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PARAMETER UNCERTAINTY
IN EXPONENTIAL FAMILY TAIL ESTIMATION
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Z. LANDSMAN AND A. TSANAKAS

ABSTRACT

Actuaries are often faced with the task of estimating tails of loss distributions 
from just a few observations. Thus estimates of tail probabilities (reinsurance 
prices) and percentiles (solvency capital requirements) are typically subject to 
substantial parameter uncertainty. We study the bias and MSE of estimators 
of  tail probabilities and percentiles, with focus on 1-parameter exponential 
families. Using asymptotic arguments it is shown that tail estimates are subject to 
signifi cant positive bias. Moreover, the use of bootstrap predictive distributions, 
which has been proposed in the actuarial literature as a way of addressing 
parameter uncertainty, is seen to double the estimation bias. A bias corrected 
estimator is thus proposed. It is then shown that the MSE of the MLE, the 
parametric bootstrap and the bias corrected estimators only differ in terms of 
order O(n–2), which provides decision-makers with some fl exibility as to which 
estimator to use. The accuracy of asymptotic methods, even for small samples, 
is demonstrated exactly for the exponential and related distributions, while 
other 1-parameter distributions are considered in a simulation study. We argue 
that the presence of positive bias may be desirable in solvency capital calcula-
tions, though not necessarily in pricing problems.
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1. INTRODUCTION

Actuaries and other insurance risk modellers are often preoccupied by the 
potential of a portfolio to produce high losses. Hence the tails of loss distribu-
tions are of  particular interest, for example, in the context of  pricing high 
reinsurance layers or calculating solvency capital requirements.

Severe limitations in the size of available data sets mean that often tails of 
distributions are estimated from just a few hundreds or even tens of relevant data 
points. The result is a substantial potential for parameter error in tail estimates. 

95371_Astin42-1_06_Landsman.indd   12395371_Astin42-1_06_Landsman.indd   123 5/06/12   13:525/06/12   13:52

https://doi.org/10.2143/AST.42.1.2160738 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.1.2160738


124 Z. LANDSMAN AND A. TSANAKAS

It is thus no surprise that parameter uncertainty has been a recurring theme 
in the actuarial community, both in academic and practitioner circles; see for 
example Cairns (2000), Mata (2000), Cummins and Lewis (2003), Powers et al 
(2003), Verrall and England (2006), Borowicz and Norman (2009), Richards 
(2009), Saltzmann and Wüthrich (2010), Gerrard and Tsanakas (2010).

The literature is fairly consistent in proposing that parameter uncertainty 
be refl ected in risk calculations by the use of a predictive distribution, that is, 
a mixture of the loss distribution by a density of estimated parameters. This 
density of parameters may be obtained by a Bayesian posterior, leading to a 
Bayesian predictive distribution, or a bootstrap estimate of the sampling dis-
tribution, yielding a bootstrap predictive distribution. The rationale behind 
this approach is that predictive distributions tend to be more volatile than, say, 
Maximum Likelihood Estimators (MLE), and thus produce more conservative 
risk estimates. Thus, an implicit risk load for parameter uncertainty is produced.

Nonetheless, the performance of tail estimation procedures based on pre-
dictive distributions is usually not considered in relation to standard frequen-
tist criteria such as the bias and Mean-Squared-Error (MSE). This is an issue 
worth considering; it has been shown by Smith (1998) that the simple MLE 
estimates of extreme tails often outperform estimates based on Bayesian pre-
diction, when viewed though such a lense.

In Section 2 of the present contribution, we start our discussion with simple 
analytically tractable examples. We show that the MLE of single parameter 
exponential/Pareto tail probabilities is subject to signifi cant positive bias,
with the bias increasing as one moves further out into the tail. The same holds 
when considering the MLE of Pareto percentiles. This indicates that the simple 
MLE of tail functionals, before any predictive distribution is derived, is already 
in a sense conservative.

In order to generalise these arguments, in Section 3 asymptotic approxima-
tions are developed that allow the accurate calculation of the expected value 
of functions of sample means. Approximations are of “delta-type” and follow 
from a Taylor expansion around the sample mean and characterisation of the 
remainder term by combining Edgeworth and Laplace integral asymptotics.

Using these approximations, it is shown in Section 4 that the MLEs of 
extreme tail probabilities and percentiles in single-parameter exponential fami-
lies will tend to be positively biased, thus generalising the insights of Section 2.

In Section 5 we turn our attention to the use of bootstrapping in tail esti-
mation. It is shown that the parametric bootstrap estimator of tail probabili-
ties and percentiles is indeed more conservative than the MLE. However, the 
price one pays for such conservativism is a bias that is double that of  the 
MLE. Consequently, we propose an alternative estimator, which corrects the 
O (1/ n) term of the bias; this correction could be seen as an alternative use of 
the parametric bootstrap. We then show that the MSE of the three estimators 
considered differs only in terms of O (1/ n2). Consequently we argue that bias 
correction is possible without a signifi cant penalty in MSE. In a numerical 
example involving exponential tail functions, we show that the bias corrected 
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estimator actually has a lower MSE than the others when considering the 
extreme tail.

In Section 6 we summarise our conclusions and further discuss the results 
obtained in the paper. In particular, we argue that the desirability of  the 
 estimation bias (and hence the choice of  estimator) may depend on the appli-
cation at hand, where positively biased estimators may be quite meaningful in 
the context of solvency capital calculation, but not necessarily in reinsurance 
pricing.

Throughout the paper, the performance of asymptotic approximations and 
estimators is demonstrated with reference to the exponential distribution, for 
which all quantities considered (e.g. bias and MSE of different tail-function 
estimators) can be analytically calculated. These calculations are documented 
in Appendix A. The stated results for the exponential distribution hold identi-
cally for distributions of  random variables that can be written as increasing 
transforms of exponential variables. Thus, the cases of distributions such as 
the one-parameter Pareto (the large loss model most widely used in practice) 
and Weibull distributions are also implicitly dealt with. To establish further 
the applicability of our results, a simulation study is presented in Appendix B, 
considering one-parameter versions of  the (log-)Normal, (log-)Gamma and 
Inverse Gaussian distributions.

2. BIAS IN TAIL ESTIMATION: TWO EXAMPLES

Consider an i.i.d. sample of losses (e.g. insurance claims) X  =  (X1,  …,  Xn) with 
density f (·; q), where q  ! Q  3 � is an unknown parameter to be estimated 
from X. Denote by q the MLE of q based on X. Henceforth we will assume 
that f (·; q) is positive on �+ and that the corresponding distribution function 
F (·; q) is invertible.

