
TLP 10 (2): 167–235, 2010. C© Cambridge University Press 2010

doi:10.1017/S1471068410000013

167

Multivalued action languages
with constraints in CLP(FD)1

AGOSTINO DOVIER

Università di Udine, Dipartimento di Matematica e Informatica, Via delle Scienze 206, 33100 UDINE

(Italy)

(e-mail: dovier@dimi.uniud.it)

ANDREA FORMISANO

Università di Perugia, Dipartimento di Matematica e Informatica, Via Vanvitelli 1, 06123 Perugia (Italy)

(e-mail: formis@dmi.unipg.it)

ENRICO PONTELLI

New Mexico State University, Department of Computer Science, P.O. Box 30001, MSC CS, Las Cruces,

NM 88003 (USA)

(e-mail: epontell@cs.nmsu.edu)

submitted 5 January 2009; revised 9 October 2009; accepted 10 December 2009

Abstract

Action description languages, such asA andB (Gelfond and Lifschitz, Electronic Transactions

on Artificial Intelligence, 1998, vol. 2, pp. 193–210), are expressive instruments introduced for

formalizing planning domains and planning problem instances. The paper starts by proposing

a methodology to encode an action language (with conditional effects and static causal laws), a

slight variation of B, using Constraint Logic Programming over Finite Domains. The approach

is then generalized to raise the use of constraints to the level of the action language itself. A

prototype implementation has been developed, and the preliminary results are presented and

discussed.

KEYWORDS: action description languages, knowledge representation, planning, constraint

logic programming

1 Introduction

The construction of intelligent agents that can be effective in real-world environments

has been a goal of researchers from the very first days of artificial intelligence. It

has long been recognized that an intelligent agent must be able to acquire, represent,

and reason with knowledge. As such, a reasoning component has been an inseparable

part of most agent architectures in the literature.

1 This manuscript is an extended version of the paper “Multi-valued Action Languages with Constraints in
CLP(FD)” in the Proceedings of the International Conference on Logic Programming, pages 255–270,
Springer Verlag, 2007.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

168 A. Dovier et al.

Although the underlying representations and implementations may vary between

agents, the reasoning component of an agent is often responsible for making

decisions that are critical to its existence.

Logic programming languages offer many properties that make them very suitable

as knowledge representation languages. Their declarative nature supports the mod-

ular development of provably correct reasoning modules (Baral 2003). Recursive

definitions can be easily expressed and reasoned upon. Control knowledge and

heuristic information can be declaratively and incrementally introduced in the

reasoning process. Furthermore, many logic programming languages offer a natural

support for nonmonotonic reasoning, which is considered essential for common-

sense reasoning (Lifschitz 1999). These features, along with the presence of efficient

inference engines (Marriott and Stuckey 1998; Simons 2000; Apt 2003; Giunchiglia

et al. 2004b; Gebser et al. 2007), make logic programming an attractive paradigm

for knowledge representation and reasoning.

In the context of knowledge representation and reasoning, a very important

application of logic programming has been in the domain of reasoning about actions

and change and, more specifically, planning. Planning problems have been effectively

encoded using Answer Set Programming (ASP) (Baral 2003) – where distinct

answer sets represent different trajectories leading to the desired goal. Other logic

programming paradigms, e.g., Constraint Logic Programming over Finite Domains

(CLP(FD)) (Jaffar and Maher 1994; Apt 2003), have been used less frequently to

handle problems in reasoning about actions (e.g., Reiter 2001; Thielscher 2002a).

Comparably more emphasis has been placed in encoding planning problems as

(nonlogic programming) constraint satisfaction problems (Lopez and Bacchus 2003).

Recent proposals on representing and reasoning about actions and change have

relied on the use of concise and high-level languages, commonly referred to as

action description languages; some well-known examples include the languages A
and B (Gelfond and Lifschitz 1998) and extensions like K (Eiter et al. 2004) and

ADC (Baral et al. 2002). Action languages allow one to write propositions that

describe the effects of actions on states, and to create queries to infer properties of

the underlying transition system. An action domain description is a specification of

a planning domain using an action language.

The goal of this work is to explore the relevance of constraint solving and

constraint logic programming (Marriott and Stuckey 1998; Apt 2003) in dealing

with action languages and planning. The push toward this exploratory study came

from recent investigations (Dovier et al. 2005, 2009a) aimed at comparing the

practicality and efficiency of ASP versus constraint logic programming in solving

various combinatorial and optimization problems. The study indicated that CLP

offers a valid alternative, especially in terms of efficiency, to ASP when dealing with

planning problems. Furthermore, CLP offers the flexibility of programmer-developed

search strategies and the ability to handle numerical constraints.

The first step, in this paper, is to illustrate a scheme that directly processes an

action description specification, in a language similar to B (Gelfond and Lifschitz

1998), producing a CLP(FD) program that can be used to compute solutions to

the planning problem. Our encoding has some similarities to the one presented

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 169

by Lopez and Bacchus (Lopez and Bacchus 2003), although we rely on constraint

logic programming instead of plain constraint satisfaction (CSP), and our action

language supports static causal laws and nondeterminism – while the work of Lopez

and Bacchus is restricted to STRIPS-like specifications.

While the first step relies on using constraints to compute solutions to a planning

problem, the second step brings the expressive power of constraints to the level

of the action language, by allowing multivalued fluents and constraint-producing

actions to be used in the domain specification. The extended action language

(named BMV) can be as easily supported by the CLP(FD) framework, and it allows

a declarative encoding of problems involving actions with resources, delayed effects,

and maintenance goals. These ideas have been developed in a prototype, and some

preliminary experiments are reported.

We believe that the use of CLP(FD) can greatly facilitate the transition of

declarative extensions of action languages to concrete and effective implementations,

overcoming some inherent limitations (e.g., efficiency and limited handling of

numbers) of other logic-based systems (e.g., ASP).

The presentation is organized as follows. The first part of our paper (Sections 2

and 3) provides an overview of the action language B and illustrates our approach

to modeling problem specifications in B using constraints and constraint logic

programming. Section 4 provides motivations for the proposed multivalued exten-

sions. Section 5 introduces the full syntax of the new language BMV . The action

language BMV expands the previous language to a language with constraints and

multivalued fluents, which enables the use of dynamic and static causal laws (a.k.a.

state constraints), executability conditions, and non-Markovian forms of reasoning

with arbitrary relative or absolute references to past and future points in time.

The semantics and the abstract implementation of BMV is incrementally developed

in Section 6, where we first consider a sublanguage not involving non-Markovian

references, and later we extend it to the full BMV . A concrete implementation in

CLP(FD) is described in Section 7, and an experimental evaluation is discussed in

Section 8. Section 9 presents an overview of related efforts appeared in the literature,

while Section 10 presents conclusions and the directions for future investigation.

2 The action language B

“Action languages are formal models of parts of the natural language that are used for

talking about the effects of actions” (Gelfond and Lifschitz 1998). Action languages

are used to define action descriptions that embed knowledge to formalize planning

problems. In this section, we use the same variant of the language B used in Son

et al. (2001) – see also Section 9 for a comparison. With a slight abuse of notation,

we simply refer to this language as B.

2.1 Syntax of B

An action signature consists of a set F of fluent names, a set A of action names,

and a set V of values for fluents in F. In this section, we consider Boolean fluents,

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

170 A. Dovier et al.

hence V = {0, 1}2. A fluent literal is either a fluent f or its negation neg(f). Fluents

and actions are concretely represented by ground atomic formulae p(t1, . . . , tm) from

an underlying logic language L. For simplicity, we assume that the set of terms

is finite – e.g., either there are no function symbols in L or the use of functions

symbols is restricted, for instance, by imposing a fixed maximal depth on the nesting

of terms, to avoid the creation of arbitrary complex terms.

The language B allows us to specify an (action) domain description D. The core

components of a domain description are its fluents – properties used to describe the

state of the world that may dynamically change in response to execution of actions

– and actions – denoting how an agent can affect the state of the world. Fluents

and actions are introduced by assertions of the forms fluent(f) and action(a). An

action description D relates actions, states, and fluents using axioms of the following

types – where [list-of-conditions] denotes a list of fluent literals3:

• causes(a, �, [list-of-conditions]): this axiom encodes a dynamic causal

law, describing the effect (i.e., truth assignment to the fluent literal �) of the

execution of action a in a state satisfying the given conditions

• caused([list-of-conditions], �): this axiom describes a static causal law –

i.e., the fact that the fluent literal � is true in any state satisfying the given

preconditions.

Moreover, preconditions can be imposed on the executability of actions by means

of assertion of the forms:

• executable(a, [list-of-conditions]): this axiom asserts that, for the action

a to be executable, the given conditions have to be satisfied in the current

state.

A domain description is a set of static causal laws, dynamic laws, and executability

conditions. A specific planning problem 〈D,O〉 contains a domain description D
along with a set O of observations describing the initial state and the desired goal :

• initially(�) asserts that the fluent literal � is true in the initial state

• goal(�) asserts that the goal requires the fluent literal � to be true in the final

state.

In the specification of an action theory, we can take advantage of a Prolog-like

syntax to express in a more succinct manner the laws of the theory. For instance, to

assert that in the initial state all fluents are true, we can simply write the following

rule:

initially(F) :- fluent(F)

instead of writing a fact initially(f) for each possible fluent f. Remember that

the notation H : −B1, . . . , Bk is a syntactic sugar for the logical formula

∀X1 · · ·Xn(B1 ∧ · · · ∧ Bk → H),

where X1, . . . , Xn are all the variables present in H,B1, . . . , Bk .

2 For simplicity, we use 0 to denote false and 1 to denote true. Consequently, we often say that a fluent
is true (resp., false) if its value is 1 (resp., 0).

3 We will sometimes write true as a synonymous for the empty list of conditions.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 171

Fig. 1. B description of the 12-7-5 barrels problem.

Example 1

Figure 1 presents an encoding of the three-barrel planning problem using the

language B. There are three barrels of capacity N (an even number), N/2 + 1, and

N/2 − 1, respectively. At the beginning, the largest barrel is full of wine while the

other two are empty. We wish to reach a state in which the two larger barrels contain

the same amount of wine. The only permissible action is to pour wine from one

barrel to another, until the latter is full or the former is empty. Figure 1 shows the

encoding of the problem for N = 12. Notice that we also require that the smallest

barrel is empty at the end. �

2.2 Semantics of B

If f ∈ F is a fluent, and S is a set of fluent literals, we say that S |= f if and only

if f ∈ S and S |= neg(f) if and only if neg(f) ∈ S . A list of literals L = [�1, . . . , �m]

denotes a conjunction of literals, hence S |= L if and only if S |= �i for all

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

172 A. Dovier et al.

i ∈ {1, . . . , m}. We denote with ¬S the set {f ∈ F : neg(f) ∈ S}∪{neg(f) : f ∈ S∩F}.
A set of fluent literals is consistent if there is no fluent f s.t. S |= f and S |= neg(f).

If S ∪ ¬S ⊇ F then S is complete. A set S of literals is closed w.r.t. a set of static

laws SL = {caused(C1, �1), . . . , caused(Cm, �m)}, if for all i ∈ {1, . . . , m} it holds

that S |= Ci implies S |= �i. The set CloSL(S) is defined as the smallest set of

literals containing S and closed w.r.t. SL. CloSL(S) is uniquely determined and

not necessarily consistent.

The semantics of an action language on the action signature 〈V,F,A〉 is given

in terms of a transition system 〈S, ν, R〉 (Gelfond and Lifschitz 1998), consisting of

a set S of states, a total interpretation function ν : F×S → V (in this section

V = {0, 1}), and a transition relation R ⊆ S×A×S.

Given a transition system 〈S, ν, R〉 and a state s ∈ S, let

Lit(s) = {f ∈ F : ν(f, s) = 1} ∪ {neg(f) : f ∈ F, ν(f, s) = 0}.

Observe that Lit(s) is consistent and complete.

Given a set of dynamic laws {causes(a, �1, C1), . . . , causes(a, �m, Cm)} for the action

a ∈ A and a state s ∈ S, we define the (direct) effects of a in s as follows:

E(a, s) = {�i : 1 � i � m,Lit(s) |= Ci}.

The action a is said to be executable in a state s if it holds that

Lit(s) |=
h∨
i=1

Ci, (1)

where executable(a, C1), . . . , executable(a, Ch) for h > 0, are the executability axioms

for the action a in D. Observe that multiple executability axioms for the same action

a are considered disjunctively. Hence, for each action a, at least one executable

axiom must be present in the action description4.

Let D be an action description defined on the action signature 〈V,F,A〉,
composed of dynamic laws DL, executability conditions EL, and static causal

laws SL.

The transition system 〈S, ν, R〉 described by D is a transition system such that

• S is the set of all states s such that Lit(s) is closed w.r.t. SL;

• R is the set of all triples 〈s, a, s′〉 such that a is executable in s and

Lit(s′) = CloSL(E(a, s) ∪ (Lit(s) ∩ Lit(s′))). (2)

Let 〈D,O〉 be a planning problem instance, where {� | initially(�) ∈ O} is a

consistent and complete set of fluent literals. A trajectory in 〈S, ν, R〉 is a sequence

〈s0, a1, s1, a2, · · · , aN, sN〉

such that 〈si, ai+1, si+1〉 ∈ R for all i ∈ {0, . . . ,N− 1}.

4 Observe that even if an action is “executable”, its execution may lead to an inconsistent state (which
effectively prevents the use of such action in that context). Even though “enabled” would be a better
term to use for an action that can be executed in a state, we prefer to maintain the same terminology
as used for B in Son et al. (2001) – see also Remark 2.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 173

A sequence of actions 〈a1, . . . , aN〉 is a solution (a plan) to the planning problem

〈D,O〉 if there is a trajectory 〈s0, a1, s1, . . . , aN, sN〉 in 〈S, ν, R〉 such that

• Lit(s0) |= r for each initially(r) ∈ O, and

• Lit(sN) |= � for each goal(�) ∈ O.

The plans characterized in this definition are sequential – i.e., we disallow concurrent

actions. Observe also that the desired plan length N is assumed to be given.

Remark 1

In this paper we focus on sequential plans only. Hence, we assume that only one

action is executed in each state transition composing a given trajectory.

Note that the constraint-based encoding we will propose in the rest of this

manuscript can be easily adapted to deal with concurrent actions. Nevertheless, we

have opted to ignore this aspect in this manuscript, to avoid further complications

of notation, and dealing with issues of concurrency goes beyond the scope of this

paper. The interested reader is referred to Dovier et al. (2009b) for some further

considerations on this matter.

Remark 2

Notice that the satisfaction of (1) is just a necessary requirement for the executability

of an action and it might not represent a sufficient precondition. Indeed, as far as

the definition of transition system is considered, it is easy to see that, even if (1) is

satisfied for certain a and s, the execution of a in s might be inhibited because of

the contradictory effects of the causal laws. A simple example is represented by the

following action description D:

executable(a,[]).

causes(a,f,[]).

causes(a,neg(f),[]).

The action a is always executable (according to its executability law), but the

execution of a would yield an inconsistent situation. Indeed, the execution of a does

not correspond to any state transition in the transition system described by D.

The above example also suggests a possible extension of the action description

language that involves laws of the form

nonexecutable(a, D).

The semantics for such an extended action language can be defined by replacing the

condition (1), with the following one:

Lit(s) |=
h∨
i=1

Ci ∧ ¬
k∨
j=1

Dj,

where executable(a, C1), . . . , executable(a, Ch) and nonexecutable(a, D1), . . . ,

nonexecutable(a, Dk), for h > 0 and k � 0, are defined for the action a. Thus,

the action a is executable only if at least one of the Cis is satisfied and all Djs are

unsatisfied in the state s.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

174 A. Dovier et al.

Fig. 2. Action constraints from state to state. (The states are described by p fluents,

�1, . . . , �p, and one among m possible actions is executed.)

An alternative interpretation of the nonexecutable axioms can be adopted.

Namely, the law nonexecutable(a, D) can be considered simply as shorthand for the

pair of dynamic causal laws causes(a, f, D) and causes(a, neg(f), D). (Actually,

this possibility also applies to the languages proposed in Gelfond and Lifschitz

1998).

This shows that (non)executability laws do not increase the expressive power of

the action language. Nevertheless, the availability of both types of laws permits the

direct and explicit formalization of preconditions for actions execution.

3 Modeling B and planning problems using constraints

Let us describe how action descriptions are mapped to finite domain constraints.

We will focus on how constraints can be used to model the possible transitions from

each individual state of the transition system.

3.1 Modeling an action theory as constraints

Let us consider a domain description D and the state transition system described

by D. Let us also denote with u and v the starting and ending states of an arbitrary

transition of such a system. We assert constraints that relate the truth value of

fluents in u and v. This is intuitively illustrated in Figure 2, where u = FromState

and v = ToState5.

A Boolean variable is introduced to describe the truth value of each fluent literal

in a state. The value of a fluent literal � in u is represented by the variable Fu� ;

analogously, its value in the destination state v is represented by the variable Fv� . For

the sake of simplicity, we will freely refer to these variables as Boolean entities – and

compose them with logical connectives to form Boolean expressions – as well as 0/1

variables – and compose them with arithmetic operators. Concrete CLP(FD) systems,

e.g., SICStus, ECLiPSe, and BProlog6, enable this type of alternative perspectives,

providing basic primitive constraints (e.g., #= and #>) and Boolean compositions of

constraints.

5 For the sake of readability, the two variables named FromState and ToState are also used in the
concrete implementation of B (cf., Section 3.3 and Fig. 6).

6 Web sites for some CLP(FD) systems. SICStus: www.sics.se/sicstus.html, ECLiPSe: http://87.
230.22.228/, BProlog: http://www.probp.com/

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 175

Fig. 3. The constraint Cu,v
� for the fluent literal � (cf., Section 3.1).

Given a conjunction of literals α = [�1, . . . , �m] we will denote with αu the

expression Fu�1
∧ . . . ∧ Fu�m . We will also introduce, for each action a, a Boolean

variable Aua, representing whether the action is executed or not in the transition from

u to v under consideration.

Given a specific fluent literal �, we develop constraints that determine when Fv� is

true and false. Let us consider the dynamic causal laws that have � as a consequence:

causes(ai�,1 , �, α�,1) · · · causes(ai�,m� , �, α�,m�).

Let us also consider the static causal laws related to �

caused(γ�,1, �) · · · caused(γ�,h� , �).

Finally, for each action a we will have its executability conditions:

executable(a, δa,1) · · · executable(a, δa,pa).

Figure 3 describes the Boolean constraints that can be used in encoding the relations

that determine the truth value of the fluent literal �. In the table, we denote with

�̄ the complement of literal �, i.e., if � is the fluent f, then �̄ is neg(f), while if � is

the literal neg(f) then �̄ is the fluent f. The intuitive meaning of the constraints is

as follows:

(3) This constraint states that dynamic causal laws making � true can fire if their

conditions are satisfied and the corresponding actions are chosen for execution.

(4) This constraint captures the fact that at least one of the static causal laws that

make f true is applicable.

(5) This constraint expresses the fact that a fluent literal � can be made true during

a transition form state u to state v, either by a dynamic causal law (determined

by Dynu�) or a static causal law (determined by Statv�).

(6) This constraint is used to guarantee consistency of the action theory – in no

situations a fluent and its complement are both made true.

(7) This constraint expresses the fact that a fluent literal � is true in the destination

state if and only if it is made true (by a static or a dynamic causal law) or if is

true in the initial state and its truth value is not modified by the transition (i.e.,

inertia). Observe the similarity between this constraint and the successor state

axiom commonly encountered in situation calculus (Levesque et al. 1998).

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

176 A. Dovier et al.

We will denote with Cu,v
� the conjunction of such constraints.

Given an action domain specification over the signature 〈V,F,A〉 and two states

u and v, we introduce the system of constraints Cu,v
F which includes:

• for each fluent literal � in the language of F, the constraints Cu,v
� .

• the constraint ∑
a∈A

Aua = 1, (8)

• for each action a ∈ A, the constraints

Aua →
pa∨
j=1

δua,j . (9)

Notice that the sequentiality of the plan if imposed through the constraint (8), while

constraint (9) reflects actions’ executability conditions.

