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Numerical analysis of bluff body wakes under
periodic open-loop control
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Large eddy simulations at Re = 23 000 are used to investigate the drag on a two-
dimensional elongated cylinder caused by rear-edge periodic actuation, with particular
focus on an optimum open-loop configuration. The 3.64 (length/thickness) aspect-ratio
cylinder has a rectangular cross-section with rounded leading corners, representing
the two-dimensional cross-section of the now generic Ahmed-body geometry. The
simulations show that the optimum drag reduction occurs in the forcing Strouhal
number range of 0.09 6 Stact 6 0.135, which is approximately half of the Strouhal
number corresponding to shedding of von Kármán vortices into the wake for the
natural case. This result agrees well with recent experiments of Henning et al. (Active
Flow Control, vol. 95, 2007, pp. 369–390). A thorough transient wake analysis
employing dynamic mode decomposition is conducted for all cases, with special
attention paid to the Koopman modes of the wake flow and vortex progression
downstream. Two modes are found to coexist in all cases, the superimposition of
which recovers the majority of features observed in the flow. Symmetric vortex
shedding in the near wake, which effectively extends the mean recirculation bubble,
is shown to be the major mechanism in lowering the drag. This is associated with
opposite-signed vortices reducing the influence of natural vortex shedding, resulting
in an increase in the pressure in the near wake, while the characteristic wake
antisymmetry returns further downstream. Lower-frequency actuation is shown to
create larger near-wake symmetric vortices, which improves the effectiveness of this
process.

Key words: drag reduction, instability control, vortex shedding

1. Introduction
The drag experienced by ground vehicles can be substantially reduced through

aerodynamically favourable geometric modifications during the design process.
However, for the heavy class of ground vehicles, where storage space is paramount
(truck-trailers, buses, etc.), the geometric alterations possible are severely limited.
Alternative strategies in reducing the drag of such vehicles are therefore being
explored, with the area of active flow control showing considerable promise.

The usual goal of bluff body flow control directed at minimizing drag is to
manipulate the wake behind the body in such a way that the base pressure is increased.
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Passive solutions such as three-dimensional (3D) geometric modification near the rear
separation point on two-dimensional (2D) bluff bodies have proved successful at low
Reynolds numbers, with the normally 2D shear layers becoming more 3D and less
prone to rolling up to form the characteristic von Kármán vortex street (Tanner (1972),
Rodriguez (1991) and Petrusma & Gai (1994)). However, these passive methods are
less successful as the Reynolds number is increased and 3D effects such as oblique
shedding and vortex dislocation begin to appear at random locations along the span
(summarized eloquently in Tombazis & Bearman 1997). Furthermore, away from the
ideal conditions of the laboratory, those approaches are unable to deal with external
effects such as gusts and high upstream turbulence, which apply in practical situations.
Time-periodic 2D forcing reduces the first problem by actively targeting the absolute
and convective 2D instabilities in the wake (the Strouhal or shear-layer instabilities),
reducing the role of 3D instabilities in the global wake development. The second
problem can be tackled with closed-loop control, where real-time measurements of
the flow can be actively fed back to actuators controlling their output to modify
the downstream flow. While closed-loop control provides the promise of substantial
drag reduction, potentially with low levels of actuation, a better understanding of
open-loop control methods represents a natural precursor step. This paper explores the
performance of an open-loop control approach based on sinusoidal forcing at the rear
edges of a 2D elongated cylinder with the same cross-section as a flat-back Ahmed
body (Ahmed & Ramm 1984), effectively a simplified 2D model with some broad
features of a truck cross-section. Of course, trucks are fully 3D, with geometrical
complexity, ground plane proximity and 3D flows including drag-inducing trailing
vortices originating close to the trailing-face corners. This paper focuses on one of
the wake flow components contributing to variations in the drag, i.e. the rollup of the
separating shear layers from the top and bottom edges into large-scale (predominantly
2D) vortices, which form a von Kármán wake.

Pioneering experiments were performed by Bearman (1967), who applied base bleed
(steady blowing from the rear face) on a flat-back Ahmed body and found that the
drag reduced by a third with a large enough bleed. This effect was not surprising
considering his analysis of the base flow, which suggested that the vortex formation
length (controlled with splitter plates) was a function of base pressure. Effectively, the
substantial base bleed pushes the formation length of the wake vortices further from
the rear, increasing the base pressure.

Zero-net-mass-flux (ZNMF) actuation at high frequencies has been successfully
employed to delay separation of flow over such shapes as circular cylinders and stalled
aerofoils, a thorough summary of which is provided by Glezer (2011). A similar
technique has also been successfully applied to heavy vehicles with rear flaps, with
ZNMF applied just upstream of the flap delaying separation, allowing for a greater
angle of flap to be used and thus minimizing the wake area (Nishri & Wygnanski
1998; Hsu, Hammache & Browand 2002). However, for bluff bodies with fixed blunt-
trailing edges (this is unavoidable in many countries, where road regulations do not
allow for the installation of rear flaps), this mechanism of drag reduction is clearly not
possible.

Henning et al. (2007) was the first to attempt ZNMF actuation for a 2D blunt
trailing-edge body (with an Ahmed body front). Their goal was to delay the evolution
of the wake instability by enhancing the initial symmetry of the wake, and thus
raising base pressure. This is achieved by increasing the amplitude of the convective
shear-layer instability at the rear top and bottom edges, minimizing the influence of
smaller natural perturbations so that the shear layers can resist forming a von Kármán
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vortex street. The same authors (Pastoor et al. 2008) later explained their rationale
for exploring this mechanism of drag reduction in particular, compared with three
other active methods of attenuating the wake instability presented (direct opposition
control of vortices, high-frequency forcing to diminish large-scale vortex formations,
and 3D forcing to break large-scale vortex formations): the synchronous shedding
method is the most tunable and cheapest to implement, allowing for the greatest
closed-loop potential. In the two papers, they analyse the effectiveness of the technique
for Reynolds numbers in the range 23 000 6 ReH 6 70 000, and in the latter analyse
the mechanism further via a vortex model. Here the Reynolds number is defined as
ReH = U∞H/ν, where ν is the kinematic viscosity, U∞ is the corrected free-stream
fluid speed and H is the height of the body. The experiments were performed in
a wind tunnel, and specifically examined the drag reduction as a function of the
actuation Strouhal number given by Stact = factH/U∞, with fact the applied frequency
of the actuation. They found that the drag reduction process was most effective
between actuation frequencies of Stact = 0.10 and Stact = 0.20, with an optimum
close to Stact = 0.15. The higher actuation frequencies, successful for other shapes
as discussed, proved less effective: the vortices at these frequencies are too small and,
while still shed synchronously, are unable to attenuate the larger alternating structures
in the near wake. While Pastoor et al. (2008) features the same set of results as
Henning et al. (2007), the former appears to have corrected the results for blockage.
Thus, in the following comparisons with this body of work, we will make reference to
the Pastoor et al. (2008) paper.

More recently, Krajnovic & Fernandes (2011) examined the flow using large eddy
simulation (LES), with the numerical domain and boundary conditions chosen as close
as possible to the physical experiments, in order to try to reproduce the experimental
result for a single Strouhal number. They achieved relatively good agreement, and
observed the synchronous-shedding mechanism. Chiekh et al. (2013) conducted a
proper orthogonal decomposition analysis of a similar flow, showing a significant
redistribution of the energy among the mean flow and lower order modes takes place.
However, the experiments were done at ReH = 7100, and the body had an aspect ratio
an order of magnitude larger than that used by the aforementioned studies, yielding a
significantly lower boundary layer thickness at separation.