Usually, rather than the parameter itself, a function of the parameter is of 
interest. For example, in (re)insurance pricing the tail probability F(x; q)  =
1  –  F (x; q) is of importance, since its integral over the interval (d, d  +  l) gives 
the expected value of reinsurance layer of l in excess of d, E [min((X  –  d)+, l )]  =

( ; )x 0d l+ dxF .d
#  Alternatively, in a solvency framework one is often interested 

in estimating the percentile F  – 1(p; q). If a portfolio faces a future loss Y  +  f (·; q), 
then c  =  F  – 1(p; q) corresponds to the level of capital that needs to be held in 
order to achieve a portfolio default probability of p (where default is narrowly 
defi ned as the event {Y  >  c}).

It hence becomes necessary for an insurer to estimate the extreme tail of 
the loss distribution, in order to be able to price a high layer or limit the 
default probability to an acceptable level. However in practice data sets, e.g. 
of insurance claims, can be very small, which leads to possibly large estimation 
errors. A substantial component of that error may be estimation bias. In the 
following two examples, we show that the two quantities of interest, the tail 
probability and the percentile, can be subject to signifi cant positive bias.
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In fi gure 1, we plot the relative estimation bias F(y; q ) / F(y; q)  –  1 against 
values of the true tail probability F(y; q), for sample sizes n  =  10,  20,  50. It can 
be seen that there is a substantial positive bias, particularly for low exceedance 
probabilities (high thresholds) and small sample sizes. Given that it is not uncommon 
to just have a few tens of samples from which to price a high layer, a relative bias 
of 28% for n  =  20, F(y; q)  =  0.01 is striking.

FIGURE 1: Relative bias of tail function estimate E [F(y; q)]  /  F(y; q)  –  1 against true tail probability F(y; q) 
(inverted scale) for the exponential / Pareto model; sample sizes n  =  10,  20,  50.

Example 1 (Exponential/Pareto tail function). Consider the case were we are 
interested in estimating the probability that an exponentially distributed random 
variable with mean q exceeds threshold y  >  0, that is, we seeking to estimate 
F(y; q)  =  e – y/q. Then the MLE of q is q  =  j 1= jXn

1 n/  and the MLE of F(y; q) is 
F(y; q ).

q is unbiased, but F(y; q ) is not. In fact the bias of F(y; q ) can be explicitly 
calculated. Since q  + Gam(n, n / q), we have
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where Kn is a modifi ed Bessel function of the second kind (Gradshteyn and Ryzhik, 
2007; eq. 3.471/8).

We note that in reinsurance pricing a more common loss model is based on 
the simple Pareto tail function (b/y)a, y  >  b. If a random variable Y follows an 
exponential distribution with mean q, then Y  =  beY follows a Pareto distribution 
with parameters a  =  1/q, b. Therefore for a Pareto distribution, the equation (1) 
will also hold, after substituting log(y/b) for y.
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FIGURE 2: Relative bias of Pareto percentile estimate against confi dence level p;
a  =  2.5, p  !  [0.5, 0.995], n  =  10,  20,  50.

FIGURE 3: Relative bias of Pareto percentile estimate against sample size n;
p  =  0.995, a  =  2.5, 5, 10.

Example 2 (Pareto percentiles). Consider now the case that the distribution is a 
single-parameter Pareto with tail function F(x; q)  =  (x/b) – 1/q, x  >  b (where b is 
known) and that we are interested in estimating the percentile F  – 1(p; q)  =  b(1  –  p)  –  q, 
where p is close to 1, e.g. p  =  0.995, as required by insurance regulation under 
the impending Solvency II regime. The MLE of q is q  =  j /j( )log X bn

1 / , which 
again follows a Gam(n, n / q) distribution. Now the expected value of the percen-
tile’s MLE is:

 ( q p- .p)-logq; ( )logE F p bE b n1 1q= = + -(11- ) e
n-

8 7 ;B A E  (2)

In fi gures 2 and 3, the relative estimation bias for F  – 1(p; q ) is plotted, against 
the confi dence level and the sample size respectively, for different values of the 
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128 Z. LANDSMAN AND A. TSANAKAS

parameter a  =  1/q. It can be seen that the bias increases dramatically for high 
confi dence levels p, small samples sizes n, and low values of a corresponding to 
heavier tails.

Besides the issue of bias, for both examples discussed above, small data sizes 
will imply very substantial estimation errors; this is further discussed in section 5.3.

3. ASYMPTOTIC APPROXIMATIONS

The analytically tractable examples of section 2 show that tail estimates may 
be very biased. In order to be able to treat more general cases, we develop in 
this section asymptotic formulas that can be used to approximate the expected 
value of  non-linear functions of  the sample mean. For distributions in a 
1-parameter exponential family, such approximations allow calculation of esti-
mation bias and Mean Squared Error to a high degree of accuracy.

First, in Lemma 1 we provide a result characterising the asymptotic 
behaviour of functions of the form g(m) (m  –  m)k. Subsequently, in Lemma 2, 
we derive the approximations that are used in this paper.

In the sequel we use the following standard asymptotic notation. Consider 
function h(x, n)  :  X  !  �  ≈  �+  7  �. We say that h(x, n)  =  O(j(n)) as n"3, uni-
formly in x, if  for every x  !  X there exist M, n*  >  0 such that for all n  >  n* it is 
|h(x, n)|  # M|j(n)|. For a family of random variables Zn, we say that Zn  =  OP(j(n)) 
if  for any e  >  0 there exists Me  >  0 such that P(| Zn |  >  Me | j(n)|)  <  e.

Lemma 1. Consider i.i.d. random variables X1, …, Xn with density f (·) and 
characteristic function f(·). Denote by m the sample mean of X1, …, Xn and let 
m  =  E(X1), mi  =  

3 i
3

m)
-

( ) .f x dx-(x#  k  $  3 is an odd integer and g(·) a real-valued 
function. Assume that 

a) 3
3

(
3

h) ,1
-

f
n
dh#  for some n  $  1.

b) mi  <  3 for i  =  1, …,  k  +  4.

c) The function g(w) has an infi nite number of derivatives in some open inter-
val containing w  =  m.

d) 
3
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) ) .w dw 31-( (wg#
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where fS*(·) is the density of the standardised sample mean S*  =  n1/2s  – 1(m  –  m). 
The technical conditions allow an Edgeworth expansion of fS*(·) and in par-
ticular as n"3 it is (Feller, 1966; p. 535) 

 j
1( ( (v v v1

S f f( ) ) ) )f v n P O/2 /2j

j

k
k

3

3
* = + +- +

=

+
- -n^ h/

uniformly in v. f is the standard normal density and Pj are polynomials not 
depending on n or k. The exact form of the polynomials is not of interest as 
will be explained below. Hence there exists l  >  0 such that:
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Defi ne integrals of the form:
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m
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where cm  $  1/2. The above formula derives from observing that the sum of 
polynomials Pj in the Edgeworth series will produce terms including powers 
of v and n. In particular by studying integrals of the form h(k, r), we will see 
that the order of h(k, r) depends on whether k +  r is even or odd, but not on 
the actual value of r. Hence the precise values of the constants bm, cm, rm are 
not of interest.

