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The width effect on contact angle hysteresis in a microchannel with patterned
heterogeneous surfaces is systematically investigated. In the model, identical defects
periodically appear on the background surface. To this end, a droplet’s evaporation
and condensation processes inside the microchannel are studied by theoretical analysis
and numerical simulation based on a diffuse-interface lattice Boltzmann method. The
microchannel width effect on the system’s equilibrium properties is studied. The results
demonstrate that the number of equilibrium configurations increases linearly with the
microchannel width (b), and has a quadratic relationship with the cosine of the reference
contact angle and the heterogeneity strength (ε). The average most stable contact angle is
independent of b and is always equal to the contact angle predicted by the Cassie–Baxter
equation. For contact angle hysteresis (H), when the microchannels are narrow and wide,
there are individual-effect-dominated hysteresis (IDH) and collective-effect-dominated
hysteresis (CDH), respectively. The IDH and CDH are hysteresis modes corresponding to
the jumping behaviour of contact lines affected by individual defects and two neighbouring
defects, respectively. Based on the graphical force balance approach, we establish a scaling
law to quantify the connection between H, b and ε. Specifically, in the IDH mode,
H ∼ bε2, while in the CDH mode, H increases linearly with ε but nonlinearly with b.

Key words: contact lines, condensation/evaporation, drops

1. Introduction

Understanding and controlling the wetting process is of great importance for a wide range
of applications, such as coating, inkjet printing, oil recovery and microfluidic devices (De
Gennes 1985; Bonn et al. 2009). The key issue of wetting phenomena is the quantitative
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characterization of the three-phase contact line behaviour and contact angle. For a smooth
and chemically homogeneous (ideal) solid surface, there is a single equilibrium contact
angle, which can be described by the well-known Young’s equation. However, real surfaces
may have physical roughness and/or chemical heterogeneity, which would result in contact
angle hysteresis (CAH) and associated complex contact line dynamics (Wang, Qian &
Sheng 2008; Savva, Kalliadasis & Pavliotis 2010; Savva & Kalliadasis 2013; Savva, Groves
& Kalliadasis 2019). An essential understanding has been formed that CAH is related
to the existence of multiple equilibrium configurations of the fluid interface induced
by the non-uniformity of a solid surface. The energy barriers between stable/metastable
equilibrium configurations can trap the system in different states depending on the motion
history of the contact line. In this way, the apparent contact angle may take an arbitrary
value in the range [θR, θA], where θR and θA are the receding and advancing contact angles,
respectively.

Due to the importance of CAH in surface engineering, many works have been devoted
to the understanding of the fundamental mechanisms of CAH from theoretical (Joanny
& De Gennes 1984; Marmur 1994a,b; Gao & McCarthy 2006; Iwamatsu 2006; Xu
& Wang 2011; Giacomello, Schimmele & Dietrich 2016; Hatipogullari et al. 2019),
numerical (Crassous & Charlaix 1994; Brandon & Marmur 1996; Brandon et al. 2003;
Kusumaatmaja & Yeomans 2007; David & Neumann 2010) and experimental (Di Meglio
& Quéré 1990; Di Meglio 1992; Ramos et al. 2003; Priest, Sedev & Ralston 2007;
Reyssat & Quéré 2009; Delmas, Monthioux & Ondarçuhu 2011; Priest, Sedev & Ralston
2013; Guan et al. 2016; Perrin et al. 2016; Wang et al. 2016; Lhermerout & Davitt 2018;
Fuentes et al. 2019; Guan, Charlaix & Tong 2020) perspectives. For instance, Marmur and
others investigated the CAH of a sessile droplet placed on a periodically heterogeneous
surface (Marmur 1994a; Brandon & Marmur 1996; Montes Ruiz-Cabello et al. 2011).
Kusumaatmaja & Yeomans (2007) numerically investigated the CAH on chemically
patterned and superhydrophobic surfaces as the droplet volume was quasi-statically
increased or decreased. Systematic experiments have been carried out for studying CAH
on heterogeneous surfaces with a random array of defects from the microscale (Di Meglio
1992; Nadkarni & Garoff 1992; Priest et al. 2007; Reyssat & Quéré 2009; Priest et al. 2013;
Fuentes et al. 2019) to the nanoscale (Ramos et al. 2003; Delmas et al. 2011; Lhermerout &
Davitt 2018). Recently, a newly developed atomic-force-microscope measurement method
(Delmas et al. 2011; Guan et al. 2016, 2020; Wang et al. 2016) was used to study the
CAH on non-ideal long-fibre surfaces. A strong asymmetric speed dependence (Guan et al.
2016) as well as state and rate dependencies (Guan et al. 2020) of contact line dynamics
were reported.

