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Abstract. In 2004, Féjoz [Démonstration du ‘théoréme d’Arnold’ sur la stabilité du
système planétaire (d’après M. Herman). Ergod. Th. & Dynam. Sys. 24(5) (2004),
1521–1582], completing investigations of Herman’s [Démonstration d’un théoréme de V.I.
Arnold. Séminaire de Systémes Dynamiques et manuscripts, 1998], gave a complete proof
of ‘Arnold’s Theorem’ [V. I. Arnol’d. Small denominators and problems of stability of
motion in classical and celestial mechanics. Uspekhi Mat. Nauk. 18(6(114)) (1963), 91–
192] on the planetary many-body problem, establishing, in particular, the existence of a
positive measure set of smooth (C∞) Lagrangian invariant tori for the planetary many-
body problem. Here, using Rüßmann’s 2001 KAM theory [H. Rüßmann. Invariant tori
in non-degenerate nearly integrable Hamiltonian systems. R. & C. Dynamics 2(6) (2001),
119–203], we prove the above result in the real-analytic class.

1. Introduction
The planetary many-body problem consists of studying the evolution of (1+ n) bodies
(point masses), subject only to the mutual gravitational attraction, in the case where one
of the bodies (the ‘Sun’) has a mass m0 considerably larger than the masses mi of the
remaining n bodies (the ‘planets’). The Newtonian evolution equations for such problem
(in suitable units) are given by

m j q̈ j =
∑
k 6= j

m j mk
qk − q j

|qk − q j |
3 , j = 0, 1, . . . , n, (1)

where q j = q j (t) ∈ R3 denotes the position at time t of the j th body, ‘| · |’ denotes the
Euclidean norm and ‘ ˙ ’ denotes the time derivative.

In [1, Ch. III, p. 125], Arnold made the following statement§.

§ The integer n in Arnold’s statement corresponds to the above (1+ n).
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Arnold’s statement 1. In the n-body problem there exists a set of initial conditions having
a positive Lebesgue measure and such that if the initial positions and velocities belong to
this set, the distances of the bodies from each other will remain perpetually bounded.

As is well known, such a statement solves a fundamental problem considered, for
several centuries, by astronomers and mathematicians. However, Arnold considered in
details only the planar three-body case† and it appears that his indication for extending the
result to the general case contains a flaw; cf. the end of [9, §1.2, p. 1524].

A complete general proof of Arnold’s statement was given in 2004, when Féjoz,
completing the work of Herman, proved the following‡.

THEOREM 1. (Arnold, Herman, Féjoz [9, §1.2, p. 1523, Théorème 1]) Si le maximum
ε =max{m j/m0} j=1,...,n des masses des planètes rapportées à la masse du soleil est
suffisamment petit, les équations (1) admettent, dans l’espace des phases au voisinage
des mouvements képlériens circulaires et coplanaires, un ensemble de mesure de Lebesgue
strictement positive de conditions initiales conduisant à des mouvements quasipériodiques.

The beautiful proof of this result given in [9] (see also [10]) relies, on one side, on the
elegant C∞ KAM theory worked out by Herman [9, §§2–5], and, on the other side, on
the analytical celestial mechanics worked out, in particular, by Poincaré and clarified and
further investigated in Paris in the late 1980s by Chenciner and Laskar in the Bureau des
Longitudes§ and later by Herman himself.

The invariant tori associated with the motions provided by Theorem 1, in view of the
just mentioned KAM tools, are C∞. Now, since the many-body problem is formulated in
terms of real-analytic functions, it appears somewhat more natural to seek for real-analytic
invariant manifolds. This is the problem addressed in this paper. In particular, we shall
give a new proof of Arnold’s statement, proving the following.

THEOREM 2. If ε =max{m j/m0} j=1,...,n is small enough, there exists a strictly positive
measure set of initial conditions for the (1+ n)-planetary problem (1), whose time
evolutions lie on real-analytic Lagrangian tori in the 6n-dimensional phase space

M :=

{
(q, p) ∈ R6(1+n)

| q j 6= qk, ∀ j 6= k and
n∑

j=0

p j = 0=
n∑

j=0

m j q j

}

endowed with the restriction of the standard symplectic form
∑n

j=0 dq j ∧ dp j

=
∑

0≤ j≤n
1≤k≤3

dq j,k ∧ dp j,k .

Remark 1. Let us collect here a few observations concerning the above statements and
respective proofs.

† A few lines after the above-reported statement in [1, Ch. III, p. 125], Arnold states: ‘We shall consider only
the plane three-body problem in detail. [· · · ]. In the final section a brief indication is given of the way in which
the fundamental theorem of Chapter IV is applied in the investigation of the planetary motions in the plane and
spatial many-body problems.’.
‡ For a more detailed statement, see the statements in Remark 1(v).
§ Compare, e.g., the Notes Scientifiques et techniques du Bureau des Longitudes S 026 and S 028 by, respectively,
Chenciner and Laskar, and Chenciner.
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(i) The proof of Theorem 2 given below is similar in strategy to that in [9] but
technically different and it is based on an analytic (rather than smooth) KAM theory
for properly degenerate Hamiltonian systems (see also point (iv) below). On the
other hand, it is conceivable—notwithstanding the presence of strong degeneracies
(see points (ii) and (iii) below)—to prove regularity and uniqueness results for the
planetary problem so as to deduce that the invariant tori in [9] are indeed analytic, a
fact which does not follow from our proofs†.

(ii) The evolution equations (1) are Hamiltonian and admit seven integrals, namely, the
Hamiltonian (energy)

H :=
n∑

j=0

|p j |
2

2m j
−

∑
0≤k< j≤n

m j mk

|qk − q j |
,

the three components of the total linear momentum M :=
∑n

j=0 p j and the three
components of the total angular momentum C :=

∑n
j=0 p j × q j , where ‘×’ denotes

the usual skew vector product in R3. As a reflection of the invariance of Newton’s
equation (1) under changes of inertial reference frames, the Hamiltonian system
associated with the (1+ n)-body problem may be studied on the symplectic,
invariant 6n-dimensional manifold M defined above, where, in addition to the
total linear momentum, also the coordinates of the barycenter of the system vanish
(‘reduction of the total linear momentum’). However, the reduced (1+ n)-body
Hamiltonian still admits, in addition to the energy, three integrals given by the
components of C = (Cx , Cy, Cz). Incidentally, such integrals are not commuting
since, if {·, ·} denotes the natural Poisson bracket on M, one has the cyclical relations
{Cx , Cy} = Cz , {Cy, Cz} = Cx and {Cz, Cx } = Cy ; but, for example, |C |2 and Cz are
two independent, commuting integrals.

(iii) The reasons why, notwithstanding the development of KAM theory in the early
1960s, it took so long to give a complete proof of Arnold’s statement are technical
in nature and are related to the strong degeneracies of the planetary problem
(degeneracies, which are related to the abundance of integrals mentioned in (ii)).
The planetary (1+ n)-body problem is perturbative, the unperturbed limit being
obtained by considering n decoupled two-body problems formed by the Sun and
the j th planet. Now, the two-body problem in space is a three-degrees-of-freedom
problem, but, once it is put into (Delaunay) action-angle variables, it depends only
on one action (the action L proportional to the square root of the semi-major axis
of the Keplerian ellipse on which the two bodies revolve). Systems of this kind are
called properly degenerate and standard KAM theory does not apply. This difficulty,
however, was overcome by Arnold—essentially by refined normal form theory—in
the case of the planar three-body case, to which he could apply his ‘fundamental
theorem’ [1, Ch. IV]. Indeed, Arnold’s approach, in view of Jacobi’s reduction of
the nodes, could be extended [17] to the spatial three-body case (n = 2) but not to
the general case‡ (spatial, n > 2). Furthermore (but not independently), in higher

† Recent interesting progresses in the study of uniqueness of invariant Lagrangian manifolds appeared in [5] and,
in particular, in [8]; however, as far as regularity is concerned, to the best of our knowledge, the only complete
proven statement is [19, Theorem 4, §4, p. 34], which covers only the C∞ non-degenerate case.
‡ However, for a remarkable symplectic extension of Jacobi’s reduction of the nodes in higher dimension,
see [4, 7].
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dimension, there appear two secular resonances (see (52) below), which prevent
direct application of any kind of KAM machinery. We mention that the way we
overcome this last difficulty here is slightly different from that used in [9]: roughly
speaking, in [9] it is introduced a modified Hamiltonian, which is then considered on
the symplectic submanifold of vertical total angular momentum; here, we consider,
instead, an extended phase space by adding an extra degree of freedom and consider
on it a modified non-degenerate Hamiltonian.