3.2 Soundness and completeness results

Let us proceed with the soundness and completeness proofs of the constraint-

based encoding. Consider a state transition from the state u to the state v and the

corresponding constraint Cu,v
f described earlier.

Let S = Lit(u) and S ′ = Lit(v) be the sets of fluent literals that hold in u and v,

respectively. Note that, from any specific S (resp., S ′), we can obtain a consistent

assignment σS (resp., σS ′) of truth values for all the variables Fuf (resp., Fvf) of u

(resp., v). Conversely, each truth assignment σS (resp., σS ′) for all variables Fuf (resp.,

Fvf) corresponds to a consistent and complete set of fluents S (resp., S ′).

Regarding the occurrence of actions, recall that in each state transition a single

action a occurs and its occurrence is encoded by a specific Boolean variable, Aua. Let

σa denote the assignment of truth values for such variables such that σa(A
u
a) = 1 if

and only if a occurs in the state transition from u to v7. Note that the domains of

σS , σS ′ , and σa are disjoint, so we can safely denote with σS ◦σS ′ ◦σa the composition

of the three assignments. With a slight abuse of notation, in what follows we

will denote with E the direct effects E(a, u) of an action a in u. Observe that

E ⊆ S ′.
Theorem 1 states the completeness of the system of constrains introduced in

Section 3.1. It asserts that for any given D = 〈DL,EL,SL〉, if a triple 〈u, a, v〉
belongs to the transition system described by D, then the assignment σ = σS ◦σS ′ ◦σa
satisfies the constraint Cu,v

F .

Theorem 1 (Completeness)

Let D = 〈DL,EL,SL〉. If 〈u, a, v〉 belongs to the transition system described by

D, then σS ◦ σS ′ ◦ σa is a solution of the constraint Cu,v
F .

7 We will use mapping applications either as σ(X) or in postfix notation as Xσ.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 177

Proof

In constraints (3)–(7) of Figures 3 and (8)–(9) defined at the end of Subsection 3.1,

a number of auxiliary constraint variables are defined, whose values are uniquely

determined once the values of the fluents are assessed. In other words, when S , S ′,

and a are fixed, the substitution σS ◦ σS ′ ◦ σa uniquely determines the value of the

right-hand sides of the constraints (3)–(5). To prove the theorem, we need to verify

that if S ′ = CloSL(E ∪ (S ∩ S ′)), then the constraints (6) and (7) along with the

constraints about the action variables Aua (i.e., constraints of the form (8) and (9))

are satisfied for every fluent f.

Let us observe that (8) is equivalent to say that if Aa is true (Aa = 1) then Ab is

false for all b �= a. Moreover, it also states that if all Ab for b �= a are false then Aa
is true. Namely, (8) is equivalent to the conjunction, for a ∈ A of

Aa ↔
∧

b∈A\{b}

¬Ab.

Let us start by looking at the action occurrence. Let a be the action executed in

state u, thus σa = {Aua/1} ∪ {Aub/0 | b �= a}. Hence, (8) is satisfied by σa.

Similarly, since the semantics require that actions are executed only if the

executability conditions are satisfied, it holds that S |= δa,h (for at least one

h ∈ {1, . . . , pa}, corresponding to a condition executable(a, δa,h) inSL). This quickly

leads to
∨pa
j=1 δ

u
a,j is true, and this allows us to conclude that (9) is satisfied by σS ◦σa.

Let us now consider the constraints dealing with fluents. We recall that S ′ is a set

of fluent literals that is consistent, complete, and closed w.r.t. SL. Let us consider

a fluent f and let us prove that constraint (6) of Figure 3 is satisfied. Assume,

by contradiction, that Fired
u,v
f σ and Fired

u,v
neg(f)σ are both true. Four cases must be

considered:

(1) Dynufσ and Dynuneg(f)σ are true. Since these values are determined by u, a, v,

this means that both f and neg(f) belong to E(a, u). Since the closure under

SL is monotonic this means that Lit(v) = S ′ is inconsistent, representing a

contradiction.

(2) Dynufσ and Statvneg(f)σ are true. This means that f is in E(a, u) and neg(f) is

added to S ′ by the closure operation. This implies that S ′ is inconsistent, which

represents a contradiction.

(3) Statvfσ and Dynuneg(f)σ are true. This leads a contradiction as in the previous case.

(4) Statvfσ and Statvneg(f)σ are true. This means that f and neg(f) are added to S ′

by the closure operation. Thus, S ′ is inconsistent, which is a contradiction.

It remains to prove that constraint (7) is satisfied by σ. Let us assume that f ∈ S ′.
Thus, FvfσS ′ is true. Three cases must be considered.

(1) f ∈ E(a, u). This means that there is a dynamic causal law causes(a, f, αf,i) where

S |= αf,i. From the definition, this leads to αuf,iσ being true and σa(A
u
a) = 1. Thus,

constraints (3) and (5) set Dynufσ and Fired
u,v
f σ both true. As a consequence,

constraint (7) is satisfied.

(2) f /∈ E(a, u) and f ∈ S . This means that f ∈ S ∩ S ′. In this case Fired
u,v
neg(f)σ must

be false, otherwise S ′ would be inconsistent (by closure). Thus, FufσS should be

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

178 A. Dovier et al.

true, FvfσS ′ is true and Fired
u,v
neg(f)σ is false, which satisfy constraint (7) (regardless

of the value of Firedu,vf σ).

(3) f /∈ E(a, u) and f /∈ S . This means that f is inserted in S ′ by closure. Thus, there

is a static causal law of the form caused(γf,j , f) such that S ′ |= γf,j . In this case,

by (4), Statvfσ is true and, by (5), so is Fired
u,v
f σ. Thus, constraint (7) is satisfied.

If f /∈ S ′, then neg(f) ∈ S ′ and the proof is similar with positive and negative

roles interchanged. �

Let us observe that the converse of the above theorem does not necessarily

hold. The problem arises from the fact that the implicit minimality in the closure

operation is not reflected in the computation of solutions to the constraint. Consider

the domain description where F = {f, g, h} and A = {a}, with the following laws:

executable(a,[]). caused([g],h).

causes(a,f,[]). caused([h],g).

Let us consider S = {neg(f), neg(g), neg(h)}. Then, S ′ = {f, g, h} determines a

solution of the constraint Cu,v
F with the execution of action a, but CloSL(E ∪ (S ∩

S ′)) = {f} ⊂ S ′. However, the following holds:

Theorem 2 (Weak soundness)

Let D = 〈DL,EL,SL〉. Let σS ◦ σS ′ ◦ σa identify a solution of the constraint Cu,v
F .

Then CloSL(E(a, u) ∪ (S ∩ S ′)) ⊆ S ′.

Proof

It is immediate to see that σS and σS ′ uniquely determines two consistent and

complete sets of fluent literals u and v. Let f be a positive fluent in CloSL(E(a, u)∪
(S ∩ S ′)). We show now that f ∈ S ′.

(1) If f is in S ∩ S ′ we are done.

(2) If f ∈ E(a, u), there is a law causes(a, f, αf,i) such that S |= αf,i. Since S is

determined by σS , by (3), we have that σS ◦ σa is a solution of αuf,i ∧ Aua, which

implies that Dynuf is true, and σS ′(F
v
f) is true in σS ′ . Therefore, f ∈ S ′. Observe

also that σa making true Aua will imply that δua,h is true (for some h ∈ {1, . . . , pa}),
which will imply satisfiability of the executability preconditions for a.

(3) We are left with the case of f /∈ E(a, u) and f /∈ S ∩ S ′. Since S ′ is determined

by σS ′ , and f ∈ CloSL(E(a, u) ∪ (S ∩ S ′)), there is a law caused(γf,j , f) such

that S ′ |= γf,j , and by construction σS ′ makes γvf,j true. Thus, Statvf is true and

therefore Fvf is true. Hence, f ∈ S ′.

The proof proceeds similarly in the case of a negative fluent neg(f) in CloSL(E(a, u)∪
(S ∩ S ′)). �

Let us consider the set of static causal laws SL. We can introduce a notion of

positive dependence graph, following the traditional principle of dependence analysis

used in logic programming (e.g., Lin and Zhao 2004). The graph G(SL) is defined

as follows:

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 179

Fig. 4. Sets of fluents involved in a state transition and a literal � introduced by closure.

• the set of the nodes in G(SL) corresponds to the set of fluent literals, i.e.,

Nodes(G(SL)) = {f | f ∈ F} ∪ {neg(f) | f ∈ F}

• edges are created to denote the dependence of a fluent literal on other literals

due to a static causal law, i.e.,

Edges(G(SL)) = {(�1, �2) | caused(L, �1) ∈ SL, L = [..., �2, ...]}

A set of fluent literals L is a loop if, for any �1, �2 ∈ L, we have that there is a path

from �1 to �2 in G(SL) such that all nodes encountered in such path are in L. We

say that a domain specification D = 〈DL,EL,SL〉 is acyclic if the graph G(SL)

does not contain any loops.

Theorem 3 (Acyclic soundness)

Let D = 〈DL,EL,SL〉. Let σS ◦ σS ′ ◦ σa be a solution of the constraint Cu,v
F . If

the dependency graph of P is acyclic, then CloSL(E(a, u) ∪ (S ∩ S ′)) = S ′.

Proof

Theorem 2 proves that CloSL(E(a, u) ∪ (S ∩ S ′)) ⊆ S ′. It remains to prove that for

any (positive or negative) fluent �, if � ∈ S ′, then � ∈ CloSL(E(a, u) ∪ (S ∩ S ′)).
If � ∈ E(a, u) or � ∈ S , then trivially � ∈ CloSL(E(a, u) ∪ (S ∩ S ′)).

Let us prove that (cf., Fig. 4)

(� ∈ S ′ ∧ � /∈ E(a, u) ∪ (S ∩ S ′))→ � ∈ CloSL(E(a, u) ∪ (S ∩ S ′)).

To this aim, consider the dependence graph G(SL). Because of the acyclicity of

G(SL), there are nodes in G(SL) without incoming edges – we will refer to them

as leaves. For any node � of G(SL), let d(�) denote the length of the longest path

from a leaf of G(SL) to �. We prove the property for a positive fluent literal � = f,

by induction on d(�).

Base case. If f /∈ E(a, u) ∪ (S ∩ S ′) is a positive fluent which is a leaf (the proof is

similar for the case of negative literals), then two cases could be possible.

• There is no law of the form caused(, f) in SL. In this case, it cannot be that

f ∈ S ′ due to constraint (4).

• There is a law caused([], f). In this case f ∈ S ′ by closure.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

180 A. Dovier et al.

Inductive step. Let f /∈ E(a, u) ∪ (S ∩ S ′) be a positive fluent such that there are

laws caused(γf,1, f), . . . , caused(γf,h, f) in SL. By the inductive hypothesis, let us

assume that the thesis holds for each fluent literal � such that d(�) < d(f). Since

f /∈ E(a, u) and f /∈ S ∩ S ′, we have that Fuf is false, Fvf is true, and Dynuf is false

under σS ◦σS ′ ◦σa. From the fact that constraint (7) is satisfied, it follows that Statvf
is true. Moreover, Dynuf is false because f /∈ E(a, u). On the other hand, because

of (6), we have that Dynuneg(f), Stat
v
neg(f), and Fired

u,v
neg(f) are all false. Consequently,

constraint (7) can be rewritten as Fvf ↔
∨h
j=1 γ

v
f,j . Since f ∈ S ′ (i.e., Fvf is true),

there must exists a j ∈ {1, . . . , h} such that γvf,j is verified by σS ′ . This implies that,

for each fluent g required to be true (resp., false) in γf,j , F
v
g is set true (resp., false)

by σS ′ . By inductive hypothesis, such fluent literals (either g or neg(g)) belong to

CloSL(E(a, u) ∪ (S ∩ S ′)). Since CloSL(E(a, u) ∪ (S ∩ S ′)) is closed w.r.t. the static

laws, it follows that f ∈ CloSL(E(a, u) ∪ (S ∩ S ′)).
The proof in case of a negative fluent neg(f) is similar. �

In order to achieve soundness in cases where the graph G(SL) contains loops, it

is necessary to introduce additional constraints in conjunction with Cu,v
F . Intuitively,

in the semantics of B, cyclic dependencies created by the static causal laws are

resolved by the closure operation CloSL(·) by minimizing the number of fluent

literals that are made true – this derives by the implicit minimality of the closure.

Additional constraints can be added to enforce this behavior; these constraints can

be derived by following a principle similar to that of loop formulae commonly used

in the context of logic programming (Lin and Zhao 2004).

The notion of loop formulae can be developed in our context as follows. Let

L = {�1, . . . , �k} be a loop in G(SL) and let us consider the transition from u to v

as studied earlier. Let us define a counter-support for �i w.r.t. the loop L as a set of

constraints cs with the following properties:

• for each causes(aj , �i, α) in DL, cs contains either Auaj = 0 or Fu
�̄

= 1 for some

� in α;

• for each caused(γ, �i) in SL such that none of �1, . . . , �k is in γ, for some � in

γ cs contains Fv
�̄

= 1;

• cs contains either Fu
�̄i

= 1 or Fv
�̄i

= 1.

(As usual, we might identify a set cs of constraint with their conjunction, depending

on the need.) Let us denote with Counters(�i, L)u,v the set of all such counter-supports.

The loop formulae for L w.r.t. u, v is the set of constraints

Form(L)u,v = {c1 ∧ · · · ∧ ck → Fv�1
= 0 ∧ · · · ∧ Fv�k = 0 | ci ∈ Counters(�i, L)u,v}.

To take into account all different loops in G(SL), let Form(D)u,v be the constraint

Form(D)u,v =
∧

L is a loop in G(SL)

Form(L)u,v .

Following the analogous proofs relating answer sets and models of a program

completion that satisfies loop formulae (e.g., Lin and Zhao 2004) one can show:

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 181

Theorem 4 (Soundness)

Let D = 〈DL,EL,SL〉 and let σS ◦ σS ′ ◦ σa be a solution of the constraint

C
u,v
F ∧ Form(D)u,v . Thus, CloSL(E(a, u) ∪ (S ∩ S ′)) = S ′.

Let the action description D meet the conditions of Theorem 4 and let 〈S, ν, R〉
be its underlying transition system. The following can be proved.

Theorem 5

There is a trajectory 〈s0, a1, s1, a2, . . . , aN, sN〉 in the transition system 〈S, ν, R〉 if and

only if s0 is closed w.r.t. SL and there is a solution for the constraint

N−1∧
j=0

(
C
sj ,sj+1

F ∧ Form(D)sj ,sj+1
)
.

Proof

The result follows directly by application of Theorems 1 and 4 and by observing

that for each transition 〈sj , aj+1, sj+1〉, the satisfaction of constraint C
sj ,sj+1

F implies

that the state sj+1 is closed w.r.t. SL. �

Let 〈D,O〉 be an instance of a planning problem where D is an action description

and O contains any number of axioms of the form initially(C) and goal(C). We

can state the following.

Corollary 1

There is a trajectory 〈s0, a1, s1, a2, . . . , aN, sN〉 for the planning problem 〈D,O〉 if and

only if s0 is closed w.r.t. the static causal laws of D and there is a solution for the

constraint

∧
initially(C)∈O

Cs0 ∧
N−1∧
j=0

(
C
sj ,sj+1

F ∧ Form(D)sj ,sj+1
)
∧

∧
goal(C)∈O

CsN .

3.3 Mapping the model to CLP(FD)

The modeling described in Section 3.1 has been translated into a concrete im-

plementation using SICStus Prolog. In this translation, constrained CLP variables

directly reflect the Boolean variables modeling fluents and action’s occurrences.

Consequently, causal laws and executability conditions are directly translated into

CLP constraints (and inherit the corresponding completeness and soundness results).

In this section we highlight the main aspects of the implementation – while the

complete code can be found at www.dimi.uniud.it/dovier/CLPASP.

A plan with exactly N + 1 states, p fluents, and m actions is represented by

• A list, called States, containing N + 1 lists, each composed of p terms of the

form fluent(fluent name, Bool var). The variable of the ith term in the jth

list is assigned 1 if and only if the ith fluent is true in the jth state of the

trajectory. For example, if we have N = 2 and the fluents f, g, and h, we have

States = [[fluent(f,X_f_0),fluent(g,X_g_0),fluent(h,X_h_0)],

[fluent(f,X_f_1),fluent(g,X_g_1),fluent(h,X_h_1)],

[fluent(f,X_f_2),fluent(g,X_g_2),fluent(h,X_h_2)]].

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

182 A. Dovier et al.

Fig. 5. Main predicate of the CLP(FD) planner.

• A list ActionsOcc, containing N lists, each composed of m terms of the form

action(action name,Bool var). The variable of the ith term of the jth list is

assigned 1 if and only if the ith action occurs during the transition from state

j to state j + 1. For example, if we have N = 2 and the actions are a and b,

then

ActionsOcc = [[action(a,X_a_1),action(b,X_b_1)],

[action(a,X_a_2),action(b,X_b_2)]].

The planner makes use of these structures in the construction of the plan; appro-

priate constraints are set between the various Boolean variables to capture their

relationships. For each list in ActionsOcc, exactly one action(ai,VAi) contains a

variable that is assigned the value 1 (cf., constraint (8)).

The CLP implementation of the B language assumes that the action description

is encoded as Prolog facts – observe that the syntax of B is compliant with Prolog’s

syntax, allowing us to directly store the domain description as rules and facts in the

Prolog database. The entry point of the planner is shown in Figure 5.

The main predicate is clpplan(N, ActionsOcc, States) (line (1)) that computes a

plan of length N for the action description present in the Prolog database. If such

a plan exists, the variables in ActionsOcc and States will be instantiated so as to

describe the found trajectory.

Lines (2) and (3) collect the lists of all fluents (Lf) and all actions (La). Lines (4)

and (5) are used for the creation of the lists States and ActionsOcc. In particular, all

the variables for fluents and actions are declared as Boolean variables. Furthermore,

a constraint is added to enforce that in every state transition, exactly one action can

be fired.

Lines (6) and (7) collect the description of the initial state (Init) and the required

content of the final state (Goal). These information are then added to the Boolean

variables related to the first and last state, respectively, by the predicates in lines (8)

and (9).

Lines (10) and (11) impose the constraints on state transitions and action

executability, as described in Section 3.1. We will give more details on this part

below.

Line (12) gathers all variables denoting action occurrences, in preparation for the

labeling phase (line (13)). Note that the labeling is focused on the selection of the

action to be executed at each time step. Some details on the labeling strategy are

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 183

Fig. 6. Transition from state to state.

discussed in Section 8. Please observe that in the code of Figure 5 we omit the parts

concerning delivering the results to the user.

The main constraints are added by the predicate set transitions. The pro-

cess is based on a recursion across fluents and consecutive states. The predicate

set one fluent is called (see Fig. 6) at the core of the recursion. Its parameters are

the fluent F, the starting state FromState, the next state ToState, the list Occ of action

variables, and finally the variables IV and EV, related to the value of the fluent F in

FromState and ToState, respectively (see also Fig. 2).

For a given fluent F, the predicate set one fluent collects the list DynPos (resp.

DynNeg) of all the pairs [Action,Preconditions] such that the dynamic action Action

makes F true (resp. false) in the state transition (lines (15) and (16)). The variables

involved are then constrained by the procedure dynamic (lines (17) and (18)).

Similarly, the static causal laws are handled by collecting the lists of conditions

that affect the truth value of a fluent F (i.e., the variables StatPos and StatNeg, in

lines (19)–(20)) and constraining them through the procedure static (lines (21) and

(22)). The disjunctions of all the positive and negative conditions are collected in

lines (23) and (24) and stored in PosFired and NegFired, respectively.

Finally, lines (25) and (26) take care of the relationships between all these variables.

Line (25) implements the constraint (6) for the state ToState of Figure 3, stating

that we do not want inconsistent action theories. If PosFired and NegFired are both

false, then EV = IV (inertia). Precisely, a fluent is true in the next state (EV) if and

only if there is an action or a static causal law making it true (PosFired) or it was

true in the previous state (IV) and no causal law makes it false.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

184 A. Dovier et al.

Fig. 7. Executability conditions.

