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SUMMARY
Kinematic reconfigurable mobile robots have the ability to
change their structure to increase stability and decrease the
probability of tipping over on rough terrain. If stability
increases without decreasing center of mass height, the robot
can pass more easily through bushes and rocky terrain. In
this paper, an improved sample return rover is presented. The
vehicle has a redundant rolling degree of freedom. A genetic
algorithm utilizes this redundancy to optimize stability.
Parametric motion equations of the robot were derived
by considering Iterative Kane and Lagrange’s dynamic
equations. In this research, an optimal reconfiguration
strategy for an improved SRR mobile robot in terms of
the Force–Angle stability measure was designed using a
genetic algorithm. A path-tracking nonlinear controller,
which maintains the robot’s maximum stability, was designed
and simulated in MATLAB. In the simulation, the vehicle
and end-effector paths and the terrain are predefined and the
vehicle has constant velocity. The controller was found to
successfully keep the end-effector to the desired path and
maintained optimal stability. The robot was simulated using
ADAMS for optimization evaluation.

KEYWORDS: Mobile manipulator; Dynamic modeling;
Kane dynamics; Lagrange dynamics; Stability; Genetic
algorithm; Nonlinear control.

Nomenclature

ai1 – distance between Ẑi and Ẑi+1 in X̂i direction
αi−1 – angle between Ẑi and Ẑi+1 around X̂i

di – distance between X̂i−1 and X̂i in Ẑi direction
θi – dngle between X̂i−1 and X̂i around Ẑi

C – distance between X̂0 and X̂1 in Ẑ0 direction
e – distance between Ẑ0 and ẐB in X̂B direction
z – vehicle center of mass height
φ – rotation angle of vehicle related to XS direction
γ1 – angle between left axels of vehicle
γ2 – angle between right axels of vehicle
V – velocity of vehicle in X̂S direction
v – speed of end-effector on the spatial line
jPi – position vector located at the ending point of

link i expressed in j

* Corresponding author: E-mail: mmzad83.basu@gmail.com

jPci – position vector located at the center of mass of
link i expressed in j

jωi – angular velocity of link i expressed in frame j
j ω̇i – angular acceleration of link i expressed in

frame j
j vi – velocity of link i origin expressed in frame j
j v̇i – acceleration of link i origin expressed in frame j
jωi – angular velocity of link i expressed in frame j
j ω̇i – angular acceleration of link i expressed in

frame j
jNi – inertia moment acting on center of mass of link i

expressed in frame j
jFi – inertia force acting on center of mass of link i

expressed in frame j
jni – moment acting on link i by link i-1 expressed in

frame j
jfi – force acting on link i by link i-1 expressed in

frame j
τi – active torque on link i
Li – length of link i
mi – mass of link i
t – time
m – length of vehicle
n – width of vehicle
z0 – the height of the vehicle’s center of mass

projected onto the inclined ground surface
xmc – distance between the center of the axel and the

location of the vehicle’s center of mass
h – the length of vehicle’s axel
ciIi – central inertia tensor for link i
i
i+1R – rotation matrix of frame i expressed in i + 1
finertial

ninertial

– inertia forces and torques

fmanip

nmanip

– loads transmitted by manipulator to the vehicle
body

fdist

ndist

– external disturbance forces and torques acting
directly on the vehicle body

fsupport

nsupport

– reaction forces and torques of the vehicle system

1. Introduction
High-capability robots will be necessary on future space
missions where mobile manipulators are used to explore
uneven terrains. In such conditions, the robots are subject
to instability, tipping over, and loss of wheel traction, which
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eventually result in damage to the robot or cancellation of the
whole mission. The kinematic reconfigurable robots needed
for these missions require an optimal stability strategy and a
method for controlling changes in configuration.

Dynamic modeling of interaction forces and torques
is usually treated as a preprocessing stage for analyzing
stability and controller designing. Lagnemma et al.1 studied
the capability of reconfigurable robots on uneven terrain.
They designed and made a sample return rover (SRR)
at the jet propulsion laboratory (JPL), using Force–Angle
measurement for enhancement and optimization of quasi-
static stability improvement.

Kane and Levinson2 analyzed a standard manipulator.
In their research, they discussed arithmetic operations of
the Kane method relative to Lagrange and Newton–Euler.
In other research, Sharifi et al.3 presented the derivations
of explicit Kane’s dynamical equations for three-link
manipulators, but this solution does not achieve generality.

Dynamic modeling of a one-wheel robot subject to
nonholonomic constraints was derived by Nukulwauthiopas
et al.4 using Kane’s method. They presented numerical
simulations to verify the validity of the model with the
Lagrange formulation found in the work of other researchers.

