:

Definition 3.83 (Pairing of strategies Abramsky and McCusker, 1999). Given games A, B and
C, and strategies φ : C�A and ψ : C� B, the pairing 〈φ,ψ〉 of φ and ψ is defined by

〈φ,ψ〉 := { s ∈ LC�A&B | (s � C,A ∈ φ ∧ s � B= ε)∨ (s � C, B ∈ψ ∧ s �A= ε) }.

Example 3.84. The pairing 〈succ, double〉 :N �N&N plays as either of the following diagrams:

N
〈succ,double〉

� N & N
q

q
n

n+ 1

N
〈succ,double〉

� N & N
q

q
n

2n

where n ∈N, depending on the first O-move.

Lemma 3.85 (Well-defined pairing of strategies). Given games A, B and C, and strategies φ :
C�A and ψ : C� B, the pairing 〈φ,ψ〉 is a strategy on the game C�A&B. If φ and ψ are
innocent (resp. wb, total, noetherian), then so is 〈φ,ψ〉. Given φ′ : C�A and ψ ′ : C� B with
φ �C�A φ′ and ψ �C�B ψ ′, we have 〈φ,ψ〉 �C�A&B 〈φ′,ψ ′〉.

Proof. Straightforward; see McCusker (1998), Abramsky et al. (2000).

Next, let us recall promotion of strategies. Intuitively, the promotion ϕ† : !A� !B of a strat-
egy ϕ :A⇒ B plays, during a play s in !A� !B, as ϕ for each j-subsequence s � i, called a thread
(Abramsky and McCusker, 1999; McCusker, 1998). Formally:

Definition 3.86 (Promotion of strategiesMcCusker, 1998). Given games A and B, and a strategy
ϕ : !A� B, the promotion ϕ† of ϕ is defined by

ϕ† := { s ∈ L!A�!B | ∀i ∈N. s � i ∈ ϕ }.

We could have defined noetherianity of strategies in terms of positions, but then it would not
be preserved under promotion. It is another reason why we have defined it in terms of P-views
(Definition 3.72).

Example 3.87. Let succ :N ⇒N be the successor strategy (n.b., it is on the implication ⇒, not
the linear implication �), which specifically selects, say, the ‘tag’ (_, 0) in the domain !N. Then,
the promotion succ† : !N � !N plays, e.g., as follows:

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

940 N. Yamada and S. Abramsky

!N
succ†
� !N

(q, i)
(q, 〈i, 0〉)
(n, 〈i, 0〉)

(n+ 1, i)
(q, j)

(q, 〈j, 0〉)
(q, k)

(q, 〈k, 0〉)
(l, 〈k, 0〉)

(l+ 1, k)
(m, 〈j, 0〉)

(m+ 1, j)

where i, j, k, n,m, l ∈N such that i �= j, i �= k and j �= k, and they are all selected by Opponent. Note
that succ† consistently plays as succ for each thread.

Lemma 3.88 (Well defined promotion of strategies). Given games A and B, and a strategy
ϕ : !A� B, the promotion ϕ† is a strategy on the game !A� !B. If ϕ is innocent (resp. wb, total,
noetherian), then so is ϕ†. Given ϕ̃ : !A� B with ϕ �!A�B ϕ̃, we have ϕ† �!A�!B ϕ̃†.

Proof. Straightforward; see McCusker (1998), Abramsky et al. (2000).

We proceed to recall a class of simple strategies, which are β-identities in our game-semantic
CCBoC introduced in Section 4:

Definition 3.89 (Derelictions Abramsky et al. 2000; McCusker, 1998). The dereliction derA :
!A�A on a normalised game A is defined by

derA := { s ∈ PEven!A�A | ∀t� s. Even(t)⇒ (t � !A) � 0= t �A }.

Note that any ‘tag’ (_, i) such that i ∈N would work; our choice (_, 0) does not matter.

Lemma 3.90 (Well defined derelictions). The dereliction derA on a normalised game A is a valid,
innocent, wb, strongly total strategy on the game !A�A. It is noetherian if A is well founded.

Proof. We just show that derA is noetherian if A is well founded as the other points are trivial, e.g.,
validity of derA is immediate from the definition of �!A�A. Given smn ∈ derA, it is easy to see by
induction on |s| that the P-view �sm� is of the form m1m1m2m2 . . .mkmkm, and thus there is a
sequence ��A m1 �A m2 · · · �A mk �A m of enabling pairs. Therefore, if A is well founded, then
derA must be noetherian.

Let us proceed to introduce some generalisations of existing constructions. Note that tensor⊗,
pairing 〈_, _〉 and promotion (_)† of static strategies have been already generalised slightly because
they allow non-normalised dynamic games and strategies. Nevertheless, for the game-semantic
CCBoC introduced in Section 4, we need their further generalisations:

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 941

Definition 3.91 (Generalised pairing of strategies). Given strategies φ : L and ψ : R such that
H ω(L)� C�A and H ω(R)� C� B for some normalised games A, B and C, the (generalised)
pairing 〈φ,ψ〉 of φ and ψ is defined by

〈φ,ψ〉 := { s ∈ L〈L,R〉 | (s � L ∈ φ ∧ s � R= ε)∨ (s � R ∈ψ ∧ s � L= ε) }.

Theorem 3.92 (Well defined generalised pairing of strategies). Given strategies φ : L and ψ :
R such that H ω(L)� C�A and H ω(R)� C� B for some normalised games A, B and C, the
generalised pairing 〈φ,ψ〉 is a strategy on the game 〈L, R〉. If φ and ψ are innocent (resp. wb, total,
noetherian), then so is 〈φ,ψ〉. Given φ′ : L and ψ ′ : R such that φ �L φ′ and ψ �R ψ ′, we have
〈φ,ψ〉 �〈L,R〉 〈φ′,ψ ′〉.

Proof. Straightforward.

Convention.Henceforth, pairing of strategies refers to the generalised one.

Definition 3.93 (Generalised promotion of strategies). Given a strategy ϕ :G such that
H ω(G)� !A� B for some normalised games A and B, the (generalised) promotion ϕ† of ϕ is
defined by

ϕ† := { s ∈ LG† | ∀i ∈N. s � i ∈ ϕ }.

