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We present detailed experiments on transient growth of turbulent spots induced by
external forcing in plane Couette–Poiseuille flow, which are studied in the framework
of linear transient growth. The experimental investigation is supplemented with full
theoretical analysis. We compare quantitatively the experimental and theoretical results,
including maximal gain and the time at which it occurs. We also present the limits
of validity for the application of the linear theory at high amplitude perturbation and
Reynolds number, showing experiments with self-sustained states.
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1. Introduction

The classical problem of a localized turbulent spot and its role in subcritical
transition to turbulence has been investigated in many classical wall-bounded shear
flows, such as water tables, boundary layers, pipes, channel and Couette flows
(Schmid & Henningson 2001). In contrast, plane Couette–Poiseuille flow has received
little attention up to now. Specifically, the first observation of turbulent spots in this
flow was described recently in Klotz et al. (2017), where the spots were generated by
permanent perturbation. Here we study the temporal dynamics and spatial structure
of a spot triggered by an instantaneous water jet impulse in the crossflow.

Our experimental set-up is a generalization of the classical plane Couette facility
(Tillmark & Alfredsson 1991; Daviaud, Hegseth & Bergé 1992), in which we combine
Couette and Poiseuille components to obtain a base flow with zero mass flux. This
increases the time during which the turbulent spot stays within the test section and
enables us to study its evolution for longer times. A similar velocity profile in a
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different experimental configuration (a driven cavity in which a test section is slid
past a stationary plane surface) was investigated by Tsanis & Leutheusser (1988).

There exists an extensive body of theoretical and numerical work on linear
transient growth, which is explained by the non-normal nature of the linearized
Navier–Stokes equation (Schmid & Henningson 2001 and references therein).
Specifically, Henningson, Lundbladh & Johansson (1993) investigated numerically
the evolution of a localized turbulent structure in plane Poiseuille flow. However,
the experimental evidence for these phenomena is much more sparse. Transient
amplification of a localized perturbation followed by subsequent decay was observed
experimentally in pipes (Bergström 1995) and plane Poiseuille flow (Klingmann &
Alfredsson 1991; Klingmann 1992; Elofsson, Kawakami & Alfredsson 1999; Philip,
Svizher & Cohen 2007). Reshotko (2001) compared the experimental results for the
time at which the perturbation reaches the maximal energy gain with the prediction
of linear theory.

A spatial formulation (in contrast to growth in time) of transient growth theory
describing the spatial evolution of the perturbation in boundary layer flow can be
found for example in Andersson, Berggren & Henningson (1999). A similar evolution
was also measured experimentally: Westin et al. (1998) investigated the response to
the impulsive perturbation and showed that after initial amplification of the streaks,
their amplitude eventually decays as they are advected downstream. In addition, the
amplification of the streaks was studied in a boundary layer subjected to external
forcing, e.g. freestream turbulence (Westin et al. 1994; Matsubara & Alfredsson
2001), vortex generators (White 2002; Duriez, Aider & Wesfreid 2009; Denissen &
White 2013) and in the case of Görtler vortices (Aider & Wesfreid 1996; Petitjeans
& Wesfreid 1996).

In our experiment the turbulent spots have nearly zero advection velocity, which
enables us to measure the full instantaneous spatial structure of a localized turbulent
spot, as well as its temporal evolution, and to directly compare our results with
temporal theoretical predictions of transient growth. A similar approach was carried
out semi-quantitatively in a cylinder wake (Marais et al. 2011) and in plane Poiseuille
flow (Lemoult, Aider & Wesfreid 2013).

In this paper, we first consider the theoretical analysis, including linear stability,
transient growth dynamics and the threshold for unconditional stability of plane
Couette–Poiseuille flow. Then, we report the first experimental study of transient
growth in subcritical Couette–Poiseuille flow and compare it with the theoretical
prediction, including energy gain of the perturbation. Finally, we examine realizations
in which spots become self-sustained, beyond the regime described by the linear
theory.

2. Theoretical analysis of plane Couette–Poiseuille flow

Here we study the linear stability of flow confined in a channel of gap 2h.
The numerical code provided by Hoepffner (2006) was used to define an Orr–
Sommerfeld/Squire dynamical matrix representing the linearized Navier–Stokes
equations. The streamwise and spanwise directions are assumed to be homogeneous
and are expanded in a Fourier series. The wall-normal direction is discretized with
Chebychev collocation.