Dynamic modeling of a wheeled mobile robot subject
to nonholonomic constraints was derived by Thanjavar and
Rajagopalan5 using Kane’s method.

Dynamic modeling of a mobile manipulator with unlimited
wheels and links subject to nonholonomic constraints was
derived using Kane’s method. Although using unlimited
auxiliary functions makes manual solution much simpler,
it complicates the process of extending the design to
other models. Because the robot structure is specified, the
usefulness of each dynamic modeling is confined to its own
specified robot.6

Ghafari et al.7 presented an algorithm that is fast enough
to stabilize the three degree of freedom (DOF) mobile
manipulator with the best stability criterion based on a
neural network and genetic algorithm (GA), which cooperate
together. In their work, a PD controller was used to apply
optimal values as the algorithm output to the appropriate
joints. However, this controller was not designed on the
basis of an inverse model. Several researchers12–14 have
suggested the use of kinematic reconfigurability to enhance
rough-terrain mobility. It is useful to compare manual
solution of different dynamic methods to determine faster and
simpler solution.2–6 MATLAB allows parametric solutions
to be compared more comprehensively than a numerical
comparison of different methods that are restricted to a
particular range.

The robot presented in this paper can improve its stability
using two active shoulder joints that adjust the two angles γ1

and γ2 (Figs. 1 and 2). It can also redistribute its center of
mass by repositioning its manipulator. Both of these effects
can be exploited to improve system stability. We will present
the development of this robot in five steps.

First, we present a general computer algorithm for dynamic
modeling of mobile robots using Denavit–Hartenberg
notation and Kane’s dynamics. By presenting a logical
algorithm for Lagrange dynamics and also using an iterative
Newton–Euler algorithm, we pave the path for comparison

Fig. 1. (Colour online) Mobile robot containing a 3-DOF
manipulator and one redundant DOF vehicle moving on rough
terrain.

Fig. 2. Mobile robot containing a 3-DOF manipulator and one
redundant DOF vehicle moving on rough terrain.

of three different dynamics methods and also verify the
presented Kane algorithm using MATLAB.

Second, we discuss the inverse kinematics to be used in
the next two steps.

Third, we present the design of a reconfiguration strategy
using inverse kinematics, the GA, and dynamic equations
of motion that can keep the robot in optimal Force–Angle
stability.

We then show the process for designing a PD controller
using an inverse robot model and simulation in MATLAB for
predefined initial conditions and end-effector path in terms
of the optimal Force–Angle stability measure.

This is followed by the results of the simulation of the robot
using ADAMS in terms of dynamics, kinematics, inverse
kinematics, and optimization evaluation.

Finally, the work is summarized in an algorithm-level
block diagram.

2. Dynamic Modeling of Robot
The model that we present is for an improved SRR with
the capability for kinematic reconfiguration when passing
through uneven terrain. The mobile manipulator consists
of a 3-DOF manipulator with the ability to move in a 3D
workspace, and it is mounted on a one redundant DOF vehicle
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Table I. Denavit–Hartenberg variables and parameters.

i αi−1 ai−1 di θi

1 0 0 c θ1

2 90 L1 0 θ2

3 0 L2 0 θ3

4 0 L3 0 0

(Fig. 1). The vehicle can pass through rough terrain and
attempt to stabilize itself by using the redundant DOF.

Separating vehicle and manipulator frees the user from the
nonholonomic dynamic of the vehicle and allows him to have
a holonomic manipulator. Also, separation supports the use
of the Force–Angle measure to estimate the robot’s stability.

The use of auxiliary functions leads to a quick solution
without affecting the result. However, using auxiliary
functions in computer analysis causes the algorithm not to
follow the general form, so we do not use such functions
in our solution and instead we present a general algorithm.
Powerful symbolic mathematic computer software enables us
to solve these problems in parametric form and releases us in
innovative ways from tedious multiplications and additions
and time-consuming simplifications.

The XsYsZs frame is an inertial coordinate system. The
XBYBZB coordinate system is located at the vehicle center
of mass, and the X0Y0Z0 coordinate system is situated at the
junction of vehicle and manipulator (Fig. 1).