Although considerable progress has been made in understanding CAH, there are still
several critical open questions. In experiments, the pinning–depinning behaviour of the
contact line is usually accompanied by the occurrence of CAH (Priest et al. 2013). Pinning
is often considered to be responsible for CAH (Delmas et al. 2011), or free energy barriers
that cause CAH are used to explain the pinning–depinning mechanism (Orejon, Sefiane
& Shanahan 2011; Zhang, Huang & Lu 2019). However, recent molecular dynamics
simulations show that microscopic contact line pinning is a slowdown of contact line
dynamics under the control of capillary force balance, and it may not be related to free
energy barriers (Zhang, Müller-Plathe & Leroy 2015). Therefore, the relationship between
microscopic pinning–depinning of the contact line and CAH has to be further explored.

It has been found that the typical gas–liquid interface (GLI) length Li (GLI area
for three-dimensional (3-D) cases) is an important physical parameter determining the
hysteresis behaviour. The size effect of the GLI on CAH has attracted much attention
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Figure 1. Schematic diagrams of (a) a 2-D sessile droplet placed on a chemically heterogeneous substrate,
(b) a 2-D droplet and (c) a 3-D droplet confined in chemically heterogeneous microchannels. Here x1 and x2
represent the locations of the droplet’s contact points, and the corresponding apparent contact angles are θa1
and θa2, respectively. Parameter R is the base radius. The microchannel width is b and the spatial period of
chemical heterogeneity is β. (d,e) Two typical 2-D surface wettability distributions.

(Quéré 2008; Ozcelik, Satiroglu & Barisik 2020). In previous studies, a sessile droplet
system (see figure 1a) was usually chosen to study CAH by increasing or decreasing the
droplet volume quasi-statically (Marmur 1994a; Brandon & Marmur 1996; Kusumaatmaja
& Yeomans 2007; Pradas et al. 2016). In this circumstance, the deformation of the GLI
depends not only on the properties of the solid surface but also on the droplet volume. As a
result, irregular oscillatory curves would be obtained to describe the evolution of receding
and advancing contact angles (Marmur 1994a), which is not conducive to the statistical
analysis of CAH. Recently, Hatipogullari et al. (2019) and Xu & Wang (2011) studied CAH
using a chemically heterogeneous microchannel (see figure 1b). The advantage of choosing
this system is that the typical GLI length (approximately equal to the microchannel width)
does not vary with liquid volume. Qualitatively, Xu & Wang (2011) found that on a
periodically patterned microchannel, for a given microchannel width, the receding and
advancing contact angles fluctuate periodically as liquid volume changes. Hatipogullari
et al. (2019) extended the graphical force balance approach proposed by Joanny & De
Gennes (1984) to two-dimensional (2-D) microchannel systems. For the size effect, they
qualitatively found increasing microchannel width brings the system from a subthreshold
regime, to a stick–slip-dominated regime and finally to a regime with a quasi-constant
advancing and receding angle. However, there is still a lack of quantitative insight into the
effect of the typical GLI length on hysteresis behaviour.

Another unresolved key problem is the complete theoretical modelling of the
relationship between CAH and the properties of a substrate’s disorder. For
individual-effect-dominated hysteresis (IDH), i.e. contact line jumping is only affected
by individual defects, Joanny & De Gennes (1984) proposed a scaling law by considering
the mechanical balance of capillary force exerted by the defects (i.e. defect force) and the
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elastic restoring force due to the deformation of the contact line:

H ∝ φF2
d,max. (1.1)

Here φ is the number of defects per unit area (defect density), Fd,max the maximum
defect force and H the value of CAH. Subsequently, this scaling law was verified by
experiments (Di Meglio 1992; Ramos et al. 2003; Delmas et al. 2011; Lhermerout &
Davitt 2018). Hatipogullari et al. (2019) performed theoretical analysis on the threshold
value of wettability gradients inducing hysteresis and the scaling law for the IDH mode
(1.1) by using 2-D microchannels. However, if contact line jumping is affected by two
neighbouring defects, it is referred to as collective-effect-dominated hysteresis (CDH).
The contact line behaviour in CDH may significantly differ from that in IDH (Di Meglio
& Quéré 1990; Di Meglio 1992; Reyssat & Quéré 2009). As far as we know, there is no
explicit theoretical explanation for CAH under the collective effect (Quéré 2008; Bonn
et al. 2009). This severely limits the further understanding of CAH and even wetting
phenomena.