All quantities are nondimensionalized by an appropriate combination of belt speed
Ubelt and half-gap h, with which we also define our Reynolds number Re= Ubelth/ν
(ν is the kinematic viscosity). Nondimensionalized quantities are marked by a ∗
subscript. We denote the streamwise, wall-normal and spanwise directions as x, y, z,
respectively.
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FIGURE 1. (a) Different velocity profiles of the flows (with zero flux, upper and lower
velocity equal to 1 and σ , respectively) for which the linear stability to two-dimensional
infinitesimal perturbation is analysed: plane Couette–Poiseuille (green line), Couette (red
line), Poiseuille (blue line). The magenta profile (σ = 0.309) represents the case at
which linear stability disappears. (b) Dependence of the linear instability threshold on
the nondimensionalized speed of the lower wall. The black crosses are the results of
Balakumar (1997).

2.1. Eigenvalue analysis of linear stability to two-dimensional infinitesimal
perturbation

We parametrize the laminar Couette–Poiseuille flow family as:

U∗(y∗)=
3
4
(σ + 1)(y2

∗
− 1)+

1− σ
2

(y∗ − 1)+ 1, (2.1)

where y∗ ∈ (−1, 1) (see figure 1). This equation is derived by assuming a generic
quadratic function with zero net flux and boundary conditions such that U∗(1) = 1,
U∗(−1) = σ , σ ∈ (−1, 1). The plane Couette–Poiseuille flow analysed in this paper
corresponds to σ = 0 (green line in figure 1a). The two limiting cases, pure plane
Poiseuille (σ = 1) and Couette (σ =−1) flows, are marked in figure 1(a) by blue and
red curves, respectively. The linear stability was investigated by computing the least
stable eigenvalue of the Orr–Sommerfeld operator. When σ is decreased, the critical
Reynolds number ReL, monotonically increases up to σ = 0.309, where it diverges
to infinity (ReL→∞, figure 1b). Our plane Couette–Poiseuille flow (σ = 0) is thus
linearly stable for any Reynolds number, similar to plane Couette and pipe flow.

If we substitute σ = 1 − 2σ2 and apply a Galilean transformation of −1 and
reflection in x and y, we obtain the same formulation and results as in a previous
study of Balakumar (1997).

2.2. Transient growth
Even if a shear flow is linearly stable, as in our case, a perturbation may grow
transiently due to the non-normality of the linearized Navier–Stokes equations. In
previous work, Bergström (2005) calculated transient growth in plane Couette–
Poiseuille flow for a single Reynolds number Re=1000 and for different combinations
of Couette and Poiseuille components. Here, we calculate for a range of Reynolds
numbers Re∈ (100, 1000) the transient growth for plane Couette–Poiseuille flow with
zero mass flux, given by U∗(y∗) = (3/4)(y2

∗
− 1) + (y∗ + 1)/2. For each streamwise

(α∗) and spanwise (β∗) wavenumber combination we determine the maximal gain
Gmax and the time t∗max at which it occurs. We define:

Gmax =max
q0 6=0

‖q(t∗ = t∗max)‖
2

‖q(t∗ = 0)‖2
=
‖qout‖

2

‖qopt‖
2 , (2.2)

829 R4-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

61
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.614


L. Klotz and J. E. Wesfreid

0 0.5 1.0 1.5 2.0

1

2

3

1

2

3

10 2 3

50

100

150

20

40

60

80

100(a) (b)

FIGURE 2. The dependence on streamwise (α∗) and spanwise (β∗) wavenumbers in plane
Couette–Poiseuille flow for: (a) maximal amplification Gmax for Re = 500. The highest
amplification occurs for (α∗ = 0, β∗ = 1.83) and it is independent of Reynolds number.
(b) Onset of unconditional stability ReE. The minimal Reynolds number, ReE = 32.53, is
reached for (α∗ = 0, β∗ = 1.728).

t∗max Gmax G′max α∗opt β∗opt

Couette–Poiseuille 0.107 Re 0.435× 10−3Re2 0.934× 10−3Re2 0 1.83
Pure Couette 0.117 Re 1.184× 10−3Re2 — 35/Re 1.6
Pure Poiseuille 0.075 Re 0.196× 10−3Re2 — 0 2.04

TABLE 1. Dependence of t∗max, Gmax and G′max on Re for plane Couette–Poiseuille flow. For
comparison and verification, we calculate the scaling for pure plane Couette and Poiseuille
flows, which agree with existing results (Schmid & Henningson 2001).

where q = [u′
∗
, v′
∗
, w′
∗
] corresponds to velocity fluctuations, ‖qout‖

2
= ‖q(t∗max)‖

2 is
the energy of the velocity fluctuations at t∗max calculated in the entire domain and
‖qopt‖

2
= ‖q(t∗ = 0)‖2 is the energy of the initial perturbation optimized for all q0

that leads to the maximal energy gain. The details of the calculations are described
in Schmid & Henningson (2001).