The vehicle moves with a constant velocity just in the Xs

direction. The terrain shape is predefined. This function is
actually a 2D curve in the Ys − Zs plane, which extends in
the Xs direction. The vehicle rotates around the Xs direction
by opening and closing two pairs of axels on both right and
left sides symmetrically while the height of vehicle center of
mass is constant. The relation between the opening angles
of the right and left axels (γ1 and γ2) and the roll rotation
(redundant DOF) of the vehicle is

γ1 = 2 cos−1(cos(α) × (+0.5n sin(φ) − 0.5n cos(φ) tan(α)
+ z − z0)/h),

γ2 = 2 cos−1(cos(α) × (−0.5n sin(φ) + 0.5n cos(φ) tan(α)
+ z − z0)/h).

(1)

γ1 and γ2 are derived from the vehicle kinematics, which
is illustrated in Fig. 2. The line that connects the two contact
points of the tires and the ground makes an angle β with
the horizontal axis. The vehicle center of mass height (z) is
the sum of the Z0 and Z1. “h” is length of each axels of the
vehicle.

Table I shows Denavit–Hartenberg variables and
parameters.

Figure 3 displays a separated vehicle under different
conditions. Figure 4 displays the separated manipulator with
active torques.

The end-effector tries to move on a spatial curve so that
no forces or torques are exerted on it

4f4 = 04n4 = 0. (2)

Fig. 3. One redundant DOF vehicle in two different configurations.

Fig. 4. Three-DOF manipulator along with active torques.

To make the model simpler, vehicle and links are assumed
to be concentrated masses and the location of their center of
mass relative to their local coordinates is expressed as the
following vectors (see Figs. 1 and 4):

1Pc1 =

⎡
⎢⎣

0.5l1

0

0

⎤
⎥⎦ 2Pc2 =

⎡
⎢⎣

0.5l2

0

0

⎤
⎥⎦ 3Pc3 =

⎡
⎢⎣

0.5l3

0

0

⎤
⎥⎦. (3)

Thus, the central inertia tensor of all links becomes zero

c1I1 = 0 c2I2 = 0 c3I3 = 0 (4)

To avoid complex kinematics and dynamics of the vehicle,
kinematic effects of the vehicle are first transferred to the
manipulator, then interaction forces and torques between the
vehicle and manipulator are calculated via three different
dynamic methods. As Fig. 1 shows, the X0Y0Z0 frame has
the following kinematic characteristics:

0ω0 =

⎡
⎢⎣

φ̇

0

0

⎤
⎥⎦ 0ω̇0 =

⎡
⎢⎣

φ̈

0

0

⎤
⎥⎦ 0v0 =

⎡
⎢⎣

V

0

0

⎤
⎥⎦. (5)

All dynamic methods include an iterative loop
for kinematics calculation, including Denavit–Hartenberg
notation, rotation, and transportation matrix.11 The part of
each method that deals with dynamics comes after the part
that deals with kinematics.

2.1. Newton–Euler iterative dynamic algorithm
The most common dynamic method in robotics is the
Newton–Euler method, which contains two iterative loops:
the outer and inner Newton–Euler iterative loops.11

In this method, it is assumed that the X0Y0Z0 frame has
acceleration as shown in the following equation instead of
considering gravity. Therefore, gravity is assumed to be
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zero

0v•
0 =

⎡
⎢⎣

0

g sin(φ)

g cos(φ)

⎤
⎥⎦. (6)

2.2. Lagrange dynamic algorithm
The foundation of this method primarily is energy
conservation. The necessary kinematics calculation loop is
given as

i = 0 → 2,
S
i+1T = S

i T
i
i+1T ,

Shci+1 = [0 0 1 0]Si+1T

[ [
i+1Pci+1

]
1

]
,

i+1ωi+1 = i+1
i Riωi + θ̇i+1

i+1Ẑi+1,
i+1vi+1 = i+1

i R
(
ivi + iωi × iPi+1

)
,

i+1vci+1 = i+1vi+1 + i+1ωi+1 × i+1Pci+1.

(7)

The manipulator is a 3-DOF holonomic system, so the
Lagrange dynamic equations can be simplified as follows:9

τi =
(

d

dt

∂k

∂θ̇i

− ∂k

∂θi

+ ∂u

∂θ i

)
i Ẑi , i = 1, 2, 3, (8a)

τ0 =
(

d

dt

∂k

∂φ̇
− ∂k

∂φ
+ ∂u

∂φ

)
0X̂0. (8b)

The motor torques of links 1, 2, and 3 are calculated in
Eq. (8a), and the external active torque τ0, exerted by the
vehicle, is determined by Eq. (8b).

The variables k and u represent total manipulator kinetic
and potential energy, respectively, which are calculated as
follows:

k =
3∑

i=1

1

2
mi

ivci .
ivci + 1

2
iωi.

CiIi
iωi,

u =
3∑

i=1

mighci .