Some goals of this work are to better understand how the forcing influences the
flow dynamics in the near wake, leading to increased base pressures, and why it is
frequencies lower than the Strouhal frequency that are most effective. The resolved
time-dependent numerical simulations capture the velocity and pressure fields as a
function of time, and hence can substantially supplement the limited information
available from the physical experiments of Pastoor et al. (2008) and vortex model
analysis of Pastoor et al. (2008), providing substantially more insight into the
underlying flow physics, such as the modes in the flow (to be analysed through
dynamic mode decomposition).

This paper is organized as follows. In § 2 the flow problem is defined and the
numerical method is discussed. This is a flow with a fully turbulent wake, although at
a reasonably low Reynolds number; even so, considerable effort is expended to ensure
that the mesh is sufficiently fine to capture the essential flow physics and the model
is capable of quantitative predictions. This is done both through grid resolution studies
and comparisons with results from previous experiments and simulations. Following
this, in § 3, the results are presented and discussed. A main analysis tool is dynamic
mode decomposition, so the theory is briefly reviewed before it is used to explore
the differences in the wakes of the high and low drag cases. Drag predictions are
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FIGURE 1. Sketch of the 3D flow domain showing the problem setup. The cylinder consists
of an elongated rectangle with rounded leading edges, consistent with the Ahmed body
geometry. The aspect ratio is L/H = 3.64. The computational domain dimensions are
X1 = 6.61H, X2 = 24.47H and C = 7.71H. The domain extends into the third dimension
by a distance of W = 1.74H.

presented and compared with experimental results, and the wake formation length,
which is directly related to the drag, is quantified. The paper concludes with a review
of the main findings and implications.

2. Methodology
2.1. Problem definition and computational domain considerations

The problem setup is shown in figure 1. The body consists of a rectangular cylinder
with rounded leading edges, equivalent to a cross-section through an Ahmed body,
which has become a standard model geometry to investigate some generic aspects
of automobile aerodynamics. The same cross-sectional dimensions and geometry have
been used in the experimental study by Pastoor et al. (2008) and the numerical study
of Krajnovic & Fernandes (2011). For the experiments of Pastoor et al. (2008), the
body extended across the entire working section of the tunnel, giving a width of
W = 7.64H. The numerical study of Krajnovic & Fernandes (2011) used the same
setup with the cylinder extending to the no-slip computational tunnel walls. The setup
here is slightly different, with a free-slip condition applied at all domain boundaries
(including the spanwise), in an attempt to reduce the otherwise substantial end effects.
Care was taken in setting the spanwise width and the spanwise resolution, to properly
capture the spanwise flow scales. To test the influence of the former, the width of
model used was progressively halved from a width of 6.96H to 0.87H. The solution
differed significantly between the cases W = 1.74H and W = 0.87H, but negligible
changes were observed for W > 1.74. The final spanwise dimension was therefore
chosen as 1.74H. The details of the spanwise resolution are given in § 2.2.

Apart from this difference, the two previous studies incorporated legs supporting the
cylinder, even though it was placed on the centreplane of the tunnel. Finally, they also
incorporated tapes just downstream of the leading edges, to trip the boundary layer. As
suggested by Krajnovic & Fernandes (2011) and in previous related studies of Cooper
(1985), transition was found to occur naturally at Re = 20 000 for this geometry, so
tapes were not employed here. It was verified that this was indeed the case.

Whilst Pastoor et al. (2008) only applied actuation across the middle section of
the rear edges, and this was duplicated by Krajnovic & Fernandes (2011) in their
numerical study (as they were attempting to duplicate the experimental setup as closely
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as possible), they both recommended actuation across the entire span. The aim here
is to model a 2D body without end effects. As such, actuation is applied uniformly
across the entire span.

One aim of this study is to quantify the drag reduction as a function of the actuation
control parameters to compare to experimental findings. The two governing parameters
are the forcing frequency of actuation, Stact, and the actuation amplitude, quantified
here through the momentum coefficient

Cµ = Na
S

H

u2
act

U2∞
, (2.1)

where Na is the number of actuators, S is the slot width (1/72H for all slots) and
uact is the r.m.s. value of the actuation velocity signal g(t) = A sin(2πfactt) (where A
is the actual actuation amplitude). As used by Krajnovic & Fernandes (2011), four
slots are employed at the trailing-edge corners: one on the top surface, one on the
bottom surface and two on the rear face). Actuation from the upper and lower surface
slots is perpendicular to the flow, whilst actuation from the rear face slots is directed
parallel to the flow. Ideally the actuation amplitude would be as small as possible,
but in practice a moderate amplitude forcing is required to significantly influence the
turbulent flow. For the actuation frequency sweep, A is fixed at 2.62 m s−1 (0.53U∞),
giving Cµ = 0.008. This is comfortably above the saturation value of 0.006 found
by Pastoor et al. (2008) above which no further drag reduction was achieved (this
is revisited briefly at the conclusion of the discussion section). Pastoor et al. (2008)
showed minimal Reynolds number effects over the range ReH = 23 000–70 000. The
Reynolds number is therefore chosen to be fixed at ReH = 23 000, allowing for
comparison with the experimental results while requiring the lowest mesh resolution
possible.

2.2. Mesh generation and time step selection
A key issue with simulations involving actuation is the high ratio of fluid speed to
inlet velocity in the narrow actuated regions. Care must therefore be taken to resolve
the flow gradients around these areas, in addition to resolving the boundary and
shear layers, and the near-wake region, by also concentrating the mesh points near
the slots. Furthermore, dimensionless wall element dimensions need to be kept within
an acceptable range to produce accurate predictions. The mesh shown in figure 2
was developed in accordance with the dimensionless wall value recommendations of
Krajnovic (2009). It consists of 7 600 600 elements and features dimensionless wall
values 1x+ ≈ 10–20,1y+ ≈ 1–4,1z+ ≈ 5–50. While the effect of the 1y+ value is
well documented, the importance of 1z+ should not be overlooked. Initial simulations
run at a lower spanwise resolution yielded vastly different flow statistics to the higher
spanwise resolution case, with stronger 2D vortex shedding and a much higher mean
drag coefficient.

A grid resolution study was completed with three different relative mesh sizings for
natural flow over the streamlined front nose body (and free-slip boundaries). Table 1
summarizes the change in mean drag force and Strouhal number for each mesh sizing,
and gives more information on the resolution in the wake (defined here as the box
behind the body encompassing 0 < X/H < 1.4,−1 < Y/H < 1 and 0 < Z/W < 1),
the boundary layer and across the slots. The statistics show that increasing the mesh
resolution further would likely have negligible impact on both the Strouhal number
and mean drag coefficient returned, and limited impact on the spanwise and time-
averaged wake velocity profile.
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(a)
(b)

FIGURE 2. (a) Cross-section of the mesh in the vicinity of the rear surface. This 2D mesh
was swept 70 elements into the spanwise (z) direction. (b) Location of the actuator slots near
the top right trailing-edge corner and the mesh density in their vicinity. Slots are 1/72H wide.

NTOTAL Wake nx ny nz nBL nslot CD,0 St εu/U∞ (%) εv/U∞ (%)
N

2 420 000 175 000 72 58 42 22 5 0.60 0.25 1.4 4.9
5 280 000 490 000 96 76 56 34 6 0.72 0.22 0.2 0.1
7 600 000a 806 000 120 96 70 44 8 0.72 0.22 — —

TABLE 1. Predicted mean drag (CD,0) and Strouhal number (St) from the grid resolution
study for the natural flow. The a indicates the final mesh used. All statistics are taken
from t = 1.0–2.5 s of flow (approximately 100 non-dimensional time units or ∼25 natural
shedding cycles). N refers to the number of nodes in a volume, while n refers to the
number of nodes across a one-dimensional boundary. nBL refers to the number of mesh
rows spanning the boundary layer halfway along the body (calculated a posteriori). Here,
εu/U∞ and εv/U∞ refer to the mean error of the streamwise and vertical time-averaged
velocity profiles, respectively, at X = H downstream of the rear face. Windowing was not
used for the quoted St.