Theorem 3.94 (Well defined generalised promotion on strategies). Given a strategy ϕ :G such
thatH ω(G)� !A� B for some normalised games A and B, the generalised promotion ϕ† is a strat-
egy on the game G†. If ϕ is innocent (resp. wb, total, noetherian), then so is ϕ†. Given ϕ̃ :G such that
ϕ �G ϕ̃, we have ϕ† �G† ϕ̃†.

Proof. Straightforward.

Convention.Henceforth, promotion of strategies refers to the generalised one.

Next, let us introduce a new construction on strategies, which plays a fundamental role in the
present work:

Definition 3.95 (Concatenation of strategies). Let ι : J and κ :K be strategies such thatH ω(J)�
A� B and H ω(K)� B� C for some normalised games A, B and C. The concatenation ι ‡ κ of ι
and κ is defined by

ι ‡ κ := { s ∈ JJ‡K | s � J ∈ ι, s �K ∈ κ , s � B[1], B[2] ∈ prB }.

Example 3.96. The ‘non-hiding composition’ between succ, double :N �N in the introduction
is formalised by the concatenation succ ‡ double : (N �N) ‡ (N �N).

Theorem 3.97 (Well defined concatenation of strategies). Let ι : J and κ :K be strategies such
that H ω(J)�A� B and H ω(K)� B� C, where A, B and C are normalised games. Then, we
have ι ‡ κ : J ‡K and H ω(ι);H ω(κ)= H ω(ι ‡ κ) :A� C, where H ω(ι);H ω(κ) is the compo-
sition of H ω(ι) :A� B and H ω(κ) : B� C (Abramsky and McCusker, 1999). If ι and κ are
innocent (resp. wb, noetherian, total), then so is ι ‡ κ . Given ι′ : J and κ ′ :K with ι�J ι′ and κ �K κ ′,
we have ι ‡ κ �J‡K ι′ ‡ κ ′.

Proof. We just show the first statement since the other ones are straightforward. It then suf-
fices to prove ι ‡ κ : J ‡K and H ω(ι ‡ κ)= ι; κ since it implies ι; κ = H ω(ι ‡ κ) : H ω(J ‡K)�

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

942 N. Yamada and S. Abramsky

A� C by Lemmas 3.54 and 3.68. However, H ω(ι ‡ κ)= ι; κ is immediate from the definition of
concatenation; thus, we focus on ι ‡ κ : J ‡K.

First, we have the inclusion ι ‡ κ ⊆ PJ‡K because any s ∈ ι ‡ κ satisfies s ∈ JJ‡K , s � J ∈ ι⊆ PJ ,
s �K ∈ κ ⊆ PK and s � B[1], B[2] ∈ prB. It is also immediate that such s is of even length. It remains
to verify the axioms S1 and S2. For this, we need the following claim:

(♦) Each s ∈ ι ‡ κ consists of adjacent pairsmn such thatm, n ∈MJ orm, n ∈MK .

Proof of the claim ♦. By induction on |s|. The base case is trivial. For the inductive step, let smn ∈
ι ‡ κ . Ifm ∈MJ , then (s � J).m.(n � J) ∈ σ , where s � J is of even length by the induction hypothesis.
Thus, we must have n ∈MJ . Ifm ∈MK , then n ∈MK by the same argument.

• (S1). Since ε ∈ ι ‡ κ , we have ι ‡ κ �= ∅. For even-prefix-closure, assume smn ∈ ι ‡ κ . By the
claim ♦, either m, n ∈MJ or m, n ∈MK . In either case, it is straightforward to see that s ∈
PJ‡K , s � J ∈ ι, s �K ∈ κ and s � B[1], B[2] ∈ prB, i.e., s ∈ ι ‡ κ .

• (S2). Assume smn, smn′ ∈ ι ‡ κ . By the claim ♦, either m, n, n′ ∈MJ or m, n, n′ ∈MK .
In the former case, (s � J).mn, (s � J).mn′ ∈ ι. Thus, n= n′ and Jsmn(n)=J(s�J).mn(n)=
J(s�J).mn′(n′)=Jsmn′(n′) by S2 on ι, where note that n and n′ are both P-moves and thus
non-initial in J. The latter case may be handled similarly.

Therefore, we have shown that the relation ι ‡ κ : J ‡K holds.

At this point, let us note that totality of (dynamic) strategies is not preserved under composi-
tion, but it is preserved under concatenation. This phenomenon is essentially because totality is
not preserved under the hiding operation as already remarked before.

For completeness, let us explicitly define the rather trivial currying of strategies:

Definition 3.98 (Currying of strategies). Given a strategy σ :G with H ω(G)�A⊗ B� C for
some normalised games A, B and C, the currying�(σ) :�(G) of σ is σ up to ‘tags.’

Lemma 3.99 (Well-defined currying of strategies). Strategies are closed under currying, and
currying preserves totality, innocence, well-bracketing, noetherianity and identification of strategies.

Proof. Obvious.

Now, as in the case of games, let us proceed to establish the hiding lemma on strategies
(Lemma 3.102). We first need the following:

Lemma 3.100 (Hiding on legal positions in the second form). For any arena G and number
d ∈N∪ {ω}, we have LH d(G) = { s�H d

G | s ∈ LG }.

Proof. Observe that

{ s�H d
G | s ∈ LG } = { s�H d

G | s ∈ LG, s is d-complete }
= { H d

G (s) | s ∈ LG, s is d-complete }
= { H d

G (s) | s ∈ LG } (by the same argument as above)
= LH d(G) (by Corollary 3.30),

completing the proof.