Let us consider the predicate dynamic (see line (27) in Fig. 6). It recursively

processes a list of pairs [Action,Preconditions]. The variable VA associated to the

execution of action Action is retrieved in line (29). The variables associated to its

preconditions are retrieved from state FromState and collected in ListPV in line (30).

A precondition holds if and only if all the variables in the list ListPV are assigned

value 1, i.e., when their sum is equal to the length, NPrec, of the list ListPV. If (and

only if) the action variable VA is true and the preconditions holds, then there is an

action effect (line (33)).

Similarly, the predicate static (line (35) in Fig. 6) recursively processes a list of

preconditions. The variables involved in each of such precondition Cond are retrieved

from the state ToState and collected in ListPV (line (37)). A precondition holds if

and only if all the variables in the list ListPV have value 1, i.e., when their sum is

equal to the length, NPrec, of ListPV. This happens if and only if there is a static

action effect (see line (40)).

Executability conditions are handled as follows. For each state transition and

for each action Act, the predicate set executability sub is called (see Fig. 7).

The variable VA, encoding the application of an action Act is collected in line

(44). A precondition hold if and only if the sum of the (Boolean) values of

its fluent literals equals their number (lines (52)–(54)). The variable Flags stores

the list of these conditions and the variable F their disjunction. If the action is

executed (VA = 1, see line (47)), then at least one of the executability conditions must

hold.

4 The action language with constraints on multivalued fluents

As a matter of fact, constraints represent a very declarative notation to express

relationships between unknowns. As such, the ability to use them directly in an

action language greatly enhances the declarative and expressive power of the

language, facilitating the encoding of complex action domains, such as those

involving multivalued fluents. Furthermore, the encoding of an action theory using

multivalued fluents leads to more concise and more efficient representations and

better exposing nondeterminism (that could be exploited, e.g., by a parallel planner).

Let us consider some representative examples.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 185

Example 2 (Maintenance goals)

It is not uncommon to encounter planning problems where along with the type

of goals described earlier (known as achievement goals), there are also maintenance

goals, representing properties that must persist throughout the trajectory. Constraints

are a natural way of encoding maintenance properties, and can be introduced along

with simple temporal operators. For example, if the fluent fuel represents the amount

of fuel available, then the maintenance goal which guarantees that we will not be

left stranded could be encoded as: always(fuel > 0). �

Example 3 (Control knowledge)

Domain-specific control knowledge can be formalized as constraints that we expect

to be satisfied by all the trajectories. For example, we may know that if a certain

action occurs at a given time step (e.g., ingest poison) then at the next time step we

will always perform the same action (e.g., call doctor). This could be encoded as

caused([occ(ingest poison)], occ(call doctor)1),

where occ(a) is a fluent describing the occurrence of the action a and f1 indicates

that the fluent f should hold at the next time step. �

Example 4 (Delayed effect)

Let us assume that the action request reimbursement has a delayed effect (e.g., the

increase by $50 of bank account after 30 time units). This could be expressed as a

dynamic causal law:

causes(request reimbursement,incr(bank account,50)30,[]),

where incr is a constraint introduced to deal with additive computations – in a way

closer to B’s syntax we should write:

causes(request reimbursement,bank account30 = bank account+ 50,[]).

This is a particular case of additive fluents (Lee and Lifschitz 2003). �

In what follows we introduce the action description language BMV in which

multivalued fluents are admitted and constraints are first-class components in the

description of planning problems. The availability of multivalued constraints enables

a number of immediate language extensions and improves the expressive power of

the overall framework.

Action description languages such as B rely on the common assumption, tradi-

tionally referred to as Markovian property in the context of systems and control

theory: the executability of an action and its effects depend exclusively on the

current state of the world (McCarthy 1998; Gabaldon 2002). Nevertheless, it is not

uncommon to encounter real world situations where such property is not satisfied,

i.e., situations where the executability and/or the effects of an action depend not only

on what holds in the current situation, but also on whether some conditions were

satisfied at a previous point in time. For example, an agent controlling access to a

database should forbid access if in the recent past three failed password submission

attempts have been performed by the user.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

186 A. Dovier et al.

Although non-Markovian preconditions and effects can be expressed in a Marko-

vian theory through the introduction of additional fluents (and a correct handling

of inertia), the resulting theory can become significantly larger and less intuitive. An

alternative solution consists of admitting past references in modeling such kind of

situations. In this frame of mind, BMV allows timed references to past points in time

within constraints, i.e., non-Markovian expressions that might involve fluents’ values.

Effects of dynamic laws that involves future references might also be specified. As

a further feature the BMV language admits the specification of global constraints

(involving absolutely specified points in time) and costs for actions and plans.

The resulting description language supports all the kind of modeling and reasoning

outlined in the above Examples 2–4.

In the next sections, we first introduce the syntax of the full-blown action

description language BMV (Section 5). In Section 6 we will develop the semantics

and the constraint-based abstract implementation of this new language. In doing

this, for the sake of readability, we proceed incrementally in order to focus on the

main points and features of the framework. We first consider the sublanguage BMV
0

obtained from BMV by disallowing timed references (Section 6.1); in Section 6.2,

we treat the general case dealing with past and future references. The abstract

implementation is provided in Section 6.3. Finally, we give the semantics to the

complete language involving cost and global constraints (Section 6.4).

5 The language BMV

As for B, the action signature consists of a set F of fluent names, a set A of action

names, and a set V of values for fluents in F. In the following we assume that

V ⊆ �.

In an action domain description, an assertion (domain declaration) of the type

fluent(f, {d1, . . . , dk})

declares that f is a fluent and that its set of values is {d1, . . . , dk}; we refer to the set

{d1, . . . , dk} as the domain of f. We also admit the simplified notation fluent(f, d1, d2)

to specify all the integer values in the interval [d1, d2] as admissible (with d1 � d2).

An annotated fluent (AF) is an expression ft, where f is a fluent and t ∈ �. We

will often denote f0 simply by f. Intuitively speaking, if t < 0 then ft denotes the

value that the fluent f had t steps ago in the past; similarly, if t > 0, then ft denotes

the value f will have t steps in the future. We refer to annotated fluents with t > 0

as positively annotated fluents.

Annotated fluents can be used in Fluent Expressions (FE), which are defined

inductively as follows:

FE ::= d | AF | FE1 ⊕ FE2 | − (FE) | abs(FE) | rei(FC)

where d ∈ V and ⊕ ∈ {+,−, ∗, /, mod}. FC is a fluent constraint (see below). We refer

to the fluent expressions rei(FC) as the reification of the fluent constraint FC – its

formal semantics is given in Section 6.1.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 187

Fluent expressions can be used to build primitive fluent constraints (PC), i.e.,

formulae of the form FE1 op FE2, where FE1 and FE2 are fluent expressions, and op is

a relational operator, i.e., op ∈ {=, �=,�,�, >,<}. Fluent constraints are propositional

combinations of primitive fluent constraints:

PC ::= FE1 op FE2,

C ::= PC | ¬C | C1 ∧ C2 | C1 ∨ C2.

The constant symbols true and false can be used as a shorthand for true

constraints (e.g., d = d, for some d ∈ V) and unsatisfiable constraints (e.g., d �= d).

The language BMV allows one to specify an action domain description, which

relates actions, states, and fluents using axioms of the following forms (PC denotes

a primitive fluent constraint, while C is a fluent constraint).

• Axioms of the form executable(a, C), stating that the fluent constraint C has

to be satisfied by the current state for the action a to be executable.

• Axioms of the form causes(a, PC, C) encode dynamic causal laws. When the

action a is executed, if the constraint C is satisfied by the current state, then

state produced by the execution of the action is required to satisfy the primitive

fluent constraint PC .

• Axioms of the form caused(C1, C2) describe static causal laws. If the fluent

constraint C1 is satisfied in a state, then the constraint C2 must also hold in

such state.

An action domain description of BMV is a tuple 〈DL,EL,SL〉, where EL is a set

of executability conditions, SL is a set of static causal laws, and DL is a set of

dynamic causal laws. In the following, we assume that positively annotated fluents

can occur only in the effect part of dynamic causal laws.

A specific instance of a planning problem is a pair 〈D,O〉, where D is an action

domain description and O contains any number of axioms of the form initially(C)

and goal(C), where C is a fluent constraint.

Example 5

A sample action theory in BMV is

fluent(f, {1, 2, 3, 4, 5}).
fluent(g, {1, 2, 3, 4, 5}).
fluent(h, {1, 2, 3, 4, 5}).
causes(a, f = g + 2, g < 3).

executable(a, true).

initially(f = 1).

initially(g = 1).

initially(h = 1).

goal(f = 5). �

Notice that, for any given dynamic law causes(a, PC, C), such that a is executed

in a state u satisfying C , the constraint PC has to be evaluates/satisfied in the

target state v. Hence, the (relative) timed references occurring in PC (respectively,

in C) are resolved with respect to v (resp., u). On the other hand, for a static law

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

188 A. Dovier et al.

caused(C1, C2), relative timed references of both C1 and C2 have to be resolved with

respect to the current state.

5.1 Absolute temporal references

The language BMV allows the definition of absolute temporal constraints, i.e., con-

straints that refer to specific moments in time in the trajectory (by associating the

time point 0 to the initial state). differently from the case of annotated fluents,

where points in time are relative to the current state. A timed fluent is defined as an

expression of the form

FLUENT @ TIME.

Timed fluents can be used to build timed fluent expressions (TE) and timed primitive

constraints (TC), similarly to what done for normal fluents. For instance, the

constraint

f@2 < g@4

states that the value the fluent f has at time 2 in the plan is less than the value that

the fluent g has at time 4. Similarly, h@2 = 3 imposes that the fluent h must assume

value 3 at time 2.

Timed constraints can be used in the following kind of assertion:

time constraint(TC).

The assertion requires the timed constraint TC to hold.

Some other accepted constraints are

• holds(FC, n): this constraint is a particular case of the previous one. It is

satisfied if the primitive fluent constraint FC holds in the nth state. It is

therefore a generalization of the initially axiom. Observe that assertions

of this kind can be used to guide the search of a plan by adding some

pointwise information about the states occurring along the computed trajectory

(e.g., this is useful to implement the landmarks model as used in the FF

planner (Hoffmann et al. 2004).

• always(FC): this constraint imposes the condition that the fluent constraint

FC holds in all the states. Observe that FC has to be evaluated in all states,

and its evaluation is strict – i.e., any reference to fluents outside the time limits

leads to the satisfaction of the constraint; hence, annotated fluents should be

avoided in FC .

In specifying a planning problem 〈D,O〉, we can consider such kinds of assertions

as part of the observations O.

Example 6

Let us consider the case of an agent that has a certain amount of money (e.g.,

$5,000) to invest; she is interested in purchasing as many stocks as possible. The

stocks can be purchased from three trading agencies (1, 2, and 3); each agency

has 1,000 stocks available at $2 each. The stocks have to be purchased in separate

transactions, but each trading agency require the agent to have a balance of at least

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 189

$2,000 at the start of the day before agreeing in the transaction. A purchase can be

of at most 3,000 shares at a time.
We can model this problem with the following fluents:

fluent(money, 0, 5000). fluent(have(stock1), 0, 1000).

fluent(have(stock2), 0, 1000). fluent(have(stock3), 0, 1000).

fluent(available(stock1), 0, 1000). fluent(available(stock2), 0, 1000).

fluent(available(stock3), 0, 1000).

fluent(price(stock1), 2, 2). fluent(price(stock2), 2, 2).

fluent(price(stock3), 2, 2)).

The only action is

action(buy(StockType,N)) : −N > 0, N < 3000.

The executability condition for the action captures one property: the agent is

accepted by the trading agency.

executable(buy(Type,N), money@0 > 2000 ∧ money > N ∗ price(Type)).

The dynamic causal law for this action is

causes(buy(Type,N), money = money −N ∗ price(Type), true).
causes(buy(Type,N), have(Type) = have(Type) +N, true).

The initial state can be described as

initially(price(stock1) = 2). initially(price(stock2) = 2).

initially(price(stock3) = 2). initially(have(stock1) = 0).

initially(have(stock2) = 0). initially(have(stock3) = 0).

initially(money = 5000). initially(available(stock1) = 1000).

initially(available(stock2) = 1000). initially(available(stock3) = 1000). �

5.2 Cost constraints

In BMV it is possible to specify information about the cost of each action and about

the global cost of a plan (that is defined as the sum of the costs of all its actions).

This type of information are useful to explore the use of constraints in determining

optimal plans.

The cost of actions is expressed using assertions of the following forms (where

FE is a fluent expression built using the fluents present in the state):

• action cost(a, FE) specifies the cost of the execution of the action a as result

of the expression FE.

• state cost(FE) specifies the cost of a state as the result of the evaluation of

FE.

Whenever, for an action or a state, no cost declaration is provided, a default cost of

1 is assumed. Once we have provided the costs for actions and states, we can impose

constraints on the cumulative costs of specific states or complete trajectories. This

can be done in BMV using assertions of the following types (where k is a number

and op a relational operator):

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

190 A. Dovier et al.

• cost constraint(plan op k); the assertion adds a constraint on the global cost

of the plan.

• cost constraint(goal op k); the assertion imposes a constraint on the global

cost of the final state.

• cost constraint(state(i) op k); the assertion imposes a constraint on the

global cost of the ith state of the trajectory.

As an immediate generalization of the above constraints, we admit assertions of

the form cost constraint(C), where C is a constraint, possibly involving fluents,

where the atoms plan, goal, and state(i) might occur in any place where a fluent

might – intuitively representing the cost of a plan, of the goal state, and of the ith

state, respectively.

Some directives can be added to an action theory to select optimal solutions with

respect to the specified costs:

minimize cost(FE),

where FE is an expression involving the atoms plan, goal, and state(i), and

possibly other fluents. This assertion constrains the search to determine a plan

that minimizes the value of the expression FE. For instance, the two assertions

minimize cost(plan) and minimize cost(goal) constrain the search of a plan with

minimal global cost and with minimal cost of the goal state, respectively.

We provide a more precise semantics for all these assertions in Section 6.4. In

specifying a planning problem 〈D,O〉, we consider cost constraints as part of the

observations O.

6 Semantics and abstract implementation of BMV

We will build the semantics of the language BMV incrementally. We will start by

building the semantics for the sublanguage of BMV devoid of any form of time

reference and cost constraints (Section 6.1). This core language is called BMV
0 . The

subsequent Sections 6.2–6.4 treat the full BMV .

6.1 Semantics for timeless constraints

Each fluent f is uniquely assigned to a domain dom(f) in the following way:

• if fluent(f, Set) ∈ D, then dom(f) = Set.

A function v : F → V ∪ {⊥} is a state if v(f) ∈ dom(f) ∪ {⊥} for all f ∈ F.

The special symbol ⊥ denotes that the value of the fluent is undefined. A state v is

complete if for all f ∈ F, v(f) �= ⊥. For a number N � 1, we define a state sequence

�v as a tuple 〈v0, . . . , vN〉 where each vi is a state.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 191

Given a state v, and an expression ϕ, we define the value of ϕ in v (with abuse of

notation, denoted by v(ϕ)) as follows8:

• v(x) = x if x ∈ V,
• v(f) = v(f) if f ∈ F (abuse of notation here),

• v(−(ϕ)) = −(v(ϕ)),

• v(abs(ϕ)) = |(v(ϕ))|,
• v(ϕ1 ⊕ ϕ2) = v(ϕ1)⊕ v(ϕ2),

• v(rei(C)) = 1 if v |= C,

• v(rei(C)) = 0 if v �|= C.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

We treat the interpretation of the various ⊕ operations and relations as strict with

respect to ⊥ (i.e., ⊥⊕ x = x⊕⊥ = ⊥, abs(⊥) = ⊥, etc.).

The last two cases in (10) specify the semantics of reification. Reified constraints

are useful to enable reasoning about the satisfaction state of other formulae. The

intuitive semantics is that a fluent expression rei(C), where C is a fluent constraint,

assumes a Boolean value (0 or 1) depending on the truth of C . Note that the

semantics of reified constrains relies on the notion of satisfaction, which in turn is

defined by structural induction on constrains, as follows. Given a primitive fluent

constraint ϕ1 opϕ2, a state v satisfies ϕ1 opϕ2, written v |= ϕ1 opϕ2, if and only if it

holds that v(ϕ1) op v(ϕ2) where the semantics of the arithmetic relators/operators is

the usual one on �. If either v(ϕ1) or v(ϕ2) is ⊥, we assume that v �|= ϕ1 op ϕ2 (and

v �|= ϕ1 nop ϕ2 where nop is the negation of the operator op). Basically, undefined

formulas are neither proved nor disproved. The satisfaction relation |= can be

generalized to the case of propositional combinations of fluent constraints in the

usual manner.

Given a constraint C , let fluents(C) be the set of fluents occurring in it. A function

σ : fluents(C) −→V is a solution of C if σ |= C . We denote the domain fluents(C)

of the function σ as dom(σ). In other words, a solution σ of C can be seen as

a partial state satisfying C . Observe that we require the solution to manipulate

exclusively the fluents that appear in the constraint.

Example 7

Let us consider an action theory over the fluents f, g, h, where each fluent has domain

{1, . . . , 5}. If C is the constraint f > g + 2, then a solution of C is σ = {f/5, g/2}.
Note that the substitution θ = {f/5, g/2, h/1} is not a solution of C , since dom(θ) �=
fluents(f > g + 2). �

Let σ be a solution of a constraint C and v a state, with ine(σ, v) we denote the

state obtained completing σ in v by inertia, as follows:

ine(σ, v)(f) =

{
σ(f) if f ∈ dom(σ)

v(f) otherwise

8 The expression |n| denotes the (algebraic) absolute value of n.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

192 A. Dovier et al.

Example 8

Let us continue with Example 7. If σ = {f/5, g/2} and v = {f/1, g/1, h/1}, then

ine(σ, v) = {f/5, g/2, h/1}. �

An action a is executable in a state v if there is an axiom executable(a, C) such

that v |= C .

Remark 3

As for the case of the language B, also in BMV the executability laws express

necessary but not sufficient preconditions for action execution (cf., Remark 2).

Moreover, thanks to the generality of the constraint language – i.e., any propositional

combination of primitive constraints can be used in BMV– the executable laws

also allow direct formulation of nonexecutability conditions and the roles of the

executable and nonexecutable axioms coincide.

Let us denote with Dyn(a) the set of dynamic causal law axioms for action a.

The effect of executing a in state v, denoted by Eff (a, v), is a constraint defined as

follows:

Eff (a, v) =
∧
{C | causes(a, C, C1) ∈ Dyn(a), v |= C1} .

6.1.1 BMV
0 without static causal laws

Let us start by considering the simplified situation in which SL = ∅, i.e., no static

causal laws are specified in the domain description.

During the execution of an action a, a fluent has to be considered as inertial,

provided that it does not appear among the effects of the dynamic laws for a. In

other words, since these effects are expressed through constraints, a fluent is inertial

if it does not occur in any of the constraints specified in the dynamic laws for a.

The description of the state transition system corresponding to a given ac-

tion description theory 〈DL,EL, ∅〉 can be completed by defining the notion of

transition.

A triplet 〈v, a, v′〉, where v, v′ are complete states and a is an action, is a valid state

transition if

• the action a is executable in v, and

• v′ = ine(σ, v), where σ is a solution of the constraint Eff (a, v).

Let 〈D,O〉 be an instance of a planning problem,�v = 〈v0, . . . , vN〉 be a sequence of

complete states and a1, . . . , aN be actions. We say that 〈v0, a1, v1, . . . , aN, vN〉 is a valid

trajectory if

• for each axiom of the form initially(C) in O, we have that v0 |= C ,

• for each axiom of the form goal(C) in O, we have that vN |= C , and

• for all i ∈ {0, . . . ,N− 1}, 〈vi, ai+1, vi+1〉 is a valid state transition.

Example 9

Let us consider the Example 5. Observe that 〈{f/1, g/1, h/1}, a, {f/5, g/3, h/1}〉 is a

valid trajectory. �

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 193

Fig. 8. The constraints Cu,v
f,a for a state transition from u to v, for a fluent f.