We now examine the asymptotics of the integrals h(k, r). By the change of 
variable v  =  (2n)1/2 x we obtain
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The last integral admits an asymptotic expansion by a modifi cation of Wat-
son’s lemma (see e.g. Murray 1974; pp. 24-26):
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We now distinguish between two cases. First consider the case that k  +  r is even. 
Then the fi rst non-zero term of even order in the expansion of g(m  +  s21/2x)
xk  +  r corresponds to ak  +  r  =  g(m). Hence 
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On the other hand, if  k  +  r is odd, the fi rst non-zero term of even order in the 
expansion of g(m  +  s21/2x) xk  +  r corresponds to ak  +  r  +  1  =  g (1) (m) s21/2. Thus
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Consequently, for any k, r, it is h(k, r)  =  O(n – k / 2), but for the case that k  +  r is odd, 
it is h(k, r)  =  O (n  –  (k  +  1) / 2). In particular, since k is odd h(k, 0)  =  O (n  –  (k  +  1) / 2). 
Regarding the other terms in the integral I1 we have that, since cm  $  1/2,

 c c- -
m m( (h h/ /k c k2 2- - -, ) , ) .n k r O n k r O nm m m(= = /1 2-n_ _i i

Therefore we conclude that I1  =  O (n  –  (k  +  1) / 2).
We now turn our attention to integral I2. By change of variable w  =  m  +  sn – 1/2 v 

we have
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Since both I1,  I2 are O (n  – (k  +  1) / 2), so is E [g(m) (m  –  m)k ]  #  I1  +  I2. ¡

Lemma 2. Let X1, …, Xn be as in Lemma 1, with assumptions a) and b) satisfi ed. 
Consider function c(·) with a continuous kth derivative, where k is an odd integer. 
Assume that: 
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FIGURE 4: Relative bias for exponential tail function estimate against threshold y using exact formulas and 
approximations with error terms O(n – 2) (Approx. 1) and O(n – 3) (Approx. 2); n  =  10, m  =  10.

where k4 is the fourth cumulant of X1.
Denote c(k)(m +  am (m  –  m))  =  g(m). Then the order of E[Ak(m)] follows from 

Lemma 1 subject to differentiability and absolute integrability of  g(·), which 
we discuss at the end of the proof. For odd k it is:

 (-( ( )k 1+( /Em m[ )] ) )E A O nk
k 2= =mmg - _ i8 B

By setting k  =  3, 5, the approximations (4), (5) follow.
To establish the required technical conditions on g(·), note its alternative 

form:

 (
( -

k
k 1-m m

( )
)

( ) ( ) ( )g
A

k x x dx
m (k k c=

-
= - -

m
m )k)

mm
m m#

If  c(k)(x) a continuous function in its domain, from the above expression it 
follows that g(m) is infi nitely differentiable. Absolute integrability of g(·) fol-
lows from

 

k k

3 3

3
x dx

m

k 1-

m
3 3

3 w

a( ) ( ) ( )) ( )

( ) ( )

w dw w

x w dw

w

31

c

c

- = + - -

= -

- -

-

m

(

( (g w

)k

)kw

m

dw

k

m# #

##

 ¡

The accuracy of the approximations is demonstrated for the tail function of 
an exponential distribution, with c(m)  =  e – y/m.
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In fi gure 4 the relative bias of c(m) is plotted against the threshold y for 
n  =  10, m  =  10, using the exact formula (1), and the approximations (4), (5).
It is seen that even for such a small sample, the O(n  –  2) approximation performs 
quite well for values of  y until about 70, corresponding to a tail probability 
c(m) of  approximately 0.001. The O(n  –  3) approximation performs well even 
for much higher thresholds.

TABLE 1

EXPECTED VALUE OF ESTIMATOR OF EXPONENTIAL TAIL FUNCTION c(m)  =  e – y/m, CALCULATED USING EXACT 
FORMULAS AND APPROXIMATIONS WITH ERROR TERMS O(n  – 2) (Approx. 1)

AND O(n  – 3) (Approx. 2); m  =  10.

a) y  =  30, c(m)  ,  0.05

n Exact Approx. 1 Error (%) Approx. 2 Error (%)

5 0.0615 0.0647 5.278 0.0610 0.796 

6 0.0599 0.0622 3.884 0.0596 0.445 

7 0.0587 0.0605 2.978 0.0586 0.267 

8 0.0578 0.0591 2.355 0.0577 0.170 

9 0.0570 0.0581 1.909 0.0569 0.113 

10 0.0564 0.0573 1.578 0.0563 0.078

15 0.0544 0.0548 0.746 0.0544 0.017 

20 0.0533 0.0535 0.432 0.0533 0.006 

30 0.0522 0.0523 0.198 0.0522 0.001 

50 0.0512 0.0513 0.073 0.0512 0.000 

b) y  =  46, c(m)  ,  0.01

n Exact Approx. 1 Error (%) Approx. 2 Error (%)

5 0.0196 0.0221 12.841 0.0183 6.254 

6 0.0182 0.0201 10.065 0.0175 4.161 

7 0.0172 0.0186 8.134 0.0167 2.923 

8 0.0165 0.0176 6.727 0.0161 2.138 

9 0.0158 0.0167 5.667 0.0156 1.615 

10 0.0153 0.0161 4.844 0.0151 1.251 

15 0.0137 0.0141 2.575 0.0136 0.453 

20 0.0129 0.0131 1.603 0.0128 0.214 

30 0.0120 0.0121 0.796 0.0120 0.072 

50 0.0112 0.0113 0.316 0.0112 0.017

 

In Table 1, for the cases y  =  30, c(m)  ,  0.05 and y  =  46, c(m)  ,  0.01, the 
exact value of E [c(m)] is given along with the two approximations and the 
corresponding approximation errors, for sample sizes from n  =  5 to n  =  50. 
If{E[c(m)]}appr is an approximation to E [c(m)], then the error stated is given
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by (

( appr

m
m

%100 1[ )]

{ [ )]}
-c

c

E

E
. Again the good performance of the approximate for-

mulas can be observed. For example, when considering the high threshold 
y  =  46 and with n  =  15, the approximation error of the approximation with 
O(n  – 2) error term is 2.575%, while the error of the approximation with O(n  – 3) 
error is 0.453%.

4. EXPONENTIAL FAMILIES

In section 2 it was shown that the estimates of extreme tail probabilities and 
percentiles may be subject to signifi cant positive bias. Here, using the approxima-
tions of section 3, we extend this argument by showing that this is a general 
property of  single-parameter exponential families, of  which the exponential 
distribution is a particular case.

We start with Natural Exponential Families (NEF) with density of the form 

 ( ; (x q) )f h x e (= k- qq )x  (6)

Consider a random variable Y + f (·; q) and denote m  =  E(Y )  =  k�(q),  s2  =
Var(Y )  =  k�(q), m3  =  E [(Y –  m)3]  =  k(3)(q). Throughout this section, we will 
restrict ourselves to non-negative random variables with an infi nite right tail.