Notation 3.101. We write ♠i∈I , where I is {1} or {1, 2}, for any of the constructions on strategies
introduced so far, i.e., ♠i∈I is either⊗, (_)†, 〈_, _〉, ‡, ; or�.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 943

Lemma 3.102 (Hiding lemma on strategies). Let♠i∈I be a construction on strategies, and σi :Gi
for each i ∈ I. Then, for all d ∈N∪ {ω}, we have

(1) H d(♠i∈Iσi)=♠i∈IH d(σi) if ♠i∈I is⊗, (_)†, 〈_, _〉 or�;
(2) H d(σ1 ‡ σ2)= H d(σ1) ‡H d(σ2) if H d(σ1 ‡ σ2) is not normalised;
(3) H d(σ1 ‡ σ2)= H d(σ1);H d(σ2) otherwise.

Proof. As in the case of games, it suffices to assume d= 1. Here, we just focus on pairing 〈_, _〉
since the other constructions may be handled analogously.

Let σi :Gi (i= 1, 2) be strategies such that H ω(G1)� C�A, H ω(G2)� C� B for some
normalised games A, B and C. For H (〈σ1, σ2〉)⊆ 〈H (σ1),H (σ2)〉, observe that

s ∈ H (〈σ1, σ2〉)⇒∃t ∈ 〈σ1, σ2〉. t�H 1〈G1,G2〉 = s
⇒∃t ∈ L〈G1,G2〉. t�H 1〈G1,G2〉 = s∧ ((t �G1 ∈ σ1 ∧ t �G2 = ε)∨ (t �G2 ∈ σ2

∧ t �G1 = ε))
⇒ s ∈ LH (〈G1,G2〉) ∧ (s �H (G1) ∈ H (σ1)∧ s �H (G2)= ε)

∨ (s �H (G2) ∈ H (σ2)∧ s �H (G1)= ε))
⇒ s ∈ 〈H (σ1),H (σ2)〉,

where the third implication is by Lemma 3.100. Next, we show the converse by

s ∈ 〈H (σ1),H (σ2)〉⇒ s ∈ LH (〈G1,G2〉) ∧ (s �H (G1) ∈ H (σ1)∧ s �H (G2)= ε)
∨ (s �H (G2) ∈ H (σ2)∧ s �H (G1)= ε))

⇒ (∃u ∈ σ1. u�H 1
G1 = s �H (G1)∧ u �G2 = ε)

∨ (∃v ∈ σ2. v�H 1
G2 = s �H (G2)∧ v �H (G1)= ε)

⇒∃w ∈ 〈σ1, σ2〉.w�H 1〈G1,G2〉 = s
⇒ s ∈ H (〈σ1, σ2〉),

which completes the proof.

A particularly important consequence of the hiding lemma is the following:

Corollary 3.103 (Closure of winning strategies). Winning strategies are closed under tensor ⊗,
pairing 〈_, _〉, promotion (_)†, concatenation ‡, composition ; and currying�.

Proof. Thanks to Lemmas 3.82 and 3.99 and Theorems 3.92, 3.94 and 3.97, it suffices to show
that the conjunction of strong totality and noetherianity of strategies is preserved under the
constructions. However, it simply follows from Lemma 3.102.

Finally, as a technical preparation for the next section, let us define the dereliction gameΞG on
each gameG, which is, roughly, the subgame ofG⇒G in which only plays by the dereliction derG
are possible. Formally:

Definition 3.104 (Dereliction games). The dereliction game on a game G is the subgame ΞG �
G⇒G defined by

MΞG :=MG⇒G λΞG := λG⇒G �ΞG := �G⇒G

PΞG := { s ∈ PG[0]⇒G[1] | ∀t� s. Even(t)⇒ t �G[0] = t �G[1] } �ΞG :=�G⇒G � PΞG × PΞG .

Further, given normalised games A and B, we define

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

944 N. Yamada and S. Abramsky

• ΠA,B
1 �A&B⇒A to be ΞA up to ‘tags,’ where we often abbreviate it asΠ1;

• ΠA,B
2 �A&B⇒ B to beΞB up to ‘tags,’ where we often abbreviate it asΠ2;

• ΥA,B � BA&A⇒ B to beΞA⇒B up to ‘tags,’ where we often abbreviate it as Υ .

Lemma 3.105 (D-lemma). Given normalised games A, B, C, L� C⇒A, R� C⇒ B, P � C⇒
A&B, U �A&B⇒ C and V �A⇒ CB, we have the equations

〈L, R〉†;ΠA,B
1 = L 〈L, R〉†;ΠA,B

2 = R 〈P†;ΠA,B
1 , P†;ΠA,B

2 〉 = P

〈(ΠA,B
1)†;�(U),ΠA,B

2 〉†;ΥB,C =U �(〈(ΠA,B
1)†;V ,ΠA,B

2 〉†;ΥB,C)=V .

Proof. Straightforward.

4. Dynamic Game Semantics of Finitary PCF
This last main section is the climax of the present work. We define a game-semantic CCBoC
LDG (Definition 4.1) and a standard structure SG for FPCF in LDG (Definition 4.3) in
Section 4.1. Then, in Section 4.2, we show that the induced interpretation �_�SG

LDG
meets the

PDCP (Theorem 4.5), thus the DCP by Theorem 2.18, giving the first instance of dynamic game
semantics.

4.1 Dynamic game semantics of finitary PCF
Let us now establish the CCBoC LDG of dynamic games and strategies:

Definition 4.1 (The CCBoC LDG). The CCBoC LDG= (LDG,H) is defined as follows:

• Objects are normalised, well founded games;
• A β-morphism A→ B is a pair (J, [φ]W) of a game J that satisfies H ω(J)�A⇒ B and
the equivalence class [φ]W := {ψ : J |ψ is wb and winning,ψ �J φ } of a valid, wb, winning
strategy φ : J;

• The β-composition A (J,[φ]W)→ B (K,[ψ]W)→ C is the pair (J† ‡K, [φ† ‡ψ]W);
• The β-identity idA :A→A on each object A is the pair (ΞA, [derA]W);
• The evaluation H maps morphisms (J, [φ]W) :A→ B to the pair (H (J), [H (φ)]W);
• The β-terminal object is the terminal game T (Example 3.22);
• β-product and β-exponential are, respectively, given by A× B :=A&B and BA :=A⇒ B=
!A� B for all objects A, B ∈LDG;