Remark 4

Given a planning problem 〈D,O〉 in BMV
0 , differently from what happens in the case

of B, a solution to a planning problem is described by a valid trajectory, not just by

a sequence of actions. This is the case because actions might have nondeterministic

effects. For instance, let us consider Example 5. If the action a is executed and the

precondition g<3 holds, then the dynamic causal law imposes the constraint f=g+2 in

the reached state. There are many different ways to satisfy this requirement. Hence,

in general, a sequence of actions might not characterize a unique state sequence.

The same argument also applies to the action description language BMV , so in

what follows we will consider the valid trajectories as the solutions of a planning

problem.

6.1.2 Abstract implementation in absence of static laws

In this section we propose a constraint-based characterization of the state transition

system defined in Section 6.1.1. Similarly to what we have done in the case of B, for

any specific state, each fluent f will be represented by an integer-valued constraint

variable. Boolean variables will instead model the occurrences of actions.

Let u be a state; given a fluent f, we indicate with Fuf the variable representing f

in u. We generalize such a notation to any constraint C , i.e., we denote with Cu the

constraint obtained from C by replacing each fluent f ∈ fluents(C) by Fuf . For each

action a ∈ A, a Boolean variable Aua is introduced, representing whether the action

is executed or not in the transition from u to the next state.

Given a specific fluent f, we develop a system of constraints to constrain the

values of Fuf . Let us consider the dynamic causal laws that have f within their

consequences:

DLf = {causes(aif,1 , Cf,1, αf,1), · · · , causes(aif,mf , Cf,mf , αf,mf)}.

For each action a we will have its executability conditions:

ELa = {executable(a, δa,1), · · · , executable(a, δa,pa)}.

Figure 8 describes the constraints Cu,v
f,a that can be used in encoding the relations

that determine the value of the fluent f in the state v (i.e., constrain the variable Fvf)

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

194 A. Dovier et al.

w.r.t. the application of the action a in the state u. After the settings of the domains

(by (11)), we impose through (12) that if action a is executed, then at least one of

the preconditions for its executability must hold in u. For each j ∈ {1, . . . , mf} the

constraint (13) defines a Boolean flag Dynuf,j that holds if and only if action aif,j is

applicable in u and the preconditions of the jth dynamic causal law for f holds in

u. The constraint (14) requires that if Dynuf,j is true, then the corresponding effects

must hold in the new state v. Finally, inertia constraints are set by means of (15).

We will denote with Cu,v
f the conjunction of these constraints for all actions a ∈ A.

Given an action domain specification over the signature 〈V,F,A〉 and two states

u, v, the system of constraints Cu,v
F includes:

• the constraint Cu,v
f for each fluent literal f in the language of F,

• the constraint
∑

a∈A A
u
a = 1 (unique action execution in the state transition).

The next theorem states completeness and soundness of the encoding described

so far. We need a further piece of notation. Given two states u, v, and an action a,

let Cu,a
F be the constraint obtained from C

u,v
F by setting Aa = 1, Ab = 0 for all b �= a,

and Fuf = u(f) for each fluent literal f.

Theorem 6

Let D = 〈DL,EL, ∅〉 and let u, v two states and a an action. Then 〈u, a, v〉 is a

valid transition in the semantics of the language BMV
0 if and only if v represents a

solution of the constraint Cu,a
F .

Proof

(⇒) Let 〈u, a, v〉 be a valid transition. Then, a is executable in u. Hence u |= δa,j
for some j ∈ {1, . . . , pa} and (12) is satisfied. By the definition of state we have

that (11) is also satisfied. Let v = ine(σ, u) with σ solution of Eff (a, u).

If f is a fluent not belonging to dom(σ) then f does not occur in Eff (a, u) and

it is not affected by any dynamic causal law involved in the state transition. By

definition of ine(·) we have that v(f) = u(f) and this satisfies constraint (15).

Satisfaction of constraints (13) and (14) is immediately verified by observing

that for all dynamic causal laws causes(aif,h , Cf,h, αf,h) having f in Cf,h, the

constraint αf,h is false in u. Then, the corresponding flag Dynuf,h is set false

by (13). Consequently, (14) is satisfied.

Assume now that f is a fluent in dom(σ). This means that there are dynamic causal

laws causes(aif,h , Cf,h, αf,h) such that αf,h is true in u, for h ∈ X = {j1, . . . , jr} ⊆
{1, . . . , mf}. Consequently, the flag Dynuf,h is set true for h ∈ X and false otherwise.

Since σ is a solution of Eff (a, u), v satisfies the constraint Cv
f,j for all j ∈ X. This

implies that (14) is satisfied for each j ∈ {1, . . . , mf}. Since some flags Dynuf,i are

true constraint (15) is satisfied too.

(⇐) Assume that v satisfies the constraint Cu,a
F . By (12), because Aa = 1, some of the

constraints δua,h is satisfied. Hence, action a is executable in u. By the satisfaction

of (13) and (14), v satisfies all constraints Cv
f,j for which the corresponding αuf,j is

satisfied. Then, v is a solution for Eff (a, u). Consequently, since v = ine(v, u) (by

definition, since v is complete), 〈u, a, v〉 is a valid transition.

�

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 195

Let 〈D,O〉 be an instance of a planning problem where D is an action description

and O contains any number of axioms of the form initially(C) and goal(C). We

can state the following.

Theorem 7

There is a valid trajectory 〈v0, a1, v1, a2, . . . , aN, vN〉 if and only if there is a solution

for the constraint

∧
initially(C)∈O

Cv0 ∧
N−1∧
j=0

(
C
vj ,vj+1

F
)
∧

∧
goal(C)∈O

CvN .

Proof

The result follows from (repeated) applications of Theorem 6. �

6.1.3 Adding static causal laws

In this section we consider the case of action theories 〈DL,EL,SL〉 of BMV
0 ,

involving static causal laws (i.e., such that SL �= ∅).
The presence of static laws requires refining the semantics of the language, in

order to ensure proper treatment of inertia in the construction of a valid trajectory.

We start by defining three operations ∩,∪, and � on states, as follows:

v1 ∪ v2(f) =

⎧⎪⎪⎨
⎪⎪⎩
v1(f) if v1(f) = v2(f),

v1(f) if v2(f) = ⊥,
v2(f) if v1(f) = ⊥,
⊥ otherwise,

v1 ∩ v2(f) =

{
v1(f) if v1(f) = v2(f),

⊥ otherwise,

�(v1, v2, S)(f) =

{
v1(f) if f ∈ S,
v2(f) otherwise,

where the set S used in� is a set of fluents. Observe that ine(σ, v) = �(σ, v, dom(σ)).

A state v is closed w.r.t. a set of static causal laws

SL = {caused(C1, D1), . . . , caused(Ck, Dk)},

if v |= (C1 → D1) ∧ · · · ∧ (Ck → Dk). We denote this property as v |=SL.

Given two states v, v′, a set of fluents D, and a set SL of static causal laws, we

say that v′ is minimally closed w.r.t. v, D, and SL if

• v′ |=SL (i.e., v′ is closed) and

• for all S ⊆ D, if �(v, v′, S) �= v′ then �(v, v′, S) �|=SL.

The notion of minimally closed state is intended to capture the law of inertia, w.r.t.

a given set D of fluents. Notice, in fact, that �(v, v′, ∅) = v′. Intuitively speaking,

v′ is minimally closed when it is obtainable from v by applying a minimal set of

(necessary) changes in the values of the “inertial” fluents (those in D). In other

words, it is not possible to obtain from v a state different from v′ and closed w.r.t.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

196 A. Dovier et al.

Fig. 9. The set �(v, v′, X) is obtained by combining a portion of v and a portion of v′,

depending on the third argument X, which acts as a regulator in “mixing” portions of v

and v′. The figure visualizes, in gray, the two sets �(v, v′, D) (above) and �(v, v′, S) (below) for

S ⊆ D ⊆ F and illustrates the definition of minimal closure. A state v′ is minimally closed

if and only if v′ |= SL and for all S ⊆ D, if �(v, v′, D) �= v′ then �(v, v′, S) �|= SL. In both

cases, the surrounding frame represents the set F of all fluents.

SL, by applying “fewer changes” than those involved in obtaining v′. A pictorial

representation of �(v, v′, X) is shown in Figure 9.

Observe that if SL = ∅ then v′ is minimally closed w.r.t. v, D, and SL if and

only if v = v′.

Example 10

Let f, g, h be fluents with dom(f) = dom(g) = dom(h) = {0, 1} and

SL = {caused(f = 1, g = 1), caused(f = 0, g = 0)}.
Consider the states v = {f/0, g/0, h/0}, v′ = {f/1, g/1, h/1}, v′′ = {f/0, g/0, h/1} and

let D = {f, g}. Then, v′ and v′′ are both closed w.r.t. SL.

However, v′′ is minimally closed w.r.t. v, D, and SL, while v′ is not minimally

closed since �(v, v′, D) = {h/1, f/0, g/0} is different from v′ and closed. �

A triplet 〈v, a, v′〉, where v and v′ are complete states and a is an action, is a valid

transition if

(1) the action a is executable in v and

(2) we have that v′ = ine(σ, v′) where,

• σ is a solution of the constraint Eff (a, v), and

• v′ is minimally closed w.r.t. v, F\ dom(σ), and SL.

Intuitively, the conditions that define a transition are designed to guarantee that

• a solution σ for the constraints describing the effects of the action is deter-

mined;

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 197

• such solution is part of the new state v′ constructed (thanks to v′ = ine(σ, v′));

and

• the new state is minimally closed with respect to all the fluents not affected

by the execution of the action.

Let us observe that, since all fluents in the domain of any solution σ of Eff (a, v)

maintain the same value in v′, it holds that v′ |= Eff (a, v).

Notice that the notion of a valid transition given in presence of static laws properly

extends the one given in Section 6.1.1. In fact, the following property holds:

Lemma 1

If SL = ∅ then ine(σ, v) = ine(σ, v′).

Proof

It is sufficient to note that, if SL = ∅ then v′ is minimally closed w.r.t. F\ dom(σ)

if and only if ine(σ, v) = v′. �

Example 11

Let us extend the action description of Example 10. We consider the following

domain description:

fluent(f, {0, 1}). fluent(g, {0, 1}).
fluent(h, {0, 1}).
action(a). executable(a, h = 0).

causes(a, h = 1)

caused(f = 1, g = 1). caused(f = 0, g = 0).

Let us consider the three states v = {f/0, g/0, h/0}, v′ = {f/1, g/1, h/1}, and v′′ =

{f/0, g/0, h/1}. Then 〈v, a, v′′〉 is a valid transition, while 〈v, a, v′〉 is not. �

Let 〈D,O〉 be a planning problem instance. Let �v = 〈v0, . . . , vN〉 be a sequence of

complete states and let a1, . . . , aN be actions. Then 〈v0, a1, v1, . . . , aN, vN〉 is a valid

trajectory if the following conditions hold:

• v0 |=SL, and for each axiom initially(C) in O, we have that v0 |= C;

• for each axiom of the form goal(C) in O, we have that vN |= C;

• 〈vi, ai+1, vi+1〉 is a valid transition, for each i ∈ {0, . . . ,N− 1}.

6.1.4 Abstract implementation in presence of static laws

Let us consider a fluent f and a transition from state u to state w, due to an action a,

and let us adopt the same notation (Fuf , C
u, Aua, etc.) introduced in Section 6.1.2. The

state transition from u to w can be seen as the composition of two steps involving

an intermediate state v. The first of these steps reflects the effects of the dynamic

laws, whereas the second step realizes the closure w.r.t. the static causal laws. Hence

we proceed by introducing a set of variables corresponding to the intermediate state

v = ine(σ, u), where σ is a solution of Eff (a, u). The constraint-based description of

the first step is essentially the same we described in Section 6.1.2 – thus, we only

need to extend the constraint system defined in Figure 8 to reflect the second part

of the transition.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

198 A. Dovier et al.

Fig. 10. The constraints for a state transition from u to w (with intermediate state v),

for a fluent f.

Given a set L ⊆ F of fluents, let SLL ⊆ SL be the collection of all static

causal laws in which at least one fluent of L occurs. Moreover, for simplicity, let

SLf denote SL{f}, i.e., the set of all static causal laws that involve the fluent f.

Let us define a relation R ⊆ F×F so that f1Rf2 if and only ifSLf1
∩SLf2

�= ∅.
R is an equivalence relation and it partitionsF. Each element (i.e., equivalence class)

of the quotient F/R is said to be a cluster (w.r.t. SL). Notice that a cluster can be

a singleton {f}. Let f be a fluent, we denote with Lf its cluster w.r.t. SL.

Example 12

Assume that SL consists of the rules

caused(true, f = 1), caused(g = 2, h = 3), caused(h < 5, r = 2).

Then the two clusters are {f} and {g, h, r}. �

Given a fluent f, let us consider the sets of dynamic and executability laws DLf

and ELa, as defined in Section 6.1.2. Moreover, let us consider the cluster containing

f, let it be Lf = {f1, . . . , fk}, and the corresponding set of static causal laws SLLf :

SLLf = {caused(Gf,1, Df,1), . . . , caused(Gf,hf , Df,hf)}.

Figure 10 describes the constraints (to be added to those in Fig. 8) that are used in

encoding the relations that determine the value of the fluent f in state w (represented

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 199

through the variable Fwf) after the execution of action a in the state u (we recall that

v is to be considered as an intermediate state v = ine(σ, u)).

The constraint (16) sets the domains for the variables Fwf . The constraint (17)

propagates to w the effects of the dynamic laws. Constraint (18) imposes closure

w.r.t. the static causal laws. Finally, constraints (19)–(20) require that if all the fluents

in dom(σ) that belong to the cluster Lf are left unchanged in the transition, then

all the fluents of Lf should not change their values. More precisely, as far as (19) is

concerned, Statvf is set to true if, for all fluents g in Lf , either g is not affected by the

dynamic laws (i.e., Fvg = Fug), or for each activated dynamic law causes(aif,j , Cf,j , αf,j)

(i.e., such that its precondition αuf,j is true), g does not occur in its effects (i.e., in

Cf,j). Notice that, with respect to a specific state transition, we are not considering

subject to inertia all those fluents that occur in the effects of (at least) one activated

dynamic law.

The enforcement of the constraint (20) constitutes a necessary, but not sufficient,

condition for the target state to be minimally closed. We will discuss later on this

point.

Let us denote with Cu,w
f the conjunction of the constraints (11)–(18) for all actions

a ∈ A. Given an action domain specification over the signature 〈V,F,A〉, the

system of constraints Cu,w
F includes:

• the constraint Cu,w
f for each fluent literal f in the language of F;

• the constraint
∑

a∈A A
u
a = 1.

Similarly, let Statu,wF denote the conjunction of all the constraints of the forms (19)

and (20).

The next theorem states completeness of the encoding described so far. Again,

given two states u, w and an action a, let Cu,a
F and Statu,aF denote the constraints

obtained from C
u,w
F and Statu,wF , respectively, by setting Aa = 1, Ab = 0 for all b �= a,

and Fuf = u(f) for each fluent literal f.

Theorem 8

Let D = 〈DL,EL,SL〉 and let u, w two states and a an action. Then, if 〈u, a, w〉
is a valid transition in the semantics of the language BMV

0 , then w represents a

solution of the constraint Cu,a
F ∧ Statu,aF .

Proof

For the constraints (11)–(16), considering the transition from u to v, the proof

proceeds analogously to the first part of the proof of Theorem 6.

Let us sketch the part of the proof regarding the effect of the static causal laws.

Since 〈u, a, w〉 is a valid transition, w = ine(σ, w), w agrees with v = ine(σ, u) on

all fluents in dom(σ), hence (17) hold. Moreover, w is closed w.r.t. SL, hence it

satisfies (18). From the fact that w is minimally closed w.r.t. ine(σ, u),F \ dom(σ),

and SL, it follows that w satisfies (19)–(20). �

The above encoding does not guarantee soundness. This is because the con-

straints (17)–(18) in Figures 8 and 10 might admit solutions not corresponding to

minimally closed states.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

200 A. Dovier et al.

We introduced the notion of cluster to partially recover the soundness of the

encoding. Intuitively speaking, a cluster generalizes, to the multivalued case, the

notion of loop seen in Section 3.2: a cluster is a set of fluents whose values have

been declared to be mutually dependent through a set of static causal laws. In a

state transition, similarly to the case of loops, changes to the fluents of a cluster

might occur because of their mutual influence, not being (indirectly) caused by

dynamic laws.

Constraints (19) and (20) impose inertia on all the fluents of a cluster whenever

none of them is influenced by dynamic laws. However, note that imposing (19)–(20)

does not completely circumvent the problem because state transitions violating the

inertia are still admitted. In fact, (19)–(20) do not impose inertia on the fluents

of a cluster when at least one of them is changed by the dynamic laws. This

might lead to invalid transitions, in which a change in the value of a fluent of a

cluster happens even if this is not necessary in order to satisfy all the static causal

laws.

Nevertheless, we introduced the constraints (19) and (20) because they constitute

a good compromise w.r.t. the efficiency of a concrete implementation (as discussed

later).

To completely enforce soundness, we need to apply a filter on the solutions that

are admitted by the encoding described so far. To this aim, let us introduce a

condition on the values of the fluent, which is intended to mimic, in the multivalued

setting, the effect of loop formulae.

Let us assume that the action a is executed in the state u, and that σ, v, and w

have been determined so that to satisfy the constraint Cu,w
F . In this situation the

following constraint characterizes an hypothetical state x, different from w:

Form(D)u,a =

(
C
u,x
F ∧ (21)

∧
f∈F

(mf∨
j=1

Dynuf,j → Fxf = Fwf

)
∧ (22)

∨
f∈F

Fxf �= Fwf ∧
∧
f∈F

(
Fxf �= Fwf → Fxf = Fuf

))
. (23)

Intuitively, the satisfaction of such a formula witnesses the existence of a coun-

terexample for the minimal closure of w. Notice that, being σ, v, and w already

determined, the only fluents/variables to be determined are those describing the

state x, if any. The conjunct in line (21) states that x is a target state alternative to

w; in particular, it enforces the closure of x w.r.t. SL. The conjunction (22) states

that x and w agree on the fluents in dom(σ). Finally, (23) states that x must differ

from w and it must agree with u in at least one fluent – that, because of (22), it is

in F\ dom(σ).

We can prove the following result that generalizes Theorem 6 to the case of

SL �= ∅.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 201

Theorem 9

Let D = 〈DL,EL,SL〉 and u, w two states, with u closed w.r.t. SL. Let a an

action such that w represents a solution of the constraint Cu,a
F . Then 〈u, a, w〉 is a

valid transition in the semantics of the language BMV
0 , if Form(D)u,a is unsatisfiable.

Proof

By proceeding as in the proof of Theorem 6, we can show that all needed conditions

for 〈u, a, w〉 to be a valid transition are satisfied, except for the minimal closure

of w.

Let us assume, by contradiction, that w is not minimally closed w.r.t. u,F\dom(σ),

and SL. Then, there exists S ⊆ F \ dom(σ) such that x = �(u, w, S) �= w and

x |= SL For each fluent f �∈ S it holds that Fxf = Fwf . Moreover, Fvf = Fwf holds

too, because w satisfies Cu,a
F . Hence, Dynuf,j → Fxf = Fvf holds for all j.

For each fluent f, since x is closed w.r.t. SL, we have that Gxf,j → Dxf,j (for all

j ∈ {1, . . . , hf}). Observe that the conditions of the forms (11)–(16) in the conjunct

at line (21) (i.e., in Cu,x
F) do not depend on the specific x. Then, the conjunct (21) is

satisfied.

Let us also observe that condition (22) holds too. This is so because, for all

f ∈ dom(σ) we have that Fxf = Fwf = Fvf . From the fact that x �= w it follows

that
∨
f∈F F

x
f �= Fwf holds. Finally, the condition (23) is satisfied because, whenever

Fxf �= Fwf holds, by the definition of �, it must be the case that Fxf = Fuf . It follows

that Form(D)u,a is satisfiable (by x).