(9)

2.3. Kane’s dynamics
The Kane method deals with problems containing holonomic
and nonholonomic constraints without distinction to
equations equal to the number of DOF.

Its use of generalized velocities instead of generalized
coordinates and its observation of inertia forces and torques
according to the D’Alembert principle as external forces and
torques render the Kane method superior to the Lagrange
method.

Its use of local coordinates instead of inertial coordinates is
another advantage of this method over the Lagrange method.
Since the Lagrange method requires the use of inertial
coordinates for calculating total potential energy, as in Eqs.
(7) and (9), the solution takes longer to reach.

Only forces and torques that give energy to the system
could be effective, and they exert effects on the equations
of motion.10 Therefore, the only effective forces and torques
are weight, motor torques, inertia forces, and torques.

First, generalized velocities, which are equal to the number
of DOF must be specified. These generalized velocities are
assumed to be

u1 = θ̇1, u2 = θ̇2, u3 = θ̇3, u4 = φ̇. (10)

The linear and angular velocities of the points where
external and inertia forces and torques exert their effects
will be calculated in the next step.

The following iterative algorithm consists of two parts:
first, kinematics, and second, the calculation of inertia forces
and torques according to the D’Alembert principle. The
kinematic characteristics of the zero frame follow Eq. (6)

i = 0 → 2,

i+1ωi+1 = i+1
i Riωi + θ̇i+1

i+1Ẑi+1,

i+1ω̇i+1 = i+1
i Riω̇i + i+1

i Riωi × θ̇i+1
i+1Ẑi+1

+θ̈i+1
i+1Ẑi+1,

i+1vi+1 = i+1
i R

(
ivi + iωi × iPi+1

)
,

i+1vci+1 = i+1vi+1 + i+1ωi+1 × i+1Pci+1,

i+1v̇i+1 = i+1
i R

(
i ω̇i × iPi+1 + iωi × (iωi × iPi+1) + i v̇i

)
,

i+1v̇ci+1 = i+1ω̇i+1 × i+1Pci+1 + i+1ωi+1

×(i+1ωi+1 × i+1Pci+1
)+ i+1v̇,

iR̃i = −mi
iv̇ci ,

iM̃i = −(iIi
i ω̇i + iωi × iIi

iωi

)
.

(11)

The minus signs in the two last expressions show the
D’Alembert approach to Kane dynamics. Now, partial linear
and angular velocities must be calculated. For this purpose,
two nested loops are used

i = 0 → 3,

r = 1 → 4,

ivci
r = ∂ivci

∂ur

,

iωi
r = ∂iωi

∂ur

.

(12)

Then, active and inertia generalized forces are calculated
as follows:

r = 1 → 4,

Fr =
3∑

i=1

(
iωi

r

)T
⎛
⎜⎝
⎡
⎢⎣

0

0

τi

⎤
⎥⎦+ i+1

i RT

⎡
⎢⎣

0

0

−τi+1

⎤
⎥⎦
⎞
⎟⎠

+ (0ω0
r

)T
⎛
⎜⎝
⎡
⎢⎣

τ0

0

0

⎤
⎥⎦+ i+1

i RT

⎡
⎢⎣

0

0

−τi+1

⎤
⎥⎦
⎞
⎟⎠,

∗
F
r

=
3∑

i=0

((
ivci

r

)Ti R̃i + (iωi
r

)TiM̃i

)
.

(13)

Considering 0v̇0 as in Eq. (6), the effect of external active
weight force can be observed i R̃i , and it is unnecessary
to count weight as an external force. Finally, equations of
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motion must be derived. These equations can be calculated
in Kane dynamics as follows:

Fr + ∗
F
r

= 0,

r = 1, 2, 3, 4.
(14)

By substituting r = 1, 2, 3 in Eq. (14), motor torques of
links 1, 2, 3 can be calculated and by substituting r = 4,
the active external torque τ0, exerted by the vehicle, can be
calculated. The result will be the same τ0 as that calculated
in Lagrange dynamics.

3. Inverse Kinematics
While this robot has 3D workspace, allowing for the
calculation of six variables, only three of the four variables
in joint space, including their first and second derivations,
can be calculated using inverse kinematics. Nevertheless, if
end-effector and redundant DOF kinematics are known, joint
variables of the manipulator, along with their derivations, can
be calculated. So, φ is considered as a redundant DOF and,
along with its derivations φ̇, φ̈, is assumed to be known.