• β-pairing is given by 〈(L, [α]W), (R, [β]W)〉 := (〈L, R〉, [〈α, β〉]W) : C→A&B for all objects
A, B, C ∈LDG, and morphisms (L, [α]W) : C→A and (R, [β]W) : C→ B;

• The β-projections π1 :A&B→A and π2 :A&B→ B are the pairs (ΠA,B
1 , [�A,B

1]W) and
(ΠA,B

2 , [�A,B
2]W) for all objects A, B ∈LDG, respectively, where�A,B

1 :ΠA,B
1 and�A,B

2 :ΠA,B
2

are, respectively, the derelictions derA and derB up to ‘tags’;
• β-currying is given by�(G, [ϕ]W) := (�(G), [�(ϕ)]W) :A→ (B⇒ C) for all objects A, B, C ∈
LDG, and morphism (G, [ϕ]W) :A&B→ C;

• The β-evaluation evB,C : CB&B→ C for all objects B, C ∈LDG is the pair (ΥB,C, [υB,C]W),
where υB,C :ΥB,C is the dereliction derB⇒C up to ‘tags.’

Note that we have made the underlying game of each β-morphism in LDG explicit in order
to take the equivalence class of strategies. Also, we have focused on well founded games and wb,
winning strategies for the full completeness result (Corollary 4.7), where note that games must be
well founded for derelictions to be noetherian (Lemma 3.90).

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 945

Theorem 4.2 (Well defined LDG). LDG forms a CCBoC.

Proof. First, for β-composition, let A, B, C ∈LDG, (J, [φ]W) :A→ B and (K, [ψ]W) : B→ C in
LDG. Then, φ† : J† by Theorem 3.94, and H ω(J†)� !A� !B by Theorem 3.46. Therefore, we
have φ† ‡ψ : J† ‡K such that H ω(J† ‡K)�A⇒ C by Theorem 3.97. Also, promotion and con-
catenation preserve validity, wb and winning of strategies (by Theorems 3.94 and 3.97, and
Corollary 3.103). Hence, the pair (J† ‡K, [φ† ‡ψ]W) is a β-morphism A→ C in LDG. Note that
the composition does not depend on the representatives φ and ψ .

Next, β-composition preserves the equivalence (i.e., the trivial 2-cells) �: For any
A, B, C ∈LDG, (J, [ι]W), (J̃, [ι̃]W) :A→ B and (K, [κ]W), (K̃, [κ̃]W) : B→ C in LDG,
if H ω(J, [ι]W)= H ω(J̃, [ι̃]W) and H ω(K, [κ]W)= H ω(K̃, [κ̃]W), then H ω(J† ‡K)=
H ω(J)†;H ω(K)= H ω(J̃)†;H ω(K̃)= H ω(J̃† ‡ K̃) by Lemma 3.54, and H ω(ι† ‡ κ)�H ω(J†‡K)
H ω(ι̃† ‡ κ̃) by Corollary 3.73, whence H ω(J† ‡K, [ι† ‡ κ]W)= H ω(J̃† ‡ K̃, [ι̃† ‡ κ̃]W).

Clearly, the associativity of β-composition modulo the equivalence � holds: Given D ∈LDG,
and (G, [ϕ]) : C→D in LDG, by Lemma 3.54, we have

H ω((J† ‡K)† ‡G)= (H ω(J†);H ω(K))†;H ω(G)
= (H ω(J)†;H ω(K)†);H ω(G)
= H ω(J)†; (H ω(K)†;H ω(G))
= H ω(J†); (H ω(K†);H ω(G))
= H ω(J† ‡ (K† ‡G))

as well as by Lemma 3.102

H ω((φ† ‡ψ)† ‡ ϕ)= (H ω(φ†);H ω(ψ))†;H ω(ϕ)
= (H ω(φ†);H ω(ψ)†);H ω(ϕ)
= (H ω(φ†); (H ω(ψ†);H ω(ϕ))
= H ω(φ† ‡ (ψ† ‡ ϕ)),

whence ((J, [φ]W); (K, [ψ]W)); (G, [ϕ]W)� (J, [φ]W); ((K, [ψ]W); (G, [ϕ]W)).
Similarly, the unit law modulo the equivalence� holds; we leave the details to the reader. Also,

H clearly satisfies the four axioms of BoC (Definition 2.2), having shown that LDG is a BoC. It
remains to verify its cartesian closed structure modulo the equivalence�.

The universal property of the β-terminal game T modulo the equivalence � is obvious,
where we define !A := (A⇒ T, [{ε}]W) :A→ T for each A ∈LDG. The β-projections are clearly
values in LDG. Given β-morphisms (L, [α]W) : C→A and (R, [β]W) : C→ B in LDG, i.e.,
α : L, β : R, H ω(L)� C⇒A and H ω(R)� C⇒ B, we obtain the valid, wb, winning pairing
〈α, β〉 : 〈L, R〉 such that H ω(〈L, R〉)� C⇒A&B by Theorem 3.40 and Corollary 3.103. Hence,
the pair (〈L, R〉, [〈α, β〉]W) is a β-morphism C→A&B in LDG, which does not depend on the
representatives α and β . Also, the β-pairing clearly preserves values in LDG.

Also, by Lemmas 3.54 and 3.105, we have

H ω(〈L, R〉† ‡ΠA,B
1)= 〈H ω(L),H ω(R)〉†;ΠA,B

1 = H ω(L)

as well as by Lemma 3.102 we have

H ω(〈α, β〉† ‡�A,B
1)= 〈H ω(α)†,H ω(β)†〉;�A,B

1 = H ω(α).

Similarly, we have H ω(〈L, R〉† ‡ΠA,B
2)= H ω(R) and H ω(〈α, β〉† ‡�A,B

2)= H ω(β). Hence,
〈(L, [α]W), (R, [β]W)〉; π1 � (L, [α]W) and 〈(L, [α]W), (R, [β]W)〉; π2 = (R, [β]W) hold.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

946 N. Yamada and S. Abramsky

Next, given any β-morphism (P, [ρ]W) : C→A&B in LDG, we have

H ω(〈P† ‡ΠA,B
1 , P† ‡ΠA,B

2 〉)= 〈H ω(P)†;ΠA,B
1 ,H ω(P)†;ΠA,B

2 〉 = H ω(P)
again by Lemmas 3.54 and 3.105, as well as by Lemma 3.102, we have

H ω(〈ρ† ‡�A,B
1 , ρ† ‡�A,B

2 〉)= 〈H ω(ρ)†;�A,B
1 ,H ω(ρ)†;�A,B

2 〉 = H ω(ρ).
Hence, 〈(P, [ρ]); π1, (P, [ρ]); π2〉 � (P, [ρ]) holds.