This is a contradiction and proves that w is minimally closed w.r.t. u, F\dom(σ),

and SL, and that 〈u, a, w〉 is a valid transition. �

Let 〈D,O〉 be an instance of a planning problem, where D is a domain description

and O contains any number of axioms of the form initially(C) and goal(C).

We conclude this section by stating a generalization of Theorem 7 to the case of

SL �= ∅.

Theorem 10

There is a valid trajectory 〈v0, a1, v1, a2, . . . , aN, vN〉 if and only if

• v0 |=SL,

• there is a solution for the constraint

∧
initially(C)∈O

Cv0 ∧
N−1∧
j=0

C
vj ,vj+1

F ∧
∧

goal(C)∈O
CvN ,

• For each j ∈ {0, . . . ,N− 1} the formula Form(D)vj ,aj+1 is unsatisfiable.

Proof

The result follows from Theorems 8 and 9. �

Remark 5 (Embedding of B into BMV
0)

We conclude this section by showing that BMV
0 is at least as expressive as B. To

this aim it suffices to describe how to translate a domain description D of B to

a BMV
0 domain description D′, in such a way that the semantics of the domain is

preserved. Let us outline the main points of such a translation.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

202 A. Dovier et al.

Each Boolean fluent f in D can be modeled in BMV
0 by a multivalued fluent f′

whose domain is V = {0, 1} ⊆ �.

Each action in D uniquely corresponds to an action in D′.
Let us consider a dynamic causal law of D, e.g.,

causes(a, f, [f1, . . . , fk, neg(g1), . . . , neg(gh)]).

This law is translated in D′ as

causes(a, f′ = 1, [f′1 = 1, . . . , f′k = 1, g′1 = 0, . . . , g′h = 0]).

In a similar manner, static laws and executability conditions of D are mapped into

BMV
0 . Consequently, the two domain descriptions D and D′ describe two isomorphic

transition systems.

6.2 Adding annotated fluents and non-Markovian references

In this section, we generalize the treatment described in Section 6.1 in order

to provide a state-transition semantics for BMV suitable to cope with temporal

references. The first form of temporal references involves annotated fluents and

concerns relative access to their past values, w.r.t. the current state. There is no

restriction on the occurrences of this kind of annotated fluents: they might be used

in all laws of a domain description. In this case, the extension of the semantics

described in Section 6.1 comes rather naturally. Since references may relate different

points in time along the plan, the approach consists of considering sequences of

states instead of pairs of states, to define the transition constraints.

Regarding references to future points in time (i.e., positively annotated fluents), we

recall that they are admitted in the consequences of dynamic causal laws only. This

restriction allows the treatment of future and past references by exploiting the very

same mechanisms. The semantics is further enriched in Section 6.4 to encompass

state constraints specified by using absolute time references, as well as costs.

Let�v = 〈v0, . . . , vN〉 be a state sequence. Given�v, and i ∈ {0, . . . ,N}, we define the

concept of value of ϕ in �v at time i (with abuse of notation, denoted by �v(i, ϕ)) as

follows9:

�v(i, x) = x if x ∈ V,
�v(i, fj) = vi+j(f) if f ∈ F, and 0 � i+ j � N,

�v(i, fj) = v0(f) if f ∈ F and i+ j < 0,

�v(i, fj) = vN(f) if f ∈ F and i+ j > N,

�v(i, abs(ϕ)) = |�v(i, ϕ)|,
�v(i,−(ϕ)) = −(�v(i, ϕ)),

�v(i, ϕ1 ⊕ ϕ2) =�v(i, ϕ1)⊕�v(i, ϕ2),

�v(i, rei(C)) = 1 if�v |=i C,

�v(i, rei(C)) = 0 if�v �|=i C,

where n ∈ V, ⊕ ∈ {+,−, ∗, /, mod}.

9 A slightly simplified treatment could be described if only past references are admitted. In this case, we
consider i to be the current point in time and j to be negative. The notation could then be simplified
by considering just a prefix�v = 〈v0, . . . , vi〉 of the state sequence.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 203

As for (10) of Section 6.1, the semantics of reified constraints relies on the notion

of satisfaction, which in turn has to be contextualized to a specific point in time i.

More formally, given a fluent constraint ϕ1 op ϕ2 and a state sequence�v, the notion

of satisfaction at time i is defined as�v |=i ϕ1 op ϕ2 ⇔ �v(i, ϕ1) op�v(i, ϕ2). The notion

|=i is generalized to the case of propositional combinations of fluent constraints in

the usual manner.

Given a constraint C , let �-fluents(C) be the set of annotated fluents fi, for i � 0,

occurring in C . Given a state sequence �v = 〈v0, . . . , vi〉, with 0 � i < N, a function

σ : �-fluents(C) −→V is an i-solution of C w.r.t.�v, if it holds that

〈v0, . . . , vi, ine(σ|0, vi), (σ|1), . . . , (σ|N−(i+1))〉 |=i+1 C,

where each σ|k (for k � 0) is the restriction of the assignment σ to the fluent

annotated with k, and μ denotes the substitution obtained by completing μ, with

assignment to ⊥ for all fluents not in dom(μ). Note that we treat the interpretation

of the various operations as strict w.r.t. ⊥ and we assume satisfied all constraints

that refer to undefined expressions. Hence, for instance, if C is constraint and there

is a subexpression ψ of C evaluated as ⊥, then we assume�v |=i C .

Example 13

Let N = 3 and i = 1. Consider the constraint C ≡ (g0 = f−1 + f−2) and let

�v = 〈v0, v1〉 = 〈{f/2, g/1}, {f/1, g/2}〉.
Then σ = {g/3} = σ|0 is a 1-solution of the constraint C , since

• ine(σ|0, {f/1, g/2}) = ine({g/3}, {f/1, g/2}) = {f/1, g/3}, and

• 〈{f/2, g/1}, {f/1, g/2}, {f/1, g/3}, {f/⊥, g/⊥}, 〉 |=2 g
0 = f−1 + f−2, in fact, we

have that �v(2, C) is �v(2, g0) =�v(2, f−1 + f−2), which is equivalent to v2(g
0) =

v1(f) + v0(f). �

A state sequence�v = 〈v0, . . . , vh〉 is closed w.r.t. a set of static causal laws

SL = {caused(C1, D1), . . . , caused(Ck, Dk)}

if for all i ∈ {0, . . . , h} it holds that�v |=i (C1 → D1) ∧ · · · ∧ (Ck → Dk).

We also generalize the notion of minimal closure as follows: given a state sequence

�v = 〈v0, . . . , vi〉 and a state v′ we say that v′ is minimally closed w.r.t.�v, D, and SL
if

• 〈v0, . . . , vi, v′〉 is closed w.r.t. SL,

• for all sets of fluents S ⊆ D, if the state Δ(vi, v
′, S) is different from v′, then

〈v0, . . . , vi,Δ(vi, v
′, S)〉 is not closed w.r.t. SL.

The action a is executable in�v at time i if there is an axiom executable(a, C) such

that�v |=i C .

Let us denote with Dyn(a) the set of dynamic causal laws for an action a. The

effects of executing a in�v at time i, denoted by Eff (a,�v, i), is

Eff (a,�v, i) =
∧
{PC | causes(a, PC, C) ∈ Dyn(a),�v |=i C} .

Given a constraint C , we denote by shift t(C) the constraint obtained from C by

replacing each fluent fx with fx−t.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

204 A. Dovier et al.

Let us assume that �v = 〈v0, . . . , vi〉 is a sequence of complete states and that �a

is a sequence of actions 〈a1, . . . , ai+1〉. The effects of the sequence of actions in �v is

represented by the formula

E(i,�a,�v) =

i∧
j=0

shift j−i
(
Eff (aj+1,�v, j)

)
∧

i∧
j=0

∧
f∈F

fj−i = vj(f).

Let us observe that this constraint might involve all fluents of the states v0, . . . , vi,

as well as fluents of future states. The values of fluents in states v0, . . . , vi are fixed

by�v.

Let 〈D,O〉 be a planning problem instance, �v = 〈v0, . . . , vN〉 be a sequence of

complete states and a1, . . . , aN be actions. Then, 〈v0, a1, v1, . . . , aN, vN〉 is a valid

trajectory if the following conditions hold:

• 〈v0, . . . , vN〉 is closed w.r.t. SL,

• for each axiom of the form initial(C) in O, we have that�v |=0 C ,

• for each axiom of the form goal(C) in O, we have that�v |=N C ,

• for each i ∈ {0, . . . ,N− 1} the following conditions hold

— action ai+1 is executable in�v at time i and

— we have that vi+1 = ine(σ|0, vi+1) where

– σ is a i-solution of the constraint E(i, 〈a1, . . . , aN〉, 〈v0, . . . , vN−1〉) w.r.t.

〈v0, . . . , vi〉,
– vi+1 is minimally closed w.r.t. 〈v0, . . . , vi〉, F\ dom(σ), and SL.

Example 14

Let us consider the following domain specification and planning problem instance

(for N = 2):

fluent(f, 1, 5).

fluent(g, 1, 5).

fluent(h, 1, 5).

action(a).

action(b).

executable(a, true).

executable(b, true).

causes(a, g0 = g−1 + 2, true).

causes(b, f0 = g−1 + h−2, true).

initially(f = 1).

initially(g = 1).

initially(h < 3).

goal(f > 4).

Observe that the only valid trajectory is

〈{f/1, g/1, h/2}, a, {f/1, g/3, h/2}, b, {f/5, g/3, h/2}〉.

The validity can be verified by observing that

• {f/1, g/1, h/2} satisfies all the constraints provided in the initial declarations;

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 205

• {f/5, g/3, h/2} satisfies the goal constraint f > 4;

• the action a is executable in 〈v0〉 = 〈{f/1, g/1, h/2}〉 and action b is executable

in

〈v0, v1〉 = 〈{f/1, g/1, h/2}, {f/1, g/3, h/2}〉
(since both their executability laws and the action conditions are trivially true).

• Consider the first state transition and i = 0 and note that �-fluents(g0 =

g−1 + 2) = {g}. Then, σ′ = {g/3} is a 0-solution of g0 = g−1 + 2 w.r.t.

〈{f/1, g/1, h/2}〉. In fact, σ′|0 = σ′, σ′|1 = {}, and

— v1 = ine(σ′|0, v0) = ine({g/3}, {f/1, g/1, h/2}) = {f/1, g/3, h/2},
— 〈v0, v1, σ′|1〉 = 〈v0, v1, {f/⊥, g/⊥, h/⊥}〉 |=1 g

0 = g−1 + 2,

— v1 is minimally closed w.r.t. 〈{f/1, g/1, h/2}〉, {f, h} and ∅.
• Consider the second state transition and i = 1 and note that �-fluents(f0 =

g−1 + h−2) = {f}. Then, σ′′ = {f/5} is a 1-solution of f0 = g−1 + h−2 w.r.t.

〈v0, v1〉. In fact, σ′′|0 = σ′′, and

— v2 = ine(σ′′|0, v1) = ine({f/5}, {f/1, g/3, h/2}) = {f/5, g/3, h/2},
— 〈v0, v1, v2〉 |=2 f

0 = g−1 + h−2,

— v2 is minimally closed w.r.t. 〈v0, v1〉, {g, h} and ∅. �

6.3 Abstract implementation of BMV

The constraint encoding for BMV is similar to the one developed earlier for the case

of BMV
0 (cf., Figs. 8 and 10). In the encoding of a trajectory 〈v0, a1, v1, . . . , aN, vN〉

in BMV
0 , we introduced a variable Fvif to represent the value of the fluent f in

the ith state vi. In each state transition, say from vi to vi+1, the implementation of

BMV
0 imposes only constraints involving the variables/fluents of the current state.

In the language encompassing timed references, each constraint occurring in the

action description can address the values that fluents assume in any of the states

of the sequence�v = 〈v0, . . . , vN〉. Since all the variables representing these values are

present in the encoding, only the following change is needed to adapt to BMV the

implementation designed for BMV
0 : to obtain from a constraint C (involving fluents),

a constraint C�v,i (involving the corresponding variables), at time i, we replace each

fj with the variable F
vi+j
f .

By adopting this refined construction for C�v,i, we can inherit all the results of

Section 6.1.4. In particular, for an action description D, similarly to what done in

Section 6.1.4, we denote by C
�v,ai
F and by Form(D)�v,ai the constraints homologous to

C
vi−1 ,vi
F and Form(D)vi−1 ,ai , respectively.

The completeness result for BMV directly generalizes that obtained for BMV
0 . With

regards to soundness, the observation made w.r.t. BMV
0 in Section 6.1.4 still applies.

In fact, let 〈D,O〉 be an instance of a planning problem where D is a domain

description and O contains axioms of the form initially(C) and goal(C). We state

the following:

Theorem 11

There is a valid trajectory�v = 〈v0, a1, v1, . . . , vN, vN〉 if and only if

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

206 A. Dovier et al.

• �v is closed w.r.t. SL,

• There is a solution for the constraint

∧
initially(C)∈O

C�v,0 ∧
N−1∧
j=0

C
�v,aj+1

F ∧
∧

goal(C)∈O
C�v,N,

• For each j ∈ {0, . . . ,N− 1} the formula Form(D)�v,aj+1 is unsatisfiable.

6.4 Adding costs and global constraints

Cost and time constraints can be introduced by filtering the solutions characterized

by Theorem 11, in order to rule out the unsatisfactory solutions. More precisely,

given a trajectory 〈v0, a1, v1, . . . , aN, vN〉 satisfying the requirements of Theorem 11, we

say that the trajectory satisfies a set of global constraints as described in Sections 5.1

and 5.2 if all the constraints described next hold.

Let us start by investigating the cost constraints. Let

action cost(a1, FE1), . . . , action cost(aN, FEN)

and state cost(FE ′) be specified in the action description10.

Let us recall that the general form of cost constraints is cost constraint(C),

where C is a constraint defined as in Section 5, with the added ability to refer to

the atoms plan, goal, and state(i) wherever fluents can be used. Consequently, we

extend our definition of value of an expression ϕ in�v = 〈v0, . . . , vN〉 at time i (for all

j):

�v(j, plan) = v0(FE1) + · · ·+ vN−1(FEN),

�v(j, goal) = vN(FE ′),

�v(j, state(i)) = vi(FE
′) if 0 � i � N

(assigning cost constraints to to states outside the plan is senseless. However, for

completeness, for i < 0 or i > N we set �v(j, state(i)) = 0 but any other choice –

e.g., ⊥, or the values on states 0 or N – is reasonable). This modification allows

us to derive the notion of satisfaction of a cost constraint C from the notion of

satisfaction defined in Section 6.3. As particular cases, we obtain that

• for each assertion cost constraint(plan op k) the plan cost (v0(FE1) + · · · +
vN−1(FEN)) has to satisfy the stated constraint, i.e., it must hold that

(v0(FE1) + · · ·+ vN−1(FEN)) op k;

• for each assertion cost constraint(goal op k), the cost vN(FE ′) of the goal

state must satisfy the constraint: vN(FE ′) op k;

• for each assertion cost constraint(state(i) op k), the cost vi(FE
′) assigned to

the ith state has to satisfy the constraint vi(FE
′) op k.

The handling of time constraints requires the following modifications:

• for each assertion time constraint(C), it holds that 〈v0, . . . , vN〉 |=0 C , where

each timed fluent f@i is evaluated as vi(f);

10 As mentioned, if some of these assertion is missing a default cost 1 is assumed.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 207

• for each assertion of the form holds(C, i) it holds that 〈v0, . . . , vN〉 |=i C;

• for each assertion of the form always(C), it holds that 〈v0, . . . , vN〉 |=i C for all

i ∈ {0, . . . ,N}.

Moreover, if minimize cost(FE ′′) is specified, then there exists no other trajectory

�v′ such that�v′(N, FE ′′) <�v(N, FE ′′). As particular cases, we have that

• if minimize cost(plan) is specified, then there exists no other trajectory having

a smaller plan cost;

• if minimize cost(goal) is specified in the action description, then there is

no trajectory 〈v′0, a′1, v′1, . . . , a′N, v′N〉, fulfilling all constraints, and such that

v′N(FE ′) < vN(FE ′).

In this manner, we characterize the solutions of a given planning problem to be

exactly those solutions described by Theorem 11 that additionally satisfy all the

global constraints, the requirements on costs, and the time constraints expressed in

the action description. Soundness and completeness properties directly carry over.

7 Concrete implementation of BMV

The overall structure of the concrete implementation of the language BMV follows

that used for implementing the B language. We focus here on the main differences.

To start, let us briefly describe the code depicted in Figure 11 and show that this

concrete implementation reflects the abstract one defined in Figure 811. Hence, we

preliminarily ignore lines (65)–(66) of Figure 11.

The first difference w.r.t. the implementation of B (cf., Section 3) is that each

fluent variable is assigned to a finite set domain, drawn from the fluent declaration

– instead of being treated as a Boolean variable.

The predicate set one fluent (lines (56)–(68)) has a similar role as in the im-

plementation of B. Given the fluent FluentName, the relevant parts of the dynamic

causal laws are collected in lines (57)–(59). The predicate zero subterm is an auxiliary

predicate that detects if a constraint involves a fluent – i.e., it looks for an occurrence

of FluentName in the constraint imposed by the dynamic causal laws. All the fluents

explicitly involved in the consequence of a dynamic law are collected. In line (63),

the variable EV identifying the fluent FluentName in the following state ToState is

retrieved.

The predicate dynamic (line (64)) collects the list of Boolean flags DynFormula. If

one of the variables in Dyn is true then the variable EV is involved in a constraint

imposed by a dynamic causal law. In line (67) the disjunction of these flag variables

is computed in Formula (let us ignore, for the time being, the variable StatFormula).

In line (68) the inertia constraint is added: if Formula is false then the value of the

fluent is left unchanged by the transition (i.e., IV = EV). This corresponds to the

ine(·) operator.

11 Observe that the concrete implementation uses the functors eq, neq, etc. to denote the primitive
constraints =, �=, etc.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

208 A. Dovier et al.

Fig. 11. Relevant parts of the BMV implementation.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 209

For each action Act affecting the value EV, the predicate dynamic (lines (69)–(82))

retrieves its preconditions and builds the constraint C involving EV that must be

imposed if the preconditions are satisfied. The flag variable Flag in line (80) is

introduced to keep track of the fact that the action has occurred (i.e., VA is true) and

the corresponding precondition holds. If Flag is true then the constrain C is asserted

(line (81)). All flags are stored in a list (cf., the variable DynFormula in line (64)).

Lines (83)–(114) provide an excerpt of the definition of the predicate rel parsing.

This predicate is used to transform fluent expressions to internal expressions

involving fluent variables. States is a list of states (each of them, in turn is a

list of all the fluent variables). The first argument is the fluent expression and the

second one is the output internal expression. The argument Time represents the

specific point in time in which a fluent is referred to (cf., the variable Now used in

lines (69)–(82) and (124)–(134) to specify the precise point in time in which a fluent

expression/constraint has to be evaluated). The predicate in interval called in line

(106) sets E = H if 0 � H � N, E = 0 (resp., E = N) if H < 0 (resp., H > N). Similarly,

predicate exp constraint (lines (117)–(123)) transforms fluent constraints into the

corresponding constraints on the fluent variables.

The above described fragment of implementation is completed with the code

needed to handle initial and goal state specifications. Namely, for a specific instance

of a planning problem 〈D,O〉, as done for B, all constraint on the initial state

(resp., those on the goal state) are reflected by constraining the variables Ff in the

representation of the initial (resp., final) state.

We proceed by splitting the correctness proof into steps. We can now state the

following result12.

Theorem 12

The concrete implementation (partially depicted in Fig. 11) is correct and complete

w.r.t. the system of constraints of Figure 8.