A time step of 1t = 1× 10−4 s was selected: a time step resolution analysis showed
that a larger time step of 1t = 2 × 10−4 s produced a substantially lower mean drag
and lower peaks in the drag spectra, whilst the smaller 1t = 5× 10−5 s showed a very
slight decrease in drag (∼1 %) but otherwise negligible changes. The chosen time step
gives a non-dimensional time step of 0.0058, which corresponds to approximately 800
time steps per shedding period. Further quantification of this time resolution study are
presented in table 2.

The large eddy simulations were run using the element-based finite-volume (FV)
commercial code ANSYS CFX based on the standard Smagorinsky subgrid model.
Quantities at the face between two control volumes are approximated from nodal
values via shape functions for the non-advection terms. For the advection term a
blended scheme is used. This uses a weighted combination of a first-order and second-
order scheme: when the blend factor (β) is zero the scheme is first-order, and when
it is set to one, the scheme is second-order accurate. In this work, as with Krajnovic
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FIGURE 3. Spanwise and time-averaged velocity profiles at X = H downstream of the rear
face: (a) horizontal velocity and (b) vertical velocity. The thick solid line represents the fine
mesh (the final mesh used), the thin solid line the medium mesh, and the dashed line the
coarse mesh. Crosses represent experimental results of Pastoor et al. (2008).

Time step CD,0 St εu/U∞ (%) εv/U∞ (%)

5× 10−5 0.71 0.22 — —
1× 10−4a 0.72 0.22 0.1 0
2× 10−4 0.66 0.23 0.4 0.1

TABLE 2. Predicted mean drag (CD,0) and Strouhal number (St) from the time resolution
study for the natural flow. The a indicates the final time step used. These statistics were
extracted using approximately 80 non-dimensional time units. Windowing was not used for
the quoted St.

& Fernandes (2011), β = 1 is chosen, returning second-order accuracy in space. The
diffusion and pressure gradient terms are also calculated from shape functions, and are
second-order.

The second-order (iterative) backward Euler-type scheme was used for temporal
discretization.

In line with the standard LES approach, the implicit LES technique in CFX filters
out eddies smaller than the grid spacing, resolving the larger structures, which contain
the bulk of energy in the flow. However, energy needs to be removed from the
resolved scales such that the energy cascade is appropriately mimicked, and this is
the job of the subgrid model. The standard Smagorinsky model is an eddy viscosity
model, which works on the molecular transport analogy to relate the subgrid stresses
to the rate of strain in the fluid via an eddy viscosity νt, and they are able to remove
an appropriate amount of flow energy with proper case-to-case modification. The
Smagorinsky model leans on the assumption that the small scales are in equilibrium
and dissipate all energy received from larger scales instantaneously, i.e. there is no
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Turbulence model CD,0 St P{Stact} εu/U∞ (%) εv/U∞ (%)

Smagorinskya 0.72 0.22 — — —
Dynamic 0.69 0.23 — 0.7 0.3
Smagorinsky (actuation)a 0.62 0.19 0.011 — —
Dynamic (actuation) 0.60 0.19 0.012 0.7 1.0

TABLE 3. Predicted mean drag (CD,0) and Strouhal number (St) for both turbulence models
tested. The a indicates the final model used. All statistics taken over approximately 80
non-dimensional time units. Actuation case tested: Stact = 0.19. P{Stact} is the magnitude
of the drag spectra peak at the actuation frequency. Windowing was not used for the
quoted St.

back scatter. The eddy viscosity is therefore approximated simply as νt = (Cs∆̄)
2|S̄|S̄ij,

where Cs is the specified Smagorinsky coefficient, S̄ ≡√
2SijSij (where Sij is the large-

scale strain rate tensor) and the grid length ∆̄ is approximated as the cube root of the
element volume. Cs was held constant at 0.1, a value leading to moderate damping of
the subgrid eddy viscosity dissipation and often used for bluff body flows. This was
also used in the Krajnovic & Fernandes (2011) study, and due to good agreement with
experimental results (discussed in § 2.3) was chosen as the model for this study. The
results for the natural flow case and one actuation case were also compared with the
dynamic Smagorinsky model (table 3), which improves on the standard Smagorinsky
model by dynamically adjusting Cs using the idea of scale-similarity, which allows
the subgrid scales to be modelled from information in the resolved velocity field
(Germano et al. 1991; Lilly 1992) – although for anisotropic grids and complex
geometries, results have been known to vary (Scotti, Meneveau & Fatica 1997). For
the natural case the drag coefficient and Strouhal number are within 5 % of the
Smagorinsky model values. The velocity profiles also show good agreement, with a
slight improvement in the shear-layer regions. Under actuation, a near-identical drag
reduction (within 1 %) was returned compared with the standard Smagorinsky case,
with differences in wake velocity profiles also negligible. The similar performance of
the two models is most likely due to the Cs of 0.1 chosen for the Smagorinsky model:
for the dynamic model, the mean Cs values in the shear layers were also around 0.1.
It also appears that under actuation, where the flow is artificially regulated in the
shear regions, the differences between the models appear to be minimized. These a
posteriori comparisons, along with the original validation against experimental data,
indicate that the Smagorinsky model is an acceptable choice, but also show that the
dynamic model is capable of replicating the experimental results well for this type of
flow.

2.3. Validation
Table 4 summarizes the results of the relevant studies previously discussed in the
Introduction. It should be noted that the domain size and boundary conditions are not
consistent from study to study. The experimental study of Bearman (1967) featured
a blockage ratio of 3 % (with no blockage correction applied), whilst the studies of
Pastoor et al. (2008) and Krajnovic & Fernandes (2011) featured 13 % blockage, as
was the case here (no blockage correction was applied in the Krajnovic study). The
non-dimensional numbers in this paper (ReH , St, CD, CL, CP and Cµ) were calculated
using the corrected free-stream velocity U∞ = U

√
Bc, where U is the inlet velocity
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Study (year) Method ReH CD,0 CP,0 St Bc θ

Bearman (1967) Exp. 41 000 — −0.57 0.24 1.03 0.017
Park et al. (2006) Exp. 40 000 — −0.55 0.25 — 0.017
Pastoor et al. (2008) Exp. 23 000 0.89 −0.53 0.23 1.32 0.017
Krajnovic & Fernandes (2011)a Num. 23 000 0.77 — 0.27 1.32 —
Current studyb Num. 23 000 0.72 −0.53 0.22 1.27 0.019

TABLE 4. Comparison of natural flow results over a D-shaped bluff body. Entries above
the horizontal line are included as an extra point of comparison, but feature slightly
different geometries and experimental setups. a blockage correction has been applied by the
present author, b mounts and no-slip domain walls not modelled.

and Bc is the blockage correction factor applied. Due to weak leading-edge separation,
Bc was calculated using the general approach for bluff bodies in closed test section
wind tunnels described by Hackett, Wilsden & Lilley (1979), as opposed to other
techniques (such as that described by Mercker 1986), which are designed for cases
with no leading-edge separation.

Furthermore, this study employs free-slip domain walls to remove the effect of
sidewall boundary layers, compared with no-slip walls used in the studies of Pastoor
et al. (2008) and Krajnovic & Fernandes (2011). This choice was dictated by the
desire to reduce contamination of the wake from wall-junction flow structures, which,
in turn, substantially influence mean lift and drag, so that the predictions here are more
applicable to the infinite 2D cylinder case. Thus global measures, such as the mean
drag (per unit width), may not be directly applicable between studies, but predictions
for the centre plane, i.e. the base pressure coefficient (CP,0) and the Strouhal number,
provide a more relevant comparison. Here the agreement with the experimental results
of Pastoor et al. (2008) for both the base pressure coefficient and Strouhal number is
very good (within 5 % for both parameters).