The MLE for parameter m is just the sample mean m  =  X and hence the 
MLE for any parameter of  the form c(m) will be c(m). Henceforth we will 
write any parameter of interest in the form c(m), including q  :=  q(m)  =  (k�) – 1 (m). 
We denote 2nd and 3rd central moments as functions of m by V(m)  =  k�q(m)) 
and g(m)  =  k(3)(q(m)) respectively. It is then easily shown that q�(m)  =  V(m) – 1 
and q �(m)  =  – g(m)V(m) – 3.

Equation (4) allows us to characterise the bias of  c(m); in particular it 
shows that:

 ( ( ( (m �( ) [ ) )Bias E n2
1 2

. c= m m s)c cm -)]c  (7)

Hence convexity of  the function c(·) at m implies that the bias is positive.
We now establish increasingness and convexity of  tail probabilities and per-
centiles, as functions of m.

Lemma 3. Defi ne the function g(m,y)  =  F(y; q(m))  =  ( ; (f x
3

)) .m dxqy
#  Let 

gm(m, y)  = (
m2

2 , )g m y  and gmm(m, y)  =   
m

(g
2

2

2

2 , )m y . Then:

i) For y  >  m it is 
 ( , ) 0.y 2m mg  (8)

ii) There exists y*(m)  >  0 such that for y  >  y*(m) it is 

 ( , ) 0.y 2mm mg  (9)
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Proof. Part i): Differentiation with respect to m yields

 
(f( (q

(

(

( , ( (m
3

m
3
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) ) ) ( ( )))

) ( ; )) ( ))) ,

y h x e dx

x dx

�( ( (= -

=

m
q k q- m k q m

q m q m
y

g x)xm ))m
y

�x - k

�q#

#

from which it follows that, since q�(m)  =  V(m) – 1  >  0 it is gm(m,y )  >  0 as long as 
y  >  k�(q(m))  =  m.

Part ii): Differentiating gm(m, y) with respect to its fi rst argument we obtain:

 

((
(

( (

( ( (

(

( )m

(f q( ;x

3

3

3
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y
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�
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y
l)

0

#

#

#

In view of the expressions for the derivatives of k, q that were given earlier, we 
can write the above equations as:

since E [(X  –  m)2 | X  >  y]  =  Var(X |X  >  y)  +  [E(X |X  >  y)  –  m]2. As y increases, 
[E(X |X  >  y)  –  m] tends to + 3, but [E(X |X  >  y)  –  m]2 increases to 3 faster, 
which makes the expression above positive for large enough y. ¡

Hence, if  we let c(m)  =  g(m, y), for large enough y it will be c�(m)  >  0. There-
fore the MLEs of extreme tail probabilities will tend to be positively biased. 
This property of  natural exponential families can be slightly generalised as 
follows.

Corollary 1. Let Y + f (·;  q(m)), Y  =  t(Y ), with t a strictly increasing function. 
Then the tail probability Pq (Y  >  y)  =  g(m, t  – 1(y)) is convex in m for y  >  t(y*), 
where y* is as in Lemma 3.

This means that our discussion does not only involve distributions such as the 
exponential, but also distributions obtained by increasing transforms, such as 
the Pareto, since if  Y + Exp (1/m), Y  =  b exp(Y ) + Pareto (1/m, b).
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m m
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136 Z. LANDSMAN AND A. TSANAKAS

We now turn our attention to the case where percentiles are of interest.

Lemma 4. Defi ne the function q(m, p)  =  F  – 1(p; q(m)). Let qm(m, p)  = (
m

q
2

2 ,m )p  and 
qmm(m, p)  =  (q

m

,m
2

2

2

2 )p . Then:

i) For p  >  F(m; q(m)) it is 

 ( , ) 0.q p 2m m  (10)

ii) There exists p*(m)  !  (0,1) such that for p  >  p*(m) it is 

 ( , ) 0.q p 2mm m  (11)

Proof. Part i): By the defi nition of the functions g, q, it is g(m, q(m, p))  =  1  –  p. 
Taking the total derivative wrt m yields:

 ( ( ( (
( (

( ( ( (, , )) , , )) , ) 0 , ) , , ))
, , ))

g q p g q p p q p q p
g q p

y
y

(+ = =
-m m m

mm m m m m m m m
m m

gq

The denominator is just the density f (q(m, p); q(m)), therefore positive. For 
p  >  F (m; q(m)) it is q(m, p)  >  m and therefore by Lemma 3i) the numerator is 
also positive.

Part ii): Taking the second total derivative of  g(m, q(m, p))  =  1  –  p wrt to m 
yields the equation 

 
m

q y+

m mm

y y

y

+

=

m 0

(

g q g g q

q g q q g2

yy

y yy
1

(+ + =

- + +

mm m m m m mm

mm m
-

g q

g2

g

,g)

^

a

h

k

where y
g

= y

2

2 2m m
2g  and the functions’ arguments have been suppressed. Now 

observe the following 

• –  gy (m, q(m, p))  =  f (q(m, p);  m)  >  0 for p  >  0.

• –  gyy (m, q(m, p)) is the fi rst derivative of the density. For large enough p, by 
the assumption of an infi nite right tail, the density will be decreasing and 
thus gyy (m, q(m, p))  >  0.

• By differentiating the density with respect to m it is easily obtained that
gym (m, q(m, p))  =  –V(m)  – 1 f (q(m, p);  m)  (q(m, p)  –  m). By fi niteness of the mean, 
it is gym (m, q(m, p)) " 0 as p " 1.

• By part i) of the Lemma, for large enough p  it is qm (m, p)  >  0.

• By the proof of Lemma 3ii), gmm (m, q(m, p)) can be made arbitrarily large with 
increasing p.
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From the above observations it follows that that a p large enough can be found 
such that qmm (m, p)  >  0. ¡

Hence MLEs of extreme percentiles will also be convex in m and hence posi-
tively biased. Again we can move slightly beyond natural exponential families.

Corollary 2. Let Y + f (·;  q(m)), Y  =  t(Y), with t a strictly increasing and convex 
function. Then the pth percentile of Y, t(h(m, p)), is convex in m for p  >  p*, where y* 
is as in Lemma 4.

5. BOOTSTRAPPING

5.1. Bootstrap-predictive distribution

A method often proposed in order to address the issue of estimation error and 
associated parameter uncertainty, both in pricing and in solvency applications, 
is to use a predictive distribution, rather than the ‘estimative’ one derived
from MLE. Predictive distributions arise as mixtures of  distributions over 
distributions of parameters, which may be derived by Bayesian arguments (e.g. 
Cairns (2000), Verrall and England (2006), Saltzmann and Wüthrich (2010)) 
or as (bootstrap approximations to) sampling distributions of MLEs (Harris 
(1989), Mata (2000), Verrall and England (2006)).