In figure 2(a) we present the dependence of Gmax on α∗ and β∗ for Re= 500. There
is a distinct peak at α∗opt = 0, β∗opt = 1.83, with no streamwise dependence as is
the case for plane Poiseuille flow (Schmid & Henningson 2001). We verify that this
wavenumber pair is optimal within Re∈ (100, 1000). We also determine that Gmax and
t∗max scale with Re2 and Re, respectively (table 1). Our present measurements with
two-dimensional (2D) particle image velocimetry (PIV) are performed in one plane at
y∗ = 0.3. In contrast, the global quantity Gmax measures the perturbation energy over
the entire gap (in y∗) and for this reason it cannot be used for quantitative comparison
of our experimental and theoretical results. In figure 3 we present that the maximal
amplitude of streaks occurs at y∗ = 0.33, independently of Reynolds number, and so
we define the local quantity G′max:

G′max =
‖qout(y∗ = 0.33)‖2

‖qopt(y∗ = 0.33)‖2
. (2.3)

We verify that both the global maximal gain Gmax and the local maximal gain of the
streamwise velocity component G′max occur almost at the same time t∗max. In table 1
we show the scaling for G′max.
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FIGURE 3. Velocity profile of the streamwise velocity fluctuations u′
∗
(y∗) at t∗max for (α∗=

0, β∗= 1.83) and for Re= 500. The profile is normalized with the maximal value u′
∗
(t∗max)

calculated over the entire gap in the wall-normal direction. Normalized velocity profiles
for Re∈ (100, 1000) collapse to a single curve. The magenta dashed line marks y∗= 0.33,
at which the streaks reach maximal value.

Camera Test section

Moving belt

Laser

(a) (b)

FIGURE 4. Experimental configuration: (a) perspective view; (b) cross-section in xy plane
showing the base flow in the gap.

2.3. Condition for no transient growth – unconditional stability
To complete the full characterization of Couette–Poiseuille flow, we also calculate the
energy Reynolds number ReE (Joseph 1976) below which our flow is unconditionally
stable (d‖q‖2/dt< 0 for all q0). In figure 2(b) we present the dependence of ReE on
α∗ and β∗, whose minimum is ReE(α∗ = 0, β∗ = 1.728)= 32.53. The mode α∗ = β∗ =
0, which represents base flow modification, is unconditionally stable up to Re= 108.
This suggests that mean flow modification cannot extract energy from the base flow
by itself and can be sustained only by nonlinear energy transfer from other modes.

3. Experimental results

3.1. Experimental set-up
The experimental set-up is presented in figure 4. It consists of a tank filled with
water and with one closed-loop moving belt made of Mylar (of 0.175 µm thickness)
near one bounding wall of the test section. The other wall, a glass plate, remains
stationary. The moving wall and induced streamwise pressure gradient generate plane
Couette–Poiseuille flow with nearly zero mean flux (for details see Klotz et al.
(2017)). The experiments reported here were performed with a gap between moving
and stationary walls of 2h = 10.8 mm and the aspect ratios of the test section in
the streamwise/spanwise directions are Lx/h = 370.4 and Lz/h = 96.3, respectively.
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A water jet is injected through a hole of φ = 1.6 mm = 0.30h in the wall-normal
direction at the centre of the test section and triggers the turbulent spot. The jet comes
from a small high-pressure water container with a pressure controller (SMS ITV2010),
as well as an electromagnetic valve, which controls its duration. We determine the
average jet speed 〈Vjet〉 by repeating injections and measuring the total volume of the
injected water with a measuring cylinder. A localized turbulent spot is triggered by
a jet injection of short duration (approximately 1 advection unit, 1T∗ ' 1) with very
weak amplitude (A = 〈Vjet〉/Ubelt ∈ (1.8, 3.2)) to minimize the nonlinear interactions.
To test the limits of validity of linear transient growth, we also investigate higher
perturbation amplitudes (A ∈ (5.7–34.9)). Even if 〈Vjet〉 is greater than the typical
velocity of the base flow, the duration of the injection is very short and the ratio of
the injected volume Qinjected to the total volume of the fluid volume in the channel
Qtest section is very low (Qinjected/Qtest section ' A × 1T∗ × 10−6). A similar situation was
described in Darbyshire & Mullin (1995).