The spanwise averaged wake velocity profiles for both natural (figure 4) and
actuated (figure 5) cases show good agreement with Henning et al. (2007) and
Krajnovic & Fernandes (2011). However, for both natural and actuated cases, the
horizontal velocity profile shows a slightly lower velocity outside the wake than
observed in the previous studies. This is most likely due to the top and bottom
free-slip boundaries employed here, as simulations run at lower mesh resolutions with
no-slip boundaries, matching the setup of the two previous studies, showed a similar
increase in the flow speed as the outer flow approached the body. For the actuation
case the peak vertical velocity at the edge of the wake is under-predicted, by both this
study and Krajnovic & Fernandes (2011). The vertical velocity in the wake, however,
agrees extremely well with the experiments.

The boundary layer momentum thickness θ at X/H = −0.01 compares well with
previous experimental results. Even so, the effect of the boundary layer has not been
analysed in great detail in the previous works. Pastoor et al. (2008) indicated that
leading-edge separation occurred at ReH = 23 000, but not at higher Reynolds numbers.
That the actuation remained effective despite this change in the flow over the leading
edge suggests that the boundary layer characteristics have little impact on the drag
reduction mechanism.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

61
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.618


Periodic actuation of bluff body wakes 103

–0.5

0

0.5

0.50 0

(a) (b)

–0.25 0.25–0.25 1.25
–1.0

1.0

FIGURE 4. Unforced flow velocity profiles: comparison of the present study (solid line),
Krajnovic’s LES (2011) (circles) and Henning’s PIV (2007) (crosses) at X = H downstream
of the rear face: (a) horizontal velocity and (b) vertical velocity. The prediction accuracy at
other downstream locations is similar.
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FIGURE 5. Actuated flow velocity profiles: comparison of the present study (solid line),
Krajnovic’s LES (2011) (circles) and Henning’s PIV (2007) (crosses) at X = 0.5H
downstream of the rear face: (a) horizontal velocity and (b) vertical velocity. The prediction
accuracy at other downstream locations is similar.

3. Results and discussion
3.1. Natural flow: lift and drag

The natural flow is characterized by weak separation over the leading edge with
predominately spanwise aligned coherent flow structures forming as the flow convects
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FIGURE 6. (Colour online) A snapshot of a perspective view of the instantaneous absolute
spanwise vorticity for the natural flow over the body at ReH = 23 000. The flow is
characterized by separation at the leading edges to form turbulent boundary layers,
which separate at the rear edges to form a von Kármán wake further downstream. The
red–white–blue colour map depicts spanwise vorticity from high to low levels (in black and
white the darker regions indicate areas of greater spanwise vorticity magnitude).

towards the trailing edge, as shown in figure 6. An absolute instability in the wake
(Huerre & Monkewitz 1990) results in large-scale von Kármán shedding from the rear
separation points. While this shedding is 2D, the wake shows considerable 3D motion
at smaller scales. The lift and drag coefficient history are shown in figure 7 together
with power spectra for both signals at the right-hand side of the figure. Analysis using
many periods of shedding are required before strong spectral peaks can be observed
in the lift and, especially, the drag power spectra. The dominant lift frequency varies
between St = 0.22∼0.23, depending on the window used. A second peak occurs at
St = 0.15. While a secondary peak at a similar frequency has been observed in 3D
blunt trailing-edge flows (summarized in Grandemange, Gohlke & Cadot 2013), this
has not been reported in the previous 2D studies. However, there also appears to be a
low-frequency instability in the flow, which, although difficult to pick up with spectral
analysis, can be seen in the alternating periods of lower and higher fluctuations in the
lift and drag signals. It appears that this is related to the circular cylinder findings
of Lehmkuhl et al. (2000), who attribute a low-frequency instability to shrinkage
and enlargement of the recirculation zone. This can be seen as two different modes
of wake configuration: a high-energy mode with larger shear-layer fluctuations and
shorter recirculation region, and a low-energy mode with smaller fluctuations and
longer recirculation zone. Here we observe an average recirculation zone of 1.1H in
the low-energy mode (for example, between t ≡ 70–90 in figure 7) and 0.8H in the
high-energy mode (between t ≡ 90–110.) This mechanism has yet to be explained.

Windowing was used to arrive at a final natural Strouhal number. The drag and
lift signals were split into multiple windows of 30 non-dimensional time units, with
fast Fourier transforms applied over each. For the majority of sample windows the
dominant spectral peak occurs at St = 0.44 for the drag signal and St = 0.22 for the
lift signal. (The drag peak frequency is double the lift peak frequency because each
drag signal period represents one shed vortex, while each lift signal period represents
two). While occasional periods of slightly higher shedding frequency are observed, we
conclude that the predicted natural Strouhal number is 0.22, in good agreement with
the experimental value obtained by Pastoor et al. (2008) of 0.23.
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FIGURE 7. (a) Time history of drag (thick line) and lift (thin line) signals for natural flow,
and (b,c) the frequency spectrum for each signal. The drag spectra amplitude (b) is displayed
at a scale two orders of magnitude lower than the lift spectra amplitude (c). The lift signal
returns a much clearer peak at the natural frequency than the drag signal.
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FIGURE 8. (Colour online) Reynolds stress averages along the centreplane in the wake:
(a 〈u′u′〉/U2

c , (b) 〈v′v′〉/U2
c , (c) 〈u′v′〉/U2

c . Dashed contour lines indicate negative magnitudes.
The thick line indicates the separatrix (mean separation line).

3.2. Natural flow: wake structures

The normal Reynolds stress components are shown in figure 8. The normal cross-flow
stress 〈v′v′〉 is by far the highest component in this case, peaking in the centre wake
around X/H = 1 behind the rear face at the edge of the recirculation regions. The peak
streamwise normal fluctuations 〈u′u′〉 occur in the centre of the recirculation region at
approximately X/H = 0.5. The spanwise fluctuations 〈w′w′〉, by comparison, are less
substantial. The shear stresses involving w′ are also negligible.

The shear-stress 〈u′v′〉 plot reveals two distinct zones – one inside the recirculation
region and one outside. The Reynolds stresses in the wake contribute to the
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FIGURE 9. (Colour online) (a) Time-averaged pressure coefficient along the centreplane in
the wake, and (b) on the rear base surface over 0.1< Z/W < 0.9. The thick line represents the
separatrix.

equilibrium of the recirculation region – thus, where 〈u′v′〉 is zero approximates the
mean recirculation boundary.

The time-averaged rear base pressure profile, which can be thought of as an
‘output’ parameter of the wake activity and directly responsible for drag, is shown
in figure 9(b) (the outer edges 0 < X/H < 0.1 and 0.9 < X/H < 1, where mild end
effects occur, are not shown). The pressure is shown to be slightly higher at the upper
and lower edges, and relatively uniform over −0.3 < Y/H < 0.3. This pressure profile
is dependent on the wake pressure profile (figure 9a). The minimum pressure occurs
at the centre of each recirculation region – slightly above and below the centreline
Y/H = 0, at X/H ≈ 0.5). It is clear that, by increasing this minimum wake pressure
and/or pushing its location further downstream, the rear base pressure will increase.