(iv) The main technical tool for us is the analytic KAM theory for weakly non-degenerate
systems worked out by Rüßmann in [18]; the main results of Rüßmann’s theory (in
the case of Lagrangian tori) are recalled in §2.1 (see, also, Lemma 8 in §2.3.3).
The extension of this theory to properly degenerate systems is explained in §2.2 and
proved in §2.3 (which constitutes the longest and most technical part of the paper).
In §3, using several results reported in [9], the proof of Theorem 2 is given.

(v) Finally, we mention very briefly a few problems related to the context considered
here.
– Describe, in detail, the motions that take place on the Lagrangian tori. Let us

clarify this point. From the proof of Theorem 2 given below, in view of the
indirect argument used [9, Lemma 82, p. 1578] we cannot conclude that the
‘true’ motion is quasi-periodic; on the other hand, using different arguments,
Arnold and Féjoz say that the motion, in the general case, is quasi-periodic and
takes place on (3n − 1)-dimensional tori.

Statement 1. (Arnold [1, p. 127]) ‘Thus, the Lagrangian motion is condition-
ally periodic and to the n0 ‘rapid’ frequencies of the Keplerian motion are
added n0 (in the plane problem) or 2n0 − 1 (in the space problem) ‘slow’
frequencies of the secular motions’.

Statement 2. (Féjoz [9, p. 1566]) THÉORÈME 60. Pour toute valeur des
masses m0, m1 ,. . . , mn > 0 et des demi grands axes a1 > · · ·> an > 0,
il existe un réel ε0 > 0 tel que, pour tout ε tel que 0< ε < ε0, le flot de
l’hamiltonien F (défini en (28)) possède un ensemble de mesure de Lebesgue
strictement positive de tores invariants de dimension 3n − 1, de classe C∞,
quasipériodiques et ε-proches en topologie C0 des tores képlériens de demi
grands axes (a1, . . . , an) et d’excentricités et d’inclinaisons relatives nulles;
de plus, quand tend vers zéro la densité des tores invariants au voisinage de
ces tores képlériens tend vers un.

Moreover, in the spatial three-body case (n = 2) the Lagrangian tori are
actually four-dimensional (not 5= 3n − 1) and the number of independent
frequencies is four (cf. [17]).

– Use Boigey–Deprit’s symplectic variables [4, 7] and try to extend Arnold’s
approach to the general spatial case.

– Give asymptotic (as ε→ 0) estimates on the measure of Lagrangian invariant
tori.

– Apply some of the above results to subsystems of the Solar system (for some
progress in this direction, see [6]).
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2. Analytic Lagrangian tori for properly degenerate systems

In this section we first recall a result due to Rüßmann concerning analytic perturbations of
weakly non-degenerate Hamiltonian systems (§2.1) and then show how such a result may
be used to give an analytic version of Herman’s C∞ KAM theorem on properly degenerate
systems (i.e. nearly integrable systems, which when the perturbation parameter vanishes
depend on less action variables than the number of degrees of freedom). The statement of
the analytic theorem for properly degenerate systems is given in §2.2 and is proved in §2.3.

2.1. Rüßmann’s theorem for weakly non-degenerate systems. We start by fixing some
notation.

• If a, b ∈ Rn , then 〈a, b〉 :=
∑n

i=1 ai bi and |a| := |a|2 := 〈a, a〉1/2.
• If g is a µ-times continuously differentiable function (µ ∈ N) from an open set B ⊂

Rn to Rm , the µth (tensor) derivative of g in b ∈ B is denoted by (a1, . . . , aµ)→
∂µg(b)(a1, . . . , aµ), a j ∈ Rn, j = 1, . . . , µ; if a1 = · · · = aµ, we shall write
∂µg(b)(a)µ.

• We have |∂µg(b)| :=maxa∈Rn ,|a|=1 |∂
µg(b)(a, . . . , a)| and |∂µg|A := supb∈A

|∂µg(b)|.
• By Cµ(B, Rm) we denote the Banach space of all µ-times continuously

differentiable functions g : B→ Rm with bounded derivatives up to order µ,
endowed with the norm |g|µB = sup0≤ν≤µ |∂

νg|B <∞.

The key notion of non-degeneracy is as follows†.

Definition 1. (Rüßmann non-degeneracy condition) A real-analytic function

ω : y ∈ B ⊂ Rn
−→ ω(y)= (ω1(y), . . . , ωm(y)) ∈ Rm

is called R-non-degenerate if B is a non-empty open connected set in Rn and if for any
c = (c1, . . . , cm) ∈ Rm r {0} one has

y −→ 〈c, ω〉 :=
m∑

i=1

ciωi 6= 0

or, equivalently, if the range ω(B) of ω does not lie in any (m − 1)-dimensional linear
subspace of Rm . We call ω R-degenerate if it is not R-non-degenerate.

The following lemma is a simple consequence of R-non-degeneracy and analyticity.

LEMMA 1. Let ω : B ⊂ Rn
−→ Rm be R-non-degenerate. Then for any non-empty

compact set K ⊂ B there exist numbers µ0 = µ0(ω, K) ∈ Z+ and β = β(ω, K) > 0 such
that

† This terminology, nowadays, seems to be standard (see, e.g., [20]); however many authors, in addition to
Rüßmann, contributed to its formulation, including Arnold, Margulis, Pyartli, Parasyuk, Bakhtin and Sprindzhuk.
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max
0≤µ≤µ0

|∂µy 〈c, ω(y)〉
2
| ≥ β for all c ∈ S m−1, for all y ∈K (2)

where S m−1
:= {c ∈ Rm

: |c|2 = 1}.

For the proof see [18, Lemma 18.2, p. 185].
In view of Lemma 1 one can give the following.

Definition 2. Let K and B be as in the preceding lemma and let ω : y ∈ B −→ Rm be a
real-analytic and R-non-degenerate function. We define µ0(ω, K) ∈ Z+, the index of non-
degeneracy of ω with respect to K, as the smallest positive integer such that

β := min
y∈K, c∈S m−1

max
0≤µ≤µ0

|∂µ〈c, ω(y)〉2|> 0. (3)

The number β = β(ω, K) is called the amount of non-degeneracy of ω with respect to K.

Remark 2. If a real-analytic function ω : B→ Rm admits the existence of µ0 and β as in
(3), for some compact K containing an open ball, then it is R-non-degenerate.

The following result, which concerns the existence of maximal (Lagrangian) tori only,
is a particular case of the main theorem in [18], where lower-dimensional tori are also
treated†.

THEOREM 3. (Rüßmann [18]) Let Y be an open connected set of Rn and Tn the usual
n-dimensional torus Rn/2πZn . Consider a real-analytic Hamiltonian

H(x, y)= h(y)+ P(x, y)

defined for (x, y) ∈ Tn
× Y endowed with the standard symplectic form dx ∧ dy. Let K

be any compact subset of Y with positive n-dimensional Lebesgue measure measn K > 0
and fix 0< ε? <measn K. Let A be an open set in Cn/2πZn

× Cn on which H can be
analytically extended and such that Tn

×K ⊂A. Assume that the frequency application
ω := ∇h is R-non-degenerate on Y ; let µ be any integer greater than or equal to µ0(ω, K)
(the index of non-degeneracy of ω with respect to K) and let β be as in (3) with µ0 replaced
by µ.

Then, for any fixed τ > nµ, there exist ε0 = ε0(ε
?, n, µ, β, τ, ω, K) > 0 and γ =

γ (ε?, n, τ, µ, β, ω, K) > 0 such that if

|P|A := sup
A
|P| ≤ ε0 (4)

the following is true. There exist a compact set

K?
⊂K with measn K? >measn K − ε? (5)

and a Lipschitz mapping

X : (b, ξ, η) ∈K?
× Tn

× U −→ Tn
× Y,

where U is an open neighborhood of the origin in Rn , such that:

† See [18, Theorem 1.7, p. 127]. We refer to [15] for more details on how to obtain Theorem 3 from the general
results in [18].
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(i) the mapping

(ξ, η) 7−→ (x, y)= X (b, ξ, η)

defines, for every b ∈K?, a real-analytic symplectic transformation† close to the
identity on Tn

× U ;
(ii) the map

(b, ξ) ∈K?
× Tn

−→ X0(b, ξ) := X (b, ξ, 0)

is a bi-Lipschitz homeomorphism;
(iii) the transformed Hamiltonian H ?

:= H ◦ X is in the form‡:

H ?(b, ξ, η)= h?(b)+ 〈ω?(b), η〉 + O(|η|2)

for every b ∈K? and (ξ, η) ∈ Tn
× U ;

(iv) the new frequency vector ω? satisfies, for all b in K?, the Diophantine inequality

|〈k, ω?(b)〉| ≥
γ

|k|τ2
for all k ∈ Zn r {0}. (6)

Remark 3. We make the following remarks.