Our experimental set-up has one stationary wall without a moving plastic belt. This
grants us the advantage of free access to introduce a well-controlled perturbation
without the necessity of synchronizing the phase of the belt motion with the moment
of injection, as was necessary in classical plane Couette experiment, in which the
water jet was introduced through the hole in the plastic belt (Bottin et al. 1998),
which may alter the direction of the injection.

We present the velocity fluctuations acquired with 2D PIV. The laser sheet
was located parallel to the bounding walls at plane y∗ = 0.33, where the base
flow has nearly zero streamwise velocity and where linear theory predicts the
highest amplitude of streaks for the optimal response. We use a Darvin Due laser
(double-headed, maximum output 80 W, wavelength 527 nm) and Phantom Miro
M120 camera (1920× 1600 pix, pixel pitch 0.28 mm pix−1). The moment at which
we start the acquisition was synchronized by a National Instrument NI PCI-6602
synchronization device. The sequence of acquired images was cross-correlated
by Dantec Dynamic Studio 4.0 software using rectangular interrogation windows
64× 8 pix with 50 % overlap. This unconventional choice is justified by the dominant
streamwise component, which implies that the pixel displacement in the streamwise
direction is an order of magnitude larger than in the spanwise direction. This aspect
ratio also provides a high spatial resolution in the spanwise direction. For each
Re ∈ (330, 380, 480, 520, 580), we acquire 15 different realizations with acquisition
frequency f = 10 Hz. This frequency was sufficient to follow the dynamics of the
streaks due to the nearly zero advection velocity of spots.

Our base flow is slightly affected by the belt phase motion due to the joining of
two extremities of the belt (see Klotz et al. (2017) for quantitative analysis), which
introduces weak three-dimensionality. In addition, there is a small back-flow in the
gap between the glass plate and the layer of the moving belt closest to it (see red
curve in inset of figure 4). As a result, our base flow has a slightly non-zero mean
flux (the time-averaged base flow has Uavg < 0.07Ubelt). In order to filter out the
dependence of the base flow on the belt phase motion, we first measure the reference
base flow (without triggering the turbulent spot) and then we subtract it for each
actual realization (with a turbulent spot), keeping the same phase of belt motion as in
the reference flow. In this way we calculate the velocity fluctuations: u′ =Umeasured −

Ubase flow and w′ =Wmeasured −Wbase flow, where Wbase flow ' 0.

3.2. Experimental evidence for transient growth

We denote mean and ensemble averaged energy by Ē and 〈E〉, respectively: for the
former we calculate the evolution of the energy fluctuations for each realization
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FIGURE 5. An example of the energy fluctuations for Re = 480, A = 2.3 representing
typical transient growth evolution. Each point corresponds to a single instant measured
at 10 Hz; (a) mean energy of streamwise (Ēu′) and spanwise (Ēw′) velocity fluctuations
(note that Ēw′ is multiplied by a factor of 10); (b) Eu′ for a single realization (blue
solid curve), interpolation proposed by Kim & Moehlis (2006) (red dashed curve), linear
interpolation (green dotted line) and exponential decay interpolation (cyan dotted curve).
The black dashed horizontal line represents the noise level due to the variation of the base
flow. The black dotted vertical line marks the reference time.

separately and then we average them, while for the latter we ensemble-average the
sequence of velocity fields of 15 realizations and then calculate the energy.

From the experimental point of view, the most difficult task is to determine the
very weak energy of the initial perturbation E0. To calculate it, we analyse the
streamwise and spanwise velocity components in the initial frame in the temporal
sequence of 〈E〉 for each (Re, A) pair. Ensemble averaging filters out the variation
of the base flow and enhances the signal that corresponds to the deterministic and
repeatable perturbation. In addition, we consider only the region in the vicinity of
the jet (by applying an appropriate mask covering x∗ ∈ (−6.6, 8.2), z∗ < |5.8|). We
further enhance the accuracy of E0 by filtering out the signal close to the spatial
homogeneous (0, 0) mode with a fast Fourier transform. We normalize both Ē and
〈E〉 with E0.