To analyse the wake further in terms of the dominant wake flow structures,
a dynamic mode decomposition (DMD) was performed on the 2D velocity flow
fields obtained at regular time intervals from the midplane of the wake. Dynamic
mode decomposition was introduced by Rowley et al. (2009) and Schmid (2010),
with further applications for fluid dynamics outlined in Schmid (2011) and Mezic
(2013). The theoretical basis of this method is detailed in those papers, so only
a brief outline of some important points will be given here. The process involves
decomposing the flow into time-varying periodic spatial modes. The technique works
on the assumption that each progressive flow field snapshot xk is related by a
matrix K , a finite-dimensional approximation of the Koopman operator, such that
xk+1 = Kxk. The eigenvalues and eigenvectors of K represent the modes in the flow,
and are separated by the motion frequency of each structure, as opposed to proper
orthogonal decomposition (POD), which separates the modes from spatial information.
Perhaps most importantly, for periodic data, the analysis is equivalent to a spectral
decomposition, and presumably effectively close to spectral decomposition when the
data are not strictly periodic. However, for growing or decaying instabilities, it can
potentially isolate and localize the instability modes. Thus, the analysis produces a set
of modes, each with its own growth rate and frequency. If the time sequence analysed
has reached a statistically steady state, which is assumed here, then the growth rates
of the modes should approach zero. The analysis also provides the amplitudes of
each of the modes contributing to the original data set, thus allowing a low-order
reconstruction of the data. In practice, care must be taken with the time-increment
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between samples together with the total sampling time, just as is the case for standard
spectral analysis of a time series. From a practical point of view, perhaps the most
important result is that the m system snapshots (e.g. the set of velocity fields at
times tk), xk, can be reconstructed from the complex eigenvalues, λi, and complex
eigenvectors or modes, vi (commonly called Ritz values and vectors, respectively), by

[x0 x1 · · · xm−1 ] = [v1 v2 · · · vm ]


1 λ1 λ2

1 · · · λm−1
1

1 λ2 λ2
2 · · · λm−1

2
...

...
. . .

1 λm λ2
m · · · λm−1

m

 . (3.1)

Thus the contribution from each DMD mode vj to the snapshot xk at time tk is
obtained by multiplying the mode by λk−1

j , with the amplitude of λk−1
j giving the

amplitude multiplier, and the phase specifying the oscillation frequency. More details
are given in Rowley et al. (2009). In general, the procedure used here follows the
method described in Schmid (2010), and more information can be found therein.

DMD was applied to the natural flow spanwise averaged velocity fields over
0 < X/H < 4 and −1 < Y/H < 1 (divided into a grid with 20 000 measurement
locations and 1x =1y = 0.02H), with the number of samples m = 117, which covers
a period of nine complete vortex shedding cycles. The time between each sample
was 1ts = 0.005 s, equating to approximately 13 samples per shedding period. It was
confirmed that these numbers obtained effectively a complete vector space (higher m
values produced near-identical results). The results, shown in figure 10, indicate that
the wake is dominated by only one dynamic mode, together with the mean mode.
Not surprisingly, the frequency of this mode corresponds to the observed (uncorrected)
shedding frequency of St = 0.23. Notably the spectrum at the top right shows that the
first harmonic of that mode is also discernible. Even so, its relative low amplitude
indicates that the wake flow associated with the dominant mode (N) together with its
harmonics is not too far from sinusoidal.

Figure 11 shows the vorticity evolution over a cycle for the dominant time-
dependent Koopman mode (N). This mode shows that a pair of co-rotating vorticity
perturbations forms from each trailing edge of the body, with each new pair having
the opposite direction of rotation to the previous pair. These two vortices quickly
come together to form one large vortex, which proceeds downstream. While the
co-rotating nature of the vortices in this mode may seem unexpected, it should be
recalled that this mode exists superimposed on the mean mode (M), which features
two counter-rotating regions of vorticity, as shown in figure 10(c), and does not
change with time. Thus, when the first dynamic mode N and mean mode are added
together in figure 12, it can be seen that one of the mode N co-rotating vortices is
amplified by the similarly signed vorticity region in the mean mode, whilst the other is
nullified by the opposite-signed vorticity region. We therefore end up with traditional
von Kármán shedding: asymmetric vortex shedding resulting in a von Kármán vortex
street progressing downstream. This accounts for the dominant time-dependent features
of the unsteady wake, as can be seen from a comparison with the phase-averaged
evolution shown in figure 13.

3.3. Periodic actuation
Periodic actuation was applied from the rear slots after the natural flow had settled
into a consistent transient response pattern (∼140 non-dimensional time units). The
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FIGURE 10. (Colour online) Natural flow dynamic mode decomposition. (a) Spectrum
showing the growth rate (σ ) of each mode. The red dots are the most relevant modes, with the
size of each dot showing its relative magnitude. The mean mode (M) is indicated with an open
square. Mode N occurs at the natural Strouhal number and mode n at the first harmonic of N.
(b) Relative magnitude of each mode plotted against frequency. (c) Vorticity contours for the
mean mode.
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FIGURE 11. (Colour online) Natural flow: vorticity contours of one complete cycle of
the first Koopman mode (also referred to as the natural mode), i.e. mode N. Dashed line,
clockwise vorticity; solid line, anticlockwise vorticity. The sequence progresses left to right,
with each image progressing one quarter step through the cycle from the previous image.

progression of the drag and lift coefficients for Stact = 0.11 can be seen in figure 14.
As found for all actuated cases, settling time is relatively short (∼10 time units
or less), with the actuation regulating the drag signal almost instantly. However,
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FIGURE 12. (Colour online) Natural flow: reconstruction of the vorticity evolution for the
natural flow using just the Koopman mean mode M and the larger-amplitude DMD mode N.
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FIGURE 13. (Colour online) Natural flow: vorticity contours of one complete cycle of the
phase-averaged observed flow field. A similar wake evolution is observed to that of the
Koopman reconstruction using only modes M and N (figure 12).

figure 15 reveals that the fidelity of the signal differs from case to case. The lowest
frequency Stact = 0.04 drag signal, for example, notably features small perturbations
superimposed on the larger-amplitude wave (figure 15a). Spectral analysis of this case
reveals a weak secondary frequency peak at the Strouhal frequency, indicating that
two modes may be coexisting in the wake. The next-lowest frequency cases shown,
Stact = 0.09 and Stact = 0.11, also display some semblance of this behaviour. As the
actuation frequency is increased, the corresponding drag signal appears to become
more periodic.

The lift signal (also displayed in figure 15) also differs from case to case. Perfectly
symmetrical shedding would theoretically result in a contribution of zero lift from the
wake. It might be expected that the measured r.m.s. lift value follows a similar trend to
the mean drag value, and that is precisely the case. At Stact = 0.04 the signal alternates
in a manner similar to the natural case, with a large peak in a spectral analysis
occurring at St = 0.23. As the actuation frequency increases, however, the periodicity
of the lift signal appears to break down, before returning when the actuation is close
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FIGURE 14. (a) Time history of drag (solid line) and lift (dashed line) signals for Stact = 0.11,
and (b,c) the frequency spectrum for each signal. The drag spectra amplitude (b) is displayed
at the same scale as the lift spectra amplitude (c). The drag signal returns a much clearer peak
than the lift signal. The discontinuity at t = 140 corresponds to the switch from unforced to
forced flow.

–0.4

0

0.4

0.8

–0.4

0

0.4

0.8

20 20

Time
0 40 0 40

Time
20

Time
0 40

Fo
rc

e 
co

ef
fi

ci
en

t
Fo

rc
e 

co
ef

fi
ci

en
t

(a) (b) (c)

(d) (e) ( f )

FIGURE 15. Sample of drag coefficient (higher, thick line) and lift coefficient (lower, thin
line) signals for various actuation signals: (a) Stact = 0.04, (b) Stact = 0.09, (c) Stact = 0.11,
(d) Stact = 0.18, (e) Stact = 0.23, (f ) Stact = 0.35.

to the natural Strouhal frequency at Stact = 0.23. At yet higher frequencies, the signal
becomes less periodic again, but not as much as observed at the lower actuation
frequencies.
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FIGURE 16. (a) LES results (solid circles) for mean drag at different actuation frequencies.
Minimum drag is obtained at Stact = 0.11. Experimental results from Pastoor et al. (2008)
(actuation applied over only half of the span) are also shown (open squares). (b) Amplitude of
actuation frequency spectral peaks (P{Cdact}) for the drag signal (solid circles) and Strouhal
frequency spectral peaks (P{Clnat}) for the lift signal (open squares).