(i) From Theorem 3 we immediately obtain that for any b ∈K? the n-dimensional tori

Tb := X0(b, Tn)

are invariant for H and the H -dynamics is analytically conjugate to ξ → ξ + ω?(b)t .
Furthermore, as follows from (5) and point (ii), the measure of

⋃
b∈K? Tb is

proportional to (measn K − ε?)(2π)n and, hence, tends to the full measure linearly
when ε? tends to zero.

(ii) A (technical) difference between Rüßmann’s theorem and the formulation given
above in Theorem 3 is the choice of µ as any integer greater or equal than the actual
index of non-degeneracy of ω, while in [18] µ is chosen equal to the index of non-
degeneracy of ω. In fact, it is easy to check (see, e.g., [15]) that Rüßmann’s theorem
holds in this slightly more general case, which will however be important in our
applications.
Another difference between Theorem 3 and Rüßmann’s original formulation
concerns the way the small divisors are controlled. Rüßmann uses a very general
approach based on ‘approximation functions’; however, such an approach is too
general for our application and cannot be applied directly. Nevertheless, it is easy to
follow a more classical approach (cf., again, [15]) based on Diophantine inequalities
of the form (6), which will be good enough for the application to properly degenerate
systems; cf. also Remark 5(ii) below.

† That is, it preserves the symplectic form dx ∧ dy.
‡ Here and in what follows f (η)= O(g(η)) means that there exists a constant C such that | f (η)| ≤ C |g(η)| for
small enough η.
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2.2. A KAM theorem for properly degenerate systems. Let d and p be positive integers;
let B an open set in Rd , U some open neighborhood of the origin in R2p and ε a ‘small’
real parameter. Consider a Hamiltonian function Hε of the form

Hε(ϕ, I, u, v)= h(I )+ ε f (ϕ, I, u, v), (7)

which is real-analytic for

(ϕ, I, (u, v)) ∈ Td
× B × U =:M,

where M is endowed with the standard symplectic form

dϕ ∧ d I + du ∧ dv.

The ‘perturbation’ f is assumed to have the form
f (ϕ, I, u, v)= f0(I, u, v)+ f1(ϕ, I, u, v),

∫
Td

f1(ϕ, I, u, v) dϕ = 0,

f0(I, u, v)= f00(I )+
p∑

j=1

� j (I )
u2

j + v
2
j

2
+ O(|(u, v)|3).

(8)

Observe that for every Ī ∈ B, the Hamiltonian h + ε f0 possesses the invariant isotropic
(non-Lagrangian) torus

T d
Ī
:= Td

× { Ī } × {0} ⊂M

with corresponding quasi-periodic flow

ϕ(t)= (∂I h( Ī )+ ε∂I f00( Ī ))t + ϕ0, I (t)≡ Ī , (u(t), v(t))≡ 0.

The purpose is to find Lagrangian invariant tori for Hε close to (d + p)-tori of the form

T d+p
Ī ,w
= Td

× { Ī } × {(u, v) ∈ R2p, |(u j , v j )|
2
= 2w j , ∀ j = 1, . . . , p} (9)

for Ī in B and w ∈ (R+)p small.

THEOREM 4. Consider a real-analytic Hamiltonian function Hε as in (7) and (8), and
assume that the ‘frequency map’

I ∈ B −→ (ω(I ), �(I )) := (∇h(I ), �1(I ), . . . , �p(I )) ∈ Rd
× Rp (10)

is R-non-degenerate. Then, if ε is sufficiently small, there exists a positive measure set
of phase space points belonging to real-analytical, Lagrangian, Hε-invariant tori, which
are close to T d+p

Ī ,w
as in (9) with w j = O(ε); furthermore, the Hε-flow on such tori is

quasi-periodic with Diophantine frequencies.

Remark 4. We make the following remarks.
(i) The above theorem may be viewed as the real-analytic version for Lagrangian tori

of the C∞ KAM theorem by Herman (see, in particular, [9, Theorem 57, p. 1559]).
Under stronger non-degeneracy assumptions the above theorem corresponds to the
‘fundamental theorem’ in [1].
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(ii) The term ‘properly degenerate’ refers to the fact that for ε = 0 the Hamiltonian H0

depends on d action variables, while the number of degrees of freedom is d + p > d.
In particular, the tori constructed in Theorem 4, as ε→ 0, degenerate into lower-
dimensional (non-Lagrangian) tori T d

Ī
.

(iii) The natural symplectic variables for the KAM theory of the Hamiltonian Hε are
(I, ϕ) and (rather than the Cartesian variables (q, p)) the symplectic action-angle
variables (w, ζ ), where w j = (u2

j + v
2
j )/2 for j = 1, . . . , p and ζ j is the angle of

the circle† |w j | = constant. Indeed, Theorem 4 has, in terms of such variables, a
natural reformulation, which gives a deeper insight into the structure of the invariant
tori. (In reformulating Theorem 4 in terms of the variables (ζ, w) we often use the
same symbols used above. The proof of Theorem 5 is not explicitly given since it
follows easily from the proof of Theorem 4.)

THEOREM 5. Let Hε(ϕ, I, ζ, w)= h(I )+ ε f (ϕ, I, ζ, w) be real-analytic for
(ϕ, I, ζ, w) ∈ Td

× B × Tp
× {w ∈ Rp

: 0< |w j |< r} =:M for some open set B ⊂ Rd

and 0< r; M is endowed with the symplectic form dϕ ∧ d I + dζ ∧ dw. The perturbation
f is of the form f = f0(I, ζ, w)+ f1 with f1 having vanishing ϕ-mean value over Td ;
furthermore f0 has the form f0 = f00(I )+ 〈�(I ), w〉 + o(|w|). Then, if the frequency
map I ∈ B→ (ω, �) := (∂I h(I ), �(I )) ∈ Rd

× Rp is R-non-degenerate, and ε is small
enough, there exists a positive measure set of phase space points belonging to real-
analytical, Lagrangian, Hε-invariant tori, which have the following parametrization:

ϕ = θ + ϕ̃(θ, ψ),

I = Ī + Ĩ (θ, ψ),
ζ = ψ + ζ̃ (θ, ψ),

w = w̄ + w̃(θ, ψ),

where w̄ is a constant vector of norm 2ε and ϕ̃, Ĩ , ζ̃ and w̃ real-analytic functions for
(θ, ψ) ∈ Td

× Tp (with range, respectively, in Td , Rd , Tp and Rp) with
Ĩ = O(ε(log ε−1)

−(τ0+1)
),

w̃ = O(ε(ν+1)/2),

ϕ̃, ζ̃ = O(ε),

for suitable ν ≥ 4 and (see equations (16) and (21) below) τ0 ≥ d + p. Moreover, if (ω, �)
is the above frequency map, the Hε-flow on such invariant tori is conjugated to

(θ, ψ)−→ (θ + ω̃t, ψ + ε�̃t)

for a suitable Diophantine vector (ω̃, �̃) satisfying

|ω̃ − ω|, |�̃−�| = O(ε).

2.3. Proof of Theorem 4. First of all, let us introduce some notation and quantitate the
assumptions of Theorem 4.

† Compare this with (27) below, where w is related to ρ by w = ρ0
+ ρ.
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• For δ > 0, d ∈ N, A ⊂ Rd or Cd , we denote

Bd(x0, δ) := {x ∈ Rd
: |x − x0|< δ}, (x0 ∈ Rd),

Dd(x0, δ) := {x ∈ Cd
: |x − x0|< δ}, (x0 ∈ Cd),

Td
δ := {x ∈ Cd

: |Im x j |< δ, Re x j ∈ T, ∀ j = 1 . . . d},

A + δ :=
⋃
x∈A

Dd(x, δ).

(11)

• We may assume that Hε in (7) and (8) can be holomorphically extended for

(ϕ, I, (u, v)) ∈ Td
σ × (B + r0)× (U + r1)=:M?. (12)

In particular, Hε is real-analytic on Td
× Bd(I0, s)× B2p(0, r1) for any I0 in B and

s < r0. Moreover, we denote

M0 :=
∑
k∈Zd

(
sup

(B+r0)×(U+r1)

| fk(I, u, v)|

)
e|k|1σ (13)

as the ‘sup-Fourier’ norm of f and let

M1 := sup
I∈B+r0

|(ω(I ), �(I ))|. (14)

The proof of Theorem 4 is based on two preliminary steps:
(1) computation of a suitable normal form for Hε ;
(2) quantitative estimates on the amount of the non-degeneracy of the normal form.