It is assumed that the end-effector will travel at a constant
velocity on a straight line with cosine directions cα, cβ, cγ

related to the XS-, YS-, and ZS-axes, respectively. If the end-
effector position vector in the inertial coordinate system is
considered as �P = (Px, Py, Pz), the position and velocity
vector of the end-effector can be presented as follows:

�P =

⎧⎪⎨
⎪⎩

Px

Py

Pz

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

vtcα + Px0

vtcβ + Py0

vtcγ + Pz0

⎫⎪⎬
⎪⎭,

�v = v(cα, cβ, cγ ).

(15)

�P0 = (Px0, Py0, Pz0) represents the initial end-effector
position vector. First, θ1, θ2, θ3 must be calculated

S
T T = S

BT (φ)B0 T 0
1T (θ1)1

2T (θ2)2
3T (θ3)3

T T . (16)

Following Eq. (16), θ1, θ2, θ3 can be found through
Eqs. (17a)–(17d).

θ1 = a tan 2(cφPy + sφPz − sφz, −V t − e + Px), (17a)

c3 = {A − l1}2 + B2 − l2
2 − l2

3

2l2l3
⇒ θ3

= a tan 2
(

±
√

1 − c2
3, c3

)
, (17b)

θ2 = a tan 2
(
l3s3, −l3c3 − l2

) |←
−a tan 2

(
B,

√
l2
2 + l2

3 + 2l2l3c3 + l2
3s

2
3 − B2

)
,

(17c)

A = cφs1Py + sφs1Pz − sφs1z − c1V t − c1e + c1Px,

B = −sφPy + cφPz − cφz − c.
(17d)

The first and second derivations of θ1, θ2, θ3 can be found
by following equation:

⎧⎪⎨
⎪⎩

θ̇1

θ̇2

θ̇3

⎫⎪⎬
⎪⎭ = J−1 (θ1, θ2, θ3)

⎡
⎢⎣�v − ∂ �P

∂φ
φ̇ −

⎡
⎢⎣

V

0

0

⎤
⎥⎦
⎤
⎥⎦,

⎧⎪⎨
⎪⎩

θ̈1

θ̈2

θ̈3

⎫⎪⎬
⎪⎭ = J̇−1 (θ1, θ2, θ3)

⎡
⎢⎣�v − ∂ �P

∂φ
φ̇ −

⎡
⎢⎣

V

0

0

⎤
⎥⎦
⎤
⎥⎦+

J−1 (θ1, θ2, θ3)

[
�̇v − ∂ �P

∂φ
φ̈ − d

dt

(
∂ �P
∂φ

)
φ̇

]
.

(18)

J (the Jacobian matrix) is calculated as follows:

J = ∂ �P
∂(θ1, θ2, θ3)

. (19)

At this point, θ1, θ2, θ3 and their derivatives are known,
along with φ, φ̇, φ̈ as well as the position and velocity of the
end-effector.

By means of inverse kinematics, the robot determines
whether the end-effector can track a 3D curve or not. One
θ1 and two θ3 are derived from Eqs. (17a) and (b). By
substituting each of these two θ3 accompanied by a θ1 into
Eq. (17c), two θ2 values are derived. Only one of these two
θ2 values is valid for any determined θ3 and θ1. So, inverse
kinematics has two answers (elbow down and elbow up)

{
θ1, θ2(1), θ3(1),

θ1, θ2(2), θ3(2),
(20)

Sometimes cos(θ3) is not calculable so the end-effector
is out of the workspace. If θ3 is computable, θ2 should be
derivable by Eq. (17c). So, for a sequence of tracking points,
suitable joint angles are determined from Eq. (20).

4. Force–Angle Measure
Force–Angle measure utilizes robot geometry for estimating
stability in the best way and is confirmed by simulation and
practical operations.8

The net force and momentum, fr and nr , acting on the
center of mass that would contribute to tipover instability,
are given by

fr =
∑

(fgrav + fmanip + fdist − finertial) = −fsupport,

nr =
∑

(ngrav + nmanip + ndist − ninertial) = −nsupport.

(21)
This measure replaces all forces and torques with an

equivalent force (fr ) on the vehicle center of mass.
Components of this equivalent force (f ∗

i ) on the planes
perpendicular to the tipover axis make angles θi with li
vectors, which are normal to the tipover axis and pass through
the center of mass.

https://doi.org/10.1017/S0263574711000804 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000804


510 Dynamic modeling and stability optimization of a redundant mobile robot using a genetic algorithm

For each tipover axis, there is a stability measure such that

αi = θi ‖fr‖,
θi = σicos−1(f̂ ∗

i .Îi) i = {1, ....., n} − π ≤ θi ≤ π,

σi =
[
+1

(
Îi × f̂ ∗

i

)
.âi < 0

−1 otherwise

]
,

(22)

where Îi is the unit vector of the tipover axis normals, which
intersect at the vehicle’s center of mass. The overall Force–
Angle measure is a minimum of αi in all axes, thus critical
tipover stability occurs when θi = 0 or fr = 0. Critical
tipover stability occurs when α = 0. Negative values of α

indicate tipover instability.