The present work is committed to exploring the open issues discussed above.
To this end, we systematically investigate the quasi-static CAH in a chemically
heterogeneous microchannel by theoretical analysis and numerical simulations based on
a diffuse-interface method. We focus on the size effect and the related scaling laws. It is
noticed that conclusions coming from chemically heterogeneous microchannels are also
applicable to microchannels with physical roughness (Joanny & De Gennes 1984). Here
in our study, we mainly investigate 2-D cases and then check whether the conclusions are
applicable to 3-D cases.

The remainder of this paper is organized as follows. The problem statement and
mathematical formulation are presented in § 2. The numerical method is described in § 3.
Detailed results for 2-D and 3-D cases are discussed in §§ 4 and 5, respectively. Finally,
conclusions are presented in § 6.

2. Problem statement and mathematical formulation

2.1. Physical problem
Here we consider the GLI motion in a microchannel with a width of b. The upper
and lower walls of the microchannel are smooth, rigid and flat, but have the same
periodic chemical heterogeneity (as shown in figure 1b,c). The spatial period of surface
heterogeneity is β, which is the same in both horizontal directions for 3-D cases. The
chemical heterogeneity is characterized by a spatially dependent intrinsic contact angle θi
that is defined by Young’s equation. Two typical 2-D surface wettability distributions are
shown in figures 1(d) and 1(e), respectively. The droplet volume increases or decreases
by quasi-static condensation or evaporation, which drives the GLI and contact line
movements. For 2-D cases, sharp-edged defects (so-called mesa defects; see figure 1d) are
mainly considered because they can cause a variety of contact line dynamics behaviour,
and have been widely adopted in previous studies (Wang et al. 2008; Zhang et al. 2015).
For 3-D microchannels, an array of circular defects is regularly distributed on the surface.
In the current work, gravity is not considered.

2.2. Mathematical formulation
For the 2-D cases, although asymmetric phase transitions can also exist, we only consider
the symmetric regimes (left–right and top–bottom). Here the GLI is approximated by a
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Width effect on contact angle hysteresis

circular arc. Then the theoretical description of the system can be performed. Because the
phase transitions on the left- and right-hand sides are symmetric, the GLI and contact line
motions on both sides are identical. Therefore we have θa1 = θa2 = θa and x2 = −x1. Here
x1 and x2 represent the locations of the droplet’s contact points, and the corresponding
apparent contact angles are θa1 and θa2, respectively. Defining base radius as R = (x2 −
x1)/2, we have the volume of liquid (it is actually the cross-sectional area for 2-D cases)
given by

V(R) = 2Rb + b2 2θa − π + sin 2θa

4 cos2 θa
. (2.1)

In order to analyse the stability of the system, the interfacial free energy is calculated.
For a fixed droplet volume, the interfacial energy per unit length of the contact line can be
determined from the length of the GLI and the solid–liquid interface by

E(R) = γ b
(

π − 2θa

cos θa

)
− 4γ

∫ R

0
cos θi(x) dx, (2.2)

where γ is the gas–liquid surface tension. Obviously, the system is at equilibrium at the
stationary points/extrema of the free energy function (i.e. ∂E/∂R = 0).

Here we choose β as the characteristic length to normalize the system, and the
corresponding dimensionless variables are given by

b∗ = b
β
, R∗ = R

β
, V∗ = V

β2 , E∗ = E
βγ
. (2.3a–d)

For simplicity, we will drop the asterisk notation in the remainder of the paper.

3. Numerical method

In recent years, the lattice Boltzmann method (LBM) has been developed into an
effective and powerful computational fluid dynamics technique. It has been widely used in
modelling complex multiphase flows including boiling (Chang, Huang & Lu 2017; Chang
et al. 2019), droplet evaporation and condensation (Ledesma-Aguilar, Vella & Yeomans
2014; Hessling, Xie & Harting 2017) and the moving contact line problem (Kusumaatmaja,
Hemingway & Fielding 2016). The multiphase LBM, as a diffuse-interface model, can
automatically capture the GLI by incorporating two-phase interactions.