2.3.1. Step 1: Normal forms for properly degenerate systems.

PROPOSITION 1. Fix an integer ν ≥ 4. Then, there exists m > d (depending on ω), and,
for ε small enough, a point I0 ∈ B and a real-analytic canonical transformation† 8ε such
that the following holds. Let

s := O((log ε−1)
−m
) (15)

then Bd(I0, s)⊂ B and 8ε : (ϑ, r, ζ, ρ)−→ (ϕ, I, u, v) satisfies

8ε : Td
× Bd(0, s/5)× Tp

× B p(0, ε)−→ Td
× Bd(I0, s)× U

and Ĥε := Hε ◦8ε takes the form

Ĥε(ϑ, r, ζ, ρ)= Nε(r, ρ; ρ
0)+ εν Pε(ϑ, r, ζ, ρ; ρ0) (16)

with

Nε :=
1
ε

h(I0 + εr)+ ĝ(I0 + εr)+
1
2
�̂(I0 + εr) · (ρ

0
+ ερ)+ Qε,I0+εr (ρ

0
+ ερ) (17)

and ρ0 in (R+)p is some point having Euclidean norm 2ε; Qε,I0+εr is a polynomial
of degree ν − 1 starting with cubic terms; ĝ, �̂ and Pε are real-analytic functions.
Furthermore, one has

sup
r∈Bd (0,s/5)

|�̂(I0 + εr)−�(I0 + εr)| = O(ε(log ε−1)
2m−1

).

† Symplectic up to rescalings.

https://doi.org/10.1017/S0143385708000503 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385708000503


Analytic Lagrangian tori for the planetary many-body problem 859

Proof of Proposition 1. We start by recalling a measure-theoretical result due to Pyartli
(see [16] or [18, Theorem 17.1]).

LEMMA 2. (Pyartli) Let K ⊂ Rd be a compact set; let θ ∈ (0, 1) define Kθ :=
⋃

y∈K
Bd(y, θ). Let g :Kθ → R be a real-analytic function satisfying

min
y∈K

max
0≤ν≤µ0

|∂νg(y)| ≥ β

for some β > 0. Then there exists C = C(µ0, β, d, K, θ) such that

measd {y ∈K : |g(y)| ≤ t} ≤ C |g|µ0+1
Kθ

t1/µ0

for any 0≤ t ≤ β/(2µ0 + 2).

Pyartli’s lemma implies the following.

LEMMA 3. Let K be a compact set with positive d-dimensional Lebesgue measure and let
0< ε? <measd K; letω :Kθ → Rd be R-non-degenerate and letµ0 and β be its index and
amount of non-degeneracy with respect to K. Let us denote by Dd

γ0,τ0
the set of Diophantine

vectors in Rd with Diophantine constants γ0, τ0, that is, the set

Dd
γ0,τ0
:=

{
ω ∈ Rd

: |〈ω, k〉| ≥
γ0

|k|τ0
, ∀k ∈ Z r {0}

}
.

Then, if γ0 is sufficiently small and τ0 ≥ dµ0 one has

measd(K ∩Dd
γ0,τ0

)≥measd K − ε?. (18)

Proof of Lemma 3. First of all observe that for any m ∈ Z+, a ∈ Rd , k ∈ Zd r {0} and
b ∈Kθ

|∂m
〈ω(b), k|k|−1

〉(am)| = |〈∂mω(b)(am), k|k|−1
〉| ≤ |∂mω(b)(am)|;

taking the sup over |a| = 1, b ∈Kθ and 0≤ m ≤ µ we obtain

|〈ω, k|k|−1
〉|
µ

Kθ
≤ |ω|

µ

Kθ
<∞

for any µ ∈ Z+. Now we use this last inequality and Theorem 2, assuming
γ0 ≤ β/(2µ0 + 2), to estimate

measd (K r Dd
γ0,τ0

) = measd

⋃
k∈Zdr{0}

{
b ∈K : |〈ω(b), k〉|<

γ0

|k|τ0

}

≤

∑
k∈Zdr{0}

measd

{
b ∈K :

∣∣∣∣〈ω(b), k

|k|

〉∣∣∣∣< γ0

|k|τ0+1

}

≤ C(µ0, β, d, K, θ)|ω|µ0+1
Kθ

γ
1/µ0
0

∑
k∈Zdr{0}

1

|k|(τ0+1)/µ0
.

Since τ0 ≥ dµ0 this last sum converges and one has

measd(K r Dd
γ0,τ0

)≤ C̄γ 1/µ0
0

for a suitable C̄ = C̄(µ0, β, d, K, θ, ω, τ0). Choosing γ0 ≤ (C̄−1ε?)
µ0 we obtain the

estimate (18). 2
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Now consider the real-analytic Hamiltonian Hε in (7) and (8). Let ν1, ν2 ≥ 4 be two
integers to be later determined and set

K1 :=
6
σ
(ν1 − 1) log

1
εM0

(19)

where M0 is defined by (13). Lemma 3 and the R-non-degeneracy of ω assure the existence
of I0 ∈ B such that ω(I0) belongs to Dd

γ0,τ0
(for suitable γ0 and τ0). Then, from Taylor’s

formula it follows that†

|ω(I ) · k| ≥ α1 > 0 for all k ∈ Zd , 0< |k|1 ≤ K1 for all I ∈ Dd(I0, s) (20)

with‡

s := O((log ε−1)
−(τ0+1)

) and α1 := O((log ε−1)
−τ0
). (21)

Furthermore, we can assume that there exists α2 (independent of ε) such that

|�(I ) · k| ≥ α2 > 0 for all k ∈ Zp, 0< |k|1 ≤ ν2 for all I ∈ Dd(I0, s). (22)

Next, we want to average Hε over the ‘fast angles’ ϕ up to order ν1. To do this
we apply the following classical ‘averaging lemma’, whose proof can be found in
[3, Appendix A, p. 110].

LEMMA 4. (Averaging lemma) Let Hε , M0, σ , α1 and s be as above. Assume that (20)
holds with K1 as in (19). Then, if ε is small enough, there exists a real-analytic symplectic
transformation 81

ε : (ϕ̃, Ĩ , ũ, ṽ)→ (ϕ, I, u, v) mapping

M1 := Td
σ/6 × Dd

(
I0,

s

2

)
× D2p

(
0,

r1

2

)
81
ε
→M0 := Td

σ × Dd(I0, s)× D2p(0, r1)

that casts Hε into the Hamiltonian

H1
ε := Hε ◦8

1
ε = h + ε f0 + g̃ + f̃ ,

where g̃ = g̃( Ĩ , ũ, ṽ) and f̃ satisfy

sup
M1

|g̃| ≤ C
(εM0)

2

sα1
, sup

M1

| f̃ | ≤ (εM0)
ν1 (23)

for a suitable C = C(σ, ν1).

Lemma 4 can be immediately derived from [3, Proposition A.1] with the following
correspondences: α1 = α for α1 as in (20), K1 = K for K1 as in (19), εM0 = ε for M0 as
in (13), s = r, d for s as in (15) and (20), {0} =3 and ε f (I, ϕ, u, v) in (7) is just f (u, ϕ)
in [3]; as a result, one has that ε f0 + g̃ and f̃ are respectively given by g and f? in [3] with
estimates (23) holding in view of the previous correspondences.

Thus, if we set g̃ =: ε2ḡ and f̃ =: εν1 f̄ , using (8) and (23) we have
H1
ε (ϕ̃, Ĩ , ũ, ṽ)= h( Ĩ )+ ε[ f0( Ĩ , ũ, ṽ)+ ε ḡ( Ĩ , ũ, ṽ)] + εν1 f̄ (ϕ̃, Ĩ , ũ, ṽ),

f0( Ĩ , ũ, ṽ)= f00( Ĩ )+
p∑

j=1

� j ( Ĩ )
ũ2

j + ṽ
2
j

2
+ O(|ũ, ṽ|3; Ĩ ).

(24)

† For k = (k1, k2, . . . , kd ) ∈ Zd we denote |k|1 :=
∑d

i=1 |ki |; recall also the definition of complex balls Dd in
(11).
‡ This means that we can take m = τ0 + 1 in (15).
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From equation (24) we see that the application of averaging theory may cause, in
general, a shift of order ε of the elliptic equilibrium, which, before, was in the origin
of R2p. Therefore, we focus our attention on the Hamiltonian function f0 + ε ḡ with the
aim to find a real-analytic symplectic transformation restoring the equilibrium in the origin.
An application of the standard implicit function theorem yields the following result.