5. Optimal Reconfiguration
The robot utilizes redundant DOF (φ) to keep the Force–
Angle stability measure at the maximum value and in the
stable margin. The GA calculates the optimal value of φ at
five separate times (t = n ∗total times/5, n = 1, 2, 3, 4, and
5). The range of variation of φ is −π/3 ≤ φ ≤ π/3.

Then, considering initial velocity and acceleration
constraints on the vehicle, a 7th-order polynomial is
computed to connect these five optimal φ-time points.
Derivatives of φ are obtained from the polynomial.
Then, inverse kinematics can calculate θ1, θ2, θ3 and their
derivatives. Now, we have all the variables for computing the
Force–Angle measure curve.

The maximum integral value of the Force–Angle measure
curve (fitness value) over time is the optimization criterion,
where the robot is stable at all times.

6. Genetic Algorithm Optimization
The GA is a global search heuristic and a class of evolutionary
algorithm, inspired by evolutionary biology to describe
such phenomena as inheritance, mutation, selection, and
crossover.

Heuristics are typically used to solve complex (large,
nonlinear, nonconvex, i.e., containing many local minima)
multivariate combinatorial optimization problems that are
difficult to solve to optimality. The most common heuristic
techniques are GAs, Simulated Annealing, Particle Swarm
Optimization, and Tabu Search. Simulated Annealing is, for
our purposes, an unsatisfactory approach. It cannot compute
the energy of all configurations, its design space often is too
large, and computation time for a single function evaluation
can be long.

The GA, on the other hand, is very suitable for our
purposes. It does not require derivative information or
other auxiliary knowledge. Only the objective function and
corresponding fitness levels influence the search.15 The GA
is very robust and stochastic; it needs little information about
the problem and is simple to implement.

To illustrate the principles of GA with a problem
from evolutionary biology, each individual has a number
of chromosomes (independent variables). The fitness
of individuals for survival (dependent variable) is the

Table II. Known and assumed geometric and kinematic
parameters of the mobile robot.

Parameter Value Parameter Value

e 0.1 m m3 0.2 Kg
c 0.1 m α π /6 rad
z 0.44 m β π /3 rad
L1 0.31 m γ π /2 rad
L2 0.42 m Px0 0 m
L3 0.25 m Py0 0 m
M 5 Kg Pz0 0.1 m
m1 0.1 Kg V 0.03 m/s
m2 0.3 Kg v 0.01 m/s

Table III. Incline and vehicle geometry.

z z0 xmc m n h β

0.44 m 0.3 m 0 m 0.5 m 0.3 m 1 m π /12 rad

optimization target, which is taken to improve through the
evolutionary process. For our sample optimization problem,
characteristics of the algorithm are

Population size = 20,
Chromosomes of individuals = 6,
Generations = 300,
Crossover fraction = variable between 0.5 to 0.8 for

finding overall optimum,
Crossover function: scattered,
Mutation function: mutation uniform,
Selection function: selection remainder,
Fitness scaling function: fit scaling shift linear.
The scattered crossover function creates a random binary

vector, selects the chromosomes where the vector is 1 from
the first parent, and the chromosomes where the vector is 0
from the second parent, and combines the chromosomes to
form the child. For example, if p1 and p2 are the parents

p1 = [φ11 φ12 φ13 φ14 φ15 φ16 φ17],

p2 = [φ21 φ22 φ23 φ24 φ25 φ26 φ27],
(23)

and random binary vector is assumed as [1 1 0 1 0 0 1],
then the child by neglecting mutation (crossover fraction =
1) will be [φ11 φ12 φ23 φ14 φ25 φ26 φ17].

Known and assumed geometric and kinematics parameters
of the mobile robot are shown in Table II. The GA finds six
optimum values of φ (t = n∗total times/5, n = 1, 2, 3, 4,
and 5) according to incline and vehicle geometry (Table III),
where α is inclined angle.

The result obtained through GA, shown in Fig. 5, gives the
optimum vehicle rolling versus time (φopt-time) diagram. The
φopt-time diagram is a 7th-order polynomial whose tangent
line at the starting point is a horizontal line in accordance
with initial constraints.

By assigning a higher number of individuals and a lower
number of generations to the GA, the results were shown in
Table IV.