The power spectra recovered from fast Fourier transforms of the drag and lift signals
(figure 16b) quantify this behaviour. The peak response in the drag spectrum always
occurs at the actuation frequency (we denote this by P{Cdact}), while the peak in
the lift spectrum always occurs very close to the natural Strouhal frequency (this is
denoted P{Clnat}). As the actuation frequency increases, so does P{Cdact}, peaking at
Stact = 0.23. This is consistent with Pastoor et al. (2008). However, it appears that this
value is not the crucial factor in determining optimal drag reduction: P{Clnat} closely
mirrors the drag reduction (again, also observed by the Pastoor group), and it appears
that minimizing this value is the key. Indeed, P{Clnat} also correlates strongly with the
aforementioned r.m.s. lift signal value, which is indicative of asymmetry in the wake.
These lift measurements make it clear that optimal drag reduction corresponds with
reduced asymmetry in the wake.

The final drag reduction results (figure 16a) show there is an optimal actuation
frequency range between Stact = 0.09 and Stact = 0.135, with the effect slowly
decreasing as actuation frequency increases. A maximal drag reduction of 20 % occurs
at Stact = 0.11. By comparison, Pastoor et al. (2008) found an optimum reduction
of 16 % at Stact = 0.15. Again, recall that in the experiments the 7:1 aspect-ratio
body extended across the entire working section of the tunnel, and hence end effects
would not be negligible. In addition, it was only actuated over half the span, thus
some difference in the optimal actuation Strouhal number between the simulations
and experiments might be expected. A noticeable peak is seen at Stact = 0.23, where
the actuation frequency corresponds to the natural Strouhal frequency. This peak,
not as large as that observed by the Pastoor group, coincides with a moderate
strengthening of the natural wake instability, which does not occur for the other cases.
At Stact = 0.265 another peak is observed, which is discussed in the DMD analysis
below.

Analysis of the time-averaged wake reveals that the separatrix (marking the mean
recirculation bubble) for the optimum case (St = 0.11) is noticeably longer than for
the unforced case, as shown in figure 17. This longer formation length is due to the
suppression of the von Kármán shedding caused by the rear-edge actuation: strong
shear-layer perturbation prevents the immediate development of an asymmetric wake.
Larger-scale upper and lower shear vortices eventually do develop (the vortex roll-
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FIGURE 17. (Colour online) Reynolds stress averages along the centreplane in the wake:
(a) 〈u′u′〉/U2

c , (b) 〈v′v′〉/U2
c , (c) 〈u′v′〉/U2

c . Dashed contour lines indicate negative magnitudes.
The thick line indicates the separatrix (mean separation line); the dashed thick line indicates
the separatrix of the unforced case.
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FIGURE 18. (Colour online) Time-averaged pressure coefficient along the centreplane in the
wake (a) and on the rear base surface over 0.1< Z/W < 0.9 (b). The thick line represents the
separatrix.

up is initiated by the induced velocity of the previously shed vortex pair) and are
shed synchronously. Asymmetry eventually returns further downstream. The Reynolds
stress contours, also shown in figure 17, reveal a strong reduction in the normal
cross-flow stress 〈v′v′〉. Furthermore, the shear stress 〈u′v′〉 is much reduced in the
near wake. The time-averaged wake pressure is considerably higher than for the
natural case. Of further note is the distribution of this pressure: for the natural
case the pressure varies greatly with respect to Y , with a minimum occurring at
Y = 0, whereas in the actuated case the pressure is relatively uniform over the range
−0.5 < Y/H < 0.5. This translates to a rear base pressure profile which is uniformly
higher over −0.45 < Y/H < 0.45. By comparison, the natural case was uniform only
over the narrow range −0.3< Y/H < 0.3.

While these time-averaged results certainly have a use in developing an
understanding of the flow, they do not reveal the full details of the dynamic
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FIGURE 19. (a) The lag in phase between the actuation signal and the rear base pressure
(solid line) and stagnation pressure (dashed line) as the actuation frequency is varied. (b) A
comparison of the actuation signal time history (dotted line) with the normalized rear base
pressure Cbp − Cbp (solid line) and stagnation pressure response (dashed line) for Stact = 0.23.

mechanisms operating in the wake. The following discussion first analyses the
relationship between various signals in the flow, before exploring both the observed
transient wake measurements and lower-order representations.

The stagnation pressure at the front of the body interestingly shows a strong
correlation with the actuation signal. Separation occurs over the leading edge, creating
leading-edge vortices that travel downstream before interaction with the trailing-edge
vortices. Previous work by Rockwell & Naudascher (1979), Hourigan, Thompson
& Tan (2001) and Mills, Sheridan & Hourigan (2001) (amongst others) has shown
that the trailing-edge vortex formations can have a profound feedback effect on the
leading-edge vortices. In fact, Mills et al. (2001) showed that the rate of leading- and
trailing-edge vortex shedding become locked in together for certain conditions. Here
we see a similar effect: the stagnation pressure oscillates significantly at a moderate
delay from the rear base pressure, which in turn is slightly delayed from the actuation
signal. The small wind tunnel size used by Pastoor et al. (2008), and replicated in
virtual space here, was found to be amplifying this effect: simulations run at a larger
domain size showed a significant drop in the amplitude of the stagnation pressure
fluctuation. It remains unclear how large the amplitude would be in an infinitely large
domain, although the previously mentioned research by Mills et al. (2001) suggests
that the feedback is expected on some level. This effect does not impact the mean
stagnation pressure, meaning that its effect on the mean drag measured is negligible
(it does, of course, increase the amplitude of the drag fluctuations recorded). Indeed,
the drag reduction measured for Stact = 0.135 at the larger domain size was identical
to that measured at the smaller domain size. The stagnation pressure phase difference
appears to remain fairly constant for each case at close to a 100◦ delay. The rear
base pressure measurement signal also locks on to the actuation signal for all cases,
with a small lag in the phase between the actuation signal and the response gradually
increasing with actuation frequency from 35 to 55◦, as seen in figure 19(a).

Figure 19(b) shows that maximum drag (minimum base pressure) occurs at
maximum blowing, while minimum drag occurs at maximum suction. The phase-
averaged vorticity progression of a typical actuation cycle, shown in figure 20,
elucidates this. The new shear-layer development begins just after the actuation
switches from blowing to sucking (between figures 20b and 20c). Meanwhile, the
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FIGURE 20. (Colour online) Stact = 0.11: vorticity contours of one complete cycle of
the phase-averaged flow field. Dashed line, clockwise vorticity; solid line, anti-clockwise
vorticity. (a) Drag signal peak, (b) halfway between drag signal peak and trough, (c) drag
signal trough, (d) halfway between drag signal trough and peak. A rapid decrease in vorticity,
presumably due to diffusion and cross-annihilation, is observed once the symmetrically shed
vortices interact. Arrow directions are a simplified representation of the actuation at each
snapshot (no arrows indicate that the actuation is halfway between blowing and sucking or
vice versa). Flow is from left to right.

previous vortex pair have detached and begun to interact in the wake. By the time
maximal suction has been reached (figure 20c), this cross-annihilation has left the
wake with considerably reduced vorticity levels, and the new upper and lower shear
layers, while still small, begin to be drawn into the wake and roll up into vortices.
When actuation switches from sucking to blowing (figure 20d), these new vortices
have reached a medium size, leading to a steady rise in drag and, once maximal
blowing is reached (figure 20a), they have formed large coherent structures, which
results in a peak in the drag signal. As the blowing reduces, they travel downstream,
with drag decreasing once again, and the process repeats. The large amplitude of the
drag signal is due to the combined effect of the vortices both developing together
(high drag) and then convecting downstream together and destructively interacting with
one another (low drag). When compared against the natural progression shown in
figure 13, the effect of the actuation is apparent: the vortex shedding is symmetric,
extending formation length and raising the pressure in the near wake and lowering
drag.