Proof

This result immediately follows from the above argument. In fact, the constraint (11)

of Figure 8 is implicitly rendered by domain assignment for CLP variables. Con-

straints (13) and (14) are dealt with in lines (57)–(64). Line (68) imposes con-

straint (15). Concerning the sequentiality of the plan and the executability conditions

(i.e., constraint (12)), we can observe that the implementation does not differ from

that of B (in Fig. 11 we omitted the corresponding code, see Fig. 7). �

Let us now consider the presence of static causal laws. In Figure 12, we list the

predicate used to add constraints for the static causal laws. Notice that the concrete

implementation of Figure 12 contains a discrepancy with respect to the abstract

one of Figure 10. In particular, the concrete implementation does not deal with

an intermediate state (named v in the abstract implementation). The fluents of the

12 When establishing completeness an soundness results for the concrete implementation, we assume the
same properties hold for the real implementation of the CLP(FD) solver at hand (in our case, SICStus
Prolog).

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

210 A. Dovier et al.

Fig. 12. Static causal laws treatment.

target state are computed by exploiting direct relationships with the starting state

of the transition. This allows us to introduce fewer CLP variables.

In line (65) of Figure 11 the predicate cluster rules collects all the (static)

conditions imposed on the fluents of the cluster of FluentName. The call to the

predicates static (line (66)) collects the list of Boolean flags StatFormula which are

used to model the constraints (19) and (20) of Figure 10. In line (67), the disjunction

of these flag variables, together with those originating from the dynamic causal laws

(i.e., DynFormula), is computed in Formula, as explained above.

For each condition implied by a static causal law, the predicate static (lines

(124)–(134)) builds the constraint C that must be imposed to ensure closure. The flag

variable Flag in line (132) is introduced to reflect the satisfaction of the constraint.

If Flag is true then the constrain C is asserted (line (133)). All such flags are stored

in the list Flags (cf., the variable StatFormula).

We have the following result:

Theorem 13

The concrete implementation (partially depicted in Figs. 11 and 12) is complete w.r.t.

the system of constraints of Figures 8 and 10.

Proof

The result directly follows from the above argument. Constraint (16) of Figure 10

is implicitly rendered by the domain assignment for the CLP variables (let us

remember that the intermediate state v is not explicit in the concrete implementation).

Constraints (11)–(15) are dealt with as done in Theorem 12. The conditions

originating from the static causal laws are dealt with through the predicates

cluster rules and static. �

Let us observe that there is a second difference between the concrete implementa-

tion of Figures 11 and 12 and the abstract one of Figure 10: no requirements for the

unsatisfiability of Form(D)�v,ai are imposed in correspondence of the state transition

from vi−1 to vi (for any i). This allows the generation of state transitions where

the target state is potentially not minimally closed. This means that the concrete

implementation may produce solutions (i.e., plans) that the abstract semantics would

forbid because of the nonminimal effects of (clusters of) static causal laws. On the

other hand, we reflect constraints (19) and (20) as described earlier, through the

predicates static (listed in Fig. 12) and cluster rules (whose obvious code is

omitted).

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 211

Fig. 13. Implementation of a leftmost labeling strategy.

The final step in the design of the concrete implementation is the introduction of

suitable restrictions on the labeling phase of the CLP solver. Notice that, if at step

i in a trajectory, a consequence of a dynamic law involves a fluent fj , for j > i,

then such a constraint has to be evaluated considering as already assessed all the

states vh preceding vi. Hence, the labeling has to proceed “left-to-right” w.r.t. the

CLP variables that model the states v1, . . . , vi. In other words, when searching for

a solution, the variables representing the state vh have to be labeled before those

representing the state vh+1, for each vh in the trajectory. The implementation of this

labeling strategy is depicted in Figure 13. Moreover, observe that we impose further

restrictions (through the predicate no loop in lines (147)–(155)) to avoid loops in

plans, i.e., to forbid those trajectories where the same state appears twice.

To complete the implementation of BMV we need to take care of the cost-based

constraints, whose behavior relies on the optimization features offered by SICStus’

labeling predicate: the labeling phase is guided by an objective function to be

optimized.

Constraints on costs, as well as absolute temporal constraints, are handled by as-

serting suitable CLP constraints on the variables that model fluent values. This is re-

alized through the predicates listed in Figure 14. In particular, set cost constraints

deals with constraints on actions/plans and states. For instance, set statecosts

(line 167) retrieves all the assertions of the form cost constraint(state(I) OP Num)

and imposes the corresponding constraints. A similar predicate set goal (not

reported in the figure) accomplishes the same for the final state only. The pred-

icate set plancost acts similarly, using the predicate make one action occurrences

(lines (192)–(202)) where the cost for each single action is considered.

All the absolute temporal constraints defined in the action description are handled

by the predicate set time constraint (cf., lines (194)–(202)). Also in this case, direct

references to CLP variables implement the references to fluent expressions in any

absolute point in time.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

212 A. Dovier et al.

Fig. 14. Handling of global constraints and costs.

As mentioned, all these constraints can be seen as filters used to validate each

trajectory found by the labeling phase. The planner described in Figures 11–13 is

completed by adding the code in Figure 14. Completeness of the implementation of

the full BMV immediately follows from the above discussion.

8 Experimental analysis

We implemented CLP-based prototypes of B and BMV . These have been realized

in SICStus Prolog 4, and they have been developed on an AMD Opteron 2.2GHz

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 213

Linux machine. Extensive testing has been performed to validate our CLP-based

approach. Here we concentrate on a few representative examples. The source code of

the implementations and the examples can be found at www.dimi.uniud.it/dovier/

CLPASP. No particular built-in predicates of SICStus have been used and therefore

porting to other CLP-based Prolog systems is straightforward. A porting to B-Prolog

has been realized and used to participate in the 2009 ASP Competition13.

In the rest of this section, we analyze the performance of the implementation on

a diverse set of benchmarks. For each benchmark, we compare a natural encoding

using the traditional B language with an encoding using BMV .

The problems encoded in B have been solved using both the CLP(FD) implemen-

tation and implementations obtained by mapping the problem to ASP and using

different ASP solvers (Smodels, Clasp, and Cmodels with different SAT-solvers).

In order to solve a B-planning problem 〈D,O〉 using an ASP solver, we have

developed a Prolog translator that takes as input 〈D,O〉 and the plan length n, and it

generates an ASP program, whose stable models are in one-to-one correspondence

with the plans of length n for 〈D,O〉. This encoding follows the general ideas outlined

in Lifschitz (1999). In particular, the definitions of fluent, action, and initially

are already in ASP syntax. The length of the plan n is used to define the predicate

time(0..n). The ASP-based planner makes use of a choice rule to ensure that exactly

one action is applied at each time step:

1{occ(Act,Ti):action(Act)}1 :- time(Ti), Ti < n.

The predicate hold(Fluent,Time) defines the truth value of a fluent Fluent at a given

time step (Time). The truth value of the fluents at time 0 are given as facts describing

the initial state; we require the initial state to be complete. The executability rules, the

dynamic causal laws and the static causal laws are instantiated for each admissible

time step. Finally, the goal conditions are added to define the predicate goal; the

requirement that the goal has to be satisfied at the end of the plan is imposed using

an ASP constraint of the form

:- not goal.

As far as the CLP-based implementations are concerned, we use a leftmost

variable selection strategy. Moreover, we included a loop control feature to avoid

the repetition of the same state in a trajectory (cf., the predicate no loop in Fig. 13).

Tables 1–5, discussed in detail in the next subsections, illustrate an excerpt of the

experimental results. In order to simplify the comparison among the solvers, in each

table we introduce an extra column, denoted by “Best ASP”, which indicates the

performance of an hypothetical ASP-solver that always acts as the best between all

the ASP-solvers considered.

The specific meaning of the various columns is as follows:

• Instance: the name of the specific instance of the problem;

• Length: the plan length used in searching for a solution;

13 See the web site http://www.cs.kuleuven.be/~dtai/events/ASP-competition/Teams/
Bpsolver-CLPFD.shtml

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

214 A. Dovier et al.

• Answer: indication of whether an answer exists or not for the given plan

length;

• lparse: the time required to ground the ASP encoding of the problem (using

lparse 1.1.1);

• Smodels: the execution time using the Smodels system (using Smodels 2.32);

• Cmodels: the execution time using the Cmodels system (using Cmodels 3.70

with different SAT solvers);

• Clasp: the execution time using the Clasp system (using Clasp 1.0.2);

• Best ASP : a summary of the best execution time across all the different ASP

solvers;

• CLP(FD): the execution time using the CLP(FD)-based implementation of B.

Execution times have the form t1 + t2, where t1 is the time needed for posting

constraints and t2 the time for solving the constraints (i.e., finding a plan);

• BMV : the execution time using the BMV encoding of the problem. The first

column is related to computations where no constraints for the plan cost are

imposed. Instead, the computations of the second column have a constraint

that limits the plan cost to the number in parenthesis. The format is t1 + t2 as

explained in the previous point.

In the remaining subsections we briefly describe the benchmarks tested and the

obtained results. The actual encoding in B and BMV have been placed in the

Appendix A for the sake of readability. A summary and a discussion of all the

experiments is presented in Section 8.6.

8.1 Three-barrel problem

We experimented with different encodings of the three-barrel problem. Our formu-

lation is as described in Example 1. Figure 1 and Section A.1 show the encoding of

the problem (for N = 12) in B and in BMV , respectively. Notice that, in order to

represent each multivalued fluent f of the BMV formulation, a number of Boolean

fluents have to be introduced in the B encoding, one for each admissible value of f.

Table 1 provides the execution times (in seconds) for different values of N and

different plan lengths. The results show that the constraint-based encoding of B
outperforms the ASP encodings (if we consider both grounding and execution). In

turn, the BMV encoding outperforms all other encodings. This can be explained by

considering that the CLP encoding of this problem benefits from numerical fluents

(in reduced number, w.r.t. the B formulation) and from arithmetic constraints

(efficiently handled by CLP(FD)).

8.2 Two-dimensional protein folding problem

The problem we have encoded is a simplification of the protein structure folding

problem. The input is a chain α1α2 · · · αn with αi ∈ {0, 1}, initially placed in a vertical

position, as in Figure 15-left. We will refer to each αi as an amino acid. The permissible

actions are the counter-clockwise/clockwise pivot moves. Once one point i of the

chain is selected, the points α1, α2, . . . , αi will remain fixed, while the points αi+1, . . . , αn

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

M
u
ltiva

lu
ed

a
ctio

n
la

n
g
u
a
g
es

in
C

L
P

(
F
D

)
2
1
5

Table 1. Experimental results with various instances of the three-barrel problem (timeout 24,000 sec)

B BMV

Barrels’ Cmodels Best Unconstrained constrained plan cost

capacities Length Answer lparse Smodels zchaff relsat minisat Clasp ASP CLP(FD) plan cost (in parentheses)

8-5-3 6 N 8.74 0.10 0.34 0.63 0.30 0.27 0.10 0.14+0.29 0.03+0.03 (70) 0.02+0.03

8-5-3 7 Y 8.92 0.20 1.87 2.39 0.55 0.23 0.20 0.22+0.28 0.03+0.02 (70) 0.02+0.02

8-5-3 8 Y 8.87 0.20 7.34 3.63 0.62 0.53 0.20 0.26+1.04 0.05+0.07 (70) 0.01+0.06

8-5-3 9 Y 9.03 0.17 17.60 5.02 0.60 2.34 0.17 0.24+1.03 0.02+0.05 (70) 0.02+0.06

12-7-5 10 N 34.47 1.98 153.36 14.56 41.34 29.13 1.98 0.58+4.85 0.04+0.13 (120) 0.04+0.13

12-7-5 11 Y 34.54 2.28 98.72 15.78 11.71 52.15 2.28 0.64+2.61 0.02+0.07 (120) 0.03+0.07

12-7-5 12 Y 35.42 1.60 125.84 20.45 83.06 35.81 1.60 0.73+8.11 0.07+0.18 (120) 0.05+0.19

12-7-5 13 Y 35.69 0.68 342.40 42.36 97.99 111.36 0.68 0.79+6.23 0.07+0.14 (120) 0.07+0.14

16-9-7 14 N 115.47 11.15 1508.43 613.42 75.67 1838.39 11.15 1.30+27.16 0.03+0.31 (200) 0.07+0.31

16-9-7 15 Y 114.03 12.30 586.43 58.45 65.19 1133.21 12.30 1.53+13.35 0.06+0.13 (200) 0.07+0.14

16-9-7 16 Y 115.60 6.06 793.00 151.56 157.38 744.60 6.06 1.62+37.69 0.07+0.37 (200) 0.07+0.36

16-9-7 17 Y 114.60 1.75 2963.37 128.91 145.11 14106.98 1.75 1.67+26.98 0.07+0.27 (200) 0.07+0.27

20-11-9 18 N 185.38 43.71 2949.10 2312.09 493.98 – 43.71 2.76+102.14 0.09+0.58 (300) 0.08+0.57

20-11-9 19 Y 186.76 40.08 3053.53 1187.10 1152.27 11292.40 40.08 2.94+45.43 0.09+0.24 (300) 0.10+0.24

20-11-9 20 Y 186.31 21.67 1866.28 2265.05 1378.93 12286.98 21.67 3.05+120.90 0.09+0.68 (300) 0.09+0.65

20-11-9 21 Y 189.28 4.39 5482.78 586.18 1746.81 – 4.39 3.17+80.54 0.10+0.46 (300) 0.10+0.43

https://doi.org/10.1017/S1471068410000013 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068410000013

216 A. Dovier et al.

Table 2. The HP-protein folding problem: some results for different sequences, and plan

lengths (timeout 12,000sec)

Instance Length Answer BFD
MV

17-2 3 Y 0.07+0.01

17-2 4 Y 0.09+0.01

113-6 3 N 0.42+19.91

113-6 4 Y 0.57+35.16

1(001)2-2 3 N 0.06+0.09

1(001)2-2 4 Y 0.07+0.01

1(001)3-4 7 N 0.47+7521.13

1(001)3-4 8 Y 0.49+50.46

1(001)3-4 9 ? –

1(001)3-4 10 Y 0.63+603.37

Fig. 15. An instance of the HP-protein folding problem: initial configuration, a plan, and

final configuration with 4 contacts between 1-amino acids.

will perform a rigid counter-clockwise/clockwise rotation. Each conformation must

be a self-avoiding-walk, i.e., no two amino acids are in the same position. Moreover,

the chain cannot be broken – i.e., two consecutive amino acids are always at points

at distance 1 (i.e., in contact). The goal is to perform a sequence of pivot moves

leading to a configuration where at least k nonconsecutive amino acids of value

1 are in contact. Figure 15 shows a possible plan to reach a configuration with 4

contacts. Table 2 reports some execution times. Section reports the BMV action

description encoding this problem. Since the goal is based on the notion of cost of

a given state, for which reified constraints are used extensively, a direct encoding in

B does not seem to be feasible.

Let us consider the resolution of the instance depicted in Figure 15, i.e., the

folding of the input chain 1001001001 of n = 10 amino acids. Asking for a plan of

8 (resp. 10) moves and for a solution with cost � 4, our planner finds the 8-moves

plan shown in Figure 15-center in 50.46s (a 10-moves plan in found in 603.37s). By

removing the two constraints that keep fixed α2:

always(x(2) eq 10).

always(y(2) eq 11).

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 217

the solutions are found in 52.72s and 617.68s, respectively. On the other hand, by

keeping fixed α2 and adding the two constraints

holds(x(3) eq 11,1).

holds(y(3) eq 11,1).

the execution time is reduced to 4.06s and 52.97s. Adding the additional constraints

holds(x(4) eq 11,2).

holds(y(4) eq 10,2).

the plans are found in only 0.37s and 4.62s. This shows that the use of multivalued

fluents and the ability to exploit domain-specific knowledge, in the form of symmetry-

breaking constraints, allows BMV to effectively converge to a solution.

8.3 The community problem

The Community problem is formulated as follows. There are M individuals, identified

by the numbers 1, 2, . . . ,M. At each time step, one of them, say j, gives exactly j

dollars to someone else, provided she/he owns more than j dollars. Nobody can

give away all of her/his money. The goal consists of reaching a state in which all

the participants have the same amount of money.

Table 3 lists some results for four variants of the problem: the person i initially

owns 2 ∗ i dollars (instances AM), i+ 1 dollars (instances BM), i ∗ i dollars (instances

CM), or i ∗ (1 + i) dollars (instances DM).

The representations of this problem are reported in Sections A.3.1 and A.3.2.

Notice that the large number of Boolean fluents that have to be introduced in

the B description causes failures due to lack of memory during the grounding

phase (these instances are marked “mem” in Table 3). For all these experiments,

the bound on memory usage was 4 GB (for the grounder, the ASP-solvers, and the

CLP(FD) engine). Observe that, in some cases, also the CLP(FD)-based solver for B
runs out of memory, while the failures of the CLP(FD) solver for BMV have been

caused by expiration of the time limit. In summary, the constraint-based encodings

provides better performance in most of the instances, especially considering their

better scalability w.r.t. the size of the instances. This originates from the smaller

number of numerical fluents and from the efficiency of the underlying constraint

solver.

8.4 The gas-diffusion problem

The Gas-diffusion problem can be formulated as follows. A building contains a

number of rooms. Each room is connected to (some) other rooms via gates. Initially,

all gates are closed and some of the rooms contain a quantity of gas – while the other

rooms are empty. Each gate can be opened or closed – open(x,y) and close(x,y)

are the only possible actions, provided that there is a gate between room x and

room y. When a gate between two rooms is open, the gas contained in these rooms

flows through the gate. The gas diffusion continues until the pressure reaches an

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

2
1
8

A
.
D

o
vier

et
a
l.

Table 3. Experimental results for instances of the Community problem. “mem” denotes out-of-memory failures. Some results are missing for the ASP

solvers, for those instances that are unable to complete grounding

B BMV

Cmodels Best

Instance Length Answer lparse Smodels zchaff relsat minisat Clasp ASP CLP(FD) CLP(FD)

A4 5 N 34.34 11.12 1.78 11.68 0.67 0.45 0.45 0.71+14.14 0.01+3.31

A4 6 Y 34.90 1.43 0.26 7.38 0.57 0.09 0.09 0.82+0.10 0.03+0.00

A4 7 Y 35.44 15.72 0.39 47.74 0.80 0.10 0.10 0.94+0.12 0.03+0.01

A5 5 N 201.88 100.58 5.22 125.63 2.30 1.19 1.19 2.64+157.48 0.02+41.15

A5 6 Y 202.64 11.43 1.85 442.22 1.63 0.28 0.28 3.17+0.21 0.01+0.04

A5 7 Y 202.12 34.02 2.81 114.74 2.31 0.27 0.27 3.71+447.87 0.04+142.27

B5 5 N 51.87 30.04 4.24 44.49 1.49 0.69 0.69 1.03+77.06 0.03+23.13

B5 6 Y 52.04 2.07 1.32 37.96 0.99 0.14 0.14 1.31+0.11 0.04+0.02

B5 7 Y 52.94 13.49 0.80 41.86 1.27 0.42 0.42 1.40+0.17 0.05+0.04

B7 5 N mem 7.67+3345.56 0.05+1421.54

C5 5 N mem 16.98+85.71 0.02+49.83

C5 6 N mem 20.44+1926.97 0.04+888.30

C7 5 N mem mem 0.05+3186.34

D4 5 N 138.91 7.08 1.28 13.48 0.76 0.43 0.43 3.70+21.19 0.01+6.83

D4 6 N 139.88 90.32 11.56 87.11 3.62 3.72 3.72 4.32+0.50 0.02+0.74

D4 7 N 139.82 1015.44 104.36 788.94 33.70 22.86 22.86 5.17+5.55 0.04+7.64

D5 5 N mem 24.64+24.12 0.05+93.88

D5 6 N mem 29.60+1490.48 0.02+1801.78

https://doi.org/10.1017/S1471068410000013 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 219

Fig. 16. (a) A simple schema of the 11 rooms for the Gas-diffusion problem. The locked gates

are in red color. The gas (in pink) is flowing through the open gate (in green), from Room7

to Room1. (b) Some results for different instances (i.e., different goals and initial allocations

of amounts of gas – see Section 8.4).

equilibrium. The only condition to be always satisfied is that a gate in a room can be

opened only if all the other gates are closed. The goal is to move a desired quantity

of gas to one specified room.