Here we implement the multicomponent multiphase (MCMP) pseudopotential lattice
Boltzmann model proposed by Shan & Chen (1993) in two and three dimensions.
Considering the flow system composed of two components, there are two distribution
functions and each function describes the evolution of a component. Each distribution
function satisfies the following lattice Boltzmann equation:

f σi (x + ei	t, t +	t) = f σi (x, t)− 	t
τσ

[f σi (x, t)− f σ,eq
i (x, t)], (3.1)

where f σi (x, t) is the density distribution function for component σ and ei (i = 0, 1, . . . 8
for 2-D cases and i = 0, 1, . . . 18 for 3-D cases) are the discrete velocities. Function
f σ,eq
i (x, t) is the equilibrium distribution function. The relaxation time τσ is related

to the kinematic viscosity as νσ = c2
s (τσ − 0.5	t), where sound speed cs = c/

√
3 and

c = 	x/	t. The grid spacing 	x = 1 and the time step 	t = 1. In our simulations,
τσ = 1, i.e. τ1 = τ2 = 1. Note that in the LBM, the values of physical variables are given
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in lattice units. For a specific component, ρmaj and ρmin are the component densities at
the two sides of the miscibility gap (the miscibility gap being symmetric in the model).
Before simulations, we have to specify the density of the whole fluid ρmaj + ρmin, which
is a constant in the whole computational domain. Here the value of ρmaj + ρmin is chosen
a priori as 0.736.

Using the Chapman–Enskog expansion, the lattice Boltzmann equation recovers the
macroscopic governing equations, i.e. Navier–Stokes equations (Chai & Zhao 2012):

∂ρ

∂t
+ ∇ · (ρu) = 0, (3.2a)

∂(ρu)
∂t

+ ∇ · (ρuu) = −∇p + ∇ · [ρν(∇u + ∇uT)] + F , (3.2b)

where ρ, u, p and F are the mixture density, velocity, pressure and force term,
respectively. Specifically, ρ = ∑

σ ρσ and u = (1/ρ)(
∑
σ

∑
i f σi ei + (1/2)

∑
σ F σ	t)

(Shan & Doolen 1995). Here ρσ is the density of component σ and F σ is the
force acting on component σ . The mixture viscosity ν = ν1 = ν2 since τ1 and τ2
are identical. It should be noted that what is solved by the two-component MCMP
pseudopotential lattice Boltzmann model is actually the liquid–liquid problem rather than
the liquid–vapour problem. In other words, the droplet in the microchannel undergoes
a dissolution/precipitation process in the surrounding liquid, which shares a common
mechanism with the evaporation/condensation process of the droplet in the quasi-static
limit (Xie & Harting 2019). In this mechanism, the mass change rate of the droplet is
dominated by the diffusion of the droplet into the surrounding environment driven by
the concentration or density gradient of droplet component in the surrounding fluid and
the ambient pressure remains constant. Mathematically, these two processes are both
dominated by the unsteady diffusion equation, known as Fick’s second law. Since the
two-component lattice Boltzmann model rather than the single-component two-phase
lattice Boltzmann model (liquid–vapour model) can keep the ambient pressure constant
when introducing the density gradient, we choose the former to simulate the droplet phase
transitions in a microchannel.

To simulate droplet evaporation and condensation in a microchannel, the following
dimensionless governing parameters are defined: the Reynolds number Re = UcL/ν1,
the capillary number Ca = ρmajν1Uc/γ , the Péclet number Pe = UcL/D1 and the Cahn
number Cn = λ/L. Here, L, Uc and λ are the characteristic length, velocity and interfacial
thickness, respectively. Parameter D1 is the diffusivity of fluid 1. More basic introductions
for the LBM and the detailed parameter settings are described in Appendices A.1 and A.2,
respectively. The parameter settings are also introduced briefly in the following.

For a specific flow problem, simulation parameters, such as D1, γ and λ, can be
determined by specified dimensionless parameters. Suppose τ1 is specified, then we have
the viscosity of component 1 ν1. From the definition of Re and the specified value of L, we
can obtain Uc. According to the definition of Pe, we can determine the diffusivity D1. For
specific τ1 and τ2, D1, σ and λ are functions of G. In addition, if ρmaj + ρmin is given a
priori, ρmaj and ρmin are also functions of G. Through D1, the correct choice of cohesion
force parameter G can be obtained (here G = 3.6), and then γ , λ, ρmaj and ρmin can all be
determined (see Appendix A.2).