LEMMA 5. Let M2 := Td
(σ/7) × Dd(I0, s/4)× D2p(0, r1/4); then, provided ε is

sufficiently small, there exists a (close to the identity) real-analytic symplectic
transformation

82
ε : (x, y, p, q) ∈M2 −→ (ϕ̃, Ĩ , ũ, ṽ) ∈M1

such that H2
ε := H1

ε ◦8
2
ε is of the form

H2
ε (x, y, p, q)= h(y)+ ε ĝ(y, p, q)+ εν1 f̂ (x, y, p, q)

with ∂p ĝ(y, 0, 0)= 0= ∂q ĝ(y, 0, 0), ĝ and f̂ real-analytic on M2.

Since � j 6= 0 for every j in view of (22), we can apply the implicit function
theorem to obtain, for small enough ε, the existence of two functions u0 = u0( Ĩ , ε)
and v0 = v0( Ĩ , ε) which are real-analytic for Ĩ ∈ Dd(I0, s/4) and such that ∇ũ,ṽ

( f0 + ε ḡ)( Ĩ , u0, v0)= 0. Furthermore, using (23) together with g̃ = ε2ḡ and (21), one

has u0, v0 = O(ε(log ε−1)
2τ0+1

). The symplectic transformation in Lemma 5 is then
generated by x · ϕ̃ + (p + u0(x, ε)) · (ṽ − v0(x, ε)).

Now, we need to control the frequencies associated to the modified Hamiltonian
ĝ(y, 0, 0).

LEMMA 6. If ε is small enough then the eigenvalues of the Hamiltonian ĝ, that is,
the eigenvalues of† J2p∂

2
(p,q)ĝ(y, 0, 0), are given by 2p purely imaginary functions

±i�̂1, . . . ,±i�̂p verifying

sup
y∈Dd (I0,s/4)

|�̂(y)−�(y)| = O(ε(log ε−1)
2τ0+1

) (25)

for τ0 as in (21).

Proof of Lemma 6. Consider the quadratic part of ĝ, that is the real-analytic 2p × 2p
symmetric matrix Â(y) := ∂2

(p,q)ĝ(y, 0, 0). Using the construction of 82
ε in Lemma 5,

ĝ = ( f0 + ε ḡ) ◦82
ε , estimate (23) together with g̃ = ε2ḡ and the definition of s and α1 in

(21), equation (24) for f0 and Cauchy’s estimate for derivatives of analytic functions, one
has

Â(y)= diag(�1(y), . . . , �p(y), �1(y), . . . , �p(y))+ O(ε(log ε−1)
2τ0+1

).

Since � j 6=�k , for j 6= k, an application of the implicit function theorem (cf. (22))
tells us that the eigenvalues of ĝ (that a priori might have non-zero real part) are

O(ε(log ε−1)
2τ0+1

) close to±i� j . Now, as it is well known, eigenvalues of Hamiltonians
always appear in quadruplets ±λ,±λ̄; thus, from the simplicity of the eigenvalues of
ĝ (holding for ε small enough), one has that its eigenvalues are purely imaginary as
claimed. 2

† Here J2p denotes the standard 2p × 2p symplectic matrix.
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By normal form theory (see [2, Corollary 8.7]) we can find a real-analytic symplectic
transformation O(ε)-close to the identity

83
ε : (x̃, ỹ, p̃, q̃) ∈M3 := Td

σ/8 × Dd
(

I0,
s

5

)
× D2p

(
0,

r1

5

)
−→ (x, y, p, q) ∈M2

with ỹ = y and such that the transformed Hamiltonian function H3
ε := H2

ε ◦8
3
ε , which is

real-analytic on M3, has the form

H3
ε (x̃, ỹ, p̃, q̃) = h(ỹ)+ ε ĝ0(ỹ)+

ε

2

p∑
j=1

�̂ j (ỹ)( p̃
2
j + q̃2

j )

+ ε g̃3(ỹ, p̃, q̃)+ εν1 f̃3(x̃, ỹ, p̃, q̃)

where ĝ0 := ĝ(ỹ, 0, 0), f̃3 := f̄ ◦83
ε and g̃3 := ĝ3 ◦8

3
ε verifies

sup
ỹ∈Dd (I0,s/5)

|g̃3(ỹ, p̃, q̃)| ≤ C |( p̃, q̃)|3 for all ( p̃, q̃) ∈ D2p(0, r1/5).

Now let

g̃2(ỹ, p̃, q̃) :=
1
2

p∑
i=1

�̂i ( p̃
2
i + q̃2

i ),

we want to put g̃2 + ε g̃3 into Birkhoff’s normal form up to order ν2. In view of inequalities
(22) and (25), provided that ε is small enough, we have

|�̂(ỹ) · k| ≥
α2

2
for all k ∈ Zp, 0< |k|1 ≤ ν2 for all ỹ ∈ Dd(I0, s/5). (26)

By Birkhoff’s normal form theory†, one easily obtains the following.

LEMMA 7. If inequality (26) is satisfied, then there exist 0< r? < r ′1 ≤ r1/5 and a real-
analytic symplectic diffeomorphism 84

ε : (θ, r, u, v)→ (x̃, ỹ, p̃, q̃) mapping

M4 := Td
σ/8 × Dd

(
I0,

s

5

)
× D2p(0, r?)

84
ε
→M′

3 := Td
σ/8 × Dd

(
I0,

s

5

)
× D2p(0, r ′1)

leaving the origin and the quadratic part of H3
ε invariant, such that (θ, r)= (x̃, ỹ) and

H4
ε := H3

ε ◦8
4
ε is of the form

H4
ε (θ, r, u, v) = h(r)+ ε ĝ0(r)+

ε

2

p∑
j=1

�̂ j (r)(u
2
j + v

2
j )

+ ε Q?(r, u, v)+ εR?(r, u, v)+ εν1 f̃4(θ, r, u, v)

where:
• Q? is a polynomial of degree [ν2/2] in the variables I = (I1, . . . , Ip) having the

form

〈�̂(r), I 〉 + 1
2 〈T (r)I, I 〉 + · · · with I j :=

1
2 (u

2
j + v

2
j )

with T (r) a 2p × 2p real-analytic matrix;

† See, e g., [12, Theorem 11, p. 43] or [15, §3.4] for a quantitative version.
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• R? is a real-analytic function verifying |R?(r, u, v)| ≤ C |(u, v)|ν2+1 for every
(u, v) ∈ D2p(0, r?) and r ∈ Dd(I0, s/5);

• f̃4 := f̃3 ◦8
4
ε is real-analytic on M4.

We may conclude the proof of Proposition 1. Following [9, pp. 1561–1562], we pass
to symplectic polar coordinates in order to move R? to the perturbation of H4

ε with the
help of a rescaling by a factor ε. Let ρ0

= (ρ0
1 , . . . , ρ

0
p) in (R+)p be sufficiently close

to the origin; consider, for a suitable σ? > 0, the real-analytic symplectic transformation
85
ε : (θ, r, ζ, ρ)→ (θ, I0 + r, z) mapping

M5 := Td
σ/8 × Dd

(
0,

s

5

)
× Tp

σ?
× D p

(
0,
|ρ0
|

2

)
85
ε
−→M4,

where
z j = u j + iv j :=

√
2(ρ0

j + ρ j )e
−iζ j . (27)

The transformed Hamiltonian function H5
ε := H4

ε ◦8
5
ε , real-analytic on M5, assumes the

form

H5
ε (θ, r, ζ, ρ) = h(I0 + r)+ ε ĝ0(I0 + r)+

ε

2

p∑
j=1

�̂ j (I0 + r)(ρ0
j + ρ

0
j )

+ εQ I0+r (ρ
0
+ ρ)+ εR(I0 + r, ζ, ρ0

+ ρ)+ εν1 f̃5(θ, r, ζ, ρ; ρ0)

where:
• Q I0+r := Q? ◦8

5
ε is a polynomial of degree [ν2/2] with respect to ρ0

+ ρ,
depending also on I0 + r ;

• R := R? ◦85
ε verifies

|R(I0 + r, ζ, ρ0
+ ρ)| ≤ C |ρ0

|
(ν2+1)/2

for every ρ ∈ D2p(0, |ρ0
|/2), r ∈ Dd(0, s/5) and ζ ∈ Tp

σ? ;
• f̃5 := f̃4 ◦8

5
ε is real-analytic on M5.

Now, let Aε be the homothety given by

Aε : (θ, r, ζ, ρ)−→ (θ, εr, ζ, ερ).