It is also straightforward to check that β-pairing in LDG preserves the equivalence �: Given
any β-morphisms (L, [α]W), (L̃, [α̃]W) : C→A and (R, [β]W), (R̃, [β̃]W) : C→ B in LDG such
that H ω(L, [α]W)= H ω(L̃, [α̃]W) and H ω(R, [β]W)= H ω(R̃, [β̃]W), we have

H ω(〈(L, [α]W), (R, [β]W)〉)= (H ω(〈L, R〉), [H ω(〈α, β〉)]W)
= (〈H ω(L),H ω(R)〉, [〈H ω(α),H ω(β)〉]W)
= (〈H ω(L̃),H ω(R̃)〉, [〈H ω(α̃),H ω(β̃)〉]W)
= (H ω(〈L̃, R̃〉), [H ω(〈α̃, β̃〉)]W)
= H ω(〈(L̃, [α̃]W), (R̃, [β̃]W)〉).

Finally, the requirements for β-exponentials, β-currying and β-evaluations are proved simi-
larly to the cases of β-products, β-pairing and β-projections; we leave them to the reader.

We proceed to give a standard structure (Definition 2.15) for FPCF in LDG:

Definition 4.3 (Standard structure in LDG). The standard structure
SG = (2, T, &, π ,⇒, ev, tt, ff, ϑ)

of games and strategies for FPCF in LDG is defined as follows:

• 2 is the game of booleans (Example 3.23), and T is the terminal game (Example 3.22);
• & is product on games, and πA,B

i := (ΠA,B
i , [�A,B

i]W) (i= 1, 2) for any A, B ∈LDG;
• ⇒ is function space on games, and evA,B := (ΥA,B, [υA,B]W) for any A, B ∈LDG;
• tt := (T ⇒ 2, [Pref({q.tt})Even]W), ff := (T ⇒ 2, [Pref({q.ff})Even]W) : T → 2;
• ϑ := (2&(2&2)⇒ 2, [case]W) : 2&(2&2)→ 2, where case : 2&(2&2)⇒ 2, is the standard
game semantics of the case-construction (Abramsky and McCusker, 1999) modified to a
normalised (dynamic) strategy in the obvious manner.

Lemma 4.4 (Standardness of SG). The structure SG for FPCF in LDG is standard in the sense
defined in Definition 2.15.

Proof. Straightforward, where note that the underlying game J of each morphism (J, [φ]W) in
LDG is essential for the structure SG to satisfy the inequality (5).

4.2 Game-semantic dynamic correspondence property for FPCF
At last, we are now ready to prove that our game semantics satisfies the DCP (Definition 2.16):

Theorem 4.5 (PDCP-theorem). The interpretation �_�SG
LDG

of FPCF (Definitions 2.15 and 4.1)
satisfies the PDCP (Definition 2.17).

Proof. For the PDCP, the only nontrivial case is to show for any reduction of FPCF of the form
(λxA.V)W→ U, where V,W andU are values, the equationH (�(λxA. V)W�

SG
LDG

)= �U�
SG
LDG

(n.b., the

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 947

inequality �(λxA.V)W�
SG
LDG

�= �U�
SG
LDG

is immediate from the first component of each β-morphism
in LDG and the second axiom on standardness of SG); the other conditions for the PDCP follow
from Lemmas 3.54 and 3.102. Let us focus on the nontrivial case, for which we define the height
Ht(B) ∈N of each type B byHt(o) := 0 andHt(B1 ⇒ B2) :=max (Ht(B1)+1,Ht(B2)). We proceed
by induction on the height of the type A ofW.

In the following, given β-morphisms (H, [τ]W) : C→ (A⇒ B) and (G, [σ]W) : C→A in
LDG, we define the β-morphism (H, [τ]W) (G, [σ]W)" := (〈G,H〉† ‡ΥA,B, [〈τ , σ 〉† ‡ υA,B]W) :
C→ B in LDG. More generally, if (H, [τ]W) : C→ (A1 ⇒A2 ⇒· · ·⇒Ak ⇒ B) and (Gi, [σi]W) :
C→Ai for i= 1, 2, . . . , k, then we write (H, [τ]W) (G1, [σ1]W), (G2, [σ2]W), . . . , (Gk, [σk]W)" for
(H, [τ]W) (G1, [σ1]W)" (G2, [σ2]W)" . . . (Gk, [σk]W)" : C→ B.We abbreviate �_�SG

LDG
as �_�. Let

 be the context of (λxA.V)W (and U). We abbreviate each β-morphism (G, [σ]W) in LDG as
[σ] for brevity, and focus on the second components (i.e., the equivalence classes of strategies);
the corresponding equations on the first components (i.e., games) may be obtained, thanks to
Lemmas 3.54 and 3.105, similarly to the ways for the first components shown below.

For the base case, assume Ht(A)= 0, i.e., A≡ o. By induction on |V|, we have
• If V≡ tt, then (λxA. tt)W→ tt, and clearlyH (�(λxA.tt)W�)= 〈�(�tt�), �W�〉†; [υ]= �tt�. The
case of V≡ ff is analogous.

• If V≡ λyC. V′, then (λxAyC. V′)W→ λyC.U′ with (λxA. V′)W→ U′ (since nf ((λxAyC.
V′)W)≡ nf (λyC. V′[W/x])≡ λyC. nf (V′[W/x])≡ λyC. nf ((λxA. V′)W)). By the induction
hypothesis, H (�(λxA.V′)W�)= �U′�. Hence, we have

H (�VW�)= H (〈��A�(��C�(�V′�)), �W�〉† ‡ [υ])
= 〈��A�(��C�(�V′�)), �W�〉†; [υ] (by Lemma 3.102)

=��C�(〈��A�(�V′�), �W�〉†; [υ])
=��C�(H (〈��A�(�V′�), �W�〉† ‡ [υ]))
=��C�(H (�(λxA. V′)W�))
=��C�(�U′�)
= �λyC. U′�.