To impose the wetting condition on the solid surface, the surface energy formulation
from the phase-field method (Fakhari & Bolster 2017) is extended to the MCMP
pseudopotential lattice Boltzmann framework. This formula is able to handle complex
geometric boundaries and determine the contact angle a priori. For the details of extending
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Figure 2. (a) Stable/metastable and unstable equilibrium configurations given by (2.1) for different droplet
volumes. Here θ0 = 90◦, ε = 1.0, b = 10 and Cn = 0.108. (b) Free energy as a function of the apparent contact
angle for V/b = 4.6 (the left-hand dashed line in a), where θm is the most stable apparent contact angle. The
black solid lines in the five insets show the fluid interfaces on the left-hand side of the droplet at equilibrium
states. In each inset, due to symmetry, only half of the droplet is shown and the vertical dash-dotted line is the
symmetric axis of the droplet. The aspect ratio is not to scale in the insets due to space limitation. If they are
plotted according to b = 10 instead of b ≈ 2, the droplet volumes are identical.

wetting boundary conditions to the MCMP pseudopotential LBM, refer to Appendix A.3.
The numerical method is well validated in Appendix B.

Discretization errors in the computation of the cohesion force cause spurious currents
around the interface. The absolute magnitude of spurious currents may be of the order
0.01 in our simulations. However, the spurious currents do not affect the evolution of
the interface and the behaviour of the contact line under quasi-static circumstances. The
evaporation and condensation simulations in Appendix B confirm this point.

4. Two-dimensional results and discussion

4.1. Contact line dynamics
We consider microchannel surfaces composed of alternating equal-width stripes of
different wettabilities as shown in figure 1(d), which can be described by

cos θi(x) = cos θ0 + ε

2
tanh[M cos(2πx/β)], (4.1)

where M → ∞. This corresponds to the cases with a discontinuous wetting property at
the junction of two types of stripes. Angle θ0 is the reference contact angle and ε controls
the strength of the chemical heterogeneity. Through the theoretical analysis described in
§ 2.2 combined with the local Cassie–Baxter (LCB) equation (Zhang et al. 2015), we can
obtain all equilibrium configurations at different droplet volumes as shown in figure 2(a).
Here the LCB equation is introduced to determine θa by R when the contact line is located
at the junction of two types of stripes, which is expressed as

cos θa = fA cos θAi + fB cos θBi, (4.2)

where θAi and θBi are the intrinsic contact angles of stripes A and B, respectively. Also,
fA = lA/λ and fB = lB/λ are the thickness ratios; lA and lB are the thicknesses of the
diffused contact line occupied by stripes A and B, respectively (see figure 3). Using
the LCB equation, when R and λ are known, fA and fB can be calculated, and then θa
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diffuse

interface

θAilAlBθBi

λ

Figure 3. Schematic diagram of the calculation of apparent contact angle θa using the LCB equation.

is obtained. Therefore, figure 2(a) is generated using (2.1) and the LCB equation. Since
Cn controls λ, when we plot figure 2(a), Cn is a relevant parameter.

It can be seen from figure 2(a) that for a given value of droplet volume, there is an odd
number of equilibrium configurations. They represent the stable/metastable and unstable
equilibrium states of the system, alternately corresponding to the minima and maxima of
the free energy curve (see figure 2b). The outermost equilibrium configurations are stable
or metastable (e.g. points A and E in figure 2b). Two adjacent stable/metastable states are
separated by an unstable state with a free energy barrier (e.g. points A and C are separated
by point B in figure 2b). Because of multiple equilibrium states, there are different motion
trajectories of contact line as the droplet evaporates or condenses.

It is also noticed that the almost horizontal segments in figure 2(a) have non-zero slopes.
Actually, due to our diffuse-interface model, even at the pinning stage, R is not a constant
and may change slightly. More specifically, the change depends on Cn. When Cn → 0
(corresponding to the macro-circumstance), since M → ∞, the slope of the line segment
in the pinning stage is zero.