It can be clearly seen that there is no great difference among
the final results irrespective of the number of generations and
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Table IV. The GA with a large number (> 20, and <60)
individuals and number of generations less than 250.

No. of generations 150 200 200 200 150
No. of indiviuals 50 40 30 25 20
Fitness value 6.234 6.279 6.283 6.224 6.224

ra
d

Time (s)

Fig. 5. (Colour online) Optimum vehicle rolling vs. time (φopt-time),
fitness value = 6.223.

Fig. 6. Block diagram of closed-loop linearized controller.

individuals and that the value corresponds closely to the best
fitness value.

7. Controller Design
The dynamics model of the manipulator is mathematically
nonlinear as follows:

τ = M(θ)θ̈ + V (θ, θ̇ ) + G(θ). (24)

Use of the robot inverse model requires the design of
a linearized controller. Nonlinear phrases in Eq. (24) are
neutralized by the inverse model. Thus, the controller block
diagram is considered to be as shown in Fig. 6.

According to Fig. 6,

τ = M(θ)τ ′ + V (θ, θ̇ ) + G(θ). (25)

Thus, the control law is given by

τ ′ = θ̈d + KvĖ + KpE,

E = θd − θ.
(26)

If Kv and Kp are considered as diagonal matrices, the error
equation in a closed-loop system transforms to independent

ra
d

Time (s)

–

E

E

E

E

Fig. 7. (Colour online) Servo error (E = θd − θ ) during simulation
time.

equations for each joint as follows:

ë + kvi ė + kpie = 0. (27)

This error equation can transform to a critical damping
differential equation using controller gains as follows:

kvi = 2
√

kpi. (28)

Following Eq. (24), the dynamical simulation of the mobile
robot closed-loop controller is modeled by the following
formulation:

θ̈ = M−1(θ)[τ − V (θ, θ̇ ) − G(θ)]. (29)

The initial conditions of the manipulator can be set in
integrator blocks such as

θ (0) = θ0,

θ̇ (0) = θ̇0.
(30)

Inverse kinematics has been exploited to transform end-
effector Cartesian space to joint space. Inputs for the
simulation are φopt and end-effector target line

kp =

⎡
⎢⎣

16 0 0

0 16 0

0 0 16

⎤
⎥⎦. (31)

Using the information in Table II and assuming controller
gains (Eq. 31), we simulated the robot from 0 to 10 s. The
components �E, �P , �v, �τ and the Force–Angle measure for
each tipover axis were calculated; their time histories are
presented in Figs. 7–12. Manipulator initial conditions are
adjusted in integrator blocks as follow:

θ(0) =

⎡
⎢⎣

0

2

3

⎤
⎥⎦ (rad), θ̇(0) =

⎡
⎢⎣

0

0

0

⎤
⎥⎦ (rad/s). (32)
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Time (s)

–

–

P
P

P
P

Fig. 8. (Colour online) End-effector position during simulation
time.

V
 (

m
/s

)

Time (s)

–

–

–

v
v
v

Fig. 9. (Colour online) End-effector velocity during simulation
time.

Time (s)

–

–

–

To
ur

q 
(N

m
)

Fig. 10. (Colour online) Torques exerted on actuators during
simulation time.

The robot was simulated using ADAMS (illustrated
in Fig. 13) for dynamic, kinematics, inverse kinematics,
optimization, and controller evaluation.

Time (s)

Fig. 11. (Colour online) Force–Angle measure around each tipover
axis during simulation time.

Time (s)

Fig. 12. (Colour online) Comparison of optimal stability with
stability of robot where its vehicle rolling function is φ =
−π/6 cos(πt/10).

Fig. 13. (Colour online) A sequence from the ADAMS robot
simulation.

8. Programming Points in MATLAB
When using symbolic MATLAB programming, the
following points must be considered.

First, structural arrays can be useful for saving vectors and
matrices containing symbolic parameters.

Second, MATLAB only has the function for calculating
the partial derivations, so for deriving the total derivation of
d
dt

, the following chain rule can be utilized:

d

dt
= ∂

∂θ1
θ̇1 + ∂

∂θ2
θ̇2 + ∂

∂θ3
θ̇3 + ∂

∂φ
φ̇ + ∂

∂θ̇1
θ̈1 + ∂

∂θ̇2
θ̈2

+ ∂

∂θ̇3
θ̈3 + ∂

∂φ̇
φ̈. (33)
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Third, in Kane dynamics active torques are not calculated
explicitly with respect to other variables, so for comparing
Newton–Euler, Lagrange, and Kane methods with each other,
it is necessary to calculate active torques explicitly with
respect to other variables by means of the SOLVE command.