• If V≡ case(yV1 . . . Vk)[Ṽ1; Ṽ2] with x �= y, then (λxA.V)W→ U, where

U≡ case(ynf (V1[W/x]) . . . nf (Vk[W/x]))[nf (Ṽ1[W/x]); nf (Ṽ1[W/x])].

By the induction hypothesis and the interpretation of the variable y, we have

H (�(λxA. V)W�)
= H ω(��A�(〈�y� �V1�, . . . , �Vk�", 〈�Ṽ1�, �Ṽ2�〉〉† ‡ [case]) �W�")
= H ω(〈��A�(�y�) �W�" ��A�(�V1�) �W�", . . . ,��A�(�Vk�) �W�"", 〈��A�(�Ṽ1�) �W�",

��A�(�Ṽ2�) �W�"〉〉† ‡ [case])
= H ω(〈�(λx. y)W� �(λx. V1)W�, . . . , �(λx. Vk)W�", 〈�(λx. Ṽ1)W�, �(λx. Ṽ2)W�〉〉† ‡ [case])
= H ω(〈�y� �nf (V1[W/x])�, . . . , �nf (Vk[W/x])�", 〈�nf (Ṽ1[W/x])�, �nf (Ṽ2[W/x])�〉〉† ‡ [case])
= �U�.

• If V≡ case(x)[Ṽ1; Ṽ2], then (λxA.V)W→ U, where

U≡ case(W)[nf (Ṽ1[W/x]); nf (Ṽ2[W/x])].

By the same reasoning as the above case, we get H (�(λxA. V)W�)= �U�.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

948 N. Yamada and S. Abramsky

Next, for the inductive step, assume Ht(A)= h+ 1. We proceed in the same way as the base
case, i.e., by induction on |V|, except that the last case is generalised to V≡ case(xV1 . . . Vk)[Ṽ1; Ṽ2],
where A≡ A1 ⇒ A2 ⇒· · ·⇒ Ak ⇒ o (k� 0). We have to consider the additional case of k� 1;
then we have (λxA. V)W→ U, where

U≡ case(nf (W(V1[W/x]) . . . (Vk[W/x])))[nf (Ṽ1[W/x]); nf (Ṽ2[W/x])].

We then have the following chain of equations:

H �(λx. V)W�

= H (�(H ω(〈�x� �V1�, . . . , �Vk�", 〈�Ṽ1�, �Ṽ2�〉〉† ‡ [case])) �W�")
= H ω(〈�(�x�) �W�" �(�V1�) �W�", . . . ,�(�Vk�) �W�"", 〈�(�Ṽ1�) �W�",

�(�Ṽ2�) �W�"〉〉† ‡ [case])
= H ω(〈�(λx. x)W� �(λx. V1)W�, . . . , �(λx. Vk)W�", 〈�(λx. Ṽ1)W�, �(λx. Ṽ2)W�〉〉† ‡ [case])
= H ω(〈�W� �nf (V1[W/x])�, . . . , �nf (Vk[W/x])�", 〈�nf (˜V1[W/x])�, �nf (˜V2[W/x])�〉〉† ‡ [case])

(by the induction hypothesis with respect to |V|)
= H ω(〈�nf (W(V1[W/x]) . . . (Vk[W/x]))�, 〈�nf (˜V1[W/x])�, �nf (˜V2[W/x])�〉〉† ‡ [case])

(by the induction hypothesis (applied k-times) with respect to the hight of types Ai (i ∈ k))
= �case(nf (W(V1[W/x]) . . . (Vk[W/x])))[nf (˜V1[W/x]); nf (˜V2[W/x])]�
= �U�

which completes the proof.

Corollary 4.6 (Dynamic game semantics of FPCF). The interpretation �_�SG
LDG

of FPCF and the
hiding operation H satisfy the DCP in the sense of Definition 2.16.

Proof. By Lemma 4.4 and Theorems 2.18, 4.2 and 4.5.

The relation between the syntax and the semantics is actually tighter than Corollary 4.6:
Exploiting the strong definability result (Amadio and Curien, 1998; Hyland and Ong, 2000), FPCF
can be seen as a formal calculus for computations in the CCBoC LDG. In addition, FPCF rep-
resents every computation in LDG by the following full completeness result (Curien, 2007): Any
strategy on a game that interprets a type of FPCF is the denotation of some term of FPCF.

Corollary 4.7 (Dynamic full completeness). Let G be a game such that for some strategy σ :G the
pair (G, [σ]W) is the interpretation �
 �M : B�

SG
LDG

of a programme
 �M : B in FPCF. Then, for
any strategy σ̃ :G, there is a programme
 �M̃ : B in FPCF such that �
 �M̃ : B�

SG
LDG

= (G, [σ̃]W).

Proof. Note that the game G is constructed along the construction of type B in FPCF. We proceed
by induction on the construction of G (or B). First, since values of FPCF are PCF Böhm trees
except that the natural number type ι is replaced with the boolean type o, and the bottom term⊥
is deleted, the conventional full completeness and the strong definability hold for values of FPCF
in the same way as that of the wb, innocent game semantics of PCF (Abramsky and McCusker,
1999; Hyland and Ong, 2000), where winning of strategies excludes the denotation of the bottom
term⊥; see Abramsky and McCusker (1999), Curien (2006) for the details.

It remains to consider the rule A for applications (Definition 2.4), i.e., the case where G is of
the form 〈U,V〉† ‡Υ . But then, note that only plays by the dereliction (up to ‘tags’) are possible
in Υ (Definition 3.104), and therefore we may just apply the induction hypothesis.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 949

5. Conclusion and Future Work
We have presented a mathematical (and syntax-independent) formulation of dynamics and
intensionality of computation in terms of bicategories and game semantics. From the opposite
angle, we have developed bicategorical and game-semantic frameworks for dynamic, intensional
computation with a convenient formal calculus.