We experimented with instances of the problem where the building has a specific

topology: there are 11 rooms, all having the same physical volume. Each room is

connected to the other rooms via gates as depicted in Figure 16. Since all rooms

have the same volume, when equilibrium is reached between two rooms sharing an

open gate, they will both contain the same amount of gas.

A BMV specification of this planning problem is given in Section A.6. We

experimented with different instances of the Gas-diffusion problem obtained by

considering different goal states and by requiring that some of the rooms have to be

kept empty. Moreover, we seek plans of different length. Figure 16(b) summarizes

the results obtained. In particular, all instances share the same initial state: rooms

10 and 3 contain 128 moles of gas. All the other rooms are empty. Moreover,

• in the instance A1 the goal state is: room 1 contains at least 32 moles of gas;

• in all the instances Bi the goal is: room 1 contains at least 50 moles of gas.

The Bi instances differ in the constraints imposed on the desired plan:

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

220 A. Dovier et al.

— in the instance B1, rooms 7, 9, and 4 must remain empty. This condition

can be imposed by including in the action description the constraints

always(contains(7) eq 0).

always(contains(9) eq 0).

always(contains(4) eq 0).

— in the instance B2, rooms 7, 8, and 5 must be kept empty;

— in the instance B3, only room 6 must be kept empty;

— in the instance B4, no constraint is imposed.

Observe that it is quite natural to design a BMV encoding of this problem, by

exploiting the multivalued fluents. On the other hand, adopting the naive approach

used for the three-barrel problem would force the introduction of (at least) 128

distinct Boolean fluents for each multivalued fluent. Such a large number of Boolean

fluents generates a large state space, making the task of any solver forB considerably

harder.

8.5 Other puzzles

We report results from two other planning problems. The first – 3x3-puzzle – is an

encoding of the 8-tile puzzle problem, where the goal is to find a sequence of moves

to re-order the 8 tiles, starting from a random initial position. The performance

results for this puzzle are reported in Table 4. The second problem is the well-known

Wolf-goat-cabbage problem. The performance results are reported in Table 5.

Notice that these planning problems are predominantly Boolean. The constraint-

based encodings perform well in solving the instances of the Wolf-goat-cabbage

problem. In contrast, for the 8-tile puzzle problem, the use of numerical fluents

allows us to achieve a compact encoding, but it does not necessarily lead to a better

performance w.r.t. ASP.

8.6 A summary of the experiments

Table 6 pictorially summarizes some of the results relating the performance of the

different approaches. For each problem instance, we compare the execution times

obtained by the best ASP-solver and the CLP(FD) solvers for B and BMV action

description languages. We considered only those instances for which at least one of

the solvers gave an answer. A score of 1 (0, −1) is assigned to the fastest (second

fastest, slowest) solver. The scores of all instances of a problem have been summed

together, and this provides the radius of the circles in the figure. Instances have been

separated between “Yes” instances (they admit a solution) and “No” instances (they

have no solutions).

The success of the constraint-based approach is evident. However, it is interesting

to observe that the planning problems that do not make significant use of non-

Boolean fluents tend to perform better in the ASP-based implementations – possibly

due to the greater efficiency of ASP solvers in propagating Boolean knowledge

during search for a solution. Conversely, when numerical quantities are relevant in

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

M
u
ltiva

lu
ed

a
ctio

n
la

n
g
u
a
g
es

in
C

L
P

(
F
D

)
2
2
1

Table 4. Experimental results for instances of the 8-tile puzzle problem (timeout 36,000 sec)

B BMV

Cmodels Best

Instance Length Answer lparse Smodels zchaff relsat minisat Clasp ASP CLP(FD) CLP(FD)

I1 9 N 41.49 0.94 2.06 3.36 1.54 0.52 0.52 0.64+4.42 0.25+2.64

I1 10 Y 41.80 2.02 2.52 7.36 2.06 0.70 0.70 0.73+5.43 0.29+3.64

I2 14 N 42.68 27.10 34.46 90.07 7.15 7.42 7.15 1.03+57.54 0.40+38.67

I2 15 Y 43.14 50.73 49.50 131.38 8.90 1.98 1.98 1.06+7.08 0.43+4.60

I3 19 N 43.76 739.39 1255.46 911.82 91.75 268.69 91.75 1.39+967.26 0.54+673.66

I3 20 Y 44.52 368.28 1090.66 1445.78 58.89 268.59 58.89 1.46+597.92 0.52+435.96

I4 24 N 51.59 10247.47 – 5613.98 7862.10 4185.42 4185.42 1.70+13887.17 0.71+10109.58

I4 25 Y 55.54 1430.43 954.68 1023.22 437.11 875.16 437.11 1.84+79.20 0.73+57.00

I5 24 N 49.64 6936.39 – 6041.87 1239.72 4901.13 1239.72 1.69+11092.48 0.73+9155.79

I5 25 N 51.07 14079.78 3747.96 8583.44 11745.93 8557.94 3747.96 1.84+18301.15 0.73+14195.54

https://doi.org/10.1017/S1471068410000013 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068410000013

222 A. Dovier et al.

Table 5. Experimental results for instances of the Wolf-goat-cabbage problem

B BMV

Cmodels Best

Length Answer lparse Smodels zchaff relsat minisat Clasp ASP CLP(FD) CLP(FD)

21 N 0.10 0.19 1.38 1.89 0.67 0.19 0.19 0.10+0.20 0.09+0.15

22 N 0.10 0.25 1.46 3.32 0.77 0.56 0.25 0.09+0.21 0.11+0.17

23 Y 0.10 0.26 2.30 4.34 0.58 0.13 0.13 0.12+0.17 0.07+0.15

24 N 0.11 0.43 3.10 4.75 0.67 1.09 0.43 0.07+0.32 0.06+0.25

25 Y 0.12 0.27 1.15 4.92 0.74 0.42 0.27 0.12+0.06 0.08+0.08

26 N 0.12 0.68 7.23 11.52 1.18 0.69 0.68 0.10+0.49 0.10+0.40

27 Y 0.13 0.43 1.93 6.68 0.93 0.84 0.43 0.10+0.03 0.06+0.03

28 N 0.14 1.24 9.44 18.72 1.59 2.15 1.24 0.10+0.80 0.08+0.69

29 Y 0.14 0.41 1.75 15.55 1.10 0.60 0.41 0.11+0.01 0.07+0.03

30 N 0.15 2.97 16.17 43.53 2.31 1.78 1.78 0.11+1.08 0.08+1.05

31 Y 0.15 0.49 8.40 7.10 0.89 4.60 0.49 0.12+0.01 0.11+0.04

32 N 0.16 2.78 23.76 38.58 2.20 5.37 2.20 0.13+1.35 0.09+1.32

33 Y 0.16 1.06 31.92 26.67 1.23 0.57 0.57 0.10+0.07 0.14+0.06

34 N 0.17 3.61 38.62 51.22 3.11 5.86 3.11 0.13+1.75 0.10+1.60

35 Y 0.18 1.39 31.10 30.25 3.20 4.21 1.39 0.15+0.54 0.08+0.32

36 N 0.18 4.55 43.97 57.21 4.24 12.68 4.24 0.13+1.87 0.11+1.79

Table 6. Relative performance of the solvers for each set of instances (the radii of

the circles are proportional to the performance of the specific solver)

Three-barrel

Community

Goat&Cabbage

Tile-puzzle

B
-
B

e
s
t
-
A

S
P

B
-
C

L
P
(
F

D
)

B
M
V
-
C

L
P
(
F

D
)

B
-
B

e
s
t
-
A

S
P

B
-
C

L
P
(
F

D
)

B
M
V
-
C

L
P
(
F

D
)

B
-
B

e
s
t
-
A

S
P

B
-
C

L
P
(
F

D
)

B
M
V
-
C

L
P
(
F

D
)

“No” instances “Yes” instances All instances

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 223

modeling a planning problem, the use of multivalued fluents and constraints not only

reduces the modeling effort, yielding more concise formalizations, but also requires

a smaller number of fluents (compared with the analogous Boolean encoding). This,

combined with the use of constraints, often translates into a smaller state space to

be explored in finding a solution. These seem to be the main reasons for the better

behavior provided by the BMV approach.

The distinction between “Yes” and “No” instances is also very relevant. The

CLP-based solvers tend to perform better on the “Yes” instances, especially for

large instances. It is interesting to observe that a similar behavior has been observed

in recent studies comparing performance of ASP and CLP solutions to combinatorial

problems (Dovier et al 2005, 2007, 2009a).

9 Related work

The literature on planning and planning domain description languages is extensive,

and it would be impossible to summarize it all in this context. We focus our

discussion and comparison to the papers that present languages and techniques

similar to ours.

The language investigated in this work is a variant of the language B originally

introduced in Gelfond and Lifschitz (1998), as presented in Son et al. (2001,

Section 2). Apart from minor syntactical differences, any action description D
from the language of Son et al. (2001) can be embedded in our B. The semantics

for B presented here reproduces the one of Gelfond and Lifschitz (1998).

The language ADC has been introduced in Baral et al. (2002) to model planning

problems in presence of actions with duration and delayed effects. The language

relies on multivalued fluents, akin to those used in our language.ADC actions have

two types of effects:

(1) Direct modification of fluent values, described by dynamic causal laws of the

forms

a causes f = g(f, f1, . . . , fn, t) from t1 to t2, (24)

a contributes g(f, f1, . . . , fn, t) to f from t1 to t2. (25)

The first axiom describes the value of the fluent f as a function, which modifies

its value over the period of time from t1 to t2 – these represent time units relative

to the current point in time. The second axiom is similar, except that it denotes

the quantity that should be added to the value of f over the period of time.

These axioms are important when describing actions whose effect has a known

duration over time (i.e., the interval of length t2 − t1).
(2) Indirect modifications through the initiation and termination of processes that

can modify fluents until explicitly stopped; the axioms involved are axioms for

the creation and termination of processes:

a1 initiates p from t1, (26)

a2 terminates p at t2, (27)

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

224 A. Dovier et al.

and axioms that describe how processes modify fluents

p is associated with f = g(f, f1, . . . , fn, t), (28)

p is associated with f ← g(f, f1, . . . , fn, t). (29)

The first axiom describes how the value of the fluent f will change as a function

of time once a process is started; the second axiom determines how the value of

f changes while the process p is active.

ADC has some similarities to BMV ; they both allow multivalued fluents and some

forms of temporal references. BMV has the flexibility of allowing non-Markovian

behavior and it allows references to values of fluents at different time points, features

that are missing in ADC. On the other hand, ADC allows the representation of

continuous time and the ability to describe continuous changes to the value of

fluents.

Several features of ADC can be reasonably simulated in BMV ; we will focus on

the axioms of type (26)–(29), since these subsume the capabilities of axioms (24)

and (25):

• we can represent each process p using a corresponding fluent;

• the axioms (26) and (27) can be simulated by

causes(a1, p
t1−1 = 1, true), causes(a2, p

t2−1 = 0, true);

• the axiom (28) can be simulated by introducing the static causal law

caused(p > 0, f = g(f−1, f−1
1 , . . . , f−1

n , p−1) ∧ p = p−1 + 1).

Note that, due to the inability of BMV to handle continuous time, we are considering

only discrete time measures.

The language C+ proposed in Giunchiglia et al. (2004a) also has some similarities

to the languageBMV . C+ does not offer capabilities for non-Markovian and temporal

references, but supports multivalued fluents. The syntax of C+ builds on a language

of fluent constants (each with an associated domain) and action names (viewed as

Boolean variables):

• Static causal laws

caused F if G,

where F and G are fluent formulae (i.e., propositional combinations of atoms of

the form f = v for f fluent and v ∈ dom(f)). The language introduces syntactic

restrictions that are effectively equivalent to preventing cyclic dependencies

among fluents. Static causal laws describe dependencies between fluents within

a state of the world.

• Fluent dynamic laws

caused F if G after H,

where F and G are fluent formulae and H is a formula that may also contain

action variables. The semantics of dynamic laws can be summarized as follows:

if H holds in a state, then the implication G→ F should hold in the successive

state.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 225

• Actions that can be freely generated are declared to be exogenous

exogenous a.

• Fluents can be declared to be inertial (i.e., they satisfy the frame axiom)

inertial f.

The relationships between the two languages can be summarized as follows:

• C+ is restricted to noncyclic dependencies among fluents, while BMV lifts this

restriction.

• C+ is capable of identifying fluents as inertial or noninertial, while BMV

focuses only on inertial fluents (though it is relatively simple to introduce an

additional type of constraint to create noninertial fluents).

• C+ can describe domains where concurrent actions are allowed – by al-

lowing occurrences of different action variables in the H component of the

fluent dynamic laws; although BMV does not currently supports this feature,

a similar extension has been investigated in a recent paper (Dovier et al.

2009b).

Subsets of BMV and C+ can be shown to have the same expressive power; in

particular, let us consider the subset of C+ that contains only domains that meet

the following requirements:

• there are no concurrent actions – i.e., each H contains exactly one occurrence

of an action variable; thus

caused F if G after a ∧H,

where H is a fluent formula;

• for each action a, there is a declaration

exogenous a.

Under these restrictions, it is possible to map a C+ domain D to an equivalent

domain in BMV . In particular,

• for each noninertial fluent f, with default value v, we introduce the static

law

caused(f−1 �= v, f0 = v)

• for each static causal law caused F if G we introduce a causal law caused(G, F)

• for each fluent dynamic law r of the form caused F if G after a ∧ H , we

introduce the following axioms (where exec r is a fresh fluent):

causes(a, exec r = 1, H),

causes(a, exec r1 = 0, H),

caused(exec r = 1 ∧ G, F).

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

226 A. Dovier et al.

Logic programming, and more specifically Prolog, has been also used to implement

the first prototype of GOLOG (as discussed in Levesque et al. 1997). GOLOG is a

programming language for describing agents and their capabilities of changing the

state of the world. The language builds on the foundations of situation calculus.

It provides high-level constructs for the definition of complex actions and for the

introduction of control knowledge in the agent specification. Prolog is employed to

create an interpreter, which enables, for example, to answer projection queries (i.e.,

determine the properties that hold in a situation after the execution of a sequence

of actions). The goals of GOLOG and the use of logic programming in that work

are radically different from the focus of our work.

The work by Thielscher (2002a) takes a different perspective in using constraint

programming to handle problems in reasoning about actions and change. Thielscher’s

work builds on the use of Fluent Calculus (Thielscher 1999) for the representation of

actions and their effects. Fluent calculus views states as sets of fluents, constructed

using an operator ◦, and with the ability to encode partially specified sets (e.g.,

f1 ◦ f2 ◦ Z where Z represents the “rest” of the state). In Thielscher (2002a), an

encoding of the fluent calculus axioms using Constraint Handling Rules (CHRs)

is presented; the encoding uses lists to represent states, and it employs CHRs

to explicitly implement the operations on lists required to operate on states –

e.g., truth or falsity of a fluent, validation of disjunctions of fluents. The ability

to code open lists enables reasoning with incomplete knowledge. Experimental

results (reported in Thielscher 2002b) denote a good performance with respect to

GOLOG. The framework is very suitable for dealing with incomplete knowledge

and sensing actions. Differently from our framework, it does not support non-

Markovian reasoning, multivalued reasoning, and it does not bring the expressiveness

of constraint programming to the level of the action specification language. The use

of constraints in the two approaches is radically different – Thielscher’s work

develops new constraint solvers to implement reasoning about states, while we use

existing solvers as black boxes.

A strong piece of work regarding the use of constraint programming in planning

is (Vidal and Geffner 2006). The authors use constraint programming, based on

the CLAIRE language (Caseau et al. 2002), to encode temporal planning problems

and to search for minimal plans. They also use a series of interesting heuristics

for solving that problem. This line of research is more accurate than ours from

the implementation point of view – although their heuristic strategies can be

implemented in our system and it would be interesting to exploit them during

the labeling phase. On the other hand, the proposal by Vidal and Geffner only deals

with Boolean fluents and without explicitly defined static causal laws.

Similar considerations can be done with respect to the cited proposal by Lopez

and Bacchus (Lopez and Bacchus 2003). The authors start from Graphplan and

exploit constraints to encode k-plan problems. Fluents are in this case only Boolean

(not multivalued) and the process is deterministic once an action is chosen (instead,

we deal also with nondeterminism, e.g., when we have consequences such as f > 5).

The proposal of Lopez and Bacchus does not address the encoding of static causal

laws.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 227

10 Conclusions and future work

In this paper, we investigated the application of constraint logic programming

technology to the problem of reasoning about actions and change and planning.

In particular, we presented a modeling of the action language B using constraints,

developed an implementation using CLP(FD), and reported on its performance.

We also presented the action language BMV , which allows the use of multivalued

fluents and the use of constraints as conditions and consequences of actions. Once

again, the use of constraints is instrumental in making these extensions possible. We

illustrated the application of both B and BMV to several planning problems. Both

languages have been implemented using SICStus Prolog.

We consider the research and the results discussed in this paper as a preliminary

step in a very promising direction. The experimental results, as well as the elegance

of the encodings of complex problems, shows the promise of constraint-based

technology to address the needs of complex planning domains. A number of research

directions are currently being pursued:

• we have introduced the use of global constraints to encode different forms

of preferences (e.g., action costs) and control knowledge. Global constraints

have been widely used in constraint programming to enhance efficiency, by

providing more effective constraint propagations between sets of variables; we

believe a similar use of global constraints can be introduced in the context of

planning – e.g., the use of techniques used to efficiently handle the alldifferent

global constraint to enforce nonrepetition of states in a trajectory.

• We also believe that significant improvements in efficiency can be achieved

by delegating parts of the constraint solving process to an efficient dedicated

solver (e.g., encoded using a constraint platform such as GECODE, possibly

enhanced with local search moves).

• The encoding in CLP(FD) allow us to think of extensions in several directions,

such as the encoding of qualitative and quantitative preferences (a preliminary

study has been presented in Tu et al. 2007), and the use of constraints to

represent incomplete states – e.g., to determine most general conditions for the

existence of a plan and to support conformant planning (Son et al. 2007).

• An interesting line of research is represented by the application of the approach

discussed here to multiagent systems. In that case, besides admitting the

execution of more that one action in each state transition (cf., Remark 1), other

important issues have to be addressed, since different agents may compete or

collaborate in order to reach the desired results. For instance, concurrency

of actions may be subject to constraints to model incompatibilities or inter-

dependencies among the occurrences/effects of different actions executed by

different agents (even in different points in time). Hence, the action description

language, as well as its CLP encoding, has to be suitably enriched in order

to deal with these aspects. A first step in this direction has been presented

in (Dovier et al. 2009b).

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

228 A. Dovier et al.

Acknowledgements

The authors would like to thank the following researchers for their help, comments,

and suggestions: Son Cao Tran, Michael Gelfond, and the anonymous reviewers of

ICLP 2007 and TPLP.

The research has been partially supported by NSF Grants IIS-0812267, HRD-

0420407, and CNS-0220590, by the FIRB grant RBNE03B8KK, and by GNCS –

Gruppo Nazionale per il Calcolo Scientifico (project Tecniche innovative per la

programmazione con vincoli in applicazioni strategiche), and by MUR-PRIN 2008.

Appendix A Some of the codes of the experimental section

A.1 The three-barrel problem: BMV description of the 12-7-5

barrels problem

The BMV encoding of the three barrels planning problem for N = 12. (Fig. 1

presents an encoding using the language B.)

barrel(5).
barrel(7).
barrel(12).

fluent(cont(B),0,B) :- barrel(B).

action(fill(X,Y)) :- barrel(X), barrel(Y), neq(X,Y).

causes(fill(X,Y), cont(X) eq 0, [Y-cont(Y) geq cont(X)]) :-
action(fill(X,Y)).

causes(fill(X,Y), cont(Y) eq cont(Y)^(-1)+cont(X)^(-1),
[Y-cont(Y) geq cont(X)]) :-

action(fill(X,Y)).
causes(fill(X,Y), cont(Y) eq Y, [Y-cont(Y) lt cont(X)]) :-

action(fill(X,Y)).
causes(fill(X,Y), cont(X) eq cont(X)^(-1)-Y+cont(Y)^(-1),

[Y-cont(Y) lt cont(X)]) :-
action(fill(X,Y)).

executable(fill(X,Y), [cont(X) gt 0, cont(Y) lt Y]) :-
action(fill(X,Y)).

caused([], cont(12) eq 12-cont(5)-cont(7)).

initially(cont(12) eq 12).

goal(cont(12) eq cont(7)).