In order to get more details of the contact line behaviour, we carry out several
simulations of quasi-static evaporation/condensation of a droplet in the chemically
patterned microchannel. The computational domain size is 20 × b. In our simulations,
β = 50	x, so the mesh size is 1000 × 50b. Initially a rectangular droplet containing
fluid 1 with ρ1 = ρmaj and fluid 2 with ρ2 = ρmin is placed in the middle of the 2-D
microchannel, and the surrounding volume consists of fluid 2 ρ2 = ρmaj and fluid 1 ρ1 =
ρmin. To drive the phase transition, a density gradient is set in the surrounding volume.
For the upper and lower walls, we set the wetting condition through (A13) and set the
no-slip condition. For detailed settings of boundary conditions, see Appendix A.3. Here
the governing parameters are Re = 0.003, Ca = 0.000025, Pe = 0.0042 and Cn = 0.108.
Values of θ0 and ε are chosen as 90◦ and 1.0, respectively.

The droplet’s base radius R, the apparent contact angle θa and the interfacial free energy
E as functions of V/b for the cases of b = 1.6, 4 and 10 are plotted in figure 4. The
results of condensation and evaporation present the advancing and receding paths of the
contact line, respectively. The equilibrium configurations obtained from the theory are also
shown in the figure for comparison. One can see that the advancing and receding paths
follow the outermost equilibrium configurations of the system since there is no additional
energy to overcome the energy barriers. Specifically, the advancing path corresponds to
the outermost equilibrium configuration with a higher apparent contact angle, and the
receding path corresponds to that with a lower apparent contact angle. It is worth noting
that there are some critical points (e.g. points O and P in figure 4d–f ) on the motion
paths of the contact line. Saddle-node bifurcations occur at these points. Meanwhile, the
outermost metastable equilibrium point coincides with the adjacent unstable equilibrium
point (e.g. point O in figure 4d–f ) and disappears immediately. Subsequently, the
contact line suddenly jumps to the nearest metastable point with lower surface energy.
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Figure 4. Comparison of CAH behaviour simulated by the LBM with that predicted by theory for cases with
different b. (a,d,g) Droplet base radius R, (b,e,h) apparent contact angle θa and (c, f ,i) system free energy E as
functions of droplet volume. Cases of (a–c) b = 1.6, (d–f ) b = 4 and (g–i) b = 10.

The excess surface energy is dissipated through capillary waves during the rapid jump (see
figure 4c, f,i). It should be noted that similar effects of bifurcation diagrams have also been
reported in a recent contribution on sessile droplets (Groves & Savva 2021). In general, our
simulation accurately reproduces the CAH and complex contact line dynamics predicted
by the theory.

In addition to jumping, other contact line behaviours, such as pinning–depinning and
slip, depend entirely on the outermost equilibrium configuration varying with V , which
is due to the surface chemistry. In particular, pinning–depinning occurs at the junction of
two types of stripes where the wettability gradient direction is consistent with the fluid
density gradient direction near the contact line. Pinning is a slowdown of the contact line
dynamics dominated by the local Young’s equation. When a contact line, which undergoes
a slowdown stage and appears to be pinned macroscopically, completely transitions to a
homogeneous part of heterogeneity, the contact line accelerates thus triggering a depinning
event. All this implies that microscopic contact line pinning is not directly related to CAH,
which further supports the recent result of Pradas et al. (2016).

The trajectories followed by apparent contact angle are shown in figure 4(b,e,h). They
are two periodic fluctuating curves as observed qualitatively in experiments (Priest et al.
2013; Wang et al. 2016). The amplitude of the curves is constant, and the period	V = 2b.
One can also see that the microchannel width has a significant effect on the contact
angle curves. First, when the width is small with b = 1.6, the contact line undergoes a
slip–jump–slip–stick movement pattern (figure 5a). During the slip stage, the apparent
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Figure 5. Schematic diagrams for motions of a droplet’s left fluid interface near the wall.
(a) Slip–jump–slip–stick and (b) slip–jump–stick modes. Here the evaporation process is taken as an example.

contact angle remains constant (constant contact angle mode), and during the stick stage,
the droplet’s base radius remains essentially constant (constant contact radius mode).
During the jump process, both the apparent contact angle and the droplet’s base radius
undergo a sudden change. In figure 5(a), after the jump, the contact line moves to the
adjacent stripe and continues to slip for a while until it reaches the next wettability
boundary. In the stick process, the trajectories of the advancing and receding fronts
coincide (see figure 4b), and the maximum and minimum of advancing and receding
contact angles are also the same, which are equal to the inherent contact angles of the
hydrophobic and hydrophilic stripes, respectively.