Dynamic mode decomposition of the spanwise averaged velocity fields reveal the
presence of a new mode in the flow due to actuation (mode A) that is not observed
for the natural case. This mode appears to coexist with mode N of the natural case
(the mean mode M is also effectively identical to that of the natural case). Vorticity
contours of mode A (figure 22) show a symmetric structure about Y = 0, with two
pairs of opposite-signed vortices created and shed per cycle (while the opposite-signed
vortices at first glance appear to form an anti-symmetric structure, if we reflect the
positive direction of vorticity across Y = 0, we can describe the mode as symmetric).
Each vortex in this mode first develops on the inside of the shear layer, with the
previous vortex of opposite sign still attached in the shear layer region. Once the
previous vortex breaks from the shear layer, the new vortex then grows in this area.
When mode A is superimposed on the non-dynamic mode M, each pair of mode
A vortices alternately either amplifies the mean mode vorticity of each shear layer
(creating a large pair of synchronous vortices), or nullifies it (leaving an ‘empty’
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FIGURE 21. (Colour online) Dynamic mode decomposition for Stact = 0.11. (a) Spectrum
showing the growth rate (σ ) of each mode. The red dots are the most relevant modes, with
the size of each dot showing its relative magnitude. The mean mode (M) is indicated with an
open square. Mode N occurs at the natural Strouhal number and mode A + N at the sum of
frequencies N and A. (b) The relative magnitude of each mode is plotted against frequency.
(c) Vorticity contours for the mean mode.
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FIGURE 22. (Colour online) Stact = 0.11: vorticity contours of one complete cycle of the first
unsteady Koopman mode (mode A).

wake), resulting in a significant change in near-wake pressure throughout the cycle.
It appears that perfect symmetric shedding would be achievable if this were the only
dynamic mode in the wake. However, as mentioned above, the symmetric mode N of
the natural case is also present in the wake. For most cases this mode operates at a
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FIGURE 23. (Colour online) Stact = 0.11: reconstruction of the vorticity evolution over one
complete cycle using the Koopman mean mode and the first two unsteady Koopman modes
(modes A and N).

different frequency to mode A, and thus will impact the symmetric shedding process
in different ways from case to case, and cycle to cycle. The interplay of these modes
– the actuation and natural – appears to be a dominant mechanism in the flow. Indeed,
for each case a reconstruction using only these modes recovers the majority of features
seen in the observed phase-averaged flow; figures 20 and 23 show this for the optimal
case of Stact = 0.11.

However, while the structure of mode A appears to vary little as the actuation
frequency is varied, the same cannot be said of mode N. Over certain intervals the
mode N structure appears close to the non-actuation case, while over others it loses
coherency. Moreover, the frequency of the mode StN fluctuates from case to case: it
remains close to the natural value St = 0.23 for the low-frequency actuation cases but
drops to St = 0.195±0.015 for all cases with Stact > 0.135. Despite this varying nature,
measuring the magnitude of the mode Σ |KN| (the sum of the Koopman eigenvector
magnitudes at each point in the wake) for each case does provide some insight, as
shown in figure 24. In the higher frequency range, it appears that Σ |KN| shows a
strong correlation with CD; the two drag peaks Stact = 0.23 and Stact = 0.265 feature
substantially higher mode N magnitudes. The natural mode seems to be more excitable
in this regime, but the exact amplitudes may be due to the finite sampling time,
However, it appears reasonable that this occurs with actuation near the original natural
frequency, although it must be remembered that it is higher than StN , the frequency
of mode N. In the lower-frequency range, however, the correlation is somewhat less
strong, with one of the optimal drag reduction cases, Stact = 0.09, still featuring a
relatively high mode N magnitude.

The magnitude of mode A, also, does not appear to be an indicator of drag
reduction success: it is seen to be highest both slightly above and below the
mode N frequency StN ≈ 0.195, yet is relatively low for two of the optimal drag
reduction cases Stact = 0.09 and Stact = 0.11. At Stact = 0.195 the magnitude of both
modes A and N drops, suggesting that when the actuation frequency is close to the
expected StN ≈ 0.195, the two modes are less successful at coexisting. Yet, even for
this case, no significant change occurs in drag reduction. It is clear that there is more
to achieving optimal drag reduction than simply creating a prevalent symmetric mode
A and weakening mode N. But what other mechanism could be responsible?
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FIGURE 24. Magnitudes of Koopman modes A (left axis, solid dots, continuous line) and
N (right axis, open squares, dashed line) for each actuation frequency Stact. Magnitudes are
normalized by m, the total number of snapshots used in the DMD.
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FIGURE 25. (Colour online) Vorticity contours of actuation mode for (a) Stact = 0.11 and
(b) Stact = 0.35. The size of the mode A vortices is significantly less for the higher-frequency
actuation case.

It appears that the answer lies in the changing characteristics of the mode A vortices
at different actuation frequencies, and their superposition with mode N in the near
wake. Figure 25, which shows a snapshot of mode A for a lower-frequency case
(Stact = 0.11) and a higher-frequency case (Stact = 0.35), makes this difference clear:
high-frequency actuation creates mode A vortices smaller than those created with low
actuation frequencies. While both cases appear to generate vortices with a similar
peak vorticity, the larger area of the lower-frequency vortices results in a greater
total circulation per vortex, which, of course, is connected to the different times
that the shear-layer vorticity feeds into the wake vortices. Furthermore, as shown in
figure 26(a), the centres of the low-frequency vortices are observed to approach the
wake centreline much more closely than the higher-frequency vortices. This proximity
to the centreline, coupled with their larger area and circulation allow the low-frequency
mode A vortices to diminish the impact of the coexisting mode N vortices which
become prevalent on the centreline of the wake at X/H ≈ 0.6 and further downstream.
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FIGURE 26. (a) Comparison of a typical mode A vortex path for cases Stact = 0.09 (upper
circles with thick edges) and Stact = 0.35 (lower circles with no edges). The size and shading
of each circle represents the average vorticity of the vortex (circulation per unit area). (b) The
near-wake path of a typical mode A vortex for four cases for Stact = 0.09 (thick solid
line), Stact = 0.135 (thin solid line), Stact = 0.27 (thick dashed line), and Stact = 0.35 (thin
dashed line). (c) The ratio of mode A circulation to mode N circulation as a function of the
downstream location. Line styles represent the same cases as in (b).

At higher frequencies, the smaller circulation of the mode A vortices and greater
distance from the centreline weakens their influence on the final wake once the modes
are superimposed. This was checked by calculating the vorticity of numerous mode
A and N vortices for each case, and comparing the ratio ΓA to ΓN as a function of
downstream location. The circulation values were obtained by using the Γ2 approach
outlined in Graftieaux, Michard & Grosjean (2001) to identify the vortex and finding
the integral of the spanwise vorticity over the area enclosed by the identified contour.
Figure 26(c) shows a significant drop in the influence of mode N in the near wake for
the lower frequency cases. This results in a higher near-wake pressure and lower drag.
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FIGURE 27. (a) Drag reduction (solid line) as a function of the actuation momentum
coefficient for optimum frequency case (Stact = 0.11). The dashed line represents the mean
amplitude of the drag coefficient signal. (b) Effect of actuation from different configurations
at Stact = 0.11. µ is the total momentum coefficient (not the individual momentum coefficient
of each actuator).

In summary, it has been shown that there are a number of factors behind the
success of in-phase actuation at the rear edges of a bluff body. Creating successful
synchronous shedding is not the only requirement to achieve optimal results: if the
shedding is generated at a high frequency, the smaller vortices are not able to
distort the natural mode N centreline vortices as effectively, resulting in lower drag
reduction. Thus, lower frequencies are more effective, as long as they are not so
low that the actuation-controlled shear-layer development is not able to dominate the
natural instability. At too low a frequency (for example, at Stact = 0.04), however, the
persistence of the natural flow fluctuations does not allow mode A to develop properly.