Let us emphasise that the dynamic, intensional nature of our semantics stands in sharp contrast
to the static, extensional nature of conventional (categorical or game) semantics. In particular, our
semantics satisfies the highly nontrivial DCP with respect to FPCF (Definition 2.16).

The present work refines and generalises standard categorical and game semantics of type
theories. For instance, composition of static strategies is decomposed and generalised into concate-
nation plus hiding on dynamic strategies. Also, standard constructions and constraints on static
games and strategies are naturally accommodated in dynamic games and strategies. From the
category-theoretic point, the present work refines the standard CCC-interpretation of type the-
ories by the CCBoC-interpretation. In this sense, our approach is natural and general, achieving
mathematics of dynamics and intensionality of computation as promised in Section 1.

Let us remark that our result does not contradict the standard result by Danos et al. (1996), i.e.,
the correspondence between the execution of LHR and the step-by-step ‘internal communication’
between conventional strategies. In fact, LHR is a finer reduction strategy than the operational
semantics of FPCF (Definition 2.4), and the work by Danos et al. implies that LHR corresponds in
conventional game semantics what should be called a ‘move-wise’ execution of the hiding oper-
ation. On the other hand, our operational semantics is executed in a much coarser, ‘type-wise’
fashion, and thus it may be seen as executing at a time a certain ‘chunk’ of LHR in a specific order.
Our dynamic game semantics captures such a coarser dynamics of computation, and thus it does
not contradict Danos et al. (1996).

Of course, it is highly interesting to refine the present work to capture LHR or another,
finer reduction strategy such as explicit substitution (Rose, 1996) and the differential λ-calculus
(Ehrhard and Regnier, 2003), which we leave as future work.

More generally, the most immediate future work is to apply the present framework of dynamic
game semantics to various other logics and computations as in the case of static game semantics
(Abramsky and McCusker, 1999). Also, it would be interesting to see how accurately our game-
semantic approach can measure the computational complexity of (higher-order) programmes.

Finally, the notion of (CC)BoCs can be a concept of interest in its own right. For instance,
it might be fruitful to develop it further to accommodate various models of computations in the
same spirit of Longley and Normann (2015) but on computation, not computability. Also, it might
be interesting to consider their relation with computations as monads (Moggi, 1991).

Acknowledgements. The first author acknowledges the financial support from Funai Overseas Scholarship, and Luke Ong
and Sam Staton for fruitful discussions. The second author acknowledges support from the EPSRC grant EP/K015478/1 on
QuantumMathematics and Computation and U.S. AFOSR FA9550-12-1-0136.

Notes
1 For simplicity, here we focus on closed terms, i.e., ones with the empty context.
2 The diagram is depicted as above only to clarify which component game each move belongs to; it should be read just as a
finite sequence, namely, q[1]q[0]n[0]m[1], equipped with the pointers represented by the arrows. (N.b., the arrows represent
pointers, not edges of the tree, unlike the diagram of N.)
3 Composition of strategies is associative; see Abramsky et al. (1997), Hyland (1997), Abramsky andMcCusker (1999) for the
details. Therefore, the order of applying composition on strategies does not matter.
4 N.b., for the present work, it suffices to know that a CCB is a generalised CCC in the sense that the equational axioms of
CCCs are required to hold only up to 2-cell isomorphisms.
5 N.b., the unit law on the nose does not hold if the composition is a non-normalising one.
6 N.b., there is no rewriting between 1-cells (f ; g); h and f ; (g; h) if the composition is non-normalising.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

950 N. Yamada and S. Abramsky

7 Note that if E n1 (f), E n2 (f) ∈ VC (A, B) for any n1, n2 ∈N, then clearly E n1 (f)= E n2 (f), where E n denotes the n-times
iteration of E for each n ∈N.
8 In the present work, every dynamic strategy (or β-morphism) becomes a value by a finite iteration of the hiding operation
(or evaluation) due to the axiom on labelling functions (Definition 3.1), and thus the axiom Termination (Definition 2.2)
makes sense. Of course, if we consider another, in particular finer, evaluation of computations (which is left as future work),
then this point may no longer hold.
9 I.e., we assume that in any term of concern every bound variable is chosen to be different from any free variable occurring
in that mathematical context.
10 One may say that the operational semantics→ executes the parallel βϑ-reduction⇒βϑ in a controlled manner that does
not produce non-programme terms at all.

References
Abramsky, S. (1997). Semantics of interaction: An introduction to game semantics. In: Semantics and Logics of Computation,

Publications of the Newton Institute, 1–31.
Abramsky, S., Jagadeesan, R. and Malacaria, P. (2000). Full abstraction for PCF. Information and Computation 163 (2)

409–470.
Abramsky, S. and Jung, A. (1994). Domain theory. In:Handbook of Logic in Computer Science, Oxford University Press, New

York.
Abramsky, S. and McCusker, G. (1999). Game semantics. In: Computational Logic, Springer, Berlin, Heidelberg, 1–55.
Abramsky, S. and Melliès, P.-A. (1999). Concurrent games and full completeness. In: Proceedings of the 14th Annual IEEE

Symposium on Logic in Computer Science, IEEE Computer Society, 431.
Amadio, R. M. and Curien, P.-L. (1998). Domains and Lambda-Calculi, vol. 46, Cambridge, Cambridge University Press.
Barendregt, H. P. (1984). The Lambda Calculus, vol. 3, Amsterdam, North-Holland.
Church, A. (1940). A formulation of the simple theory of types. The Journal of Symbolic Logic 5 (02) 56–68.
Clairambault, P. and Harmer, R. (2010). Totality in arena games. Annals of Pure and Applied Logic 161 (5) 673–689.
Curien, P.-L. (2006). Notes on game semantics. From the author’s web page.
Curien, P.-L. (2007). Definability and full abstraction. Electronic Notes in Theoretical Computer Science 172 301–310.
Danos, V., Herbelin, H. and Regnier, L. (1996). Game semantics and abstract machines. In: Proceedings of the 11th Annual