In figure 5(a) we show that the mean energy of spanwise velocity fluctuations
(Ēw′ , in red) is more than one order of magnitude lower than that of the streamwise
component (Ēu′ , in blue). For this reason in the following we consider only Ēu′ .
In figure 5(b) we present a typical evolution of Ēu′ for a single realization (blue
points), where the linear growth at initial stage (called also algebraic growth) is
followed by the eventual exponential decay. It is further illustrated by a sequence
of streamwise velocity fluctuation fields (u′

∗
) measured with 2D PIV (figure 6). The

internal structure of the localized spot is dominated by streaks, with two dominant
wavenumbers calculated using two-dimensional FFT transform: β1∗ = 1.84 (mostly
at the left front and at the tips of the turbulent spot) and β2∗ = 2.97 (at the right
front). These wavenumbers correspond to the wavenumbers λz1∗ = 3.4 and λz2∗ = 2.1,
respectively. The former value is in perfect agreement with our theoretical predictions
(see figure 2a). One possibility to explain the presence of the second wavenumber is
the existence of two layers of asymmetric vortices that occupy different regions in y.
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FIGURE 6. Temporal evolution of the spot, represented by isovalues of the streamwise
velocity fluctuations u′

∗
(x∗, y∗= 0.3, z∗) at different times, measured with PIV for Re= 480,

A = 2.3 and for a single realization; t∗ = 69.4 corresponds to the spatial structure when
the maximal energy gain is reached.

This problem is the subject of ongoing investigation. On each subplot in figure 7(a–e)
we present all realizations acquired for a given (Re,A) pair. Figure 7(a–d) corresponds
to the weakest jet amplitude A used in our experiment, which is appropriate for
analysing linear transient growth (note that 〈Vjet〉 is kept constant and A varies only
due to Ubelt). Up to Re = 480 all realizations show the typical behaviour of linear
transient growth: initial algebraic growth followed by exponential decay (see also
interpolation in figure 5b). This is also true for most realizations for Re = 520,
with the exception of a single realization, in which the turbulent spot becomes
self-sustained. We present this spatial and temporal evolution in figure 8, where the
modulation of streaks can be observed. As we increase Re further to 580, more
spots behave in this way. However, we note that this process is random and some
realizations still show transient growth and decaying dynamics. On each subfigure in
figure 7 we mark one typical example of transient growth evolution and one example
of a self-sustained spot (if any exists) by a thick black/blue curve, respectively. In
figure 7(e–f ) the same transition from transient (figure 7e) to self-sustained dynamics
(figure 7f ) is observed for higher A, but it occurs for lower Re.

The behaviour of our measured localized turbulent spot can be compared with
the dynamics of double-localized (in x, z directions) exact coherent structure in
plane Couette flow after being perturbed in its most unstable direction, as observed
numerically by Brand & Gibson (2014). For low enough Reynolds number, all
cases led to monotonic relaminarization, preceded in most cases by a period of
transient growth (compare with figure 7a,b,e). Above a given Reynolds number
some realizations led to relaminarization and the others produce long-lived turbulent
spots with complex, long-term, and perturbation- and Reynolds-dependent behaviour
(compare with figure 7c,d, f ). This sensitive dependence of the dynamics on the

829 R4-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

61
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.614


Experiments on transient growth of turbulent spots

100

200

0

500

0

1000

0

200

400

0

200

400

0

300

600

0

400

800

50 100 150 200 250 50 100 150 200 250

50 100 150 200 250

50 100 150 200 250

50 100 150 200 250

100 200 300 400 500

(a) (d)

(b) (e)

(c) ( f )

Self-sustaining
Transient

FIGURE 7. On each subfigure the evolution of Eu′ for 15 different realizations for a given
Re and A are shown. For each combination we mark with a thick line a single typical
realization, for which a turbulent spot shows transient growth and decay (black solid line)
and self-sustained dynamics (blue thick line). Also shown are the mean (Ēu′) and ensemble
averaged (〈E〉u′) energy evolution (red and green dotted lines, respectively). The blue curve
in (c) corresponds to figure 8.

perturbation implies that their solution must lie on the laminar/turbulent boundary. One
may also use the same argument for our results, keeping in mind that in the present
case, the spatial structure can differ slightly for different experimental realizations,
thus these do not represent a single point in a phase space. Nevertheless, this suggests
that the turbulent spots that we observed may be related to the laminar/turbulent
boundary.

Our measured structures also resemble the optimal wave packets localized in
the both homogeneous directions calculated for the Blasius boundary layer using
linearized Navier–Stokes equations (Cherubini et al. 2010b). These optimal wave
packets are dominated by streamwise-localized streaks, as in our case.