3.4. Momentum coefficient and actuation orientation
As a follow-up to this sub-study on the effect of actuation frequency, the influence
of momentum coefficient was also explored. The results obtained for the optimum-
frequency case of Stact = 0.11 (see figure 27a) show that significant drag reduction
is possible at lower momentum coefficients, and no further reduction gains occur
for Cµ > 0.004 in spite of the continued growth of the drag coefficient amplitude
(about the mean). In comparison, Pastoor et al. (2008) found a threshold value of
0.008. However, their actuation was applied over only half the spanwise width of the
trailing edge – effectively halving the true momentum they were injecting to the flow.
Thus the threshold value of 0.004 for these simulations appears consistent. They also
found a minimum threshold value Cµ ' 0.005 (which becomes 0.0025 if we correct
it as above), below which minimal drag reduction is achieved. This is clearly at
odds with the finding of these tests that reasonable drag reductions can be achieved
with momentum coefficients below even 0.001. One possible explanation could be the
difference in the fidelity of the applied actuation signals. In this numerical work the
signal is naturally perfectly sinusoidal, even at lower amplitudes. It is well known,
however, that low-amplitude noise makes achieving clear low-amplitude sinusoidal
signals in actual experiments especially difficult, while high-amplitude signals are able
to mask the noise. While this is beyond the scope of this paper, it seems plausible that
signal fidelity may be an important consideration for practical actuation.
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However, such success at lower momentum coefficients was not observed at a
higher-frequency actuation case, Stact = 0.30, which showed a minimum threshold
of Cµ ≈ 0.003. This suggests that each actuation frequency has its own minimum
threshold value, which is likely to be lower for the most successful actuation
frequencies.

In any case, actuation at Cµ ' 0.004 seems the appropriate level for peak drag
reduction at highest efficiency. In addition to other points discussed previously, this
may add to the explanation as to why the optimal Stact of 0.11 is lower than that
observed in the experiments by the Pastoor group (0.15). Just as clean lower-amplitude
signals are more difficult to generate experimentally, so are lower-frequency signals. It
could be possible that frequencies around St ' 0.11 are most effective if the actuated
signal is clear enough. Of course, for both the experiments of Pastoor et al. (2008) and
these simulations, the difference in drag reduction between actuation at St = 0.11 and
0.15 is only ∼2 %: relatively insignificant given the differences in end conditions and
actuation slot configuration.

The above results were obtained for actuation from all four rear-corner slots: two
actuating the flow in a direction perpendicular to the free stream immediately upstream
of the separation point (shear-layer actuation), and two on the extremities of the rear
face actuating the flow in a direction parallel to the free stream (base actuation). The
impact of each pair in isolation was also briefly investigated, to obtain further insights
into the drag reduction mechanism. To explore this, extra tests were performed at the
optimal actuation frequency (Stact = 0.11): one with only shear-layer actuation, and one
with only base actuation actuation. The results are shown in figure 27(b).

Not surprisingly, the shear-layer actuation results in a drag signal locked on at the
actuation frequency (as observed in the four slot case). However, this lock-on does
not seem to guarantee high drag reduction. DMD reveals the reason: the magnitude of
mode N is not reduced, resulting in a more disturbed wake and less symmetric vortices
being shed.

The base actuation case also produces surprising results. While for the four-slot and
shear-layer actuation cases the drag signal locks on to the actuation signal, this does
not occur at Cµ 6 0.008 (mode A does not appear), but at Cµ = 0.016 new behaviour
is observed. The substantial drag reduction for the lower momentum coefficient cases
can be attributed to a weakening of mode N, with the actuation also attenuating the
beading behaviour of the natural flow (where the drag would meander significantly
upwards at various times). For the highest momentum case mode A appears and the
drag signal oscillates at Stact, but with a secondary oscillation at 2Stact also present
(see figure 28a), producing a double peak in each cycle and a substantially lower drag
trough. The test was repeated at higher frequencies, with the same behaviour observed.
A DMD analysis shows that this form of actuation leads to a new structure of mode
N, which is shown in figure 28(b). In the pictured snapshot, opposite-signed vorticity
is apparent in each shear layer, whereas for all other cases mode N features same-
signed vortices in each shear layer. This produces an asymmetric diagonal structure
downstream and may explain the non-sinusoidal drag signal. It appears that base
actuation is very successful at disrupting the natural instability in the wake, especially
if enough momentum is supplied.

These results show that, for actuation in the low-frequency range, the shear-layer
and base actuation achieve drag reduction through different mechanisms: the shear-
layer actuation is more successful at creating synchronous vortices in each shear
layer, while the base actuation is more successful at disrupting the natural instability.
When combined, it appears that the two mechanisms contribute to each other’s success
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FIGURE 28. (Colour online) (a) Drag (thick line) and lift (thin line) signal for base actuation
at Stact = 0.11 and Cµ = 0.008. (b) Mode N for the same case as (a).

further, as the total drag reduction for four-slot actuation at Cµ = 0.008 is significantly
greater than the sum of the drag reduction obtained for shear-layer and base actuation
Cµ = 0.004. The momentum coefficient threshold for four-slot actuation, however, does
not appear to be the same for shear-layer and base actuation configurations, and the
latter may offer the greatest potential for drag reduction provided enough input energy
is available. These results also reveal that there may be an optimum angle where
actuation from two slots (one on either side) would be most efficient. This is currently
being investigated.

4. Conclusion
The numerical approach undertaken in this study has provided new perspectives on

the mechanisms involved in open-loop periodic control at the rear of 2D bluff bodies.
Focus has been placed on the influence of actuation frequency, with an optimum
actuation frequency of Stact = 0.11 found, slightly lower than the Stact = 0.15 found
experimentally by Pastoor et al. (2008), for a similar but not identical setup. Note,
however, that the predicted drag reduction at Stact = 0.15 is only ∼2 % less. Increased
symmetry of vortex shedding, which leads to a longer formation length, and increased
diffusion and cross-annihilation in the near wake, has been observed for all cases of
actuation.

Dynamic mode decomposition reveals that the actuation produces an additional
mode in the flow, rather than displacing the natural mode. Actuation frequencies in the
range Stact = 0.09–0.135 allow the actuation mode to remain coherent and successfully
coexist with the natural mode, while remaining at a high enough frequency to enable
the flow to smoothly lock on to actuation. Higher-frequency actuation, while still
generating coherent mode A synchronous vortices, has been shown to be less effective
due to the lower circulation of the mode A vortices in the near wake, and the
difference in their combined effect with mode N vortices. This also helps to explain
the success of lower actuation frequencies.

New information on the upstream effect of actuation has also been found, with
the stagnation pressure shown to oscillate at the actuation frequency with a lag of
approximately 100◦ for all cases. It has been shown that the strength of this effect is
likely amplified by the relatively high blockage ratio.

The influence of shear-layer and base actuation in isolation has been explored,
with the findings suggesting that each affects the wake in different ways, and that
these mechanisms are beneficial to one another when operating in unison. The base
actuation case appears to offer greater potential at this Reynolds number. Further
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investigation of these mechanisms is recommended, especially at more practical higher
actuation frequencies.

With such a large reliance on forcing the shedding to be predominantly 2D, it
remains unclear whether the actuation technique would be as successful for less
symmetric scenarios, such as flows over 3D bodies, flows over bodies in ground
proximity, and flows over bodies at much higher Reynolds numbers. In terms of the
latter two cases, our group is currently extending this study to numerically determine
the modifying effects of ground proximity and, through wind tunnel experiments,
whether the increased turbulence effects at higher Reynolds numbers decrease the
attainable drag reduction.
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