Even though Aε is not a symplectic map it preserves the structure of Hamilton’s equations
if we consider the Hamiltonian function H6

ε := (1/ε)H
5
ε ◦ Aε . Explicitly, we have

H6
ε (θ, r, ζ, ρ) =

1
ε

h(I0 + εr)+ ĝ0(I0 + εr)+
1
2
�̂(I0 + εr) · (ρ

0
+ ερ)

+ Qε,I0+εr (ρ
0
+ ερ)+ R(I0 + εr, ερ, ζ ; ρ

0)

+ εν1−1 f̃6(θ, r, ζ, ρ; ρ0) (28)

where f̃6 := f̃5 ◦ Aε . Now we fix ρ0
∈ (R+)p with |ρ0

| = 2ε so that |R| ≤ Cε(ν2+1)/2.
Thus, if we choose ν1 and ν2 so that

ν1 − 1=
[
ν2 + 1

2

]
:= ν (29)
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we may write

R(I0 + εr, ερ, ζ ; ρ
0)+ εν1−1 f̃6(θ, r, ζ, ρ)=: εν Pε(θ, r, ζ, ρ) (30)

for a suitable function Pε real-analytic on Td
σ/8 × Dd(0, s/5)× Tp

σ? × D p(0, ε).

We have proved Proposition 1 with Ĥε = H6
ε as in (28), (30). 2

2.3.2. Step 2: Amounts of non-degeneracy of the normal form.

PROPOSITION 2. Let Nε be as in (17). If ε is small enough, the frequency map

9̂ε : (r, ρ) ∈ Bd(0, s/5)× B p(0, ε)−→
(
∂

∂r
Nε,

∂

∂ρ
Nε

)
is R-non-degenerate.

Moreover, let µ̄ and β̄ denote respectively the index and the amount of non-degeneracy
of the unperturbed frequency map (10) with respect to a closed ball B̄d(I0, t)⊂ B, for
some t > 0 independent of ε. Then, if we define Kε := B̄d(0, s/10)× B̄ p(0, ε/2) and let
µ̂ε denote the index of non-degeneracy of 9̂ε with respect to Kε and

β̂ε := min
c∈S d+p−1

min
(r,ρ)∈Kε

max
0≤µ≤µ̄

|∂
µ

(r,ρ)|〈c, 9̂ε〉|
2
|,

one has

µ̂ε ≤ µ̄ and β̂ε ≥
εµ̄+2β̄

8
. (31)

Proof of Proposition 2. From (17), it follows that the frequency map of Nε is given by

9̂ε(r, ρ)=

(
ω(I0 + εr)+ O(ε),

ε

2
�̂(I0 + εr)+ O(ε2)

)
and it is real-analytic on Dd(0, s/5)× D p(0, ε). Using (25) one has

9̂ε(r, ρ)=

(
ω(I0 + εr)+ O(ε),

ε

2
(�(I0 + εr)+ O(ε))

)
. (32)

Now, let µ̄ ∈ N+ and β̄ > 0 denote respectively the index and the amount of non-
degeneracy of 9 := (ω, �) with respect to B̄d(I0, t), for some positive t independent of
ε. Set

90(r) := (ω(I0 + εr), �(I0 + εr)), (33)

K0 := B̄d(0, s/10) and use definition 2 to obtain

min
r∈K0

max
0≤µ≤µ̄

|∂µr |〈c, 90(r)〉|
2
| ≥ εµ̄β̄ > 0

for every c ∈ S d+p−1.
Next, denote by 9ε the real-analytic function over Dd(0, s/5)× D p(0, ε) obtained by

multiplying the last p component of 9̂ε by a factor 2/ε. Then, observe that (32) and (33)
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imply 9ε(r, ρ)=90(r)+ O(ε). Therefore, denoting K1 := B̄ p(0, ε/2) and assuming ε
small enough, one has

βε := min
(r,ρ)∈K0×K1

max
0≤µ≤µ̄

|∂
µ

(r,ρ)|〈c, 9ε(r, ρ)〉|
2
| ≥

εµ̄β̄

2
> 0

for every c ∈ S d+p−1.
Now write 9ε = (9

(1)
ε , 9(2)) ∈ Rd

× Rp, so that

9̂ε =

(
9(1)ε ,

ε

2
9(2)ε

)
.

Define for c = (c1, c2) ∈ Rd
× Rp with |c| = 1 the function

f (r, ρ, c1, c2) := max
0≤µ≤µ̄

|∂
µ

(r,ρ)|〈c, 9ε〉|
2
|

= max
0≤µ≤µ̄

|∂
µ

(r,ρ)|〈c1, 9
(1)
ε 〉 + 〈c2, 9

(2)
ε 〉|

2
|;

furthermore set

tε :=

√
|c1|

2
+
ε2

4
|c2|

2

and c̄1 = c1t−1
ε , c̄2 = εc2(2tε)−1 so that |(c̄1, c̄2)| = 1. Then one has

max
0≤µ≤µ̄

|∂
µ

(r,ρ)|〈c, 9̂ε〉|
2
| = f

(
r, ρ, c1,

ε

2
c2

)
= t2

ε f

(
r, ρ,

c1

tε
,
ε

2
c2

tε

)
≥
ε2

4
f (r, ρ, c̄1, c̄1)≥

εµ̄+2β̄

8
> 0

and it follows immediately that

min
(r,ρ)∈K0×K1

max
0≤µ≤µ̄

|∂
µ

(r,ρ)|〈c, 9̂ε〉|
2
| ≥

εµ̄+2β̄

8
> 0

for every c ∈ S d+p−1. Since K0 ×K1 = B̄d(0, s/10)× B̄ p(0, ε/2)=Kε we have
verified (31). In view of Remark 2 we also conclude that 9̂ε is R-non-degenerate on
Bd(0, s/5)× B p(0, ε), provided that ε is small enough.

Proposition 2 is thus proved. 2

2.3.3. Conclusion of the proof of Theorem 4. We want to apply Rüßmann’s Theorem 3
to the properly degenerate case of Ĥε in (16). With Propositions 1 and 2 we are in a position
to meet the hypothesis of R-non-degeneracy of the frequency application required in
Theorem 3. However, the ‘degenerate’ case of Ĥε requires that the size of its perturbation
is of a sufficiently small order in ε. From (16) we see that the size of the perturbation of Ĥε
is of the order of εν where ν can be chosen to be arbitrarily large† but independent of ε.

Next we provide an explicit expression for the admissible size of the perturbation in
Rüßmann’s theorem, that is, ε0 in (4).

† Recall (29) and the fact that both ν1 and ν2 can be arbitrarily fixed at the beginning of the process described in
§2.3.1.
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LEMMA 8. (Rüßmann [18]) Let H, Y , ε?, A and τ be as in Theorem 3 and let ω := ∇h be
R-non-degenerate (as in the hypotheses of Theorem 3). Consider the following quantities.
(1) Let K ⊂ Y be any chosen compact set; let µ be any integer greater than the index of

non-degeneracy of ω with respect to K and let β be the ‘amount of non-degeneracy’
corresponding to µ.

(2) Let ϑ ∈ (0, 1) be chosen such that† Td
ϑ × (K + 4ϑ)⊂A and define C1 := |ω|K+3ϑ .

Let d0 be the diameter of K, i.e. d0 := supx,y∈K |x − y|.
(3) Let T0 ≥ e(n+1)/τ such that the following inequality holds∫

∞

T0

log T

T 2 dT ≤ ϑ. (34)

(4) Define

C?
:= 2µ+1 (µ+ 1)µ+2

ϑµ+1 (C1 + 1) (35)

and set

γ := (dn
0 C?)−µ/2β(µ+1)/2ε?

µ/2
, (36)

t0 :=
γ T−(τ+n+1)

0 ϑ

C1 + 1
. (37)

(5) Finally set

E1 := γ T−(τ+n+1)
0 ϑ,

E2 :=
βtµ0

T0C?
. (38)

Then ε0 in (4) can be taken to be

ε0 := c0
ϑ

C1
(min{E1, E2})

2 (39)

for a suitable c0 = c0(n, µ).