However, we recall that these numerical simulations were performed for different
examples of wall-bounded shear flows (plane Couette flow for doubly-localized
exact coherent structure and boundary layer flow for optimal wave packets). To our
knowledge for the moment no results concerning optimal wave packets or exact
coherent structures are available for plane Couette–Poiseuille flow, and for this reason
more quantitative comparison with our experimental work is not possible.

We analyse separately every realization representing typical transient growth
evolution and then calculate the mean values of t∗max and G′max. To improve accuracy
of determination of these two quantities and to systematically determine the reference
time from which we calculate t∗max, we fit our experimental data to the formula
proposed by Kim & Moehlis (2006) (red dashed curve in figure 5b):

Eu′(t∗)/E0 = (a)2 + B.E.= (A1 × exp(γ1t∗)+ A2 × exp(γ2t∗))2 + B.E., (3.1)
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FIGURE 9. Experimental and theoretical values for: (a) t∗max (red square at (Re = 580,
t∗max = 133) is determined from Ēu′ evolution); (b) energy gain G′max.

where a stands for the amplitude of the streaks and γ1, γ2 < 0. In addition,
|A1| ≈−|A2|, γ1≈ γ2, which provides non-normal behaviour. We add a supplementary
term (B.E.) representing the background experimental noise and possible variation of
the base flow, whose amplitude is represented by the black dashed horizontal line
in figure 5(b). We define the reference time as the moment at which interpolation
reaches the level of the background noise and we measure t∗max from this reference.
One can see in figure 9 that for the lowest amplitude perturbation A (black crosses)
t∗max is well predicted by linear transient growth theory and the value of G′max seems
to be slightly higher. As we increase the perturbation amplitude, t∗max increases and
deviates from the theoretical prediction. G′max seems to slightly increase with both
amplitude and Re. We also note that a full comparison of the energy gain between the
theory and experiment would require one to measure also the wall-normal component.
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Nonlinear transient growth concepts described in (Duguet et al. 2013; Kerswell,
Pringle & Willis 2014; Farano et al. 2016) can give further insight into the dynamics
of transient states. These theories are based on fully nonlinear Navier–Stokes equations
and provide the nonlinear optimal perturbation (NLOP) (typically in the sense of
the minimal energy difference from the laminar flow) that can lead to turbulence.
Specifically, in contrast to the streamwise-extended optimal perturbations given by
the linear approach, the NLOP is fully localized is space and has a higher energy
gain than the linear theory prediction (Cherubini et al. 2010a; Pringle & Kerswell
2010; Kerswell et al. 2014). In our experiment we also use the spatially localized
perturbation and for the highest Reynolds numbers the measured energy gain is larger
than the value obtained with linear theory. Furthermore, using numerical simulations,
Pringle, Willis & Kerswell (2015) observed that before the lift-up mechanism (related
to transient growth) takes over, causing the streaks to develop and elongate, the NLOP
must initially unpack in space, which explains why we observed non-zero reference
time in our experiments. Specifically, they reported that the initial unpacking of
NLOP takes approximately 10 advective units, which is of the same order as typical
values of the reference time in our measurements.

4. Conclusions

This is the first experimental study of spatial and temporal evolution of the transient
amplification and subsequent decay of localized spots in plane Couette–Poiseuille
flow. We supplement it by full theoretical analysis of its linear aspects (including
energy gain of the perturbation). We compare both results, showing quantitatively
that the temporal evolution of a localized spot triggered by a well-controlled external
perturbation can be explained by linear theory. However, we also observe that
due to the spatially localized nature of the perturbation, some initial time for
unpack is required before transient growth (or lift-up mechanism) will amplify
the streaks, which agrees with nonlinear transient growth theory. Our results indicate
that ensemble averaging, often used to study linear transient growth in previous
experimental work (e.g. Westin et al. 1998, White 2002), underestimates the energy
gain (figure 9b), which is due to the variation of the instantaneous spanwise position
of streaks for different realizations. We also present that when the Reynolds number
and/or amplitude are high enough, the spot may become self-sustained with a
non-deterministic lifetime, which shows the limits of validity of the linear theory.
These states are characterized by different dynamics, with postponed decay or
irregular growth, and resemble in many aspects the edge state: temporally, with long
persistence time followed by decay, and spatially, where the streaks show evident
modulation in the streamwise direction (figure 8). Our systematic measurements
represent a significant development when compared to previous experiments in other
wall-bounded shear flows, as we can precisely measure both spatial and temporal
aspects of the evolution of turbulent spots triggered by well-controlled perturbation.