Staying within the framework of 1-parameter exponential families, consider 
again a parameter of interest that can be written as c(m). Then the parametric 
bootstrap estimator (PBE) of c(m) is given by:

 (( )mPB c (m
3

m m; )f m dm,c ) =
0
#  (12)

where fm(·;  m) is the density of  the sample mean, when the true mean is m.
The link with bootstrapping is established by considering the evaluation of 
integral (12) via Monte-Carlo simulation.

If  the parameter of interest is a tail probability, c(m)  =  F(y;  q(m)), then the 
function y  7  cPB (m) is called a bootstrap-predictive tail function. Note that 
the integral in (12) is formally identical with E [c(m)]  =  3

( )mc
0
#   fm (m;  m) dm, 

with the only difference that in (12) the estimated rather then the true value 
of  the mean is used to evaluate the density of  the sample mean. Hence the 
approximations of Section 3 can be used to evaluate cPB (m), yielding 

(PB ( (
( (( )3m c 3-

2

m m m
�) ) )

(
( ) .n n n2

1
6
1

8
1

Pc c c= + + +
g

2 2
( )4V V

n
m))

c
m)

O+  (13)

In the sequel we will denote the approximation arising from keeping terms up 
to order n  – 1 by 
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 ( (
(

( c
Vm m* m m

�) : ) n2
1c= +

)
c )  (14)

It is noted that an approximate formula essentially identical to (14) has been 
obtained by Landsman (2004), in the context of Bayesian estimation.

The above equations imply that bootstrap predictive distributions can be 
evaluated via simple analytical approximations, without the need to use simu-
lation methods. It furthermore reveals that if  the function c(·) is convex at m, 
as is the case for tail or percentile functions of exponential families, then the 
PBE tends to be higher than the MLE. Hence, the use of the bootstrap predic-
tive distributions, e.g in pricing applications, is indeed more conservative than 
just using the MLE. On the other hand, the following Lemma shows also that 
using the PBE will approximately double the bias in comparison with the MLE.

Lemma 5. For c*(m) as defi ned in (14) and assuming the relevant conditions of 
Lemma 2 fulfi lled, it is 

 (
(

( c (m V 2-[ )] ) )
)

( )E n O nc= + +m m
m

�*c  (15)

Proof. c*(m) can be viewed as a function of m, and thus the approximation (4) 
can again be used, but now considering the function c*(·) rather than c(·). 
Therefore 

 (
(

( � (m V 2-[ )] ) )
)

( )E n O n2
1+ +m m

m
* = *c c*c

It is 

 (( (
(

(( � c) )
)

) ) ( )n
V

O n2
1

(c c c= + = +m m m
m

m m�� 1-) *c*

Putting the above expressions together yields:

 
( ( (

(
(

(

( (
(

c

2

2

-

-

m m m
m

m
m

m m
m

�[ )] ) )
)

) ( )
)

( )

) )
)

( )

E n
V

O n n
V

O n

n
V

O n

2
1

2
1c c c c

c

= + + + +

= + +�

1-�* < 8F B

¡

We note that the result of Lemma 5 does not change if an approximation to cPB 
including more terms is used. More accurate approximations for the bias of c*, 
are given in Appendix A.

5.2. Bias-corrected estimators

Both the MLE c(m) and the (approximate) PBE c*(m) are biased. In fact, 
bootstrapping procedures can be used for correcting such bias (e.g. Hall, 
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1997). The bootstrap estimate for the bias of the MLE c(m) is cPB(m)  –  c(m). 
Using the approximation cPB(m)  –  c(m)  .  c*(m)  –  c(m)  =  2

1  c�(m) (
n

V m) , we 
consider the bias-corrected estimator (BCE) c(m):

 ( (
(

( c
Vm m m mc ) : )

)
n2

1c= - �)  (16)

This type of bias correction by an estimate of the O(n – 1) bias term is in essence 
the one suggested by Cox and Hinkley (1979; Sec 8.4).

The effectiveness of c(m) in correcting for the bias is shown via the following 
lemma, whose proof is very similar to that of Lemma 5 and therefore omitted.

Lemma 6. For c(m) as defi ned in (16) and assuming the relevant conditions of 
Lemma 2 fulfi lled, it is 

 ( 2-(mc[ )] ) ( )E Oc= +m n  (17)

More accurate approximations for the bias of c are given in Appendix A.

5.3. Mean Squared Errors

So far, three estimators were considered, the MLE c(m), the approximate PBE 
c*(m) and the BCE c(m). It was shown that the three have different levels of 
bias, with the PBE approximately doubling the bias of the MLE and the BCE 
approximately eliminating it. However to effectively compare the three estima-
tors we need to consider their estimation accuracy. We do this by deriving an 
approximation for the Mean-Squared-Errors (MSE) of the three estimators.

The following lemma shows that three estimators considered have all 
approximately the same Mean Squared Error.

Lemma 7. Assuming the relevant conditions of Lemma 2 fulfi lled, it is 

 (
(

( 2-m( )) )
)

( )MSE n
V

O
2

= +m
m

c c� n7 A  (18)

 (
(

( 2-m( )) )
)

( )MSE n
V

O
2

= +m
m

c� n*c 7 A  (19)

 (
(

( 2-mc( )) )
)

( )MSE n
V

O
2

= +m
m

c� n7 A  (20)

Proof. All three estimators can be written in the form c(m)  +  a
2  c�(m) (

n
V m) . 

Consider function 

 (( ) ( ) ( )
( )

)v m m a m n
m

2

2

c c= + - m
V

c �d n
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Then the MSE of  an estimator of  the form c(m)  +  a
2  c�(m) (

n
V m)  can be writ-

ten as E[v (m)]. Note that 

 ( (
(

c) )
)

( .v a
n

V
O2= =m m

m
� 2- )n

2

< F

Differentiation of v yields 

 
( (
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@

@

Substituting the above expressions for v(m), v�(m) in 

 (
(

( (m)v v[ ] ) )
)

(E v n
V

O2
1= +m m

m
� 2- )n+

yields the required result. ¡

More accurate approximations for the MSE of the three estimators considered 
are given in Appendix A.

Therefore, for any of the three estimators considered, the root-Mean Squared 
Error (rMSE) equals 

 ( () (m +( ) (2+ m s) ) | ) | (n O n O n O n2 2 2 12
1

2
1

2
3

c c c= = +- - - - -s m s
2

n n� � � )

 (21)

Therefore the bias of the three estimators differs by terms of the order O(n  – 1), 
while the rMSE differs by terms of order O(n  – 3/2). Hence, bias correction can 
be performed without a substantial penalty in terms of estimation accuracy.