IEEE Symposium on Logic in Computer Science, IEEE Computer Society, 394.
Danos, V. and Regnier, L. (2004). Head linear reduction. Unpublished.
Dimovski, A., Ghica, D. R. and Lazić, R. (2005). Data-abstraction refinement: A game semantic approach. In: International

Static Analysis Symposium, Springer, 102–117.
Ehrhard, T. and Regnier, L. (2003). The differential lambda-calculus. Theoretical Computer Science 309 (1) 1–41.
Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. and Scott, D. S. (2003). Continuous Lattices and Domains,

(Encyclopedia of Mathematics and its Applications, pp. I-Iv). vol. 93, Cambridge, Cambridge University Press.
Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science 50 (1) 1–101.
Girard, J.-Y. (1989). Geometry of interaction I: Interpretation of system F. Studies in Logic and the Foundations ofMathematics

127 221–260.
Girard, J.-Y. (1990). Geometry of interaction II: Deadlock-free algorithms. In: COLOG-88, Springer, 76–93.
Girard, J.-Y. (1995). Geometry of interaction III : Accommodating the additives. In: Girard, Lafont and Regnier, (eds.)

Advances in Linear Logic, 329–389, Cambridge, Cambridge University Press.
Girard, J.-Y. (2003). Geometry of interaction IV: The feedback equation. In: Logic Colloquium, vol. 3, Citeseer, 76–117.
Girard, J.-Y. (2011). Geometry of interaction V: Logic in the hyperfinite factor. Theoretical Computer Science 412 (20)

1860–1883.
Girard, J.-Y. (2013). Geometry of interaction VI: A blueprint for transcendental syntax. preprint.
Girard, J.-Y., Taylor, P. and Lafont, Y. (1989). Proofs and Types, vol. 7, Cambridge, Cambridge University Press.
Greenland, W. E. (2005). Game Semantics for Region Analysis. Phd thesis, University of Oxford.
Gunter, C. A. (1992). Semantics of Programming Languages: Structures and Techniques, Cambridge, MA, MIT press.
Hankin, C. (1994). Lambda Calculi: A Guide for computer scientists (Vol. 3), USA, Oxford University Press.
Harmer, R. (2004). Innocent game semantics. In: Lecture Notes, 2007.
Hilken, B. P. (1996). Towards a proof theory of rewriting: The simply typed 2λ-calculus. Theoretical Computer Science 170

(1–2) 407–444.
Hyland, J. M. E. and Ong, C.-H. (2000). On full abstraction for PCF: I, II, and III. Information and Computation 163 (2)

285–408.
Hyland, M. (1997). Game semantics. In: Semantics and Logics of Computation, vol. 14, New York, Cambridge University

Press, 131.
Jacobs, B. (1999). Categorical Logic and Type Theory, vol. 141, Amsterdam, Elsevier.
Lambek, J. and Scott, P. J. (1988). Introduction to Higher-order Categorical Logic, vol. 7, USA, Cambridge University Press.

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250

Mathematical Structures in Computer Science 951

Laurent, O. (2004). Polarized games. Annals of Pure and Applied Logic 130 (1–3) 79–123.
Longley, J. and Normann, D. (2015). Higher-Order Computability, Heidelberg, Springer.
McCusker, G. (1998). Games and Full Abstraction for a Functional Metalanguage with Recursive Types, London, Springer

Science & Business Media.
Mellies, P.-A. (2005). Axiomatic rewriting theory I: A diagrammatic standardization theorem. In: Processes, Terms and Cycles:

Steps on the Road to Infinity, Springer, 554–638.
Moggi, E. (1991). Notions of computation and monads. Information and Computation 93 (1) 55–92.
Ong, C.-H. (2006). On model-checking trees generated by higher-order recursion schemes. In: 21st Annual IEEE Symposium

on Logic in Computer Science (LICS’06), IEEE, 81–90.
Ouaknine, J. (1997). A Two-Dimensional Extension of Lambek’s Categorical Proof Theory. Phd thesis, McGill University,

Montréal.
Pitts, A. M. (2001). Categorical Logic. In: Handbook of Logic in Computer Science, New York, Oxford University Press,

39–123.
Plotkin, G. D. (1977). LCF considered as a programming language. Theoretical Computer Science 5 (3) 223–255.
Rose, K. H. (1996). Explicit Substitution: Tutorial & Survey. Computer Science Department.
Scott, D. (1976). Data types as lattices. Siam Journal on Computing 5 (3) 522–587.
Scott, D. S. (1993). A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Computer Science 121 (1) 411–440.
Seely, R. A. (1987). Modelling computations: A 2-categorical framework. In: Proceedings of the 2nd Annual IEEE Symposium

on Logic in Computer Science, IEEE Computer Society, 65–71.
Sørensen, M. H. and Urzyczyn, P. (2006). Lectures on the Curry-Howard Isomorphism, vol. 149, Amsterdam, Elsevier.
Winskel, G. (1993). The Formal Semantics of Programming Languages: An Introduction, Cambridge, MA, MIT Press.

Cite this article: Yamada N and Abramsky S (2020). Dynamic game semantics.Mathematical Structures in Computer Science
30, 892–951. https://doi.org/10.1017/S0960129520000250

https://doi.org/10.1017/S0960129520000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000250
https://doi.org/10.1017/S0960129520000250

	Dynamic game semantics
	Introduction
	Game semantics
	Static game semantics
	Dynamic games and strategies
	Dynamic game semantics
	Our contribution and related work
	Structure of the paper

	Dynamic Bicategorical Semantics
	Beta-categories of computation
	Finitary PCF
	Dynamic bicategorical semantics of finitary PCF

	Dynamic Games and Strategies
	Dynamic arenas and legal positions
	Dynamic games
	Constructions on dynamic games
	Dynamic strategies
	Constructions on dynamic strategies

	Dynamic Game Semantics of Finitary PCF
	Dynamic game semantics of finitary PCF
	Game-semantic dynamic correspondence property for FPCF

	Conclusion and Future Work