Remark 5. The above result follows from [18] by considering the case of maximal tori
only‡. More precisely, we have the following.
(i) The maximal case corresponds to the easier case p = q = 0 in [18]. Note, however,

that it is not sufficient to substitute the values p = q = 0 into Rüßmann’s estimates
(as, when p = 0 for instance, many terms in [18, p. 171] become meaningless) but,
rather, one has to go through most of [18, Theorem 18.5] to obtain the value of C?

and γ in (35) and (36) and through the first part of Lemma 13.4 in [18, pp. 158–161]
to obtain the value of t0 in (37);

(ii) (Control of small divisors) In [18, §1.4] Rüßmann introduces a so-called
‘approximation function’ 8 in order to control the small divisors. Our choice is
to take 8(T )= T−τ with τ > nµ. Comparing [18, §1.4], one sees that such 8 does

† Recall definition (11)
‡ Compare this, in particular, with the estimates listed in [18, p. 171]; see, also, [15, Ch. 2].
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not verify property 3, that is, T λ8(T )
T→∞
−→ 0 for any λ≥ 0. However, when we

consider H = Ĥε , we will see below that one has T0 = T0,ε = O(ε−2); then, in [18,
(14.10.10), (14.10.11) and (13.1.4)], this would cause O(εν) to be an inadmissible
size for a perturbation. Nevertheless we claim that the only decay property which is
actually needed in Rüßmann’s Theorem 3 is

lim
T→∞

T λ8(T )= 0 for all 0≤ λ < nµ

so that our choice is perfectly suitable.

Now we are going to analyze what happens to the estimate in Lemma 8 when we
consider Ĥε as a Hamiltonian function. In particular, we are going to show that each
of the quantities appearing in Lemma 8 can be controlled by constants involving initial
parameters related only to Hε in (7) and (8) times powers of ε.

We point out that in the application of Theorem 3 with H = Ĥε in (16) we have the
following correspondences†:

Tn
= Td

× Tp, x = (θ, ζ ),

Y = Yε := Bd(0, s/5)× B p(0, ε), y = (r, ρ),

A=Aε := Td
σ/8 × Tp

σ?
× Dd(0, s/5)× D p(0, ε),

P = εν Pε, N = Nε .

(40)

According to Lemma 8(1) we consider the frequency application of the integrable part
of Ĥε , that is, 9̂ε(r, ρ) as in Proposition 2. We have already proved that 9̂ε is R-non-
degenerate for (r, ρ) ∈ Bd(0, s/5)× B2p(0, ε). Now, in view of Lemma 8(1) and the
correspondences in (40) we need to fix a compact set K =Kε ⊂Aε . For convenience
we take Kε := B̄d(0, s/10)× B̄ p(0, ε/2) so that the first inequality in (31) allows us to
consider‡ µ= µ̄ as an integer greater than the actual index of non-degeneracy of 9̂ε with
respect to Kε . Also, in view of the second inequality in (31), we can take

β = βε :=
εµ̄+2β̄

8
(41)

in (36) and (38).
Next, we choose ϑ = ϑε := ε/16 so that, for ε sufficiently small and in view of (15),

one has Kε + 4ϑε ⊂Aε as required in Lemma 8(2). Accordingly to Theorem 3 we also
need to fix a positive number ε? <measd+p Kε . In view of our definition of Kε and (15) a
suitable choice is given by

ε? = ε p+1 (42)

for ε small enough.
Now, observe that the quantities C1 and d0 in Lemma 8(2) do not cause any change in

the order in ε of the size of the admissible perturbation. In fact, using (32) and taking ε

† See Theorem 3, Proposition 1, (11) and (21) for the notation.
‡ Recall Proposition 2 for the definition of µ̄.
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sufficiently small, we have

C1 = C1,ε := |9̂ε |Kε+3ϑε

≤ sup
r∈Dd (0,s/5)

|ω(I0 + εr)| + ε sup
r∈Dd (0,s/5)

|�(I0 + εr)| + O(ε)

≤ sup
r∈Dd (I0,s/5)

|ω(r)| + ε sup
r∈Dd (I0,s/5)

|�(r)| + O(ε)≤ M1

where M1 is defined in (14). Since the estimate for ε0 is decreasing with respect to C1,
we can substitute C1 in (35) and (37) with M1. The estimate for ε0 is also decreasing with
respect to d0 so that when we consider K =Kε , we may simply replace d0 by 1.

Let us now analyze the quantities in Lemma 8(3) and (4). First of all observe that in
view of (31) and n = d + p we can a priori fix an exponent τ ≥ (d + p)µ̄ satisfying the
requirement in Lemma 8(3). Furthermore, given the previous choice of ϑε , inequality (34)
becomes ∫

∞

T0

log T

T 2 dT ≤
ε

16
,

which can be easily fulfilled, together with T0 ≥ e(d+p+1)/τ , by choosing

T0 = T0,ε :=
1

ε2 (43)

for ε sufficiently small. For what concerns the quantities defined in Lemma 8(4) we see
that since ϑ = ϑε := ε/16 and the estimate for ε0 is decreasing in C?, we can choose

C?
= C?

ε := 25(µ̄+1)(µ̄+ 1)µ̄+2(M1 + 1)ε−(µ̄+1) (44)

having also used C1 = C1,ε ≤ M1. From the fact that we can replace d0 by 1 together with
(41), (42) and (44), we have

γ = γε := c1(M1 + 1)−µ̄/2ε(µ̄+1)2+((p+1)µ̄/2)β̄(µ̄+1)/2ε?
µ̄/2 (45)

for a suitable constant c1 < 1 depending only on µ̄. Moreover, given once again the
previous choice of ϑ = ϑε together with (43) and the above definition of γε , we can replace
t0 in (37) by

t0 = t0,ε = c1(M1 + 1)−µ̄/2ε(µ̄+1)2+((p+1)µ̄/2)+2(τ+d+p)+3 (46)

for c1 < 1 as above.
From (38) we see that E1 and E2 have simple polynomial dependence on the quantities

γ , T−1
0 , ϑ , β and t0. Our previous analysis shows that when we consider Ĥε as a

Hamiltonian function, these quantities can be replaced, respectively, by†

γε = O(ε(µ̄+1)2+((p+1)µ̄/2)), T−1
0,ε = O(ε2), ϑε = O(ε)

βε = O(εµ̄+2), t0,ε = O(ε(µ̄+1)2+((p+1)µ̄/2)+2(τ+d+p)+3).

† See (45), (43), (41), (46) and recall ϑ = ϑε := ε/16.
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Therefore, in view of (39) the size of the perturbation allowed by Rüßmann’s theorem
when we consider H = Ĥε , is of the order of εν0 with†

ν0 := 2µ̄3
+ (p + 5)µ̄2

+ [14+ 4(τ + d + p)]µ̄+ 13. (47)

In particular, we have a condition of the form ε0 ≤ c̄εν0 where c̄ is some positive constant
independent of ε and depending only on quantities related to the initial Hamiltonian Hε ,
namely µ̄, β̄ and K̄ as in Proposition 2, the Diophantine constant τ ≥ (d + p)µ̄ and M1 as
in (14) with r0 as in (12). By Proposition 1 we know that we can assume that the size of the
perturbation of Ĥε is of the order of εν for any fixed integer ν ≥ 4 independent of ε. Thus,
by simply taking‡ ν > ν0, we can apply Rüßmann’s theorem to Ĥε and obtain Theorem 4
as a consequence. 2

3. Proof of Theorem 2
As follows from the analysis described in [9, §6, pp. 1563–1569], the motions of (n + 1)
bodies (point masses) interacting only through gravitational attraction, restricted to the
invariant symplectic submanifold of vanishing total linear momentum, are governed by the
real-analytic Hamiltonian

F = H0(3)+ ε(H1(3, ξ, η, q, p)+ H2(λ, 3, ξ, η, q, p)) (48)

where:
(i) (λ, 3, ξ, η, q, p) ∈ Tn

× (0,∞)n × Rn
× Rn

× Rn
× Rn are standard symplectic

coordinates;
(ii) 3 j = µ j

√
M j a j , where a j > 0 are the semi major-axis of the ‘instantaneous’

Keplerian ellipse formed by the ‘Sun’ (major body) and the j th ‘planet’, while

1
εµ j
=

1
m0
+

1
εm j

, M j := m0 + εm j ,

with m0 and εm j the mass of the Sun and the mass of the j th planet, respectively;
(iii) the phase space M is the open subset of Tn

× (0,∞)n × Rn
× Rn

× Rn
× Rn

subject to the collisionless constraint

0< an < an−1 < · · ·< a1

and endowed with the standard symplectic form

n∑
j=1

dλ j ∧ d3 j + dξ j ∧ dη j + dq j ∧ dp j ;

(iv) H0
:= FKep is the Keplerian integrable limit given by

H0
:= FKep :=

n∑
j=1

−
µ3

j M2
j

232
j

,

describing n decoupled two-body systems formed by the Sun and the j th planet;

† Using (47) we are able to define the values of ν1 in (19) and (20) and ν2 in (22) through (29).
‡ Note that this can be done since ν0 only depends on d , p, τ and µ̄.
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(v) the ‘secular’ Hamiltonian H1 has the form†

H1
= C0 +

n∑
j=1

σ j
ξ2

j + η
2
j

2
+

n∑
j=1

ς j
q2

j + p2
j

2
+ O(4), (49)

where C0, σ j and ς j depend on 3; ‘O(4)’ denotes terms of order greater than or
equal to four in (ξ, η, q, p) (and depending on 3);

(vi) H2 has vanishing average over λ ∈ Tn ; H i also depend (in a regular and non-
influential way) on ε.