Moreover, all three estimators are nearly effi cient. For parameter c(m) it
is easily shown that in the natural exponential family of  distributions the 
Fisher information is In(c)  =  nk�(q) .2( )2

2
c
q  By noting that k�(q)  =  V(m) and 

= =2
2

2
2

2c
q q

cm
2m    [V(m) c�(m)]  – 1 it follows that the Cramer-Rao lower bound for 

an unbiased estimator of c(m) is [c�(m)]2 (
n

V )m .
It is noted here that all results given above, holding for a distribution in the 

natural exponential family, also hold for a distribution arising from an increas-
ing transform of a random variable following the original distribution. As in 
Section 4, consider a random variable Y  =  t(Y ), where t(·) is a strictly increas-
ing function. Fix P(Y  >  y)  =  c(m), such that y corresponds to a fi xed percen-
tile of Y. Now set y  =  t(y) such that again P(Y  >  y)  =  c(m). Let X1,  …,   Xn be 
a sample from the distribution of Y. It is straightforward to show that then 
the MLE of the parameter m from that sample is given by (j 1= j

n tn
1 =1- X )/
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= mXj 1= j
n .n

1 /  Therefore the statistics c(m), c*(m), c(m) that are of interest 
in this paper, remain unchanged subject to such increasing transformations.

The following example demonstrates the performance of  the estimators 
introduced in this section, when Y follows an exponential distribution. From 
the above discussion it follows that the presented results actually hold for
a wider range of distributions. For example, if  t(y)  =  b exp (y), b  >  0, then Y 
 follows a 1-parameter Pareto distribution, which is the most widely used model 
in practice for modelling large losses when data are not abundant. Alternatively 
for t(y)  =  y1/g, g  >  0, we obtain a Weibull distribution with fi xed shape parameter.

Example 3. Once more, we deal with the example of an exponential tail func-
tion, with c(m)  =  P(Y  >  y)  =  e – y/m. The relative biases of the estimators c(m), 
c*(m), c(m) are plotted against the sample size n in fi gure 5, for m  = 10, y  = 30,
corresponding to c(m)  =  0.0498. It can be seen how the BPE has a higher bias 
than the MLE and how with the BCE the bias is nearly eliminated.

We now compare the three estimators in terms of their rMSE, along with the 
square root of the CRLB, denoted by rCRLB. In Table 2 we provide values for 
the rMSEs and the rCRLB for a range of sample sizes. It can be seen that there 
are some differences, which, as argued in Section 5.3, disappear fairly quickly as 
the sample size increases, particularly for y  =  30. For y  =  30, it can be seen that 
for very small samples the rMSE of the PBE is lower than that of the MLE, 
which is lower than that of the BCE. Moreover the rMSE of the MLE and PBE 
are also lower than the rCRLB. This indicates that for very small samples, there 
is an element of MSE / bias trade-off, though these effects quickly disappear as 
the sample size increases. For y  =  46, the picture somewhat changes. The differ-
ences between the estimators are more pronounced and the rMSE of the PBE is 
now the highest.

TABLE 2

COMPARATIVE rMSE OF ESTIMATORS OF EXPONENTIAL TAIL PROBABILITY

c(m)  =  e – y/m FOR m  =  10.

a) y  =  30, c(m)  ,  0.05 b) y  =  46, c(m)  ,  0.01

n MLE PBE BCE rCRLB MLE PBE BCE rCRLB

5 0.0653 0.0609 0.0715 0.0668 0.0310 0.0360 0.0289 0.0207

6 0.0599 0.0567 0.0645 0.0610 0.0274 0.0320 0.0251 0.0189

7 0.0556 0.0532 0.0592 0.0565 0.0247 0.0288 0.0224 0.0175

8 0.0521 0.0502 0.0550 0.0528 0.0225 0.0263 0.0204 0.0163

9 0.0492 0.0477 0.0516 0.0498 0.0208 0.0243 0.0188 0.0154

10 0.0467 0.0455 0.0488 0.0472 0.0194 0.0226 0.0175 0.0146

15 0.0383 0.0377 0.0393 0.0386 0.0149 0.0170 0.0135 0.0119

20 0.0332 0.0329 0.0339 0.0334 0.0124 0.0139 0.0113 0.0103

30 0.0272 0.0270 0.0275 0.0273 0.0096 0.0106 0.0090 0.0084

50 0.0211 0.0210 0.0212 0.0211 0.0071 0.0076 0.0068 0.0065
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FIGURE 5: Relative biases for Maximum Likelihood, Parametric Bootstrap and Bias Corrected
Estimators of exponential tail function against sample size; m  =  10, y  =  30.

FIGURE 6: Exponential tail function estimates, using Maximum Likelihood, Parametric Bootstrap
and Bias Corrected Estimators; m  =  10, n  =  10.

The biases and rMSEs in this example were calculated with exact formulas; 
these are rather tedious and are given in Appendix A.

Finally we plot the tail functions obtained by using the MLE, the PBE and 
BCE in fi gure 6, for n  =  10 and m  =  10. The plot shows that the predictive dis-
tribution obtained by PBE is more conservative than the one obtained by MLE. 
On the other hand, the BCE tail function is not only lower, but for large thresholds 
also presents a substantial distortion in its shape (for very large thresholds it even 
becomes negative). Though such high thresholds will typically not be of interest 
in a pricing problem (especially when starting from a sample as small as 10 data 
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points), they would be considered in the rare case of an infi nite reinsurance layer 
or when a tail-based risk measure such as Tail-Value-at-Risk is used.

The performance of the tail function estimators discussed is further studied in 
Appendix B for distributions that do not arise from increasing transforms of 
an exponential variable. In particular, 1-parameter versions of the (log-)Normal, 
(log-)Gamma, and Inverse Gaussian distributions are considered. For those 
distributions, the bias and MSE cannot in general be calculated analytically 
and therefore Monte-Carlo simulation is used to evaluate numerically the 
quantities studied. Appendix B demonstrates that the estimators have proper-
ties consistent with the insight obtained by asymptotic theory, for a range of 
models that is wider than the exponential and associated distributions.

6. CONCLUSIONS AND DISCUSSION

We derived accurate approximations for functionals of sample means, subject 
to some technical conditions. For single-parameter exponential families, we 
showed that the tail and percentile functions are convex in the mean for high 
enough thresholds. These technical considerations allowed us to discuss the 
following:

• Maximum likelihood estimators of extreme tail probabilities and percentiles 
are approximately positively biased and accurate approximations of the bias 
were derived.

• Parametric bootstrap predictive distributions can be evaluated via analytical 
approximations and are shown to be more conservative than distributions 
estimated by MLE. However, parametric bootstrap estimators exacerbate 
the bias of the MLE.

• Analytical bias-corrected estimators can be easily introduced, but may distort 
the shape of the estimated distribution, especially in the extreme tail.

• The maximum likelihood, parametric bootstrap and bias corrected estimators 
have approximately the same Mean-Squared-Error, implying that there is 
only a limited MSE/bias trade-off.