Acknowledgements

We thank L. Tuckerman for permanent help and suggestions, and I. Frontczak for
help with experiments. We also acknowledge stimulating discussions with M. Avila
and C. Cossu during the ‘Recurrence, Self-Organization, and the Dynamics Of
Turbulence’ conference organized by KITP in 2017, in Santa Barbara. This work
was supported by a grant, TRANSFLOW, provided by the Agence Nationale de la
Recherche.

829 R4-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

61
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.614


L. Klotz and J. E. Wesfreid

References

AIDER, J. L. & WESFREID, J. E. 1996 Characterization of longitudinal Görtler vortices in a curved
channel using ultrasonic Doppler velocimetry and visualizations. J. Phys. III France 6 (7),
893–906.

ANDERSSON, P., BERGGREN, M. & HENNINGSON, D. S. 1999 Optimal disturbances and bypass
transition in boundary layers. Phys. Fluids 11 (1), 134–150.

BALAKUMAR, P. 1997 Finite-amplitude equilibrium solutions for plane Poiseuille–Couette flow. Theor.
Comput. Fluid Dyn. 9 (2), 103–119.

BERGSTRÖM, L. B. 1995 Transient properties of a developing laminar disturbance in pipe Poiseuille
flow. Eur. J. Mech. (B/Fluids) 14 (5), 601–615.

BERGSTRÖM, L. B. 2005 Nonmodal growth of three-dimensional disturbances on plane Couette–
Poiseuille flows. Phys. Fluids 17 (1), 014105.

BOTTIN, S., DAUCHOT, O., DAVIAUD, F. & MANNEVILLE, P. 1998 Experimental evidence of
streamwise vortices as finite amplitude solutions in transitional plane Couette flow. Phys.
Fluids 10 (10), 2597–2607.

BRAND, E. & GIBSON, J. F. 2014 A doubly localized equilibrium solution of plane Couette flow.
J. Fluid Mech. 750, R3.

CHERUBINI, S., DE PALMA, P., ROBINET, J.-CH. & BOTTARO, A. 2010a Rapid path to transition
via nonlinear localized optimal perturbations in a boundary-layer flow. Phys. Rev. E 82 (6),
066302.

CHERUBINI, S., ROBINET, J.-C., BOTTARO, A. & PALMA, P. D. 2010b Optimal wave packets in a
boundary layer and initial phases of a turbulent spot. J. Fluid Mech. 656, 231–259.

DARBYSHIRE, A. G. & MULLIN, T. 1995 Transition to turbulence in constant-mass-flux pipe flow.
J. Fluid Mech. 289, 83–114.

DAVIAUD, F., HEGSETH, J. & BERGÉ, P. 1992 Subcritical transition to turbulence in plane Couette
flow. Phys. Rev. Lett. 69 (17), 2511–2514.

DENISSEN, N. A. & WHITE, E. B. 2013 Secondary instability of roughness-induced transient growth.
Phys. Fluids 25 (11), 114108.

DUGUET, Y., MONOKROUSOS, A., BRANDT, L. & HENNINGSON, D. S. 2013 Minimal transition
thresholds in plane Couette flow. Phys. Fluids 25 (8), 084103.

DURIEZ, T., AIDER, J. L. & WESFREID, J. E. 2009 Self-sustaining process through streak generation
in a flat-plate boundary layer. Phys. Rev. Lett. 103 (14), 144502.

ELOFSSON, P. A., KAWAKAMI, M. & ALFREDSSON, P. H. 1999 Experiments on the stability of
streamwise streaks in plane Poiseuille flow. Phys. Fluids 11 (4), 915–930.

FARANO, M., CHERUBINI, S., ROBINET, J.-C. & PALMA, P. D. 2016 Subcritical transition scenarios
via linear and nonlinear localized optimal perturbations in plane Poiseuille flow. Fluid Dyn.
Res. 48 (6), 061409.

HENNINGSON, D. S., LUNDBLADH, A. & JOHANSSON, A. V. 1993 A mechanism for bypass
transition from localized disturbances in wall-bounded shear flows. J. Fluid Mech. 250,
169–207.

HOEPFFNER, J. 2006 Stability and control of shear flows subject to stochastic excitations. Doctoral
dissertation, KTH Mechanics, Stockholm, Sweden, code downloaded from http://www.lmm.
jussieu.fr/~hoepffner/codes.php.