Remark 6. The variables (λ, 3, ξ, η, q, p) are obtained from standard Poincaré variables
after a rotation in (ξ, η, q, p) needed to diagonalize the quadratic part of the secular
Hamiltonian; the ‘eigenvalues’ σ j and ς j are the first Birkhoff invariants of the secular
Hamiltonian; cf. [9, pp. 1568–1569].

The frequency map of the planetary Hamiltonian F is given by

{ν1, . . . , νn, σ1, . . . , σn, ς1, . . . , ςn}

where the ν j are the Keplerian frequencies

ν j :=
∂FKep

∂3 j
=

√
M j

a3/2
j

=
µ3

j M2
j

33
j

. (50)

It is customary to consider the frequency map as a function of the semi-major axes a (rather
than of the actions 3); we therefore call ‘planetary frequency map’ the application‡

α : a ∈A 7−→ {ν1, . . . , νn, σ1, . . . , σn, ς1, . . . , ςn} ∈ R3n (51)

where

A := {(a1, a2, . . . , an) ∈ Rn
| 0< an < an−1 < · · ·< a1}.

Clearly, the idea is to apply Theorem 4 to the real-analytic Hamiltonian F in (48) with
d = n and p = 2n: (ϕ, I ) corresponding to (λ, 3) here and u corresponding to (ξ, q) and
v to (η, p). However, it turns out that the main hypothesis of Theorem 4 does not hold,
namely, the planetary frequency map α is R-degenerate: in fact (up to rearranging the
(q, p)-variables) one has 

ςn = 0,
n∑

j=1

(σ j + ς j )= 0. (52)

The first relation is related to the rotation invariance of the system; the second relation
seems to have been noticed (at least in this generality) for the first time by Herman and is
therefore normally referred to as the ‘Herman resonance’.

The two resonances in (52) are, however, the only linear relations satisfied identically;
in fact, the following result was proved in [9, Proposition 78, p. 1575].

† There is a difference of a factor 1
2 with the notation used in [9]. The computations are performed in [13].

‡ Obviously, the property of being R-non-degenerate can be equivalently discussed in terms of the 3 or in terms
of the a.
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PROPOSITION 3. For all n ≥ 2 there exists an open and dense set with full Lebesgue
measure U ⊂A, where α j 6= αi whenever j 6= i and the following property holds: for
any open and simply connected set V ⊂U, the α j define 3n holomorphic functions and if

α · (c1, c2, c3)= ν · c1
+ σ · c2

+ ς · c3
≡ 0

for some ci
∈ Rn , then{

either c1
= 0, c2

= 0, c3
= (0, . . . , 0, 1),

or c1
= 0, c2

= (1, . . . , 1)= c3.
(53)

In order to remove the secular resonances (52), we consider the following ‘extended
Hamiltonian’ on

M̃ :=M× T× R

adding a pair of conjugate symplectic variables† (θρ, ρ) ∈ T× R:

F̃ := F +
ρ2

2
+ ερ2Cz with Cz :=

n∑
j=1

(
3 j −

1
2
(ξ2

j + η
2
j + q2

j + p2
j )

)
. (54)

Let us make a few comments.
(vii) Here Cz is the vertical component of the total angular momentum in Poincaré

variables (cf. [14] and also [9, formula (44)]); the form of Cz is unchanged in the
above variables (ξ, η, q, p), which are obtained from the Poincaré variables by an
orthogonal transformation.

(viii) Since Cz is an integral for F (i.e. Poisson commutes with F), F and F̃ Poisson
commute:

{F, F̃}˜= {F, F̃} = 0,

where {·, ·}˜ and {·, ·} denote, respectively, the Poisson bracket on M̃ and on M;
clearly, since F̃ does not depend explicitly on the angle θρ , ρ is an integral for F̃
(and for F).
This fact will be important later since from Lagrangian intersection theory it follows
that two commuting Hamiltonians have, in general, the same Lagrangian tori (see
item (x) below for the precise statement).

(ix) The extended Hamiltonian F̃ may be rewritten as

F̃ = H̃0
+ ε(H̃1

+ H2)

with

H̃0
:= FKep(3)+

ρ2

2
,

H̃1
:= C0(3)+ ρ

2
n∑

j=1

3 j

+

n∑
j=1

(σ j − ρ
2)
ξ2

j + η
2
j

2
+

n∑
j=1

(ς j − ρ
2)

p2
j + q2

j

2
+ O(4).

† That is, M̃ is endowed with the symplectic form
∑n

j=1(dλ j ∧ d3 j + dξ j ∧ dη j + dq j ∧ dp j )+ dθρ ∧ dρ.
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Thus, the ‘slow’ action variables‡ are I = (ρ, 31, . . . , 3n) and the (extended)
planetary frequency map is given by

α̃ : (ρ, a) ∈A× R 7−→ α̃(ρ, a) := ((ρ, ν), σ̃ , ς̃ ) ∈ Rn+1
× Rn

× Rn

with

σ̃ j := σ j − ρ
2, ς̃ j := ς j − ρ

2.

Proposition 3, implies immediately that α̃ is R-non-degenerate: suppose, in fact, that

α̃ · ((c, c1), c2, c3)= ρ c + ν · c1
+ σ̃ · c2

+ ς̃ · c3
≡ 0

for some c ∈ R and ci
∈ Rn ; such an expression is a second-order polynomial in ρ

and in order to vanish identically have to vanish its coefficients, that is,

ν · c1
+ σ · c2

+ ς · c3
= 0, (55)

c = 0,

−

n∑
j=1

c2
j + c3

j = 0. (56)

However, then, by Proposition 3 (and because of (55)), one must have one of the
alternatives listed in (53), which are incompatible with (56).
Thus, α̃ is R-non-degenerate as claimed and Theorem 4 can be applied to the
extended Hamiltonian† F̃ , yielding, for ε small enough, a positive measure set
of real-analytic (3n + 1)-dimensional Lagrangian tori in M̃ invariant for F̃ and
carrying quasi-periodic motion with Diophantine frequencies.
The fact that F̃ is independent of θρ and that ω∗ := ∂ρ F̃ = (ρ + 4ερCz) is constant
along F̃-trajectories (cf. point (viii) above) implies immediately that the tori T ⊂ M̃
obtained through Theorem 4 have the following parametrization

T := {(Z(ψ, θρ), θρ, ρ) | (ψ, θρ) ∈ T3n
× T}, (57)

where Z ∈M and with F̃-flow given by

φt
F̃
(Z(ψ, θρ), θρ, ρ)= (Z(ψ + ωt, θρ + ω∗t), θρ + ω∗t, ρ),

for a suitable vector ω ∈ R3n , so that (ω, ω∗) forms a Diophantine vector in R3n+1.
(x) In [9, Lemma 82, p. 1578] the following statement is proved:

if F and G are two commuting Hamiltonians and if T is a Lagrangian
torus invariant for F and with a dense F-orbit, then it is also G-invariant.

Thus, since F̃ and F (viewed as a functions on M̃) commute, the tori obtained in
(ix) (on which any F̃-orbit is dense) are also invariant for the flow on M̃ generated
by F . Furthermore, the F-flow in M̃ leaves both θρ and ρ fixed so that, for any fixed
θρ ∈ T, the 3n-dimensional torus

Tθρ := {(Z(ψ, θρ), θρ, ρ) | ψ ∈ T3n
}

is invariant for F . However, this means that such tori are invariant also for the F-flow
in M, finishing the proof of Theorem 2. 2

‡ Corresponding in Theorem 4 to I = (I1, . . . , Id ), d = n + 1; cf. also the following footnote.
† The correspondence with the notation of Theorem 4 being d = n + 1, p = 2n, Hε = F̃ , f = H̃1

+ H2,
I = (3, ρ), (u, v)= ((ξ, q), (η, p)), h(I )= H0, f00 = C0 + ρ

2 ∑n
j=1 3 j , ω = (ν, ρ), �= (σ̃ , ς̃).
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Remark 7. The strategy followed here is similar to that followed in [9] with a few
differences: first, in [9], ρ is treated as a dumb parameter and no extended phase space
is introduced (but an extra argument is then needed to discuss the non-degeneracy of the
frequency map with respect to parameters and to discuss the measure of the tori obtained);
secondly, in [9], there is a restriction to a fixed vertical angular momentum submanifold,
which is not needed here.
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