We did not, however, discuss which of  the 3 estimators one should use in 
practice; since their MSEs are approximately the same, this is not a trivial 
question. Arguably the choice of estimator may depend on the application in 
mind. For example, in a solvency related context, one may be interested in 
setting capital such that a given solvency probability is achieved, after allowing 
for the potentially adverse impact of parameter uncertainty. It was shown in 
Gerrard and Tsanakas (2010) that such a solvency criterion is best served by 
the use of a predictive distribution, which would point to the direction of a PBE. 
In that context, the issue of estimation bias does seem problematic. On the 
contrary, the presence of  some positive bias in capital estimation becomes 
desirable, as this acts as an implicit risk load against parameter uncertainty.
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On the other hand consider a stylised pricing example. A reinsurance com-
pany sells r policies, each of which produces a loss, modelled by the random 
variable Zj. Losses Z1, …,  Zr are considered i.i.d. and the premium for each 
policy is calculated as its expected loss. Parameters for each loss distribution 
are calculated from a different sample, X j and let us also assume that each 
sample is of the same size n. Denote the premium for the jth policy as p(X j). 
Then a possible criterion for the accuracy of the pricing method is the quad-
ratic deviation between total premium and total loss. Simple manipulations 
show that this can be written as 

 j (Var( ) (X(Z
1 1

XZ ) )) ( ( )E p rVar r p r E Z
j

r

j

r

j

2
2 X- = + + -

= =

p 2,)f ^p h> H/ /

showing that as the portfolio size r increases, the portfolio pricing error is 
primarily driven by the bias (E(Z)  –  p(X)), due to the r2 term, rather than
the estimation variance Var (p(X)). In other words, for a large homogenous 
portfolio the estimation volatility ‘diversifi es away’, while the bias does not. 
This indicates the potential desirability of bias correction in such a context.

In reality such a homogenous portfolio of independent exposures will not 
exist, so that the diversifi cation of estimation volatility will never be more than 
partial. In that case, it may be desirable to allow for some positive bias to act 
as a safety loading against parameter error. Figure 5 can be viewed in such a 
way; under the MLE and PBE, a smaller sample size implies a higher positive 
bias, that would lead to a premium which, on average, would be higher than 
the expected loss. As the sample size increases, the need for such a loading is 
eliminated. A diffi cult question to answer is how much bias one should allow; 
in other words what should be the value of  a in an estimator of  the form 
c(m)  =  c(m)  +  a

2  c�(m) (
n

V m) ? This cannot be answered without a well specifi ed, 
economically motivated decision criterion. Formulating such criteria is outside 
the scope of the present investigation, but remains a possible topic for future 
research.

95371_Astin42-1_06_Landsman.indd   14495371_Astin42-1_06_Landsman.indd   144 5/06/12   13:525/06/12   13:52

https://doi.org/10.2143/AST.42.1.2160738 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.1.2160738


 PARAMETER UNCERTAINTY IN EXPONENTIAL FAMILY TAIL ESTIMATION 145

APPENDIX A 

I. HIGHER ORDER APPROXIMATIONS FOR MSE AND BIAS OF ESTIMATORS

IN EXPONENTIAL FAMILIES

Notation

We consider a 1-parameter exponential family with mean m. The second, third 
and fourth cumulants are denoted as functions of m by V(m), g(m), d(m) respec-

tively. It can be checked that V�(m)  =  ( ) ,V (
(

Vm =
g

)
)

m
m

�  (V 2(V (
( (

V= -
gd 2

)m)
) )

m
m m)m� .

We are interested in the performance of a class of estimators for c(m), that 
are given by 

 ( ( (
(

a m m m ma
n

V
2c c= +) ) )

)
� ,c

where m denotes the sample mean based on a sample of size n.
In what follows, the following approximation will be used:

    ( ( ( ( (m) (
n n

[ ] ) ) ) ) )E v v v n v v O2
1

6
1

8
1 ( )2 3 4 2

2
3= + + + + -m m m m

m
2 2

( )3 n
m m

�  (22)

where v(·) is a function satisfying the conditions of Lemma 2.

Bias calculation

Let v(m)  =  ca(m)  –  c(m). Differentiating with respect to m, setting m  =  m, and 
collecting terms up to the order of interest, yields:

(

V
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Using (22) and the expressions for the derivatives of V(m), an approximation 
to the bias with error term O(n – 3) can be obtained.
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MSE calculation

Now v(m)  =  (ca(m)  –  c(m))2. Differentiating with respect to m, setting m  =  m, 
and collecting terms up to the order of interest, yields:

Using (22) and the expressions for the derivatives of V(m), an approximation 
to the MSE with error term O(n – 3) can be obtained.

II. EXACT FORMULAS FOR MSE OF EXPONENTIAL TAIL FUNCTION ESTIMATORS

Let c(m)   =   e – y/m  (  c�(m)  =  e – y/m (y2 m – 2  –  2ym – 1). We need to calculate 

 ((a a( c mm) ))-m) (MSE E 2= cc ,7 8A B

where m + Gam(n, n/m) and ca(m)  =  c(m)  +  a
2  c�(m) 

2

n
m . The calculation of 

MSE [ca(m)] will involve a sum of terms including expectations of the form 
E [ m – k e  –  ry/m ]. To calculate these, defi ne the integrals 
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where Kc  –  k(·) is a modifi ed Bessel function of the second type. Hence it follows 
that 

 m[ ] ( , , , )E e n b ry km j=/k ry- - ,

where b  =  m / n. From developing the expression for the MSE and using the 
above equation, some rather tedious calculations yield:
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APPENDIX  B 

Here we consider the performance of the asymptotic approximations to the 
expected value of E [c(m)], for one parameter versions of the Normal, Gamma 
and Inverse Gamma distributions. Furthermore, the Bias and rMSE of the 
three tail probability estimators considered (MLE, PBE, BCE) is determined. 
As for most of those quantities explicit expressions are hard to obtain, evalua-
tion is by Monte-Carlo simulation.

I. DISTRIBUTIONS USED

Normal distribution

Let F, f be respectively the standard normal distribution function and density 
and note that 

 ( )z�f (z= - ) .zf

As before, set c(m) equal to the tail probability P(Y  >  y), calculated under 
parameter m. Then, for the Normal distribution with mean m and fi xed variance 
s2, it is:

 

(

(

(

( ( (

( ( (

s

m m m

m m mc

�

f

f

)

)

)

) ) )

) ) )

y

y

y

n

n

1

1

1

2
1

2
1

2

2

2

c
m

c

c

c c c

c c

F= -
-

=
-

= -
-

= +

= -

m s

m s
m

s

m s
m

s

s

�

�

�

�

*

a

a

a

k

k

k

The distribution of the sample mean is m + N(m, s2/ n). 

It can be easily shown that ( 1F-m[ )] ,E 1 ( /

y

1c =
s

m-

+2 )n
b l  so that this par-

ticular quantity can be calculated analytically.
While the normal distribution is not a common model for insurance claims, 

note that the analysis holds identically for a log-normal distribution, with the 
m (relating to a scale parameter in the log-normal case) unknown and the shape 
parameter s fi xed.