JOSEPH, D. D. 1976 Stability of Fluid Motions I. Springer.
KERSWELL, R. R., PRINGLE, C. C. T. & WILLIS, A. P. 2014 An optimization approach for

analysing nonlinear stability with transition to turbulence in fluids as an exemplar. Rep. Prog.
Phys. 77 (8), 085901.

KIM, L. & MOEHLIS, J. 2006 Transient growth for streak-streamwise vortex interactions. Phys. Lett. A
358 (5–6), 431–437.

KLINGMANN, B. G. B. 1992 On transition due to three-dimensional disturbances in plane Poiseuille
flow. J. Fluid Mech. 240, 167–195.

KLINGMANN, B. G. B. & ALFREDSSON, P. H. 1991 Experiments on the evolution of a point-like
disturbance in plane Poiseuille flow into a turbulent spot. In Advances in Turbulence 3, pp.
182–188. Springer.

829 R4-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

61
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.lmm.jussieu.fr/~hoepffner/codes.php
http://www.lmm.jussieu.fr/~hoepffner/codes.php
https://doi.org/10.1017/jfm.2017.614


Experiments on transient growth of turbulent spots

KLOTZ, L., LEMOULT, G., FRONTCZAK, I., TUCKERMAN, L. S. & WESFREID, J. E. 2017
Couette–Poiseuille flow experiment with zero mean advection velocity: subcritical transition to
turbulence. Phys. Rev. Fluids 2 (4), 043904.

LEMOULT, G., AIDER, J. L. & WESFREID, J. E. 2013 Turbulent spots in a channel: large-scale
flow and self-sustainability. J. Fluid Mech. 731, R1.

MARAIS, C., GODOY-DIANA, R., BARKLEY, D. & WESFREID, J. E. 2011 Convective instability in
inhomogeneous media: Impulse response in the subcritical cylinder wake. Phys. Fluids 23 (1),
014104.

MATSUBARA, M. & ALFREDSSON, P. H. 2001 Disturbance growth in boundary layers subjected to
free-stream turbulence. J. Fluid Mech. 430, 149–168.

PETITJEANS, P. & WESFREID, J. E. 1996 Spatial evolution of Görtler instability in a curved duct
of high curvature. AIAA Paper 34 (9), 1793–1800.

PHILIP, J., SVIZHER, A. & COHEN, J. 2007 Scaling law for a subcritical transition in plane Poiseuille
flow. Phys. Rev. Lett. 98 (15), 154502.

PRINGLE, C. C. T. & KERSWELL, R. R. 2010 Using nonlinear transient growth to construct the
minimal seed for shear flow turbulence. Phys. Rev. Lett. 105 (15), 154502.

PRINGLE, C. C. T., WILLIS, A. P. & KERSWELL, R. R. 2015 Fully localised nonlinear energy
growth optimals in pipe flow. Phys. Fluids 27 (6), 064102.

RESHOTKO, E. 2001 Transient growth: a factor in bypass transition. Phys. Fluids 13 (5), 1067–1075.
SCHMID, P. J. & HENNINGSON, D. S. 2001 Stability and Transition in Shear Flows. Springer.
TILLMARK, N. & ALFREDSSON, P. H. 1991 An experimental study of transition in plane Couette

flow. In Advances in Turbulence 3, pp. 235–242. Springer.
TSANIS, I. K. & LEUTHEUSSER, H. J. 1988 The structure of turbulent shear-induced countercurrent

flow. J. Fluid Mech. 189, 531–552.
WESTIN, K. J. A., BAKCHINOV, A. A., KOZLOV, V. V. & ALFREDSSON, P. H. 1998 Experiments

on localized disturbances in a flat plate boundary layer. Part 1. The receptivity and evolution
of a localized free stream disturbance. Eur. J. Mech. (B/Fluids) 17 (6), 823–846.

WESTIN, K. J. A., BOIKO, A. V., KLINGMANN, B. G. B., KOZLOV, V. V. & ALFREDSSON, P. H.
1994 Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary
layer structure and receptivity. J. Fluid Mech. 281, 193–218.

WHITE, E. B. 2002 Transient growth of stationary disturbances in a flat plate boundary layer. Phys.
Fluids 14 (12), 4429–4439.

829 R4-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

61
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.614

	Experiments on transient growth of turbulent spots
	Introduction
	Theoretical analysis of plane Couette–Poiseuille flow
	Eigenvalue analysis of linear stability to two-dimensional infinitesimal perturbation
	Transient growth
	Condition for no transient growth – unconditional stability

	Experimental results
	Experimental set-up
	Experimental evidence for transient growth

	Conclusions
	Acknowledgements
	References