Fourth, use of the SIMPLIFY command is necessary for
comparing symbolic active torques, which are derived via
different methods.

Fifth, s-function blocks help in simulating a swift
controller.

9. Discussion
In this section, we will first discuss our findings from
comparing the three dynamics methods we considered. Then,
we will discuss our findings concerning stability of this SSR.

9.1. Comparison of dynamics methods
Three dynamics methods can be programmed easily by
means of iterative algorithms. The Kane and Lagrange
algorithm could calculate active τ0 simply while this
calculation was not easily possible using Newton–Euler
dynamics. τ0 is very useful to model arms separately in
dynamical simulation software, such as ADAMS, and to
design the arm controller separately.

On the other hand, Newton–Euler was able to calculate
internal interactive forces (1f1) and torques (1n1). However,
when calculating these forces and torques in Kane dynamics,
one first needs to assume extra virtual DOF in internal
forces and torque locations, then assume these forces and
torques as active forces and torques before substituting
these extra DOFs with zero. These operations in Kane
dynamics cause disorder in the computer programming
because of fundamental changes in kinematics, definition of
extra coordinates, increase in loops, and substitution of zero
for extra variables. Therefore, we propose that Newton–Euler
dynamics is a superior method for calculations of internal
forces and torques.

Each dynamics has its own special characteristics, so each
one can be separately useful in analyzing a mobile manipu-
lator, so it is advisable to use all methods for this analysis.

9.2. Stability of the improved SSR
Determination for the conditions enabling maintenance of
optimum Force–Angle measure stability of the robot by
means of a closed-loop controller was another objective of
this research.

Figure 7 indicates that the settling time is 1.6 s with no
steady-state error and low overshoot. Figure 8 shows that the
end-effector as required can move along a line after passing
1.6 s, as expected. Figure 9 shows that, as expected, the
velocity became constant after 1.6 s. Figure 10, showing
motor torques, demonstrates that KP controller gain can
be chosen logically in such a way that torques will be
within the motor’s power range. Figure 11 shows the Force–
Angle measure for each tipover axis. After 1.5 s, the Force–
Angle measure becomes linear, indicating that the effects of
interactive forces and torques become more important than
weight effects. This seems logical because after 1.5 s the
motor torques decrease and become linear and the controller
is on its own steady state.

Furthermore, Fig. 11 shows that the Force–Angle measure
is always positive in Eq. (22), indicating that the robot
remains stable. The measurement of 0.4 rad (23◦) from the
instability margin indicates that the possibility of a tire rising
from terrain level is low, which accounts for the vehicle’s
ability to maintain its mobility and maneuverability. Figure
12 compares optimum stability with an assumed vehicle
rolling function. The φopt initial velocity and acceleration
is not the same as the nonoptimal φ. Initial conditions
determine only the initial stability margin. The stability
margin of φopt greater than nonoptimal φ at all times except
zero.

Optimization of the overall stability margin (in this case,
the overall stability margin is axis 1) affects the stability
margin optimization over axis 3. Sometimes, the overall
stability margin could be a combination of that of axis 1
and that of axis 3.

The source of primary stability margin fluctuation in
all tipover axes (see Fig. 11) is intensive motor torques
in transient time. The controller exerts transient intensive
torques at the beginning of movement, which creates very
large interactive forces and torques between vehicle and
manipulator to lead the end-effector to the target line as soon
as possible. These torques transfer to the vehicle and cause
instability.

As KP increases, servo error quickly becomes zero.
However, motor torques exceed the motor’s power range.
Two factors threaten vehicle stability at initiation of
movement: first, when the measure becomes negative, then
tipping over will occur, and second, the resulting short
distance from the instability margin reduces mobility due
to the reduction in, and even elimination of, friction of
tires.

In terms of stability, mobility, and motor power range,
according to the inverse model, the linearized controller,
simulated by means of symbolic solution, appears able to
control robot path tracking in various terrain conditions with
high stability.

10. Conclusion
This research has presented an improved SRR mobile robot
designed using iterative Kane and Lagrange dynamics.
Vehicle redundant DOF was used via the GA in the
optimization of the Force–Angle stability measure. The
linearized controller simulated by MATLAB and ADAMS
simulation was used for dynamics and controller evaluation.
In terms of stability, mobility, and motor power range,
according to the inverse model, the linearized controller
appears able to control the robot path tracking in various
terrain conditions with high stability.
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Appendix

Fig. 14. Algorithm-level block diagram.
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