A.2 The HP protein folding problem

BMV encoding of the HP-protein folding problem with pivot moves on input of the

form 1001001001. . . starting from a vertical straight line.

length(10).
amino(A) :- length(N), interval(A,1,N).
direction(clock).
direction(antick).

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 229

fluent(x(A),1,M) :-
length(N), M is 2*N, amino(A).

fluent(y(A),1,M) :-
length(N), M is 2*N, amino(A).

fluent(type(A),0,1) :-
amino(A).

fluent(saw,0,1).

action(pivot(A,D)) :-
length(N), amino(A),
1<A, A<N, direction(D).

executable(pivot(A,D), []) :- action(pivot(A,D)).

causes(pivot(A,clock), x(B) eq x(A)^(-1)+y(B)^(-1)-y(A)^(-1), []) :-
action(pivot(A,clock)), amino(B), B > A.

causes(pivot(A,clock), y(B) eq y(A)^(-1)+x(A)^(-1)-x(B)^(-1), []) :-
action(pivot(A,clock)), amino(B), B > A.

causes(pivot(A,antick), x(B) eq x(A)^(-1)-y(B)^(-1)+y(A)^(-1), []) :-
action(pivot(A,antick)), amino(B), B > A.

causes(pivot(A,antick), y(B) eq y(A)^(-1)-x(A)^(-1)+x(B)^(-1), []) :-
action(pivot(A,antick)), amino(B), B > A.

caused([x(A) eq x(B), y(A) eq y(B)], saw eq 0) :-
amino(A), amino(B), A < B.

initially(saw eq 1).
initially(x(A) eq N) :- length(N), amino(A).
initially(y(A) eq Y) :- length(N), amino(A), Y is N+A-1.
initially(type(X) eq 1) :- amino(X), X mod 3 =:= 1.
initially(type(X) eq 0) :- amino(X), X mod 3 =\= 1.

goal(saw gt 0).

state cost(FE) :- length(N), auxc(1,4,N,FE).
auxc(I,J,N,0) :- I > N-3,!.
auxc(I,J,N,FE) :- J > N, !, I1 is I+1,

J1 is I1+3, auxc(I1,J1,N,FE).
auxc(I,J,N,FE1+type(I)*type(J)*rei(abs(x(I)-x(J))+abs(y(I)-y(J)) eq 1)) :-

J1 is J+2, auxc(I,J1,N,FE1).

always(x(1) eq 10). always(y(1) eq 10).
always(x(2) eq 10). always(y(2) eq 11).

cost constraint(goal geq 4).

A.3 The community problem

A.3.1 B description of the instance A4

max people(4).
person(X) :- max people(N), interval(X,1,N).
money(X) :- max people(N), M is N*(N+1), interval(X,1,M).

fluent(owns(B,M)) :- person(B), money(M).

action(gives(X,Y)) :-
person(X), person(Y), neq(X,Y).

executable(gives(X,Y), [owns(X,Mx)]) :-
action(gives(X,Y)),
fluent(owns(X,Mx)), Mx > X.

causes(gives(X,Y), owns(X,NewMx), [owns(X,Mx)]) :-
action(gives(X,Y)), money(Mx),
fluent(owns(X,NewMx)), fluent(owns(X,Mx)),
NewMx is Mx-X.

causes(gives(X,Y), owns(Y,NewMy), [owns(Y,My)]) :-
action(gives(X,Y)), money(My),

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

230 A. Dovier et al.

fluent(owns(Y,NewMy)), fluent(owns(Y,My)),
NewMy is My+X.

caused([owns(X,Mx)], neg(owns(X,Other))) :-
fluent(owns(X,Mx)), fluent(owns(X,Other)),
person(X), money(Mx), money(Other), neq(Mx,Other).

initially(owns(X,M)) :-
person(X), M is 2*X.

goal(owns(X,Mid)) :-
person(X), max people(N), Mid is (N*(N+1))//N.

A.3.2 BMV description of the instance A4

max people(4).
person(X) :- max people(N), interval(X,1,N).

fluent(owns(B),1,M) :-
person(B), max people(N), M is N*(N+1).

action(gives(X,Y)) :-
person(X), person(Y), neq(X,Y).

executable(gives(X,Y), [owns(X) gt X]) :-
action(gives(X,Y)).

causes(gives(X,Y), owns(X) eq owns(X)^(-1)-X, []) :-
action(gives(X,Y)).

causes(gives(X,Y), owns(Y) eq owns(Y)^(-1)+X, []) :-
action(gives(X,Y)).

initially(owns(X) eq M) :-
person(X), M is 2*X.

goal(owns(X) eq Mid) :-
person(X), max people(N), Mid is (N*(N+1))//N.

A.4 The 8-tile puzzle problem

A.4.1 B description of the instance I1

cell(X) :- interval(X,1,9).
val(X) :- interval(X,1,9), neq(X,3).
near(1,2). near(1,4).
near(2,1). near(2,3). near(2,5).
near(3,2). near(3,6).
near(4,1). near(4,5). near(4,7).
near(5,2). near(5,4). near(5,6). near(5,8).
near(6,3). near(6,5). near(6,9).
near(7,4). near(7,8).
near(8,5). near(8,7). near(8,9).
near(9,6). near(9,8).

fluent(at(X,Y)) :- val(X), cell(Y).
fluent(free(Y)) :- cell(Y).

action(move(X,Y)) :- val(X), cell(Y).

executable(move(X,Y), [at(X,Z), free(Y)]) :-
val(X), cell(Y), cell(Z), near(Z,Y).

causes(move(X,Y), at(X,Y), []) :-
val(X), cell(Y).

causes(move(X,Y), free(Z), [at(X,Z)]) :-
val(X), cell(Y), cell(Z).

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 231

caused([at(X,Y)], neg(free(Y))) :-
val(X), cell(Y).

caused([at(X,Y)], neg(at(X,Z))) :-
val(X), cell(Y), cell(Z), neq(Y,Z).

caused([at(X,Y)], neg(at(W,Y))) :-
val(X), val(W), cell(Y), neq(X,W).

initially(at(1,1)). initially(at(2,3)). initially(at(4,8)).
initially(at(5,2)). initially(at(6,9)). initially(at(7,4)).
initially(at(8,6)). initially(at(9,7)). initially(free(5)).
initially(neg(at(1,X))) :- cell(X), neq(X,1).
initially(neg(at(2,X))) :- cell(X), neq(X,3).
initially(neg(at(4,X))) :- cell(X), neq(X,8).
initially(neg(at(5,X))) :- cell(X), neq(X,2).
initially(neg(at(6,X))) :- cell(X), neq(X,9).
initially(neg(at(7,X))) :- cell(X), neq(X,4).
initially(neg(at(8,X))) :- cell(X), neq(X,6).
initially(neg(at(9,X))) :- cell(X), neq(X,7).
initially(neg(free(X))) :- cell(X), neq(X,5).

goal(at(X,X)) :- val(X).
goal(free(3)).

A.4.2 BMV description of the instance I1

cell(X) :- interval(X,1,9).
tile(X) :- interval(X,1,9), neq(X,3).
near(1,2). near(1,4).

...%as for B...
near(9,6). near(9,8).
fluent(at(X),1,9) :- tile(X).
fluent(free,1,9).

action(move(X,Y)) :- cell(Y), tile(X).

executable(move(X,Y), [at(X) eq Z, free eq Y]) :-
tile(X), cell(Y), near(Z,Y).

causes(move(X,Y), at(X) eq Y, []) :-
tile(X), cell(Y).

causes(move(X,Y), free eq at(X)^(-1), []) :-
tile(X), cell(Y).

initially(at(1) eq 1). initially(at(2) eq 3).
initially(at(4) eq 8). initially(at(5) eq 2).
initially(at(6) eq 9). initially(at(7) eq 4).
initially(at(8) eq 6). initially(at(9) eq 7).
initially(free eq 5).
goal(at(X) eq X) :- tile(X).
goal(free eq 3).

A.5 The Wolf-goat-cabbage problem

A.5.1 B description of the Wolf-goat-cabbage problem

obj(goat).
obj(cabbage).
obj(wolf).
obj(man).
side(left). side(right).
pos(X) :- side(X).
pos(boat).

fluent(is in(X,Y)) :- obj(X), pos(Y).
fluent(boat at(Y)) :- side(Y).
fluent(alive).

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

232 A. Dovier et al.

action(sail(A,B)) :- side(A), side(B), neq(A,B).
action(go aboard(A)) :- obj(A).
action(get off(A)) :- obj(A).

executable(sail(A,B), [boat at(A), is in(man,boat)]) :-
side(A), side(B), neq(A,B).

executable(go aboard(A), [boat at(L), is in(A,L)]) :-
obj(A), side(L).

executable(get off(A), [is in(A,boat)]) :-
obj(A).

causes(sail(A,B), boat at(B), []) :-
side(A), side(B), neq(A,B).

causes(go aboard(A), is in(A,boat), []) :-
obj(A).

causes(get off(A), is in(A,L), [boat at(L)]) :-
obj(A), side(L).

caused([is in(Ogg,L1)], neg(is in(Ogg,L2))) :-
obj(Ogg), pos(L1), pos(L2), neq(L1,L2).

caused([boat at(L1)], neg(boat at(L2))) :-
side(L1), side(L2), neq(L1,L2).

caused([is in(A,boat), is in(B,boat)], neg(alive)) :-
obj(A), obj(B), diff(A,B,man).

caused([is in(wolf,L), is in(goat,L), neg(is in(man,L))], neg(alive)) :-
pos(L).

caused([is in(cabbage,L), is in(goat,L), neg(is in(man,L))], neg(alive)) :-
pos(L).

initially(is in(A,left)) :- obj(A).
initially(alive).
initially(boat at(left)).

goal(is in(A,right)) :- obj(A).
goal(alive).

A.5.2 BMV description of the Wolf-goat-cabbage problem

obj(goat).
obj(cabbage).
obj(wolf).
obj(man).
% 0=boat, 1=on-the-left, 2=on-the-right:

fluent(is in(X),0,2) :- obj(X).
fluent(boat at,1,2).
fluent(alive,0,1).

action(sail).
action(go aboard(A)) :- obj(A).
action(get off(A)) :- obj(A).

executable(sail, [is in(man) eq 0]).
executable(go aboard(A), [boat at eq is in(A)]) :-

obj(A).
executable(get off(A), [is in(A) eq 0]) :-

obj(A).

causes(sail, boat at eq 1, [boat at eq 2]).
causes(sail, boat at eq 2, [boat at eq 1]).
causes(go aboard(A), is in(A) eq 0, []) :-

obj(A).
causes(get off(A), is in(A) eq boat at^(-1), []) :-

obj(A).

caused([is in(A) eq 0, is in(B) eq 0], alive eq 0) :-
obj(A), obj(B), diff(A,B,man).

caused([is in(wolf) eq is in(goat),
is in(man) neq is in(wolf)], alive eq 0).

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 233

caused([is in(cabbage) eq is in(goat),
is in(man) neq is in(cabbage)], alive eq 0).

initially(is in(A) eq 1) :- obj(A).
initially(boat at eq 1).
initially(alive eq 1).

goal(is in(A) eq 2) :- obj(A).
goal(alive eq 1).

A.6 The gas-diffusion problem: BMV description of the instance A4

room(N) :- interval(N,1,11).
gate(1,2).
gate(1,7).
gate(1,11).
gate(2,3).
gate(3,4).
gate(4,5).
gate(5,6).
gate(6,7).
gate(6,8).
gate(8,9).
gate(9,10).
gate(10,11).

fluent(contains(N),0,255) :- room(N).
fluent(is open(X,Y),0,1) :- gate(X,Y).

action(open(X,Y)) :- gate(X,Y).
action(close(X,Y)) :- gate(X,Y).

executable(open(X,Y),L) :-
action(open(X,Y)),
findall((is open(X,Z) eq 0), gate(X,Z),L1),
findall((is open(Z,X) eq 0), gate(Z,X),L2),
findall((is open(Y,Z) eq 0), (gate(Y,Z),neq(Z,X)),L3),
findall((is open(Z,Y) eq 0), (gate(Z,Y),neq(Z,X)),L4),
append(L1,L2,La),append(L3,L4,Lb),append(La,Lb,L).

executable(close(X,Y), [is open(X,Y) eq 1]) :-
action(close(X,Y)).

causes(open(X,Y),
contains(Y) eq (contains(X)^(-1)+contains(Y)^(-1))/2,
[]) :-

action(open(X,Y)).
causes(open(X,Y),

contains(X) eq (contains(X)^(-1)+contains(Y)^(-1))/2,
[]) :-

action(open(X,Y)).
causes(open(X,Y), is open(X,Y) eq 1, []) :-

action(open(X,Y)).
causes(close(X,Y), is open(X,Y) eq 0, []) :-

action(close(X,Y)).

initially(is open(X,Y) eq 0) :- gate(X,Y).
initially(contains(10) eq 128).
initially(contains(3) eq 128).
initially(contains(A) eq 0) :- room(A), diff(A,3,10).

goal(contains(1) gt 50).

References

Apt, K. R. 2003. Principles of Constraint Programming. Cambridge University Press.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

234 A. Dovier et al.

Baral, C., Son, T. and Tuan, L.-C. 2002. A transition function based characterization

of actions with delayed and continuous effects. In Principles and Practice of Knowledge

Representation and Reasoning, Morgan Kaufmann, 291–302.

Caseau, Y., Josset, F.-X. and Laburthe, F. 2002. CLAIRE: Combining sets, search and rules

to better express algorithms. Theory and Practice of Logic Programming 2 (6), 769–805.

Dovier, A., Formisano, A. and Pontelli, E. 2005. A comparison of CLP(FD) and ASP

solutions to NP-complete problems. In Proc. of ICLP 2008, M. Gabbrielli and G. Gupta,

Eds. Lecture Notes in Computer Science, vol. 3668. Springer Verlag, 67–82.

Dovier, A., Formisano, A. and Pontelli, E. 2007. An experimental comparison of constraint

logic programming and answer set programming. In Proc. of the Twenty-Second AAAI

Conference on Artificial Intelligence. AAAI Press, Vancouver, British Columbia, Canada,

1622–1625.

Dovier, A., Formisano, A. and Pontelli, E. 2009a. An empirical study of CLP and

ASP solutions of combinatorial problems. Journal of Experimental & Theoretical Artificial

Intelligence 21 (2) (June), 79–121.

Dovier, A., Formisano, A. and Pontelli, E. 2009b. Representing multi-agent planning in

CLP. In Logic Programming and Non-monotonic Reasoning, 10th International Conference,

LPNMR 2009, Potsdam, Germany, September 14–18, 2009, Proceedings, E. Erdem, F. Lin,

and T. Schaub, Eds. Lecture Notes in Computer Science, vol. 5753. Springer, 423–429.

Eiter, T., Faber, W., Leone, N., Pfeifer, G. and Polleres, A. 2004. A logic programming

approach to knowledge-state planning: Semantics and complexity. ACM Transactions on

Computational Logic 5 (2) (April), 206–263.

Gabaldon, A. 2002. Non-Markovian control in the situation calculus. In Proc. of the

Eighteenth National Conference on Artificial Intelligence, R. Dechter, M. Kearns, and R. S.

Sutton, Eds. American Association for Artificial Intelligence, AAAI Press, Menlo Park,

California, 519–524.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007. Clasp: A conflict-

driven answer set solver. In Logic Programming and Non-Monotonic Reasoning, C. Baral,

G. Brewka, and J. S. Schlipf, Eds. Springer Verlag, 260–265.

Gelfond, M. and Lifschitz, V. 1998. Action languages. Electronic Transactions on Artificial

Intelligence 2, 193–210.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N. and Turner, H. 2004a. Non-monotonic

causal theories. Artificial Intelligence 153 (1–2), 49–104.

Giunchiglia, E., Lierler, Y. and Maratea, M. 2004b. SAT-based answer set programming.

In AAAI-04, D. L. McGuinness and G. Ferguson, Eds. The MIT Press, 61–66.

Hoffmann, M. J., Porteous, J. and Sebastia, L. 2004. Ordered landmarks in planning.

Journal of Artificial Intelligence Research 22, 215–278.

Jaffar, J. and Maher, M. 1994. Constraint logic programming: A survey. Journal of Logic

Programming 19/20, 503–581.

Lee, J. and Lifschitz, V. 2003. Describing additive fluents in action language C+. In IJCAI-

03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence,

Acapulco, Mexico, August 9–15, 2003, G. Gottlob and T. Walsh, Eds. Morgan Kaufmann,

1079–1084.

Levesque, H. J., Pirri, F. and Reiter, R. 1997. GOLOG: A logic programming language for

dynamic domains. Journal of Logic Programming 31 (1–3), 59–83.

Levesque, H. J., Pirri, F. and Reiter, R. 1998. Foundations for the situation calculus.

Electronic Transactions on Artificial Intelligence 2, 159–178.

Lifschitz, V. 1999. Answer set planning. In Proc. of the 16th Intl. Conference on Logic

Programming, D. de Schreye, Ed. MIT Press, 23–37.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

Multivalued action languages in CLP(FD) 235

Lin, F. and Zhao, Y. 2004. ASSAT: Computing answer sets of a logic program by SAT

solvers. Artificial Intelligence 157 (1–2), 115–137.

Lopez, A. and Bacchus, F. 2003. Generalizing Graphplan by formulating planning as a

CSP. In IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial

Intelligence, Acapulco, Mexico, August 9–15, 2003, G. Gottlob and T. Walsh, Eds. Morgan

Kaufmann, 954–960.

Marriott, K. and Stuckey, P. J. 1998. Programming with Constraints. The MIT Press.

McCarthy, J. 1998. Elephant 2000 – A programming language based on speech acts February

1st 2010. [Online] URL: www.formal.stanford.edu/jmc

Reiter, R. 2001. Knowledge in Action: Logical Foundations for Describing and Implementing

Dynamical Systems. MIT Press, Bradford Books, Cambridge, MA.

Simons, P. 2000. Extending and Implementing the Stable Model Semantics. Ph.D. thesis, Helsinki

University of Technology.

Son, T. C., Baral, C. and McIlraith, S. A. 2001. Planning with different forms of

domain-dependent control knowledge – An answer set programming approach. In

Logic Programming and Non-monotonic Reasoning, 6th International Conference, LPNMR

2001, Vienna, Austria, September 17–19, 2001, Proceedings, T. Eiter, W. Faber, and

M. Truszczyński, Eds. Lecture Notes in Computer Science, vol. 2173. Springer, 226–239.

Son, T. C., Tu, P. H. and Baral, C. 2007. Reasoning and planning with sensing actions,

incomplete information, and static causal laws using answer set programming. Theory and

Practice of Logic Programming 7 (4), 377–450.

Thielscher, M. 1999. From situation calculus to fluent calculus: State update axioms as a

solution to the inferential frame problem. In Artificial Intelligence 111 (1–2), 277–299.

Thielscher, M. 2002a. Reasoning about actions with CHRs and finite domain constraints.

Lecture Notes in Computer Science 2401, 70–84.

Thielscher, M. 2002b. Pushing the envelope: Programming reasoning agents. In AAAI

Workshop on Cognitive Robotics, C. Baral and S. McIlraith, Eds. AAAI Press.

Tu, P. H., Son, T. C. and Pontelli, E. 2007. CPP: A constraint logic programming

based planner with preferences. In Logic Programming and Non-monotonic Reasoning, 9th

International Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings,

C. Baral, G. Brewka, and J. S. Schlipf, Eds. Lecture Notes in Computer Science, vol. 4483.

Springer, 290–296.

Vidal, V. and Geffner, G. 2006. Branching and pruning: An optimal temporal POCL planner

based in constraint programming. Artificial Intelligence 170, 298–335.

https://doi.org/10.1017/S1471068410000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000013