Gamma distribution

Let G(·; a), g(·; a) be respectively the distribution function and density of a 
Gam(a,1) random variable, such that 
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For a Gam(a, l) distribution with mean m, it is l  =  a / m, V(m)  =  m2/ a. Thus:
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The distribution of the sample mean is m + Gam(na, na / m).
Again the discussion of the Gamma distribution also addresses the case of 

the log-Gamma distribution, which is a distribution with Pareto-type tail and 
tail index l  =  a /m.

Inverse Gaussian distribution

We consider an Inverse Gaussian distribution IG (m, l), such that the mean is 
m and the variance function is V(m)  =  m3/l. More about the Inverse Gaussian 
distribution can be found in section A.4.1.2 of  Klugman et al. (2004). For 
simplicity, here and in the sequel, we fi x l  /  1.

Let u  =  (y  +  m) / m and z  =  (y  –  m) / m. Then, it is:
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The distribution of the sample mean is m + IG(m, n).

II. SIMULATION STUDY

Here we present results from a simulation study, assessing the performance of 
the asymptotic approximations and tail probability estimators introduced in 
the paper. Consistent parameters are chosen for the three distributions, such 
that for all of them the mean is equal to 0.16 and the coeffi cient of variation 
is 0.4. Hence the parameterisations used are N (0.16,  0.0642), Gam(6.25, 39.0625), 
and IG(0.16, 1). For all three distributions, a threshold y corresponding to 
c(m)  =  0.05 is used. For each distribution and value of n, 108 pseudo-random 
samples from the distribution of m are simulated.

In Table 3, for different values of the sample size n, the biases of the MLE 
c(m), the PBE c*(m), and the BCE c(m) are given. The bias of MLE is calcu-
lated by simulation (or exactly in the case of the Normal), as well as using an 
approximation with error of order O(n – 2). The tabulated results are consistent 
with the results for the exponential / Pareto distribution presented earlier in the 
paper. In particular, the approximate value for the bias is quite close to the 
exact value, the PBE has bias approximately double of that of the MLE, and 
the BCE reduces the bias to nearly zero. Though the accuracy of asymptotic 
approximations decreases for very small sample sizes, the bias correction is still 
quite effective. For example, in the case of the Inverse Gaussian distribution, 
for n  =  5, the relative bias of the MLE is 0.01461 / 0.05  ,  29 %, while for the 
BCE it is 0.00255 / 0.05  ,  5 %. When n  =  10, the relative bias of the MLE is 
0.008 / 0.05  ,  16 %, while for the BCE it becomes 0.00076 / 0.05  ,  1.5 %.

In Table 4, the rMSE of the MLE c(m), the PBE c*(m), and the BCE c(m) 
are given. In agreement with the asymptotic arguments of Section 5.3, it is 
seen that the rMSE of the three estimators are quite close to each other, with 
the rMSE of the BCE usually lowest. This confi rms the previous conclusion 
that, for distributions in the exponential family, the bias correction proposed 
does not entail an increase in MSE.
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TABLE 3

BIAS OF ESTIMATORS MLE, PBE AND BCE OF TAIL PROBABILITY c(m)  =  0.05.

a) Normal distribution, N(0.16, 0.0642).

n MLE (exact) MLE (approx.) PBE BCE

5 0.01661 0.01696 0.03278 0.00044

6 0.01390 0.01414 0.02751 0.00029

7 0.01195 0.01212 0.02370 0.00021

8 0.01048 0.01060 0.02081 0.00015

9 0.00933 0.00942 0.01854 0.00012

10 0.00840 0.00848 0.01672 0.00010

15 0.00562 0.00565 0.01121 0.00004

20 0.00422 0.00424 0.00843 0.00002

30 0.00282 0.00283 0.00564 0.00001

50 0.00169 0.00170 0.00339 0.00001

b) Gamma distribution, Gam (6.25, 39.0625).

n MLE (simul.) MLE (approx.) PBE BCE

5 0.01580 0.01791 0.03003 0.00158

6 0.01343 0.01492 0.02571 0.00115

7 0.01167 0.01279 0.02247 0.00087

8 0.01032 0.01119 0.01997 0.00068

9 0.00925 0.00995 0.01796 0.00055

10 0.00839 0.00895 0.01632 0.00045

15 0.00571 0.00597 0.01121 0.00021

20 0.00433 0.00448 0.00854 0.00012

30 0.00292 0.00298 0.00578 0.00006

50 0.00177 0.00179 0.00352 0.00002

c) Inverse Gaussian distribution, IG (0.16, 1).

n MLE (simul.) MLE (approx.) PBE BCE

5 0.01461 0.01782 0.02667 0.00255

6 0.01253 0.01485 0.02320 0.00187

7 0.01098 0.01273 0.02053 0.00144

8 0.00976 0.01113 0.01840 0.00113

9 0.00880 0.00990 0.01667 0.00092

10 0.00800 0.00891 0.01524 0.00076

15 0.00552 0.00594 0.01068 0.00036

20 0.00421 0.00445 0.00821 0.00021

30 0.00286 0.00297 0.00563 0.00010

50 0.00174 0.00178 0.00344 0.00003
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TABLE 4

RMSE OF ESTIMATORS MLE, PBE AND BCE OF TAIL PROBABILITY c(m)  =  0.05.

a) Normal distribution, N(0.16, 0.0642)

n MLE PBE BCE

5 0.06002 0.06634 0.05768

6 0.05304 0.05811 0.05119

7 0.04787 0.05207 0.04636

8 0.04388 0.04742 0.04261

9 0.04069 0.04373 0.03960

10 0.03806 0.04072 0.03712

15 0.02970 0.03125 0.02917

20 0.02509 0.02614 0.02474

30 0.01996 0.02055 0.01976

50 0.01512 0.01540 0.01502

b) Gamma distribution, Gam (6.25,39.0625).

n MLE PBE BCE

5 0.06468 0.06953 0.06274

6 0.05810 0.06210 0.05654

7 0.05310 0.05646 0.05181

8 0.04913 0.05201 0.04803

9 0.04591 0.04842 0.04497

10 0.04321 0.04542 0.04239

15 0.03438 0.03571 0.03391

20 0.02935 0.03026 0.02903

30 0.02358 0.02410 0.02340

50 0.01801 0.01827 0.01792

c) Inverse Gaussian distribution, IG (0.16,1).

n MLE PBE BCE

5 0.06486 0.06859 0.06325

6 0.05884 0.06200 0.05752

7 0.05417 0.05688 0.05306

8 0.05042 0.05277 0.04947

9 0.04732 0.04940 0.04651

10 0.04472 0.04657 0.04401

15 0.03603 0.03717 0.03561

20 0.03095 0.03174 0.03066

30 0.02503 0.02550 0.02487

50 0.01922 0.01945 0.01914
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