On increasing the microchannel width to b = 4, the contact line movement transforms
into a slip–jump–stick mode (figure 5b). After the jump, the contact line directly reaches
the wettability boundary and is stuck. The contact angle curves look jagged and have a
smaller amplitude compared with the case of b = 1.6. The advancing and receding paths
coincide in a certain segment of the stick stage (see figure 4e). On further increasing
the microchannel width to b = 10, the contact line movement mode and the shape of
contact angle curves are basically identical to those in the case of b = 4, except that the
amplitude of contact angle curves is further reduced, and the advancing and receding paths
are completely separated. Assuming b → ∞, the amplitude of the contact angle curves
will approach 0 and the advancing and receding contact angles remain constant, which
are respectively equal to the inherent contact angles of the hydrophobic and hydrophilic
stripes. This is consistent with the previous conclusion obtained from surfaces with
sinusoidal heterogeneity (Hatipogullari et al. 2019).

Our simulations closely follow the branches in figure 4. This is a consequence of
the slowness of the changes in volume V . Due to the quasi-static phase transition, the
disturbance caused by the changes of V is so small that it cannot overcome the free energy
barrier. However, if the phase change rate becomes faster, the significant disturbance
energy caused by the change of V may overcome the free energy barrier and the jump
event will occur in advance. In this circumstance, the tracing of the bifurcation curves
would not be as precise.

4.2. Equilibrium properties

4.2.1. The number of equilibrium configurations
Since the CAH behaviours obtained from numerical simulation agree well with the
theoretical prediction, for convenience, the data obtained from the latter are adopted in
the following analysis. Before further quantitatively analysing CAH, we first pay attention
to the equilibrium properties of the system. It can be seen from figure 4 that, qualitatively,
the number of equilibrium configurations N(V) increases with b. This is consistent with
the previous conclusion obtained from a sessile droplet system (Brandon et al. 2003;

949 A15-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

76
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.763


Width effect on contact angle hysteresis

(b)(a)

θ0 = 72.54°, E = 0.6

θ0 = 90°, E = 0.2

E = 0.4

E = 0.6

E = 0.8
E = 0.4

E = 0.6

E = 0.8
E = 1.0

E = 1.2

θ0 = 78.46°

θ0 = 84.26°

θ0 = 95.74°

θ0 = 101.54°

θ0 = 107.46°

b

n

n n

10

5

0

20

15

5 10

Equation

20150 5

–0.4 –0.2 0.20 0.4

10

cos θ0

η(cos θ0)bE2 + ζ(cos θ0)bE
2015 25 30 35 40

2

4

6

8

10

12

14

5.1

5.0

5.2

5.3

5.4

5.5

5.6

2

4

6

8

10

0.2 0.4 0.6 0.8 1.0 1.2
E

Figure 6. (a) Volume-averaged number of equilibrium configurations n as a function of b for different ε
with θ0 = 90◦. The inset shows n as a function of θ0 and ε. (b) Volume-averaged number of equilibrium
configurations n as a function of η(cos θ0)bε2 + ζ(cos θ0)bε. The red solid line is given by (4.4).

Wu et al. 2019). In order to quantitatively explore the influence of b on the number
of equilibrium configurations, we define a volume-averaged number of equilibrium
configurations in the following.

For a microchannel with width b, the number of equilibrium configurations N is
a function of V . For example, figure 2(a) shows N = 5 at V = 4.6b, while N = 3 at
V = 5.5b when b = 10. Therefore N should change periodically with period 	V = 2b. In
order to determine how N varies with b, we defined a volume-averaged N, i.e. the average
number of equilibrium configurations in one period 	V:

n = 1
	V

∫ Vi+	V

Vi

N(V) dV, (4.3)

where Vi is an arbitrary value of droplet volume during phase transition. In this way, there
is a determined number of equilibrium configurations for cases with a specific b.

Figure 6(a) shows the number n as a function of b for different heterogeneity strengths
ε with θ0 = 90◦. A linear dependence is found. When b → 0, n → 1. This means that
there are no multiple equilibrium configurations and CAH. Besides b, θ0 as well as ε also
affect n. From the inset of figure 6(a), it can be found that the relationships between n,
cos θ0 and ε satisfy the quadratic polynomial equation. When ε = 0, the surfaces become
homogeneous and therefore n = 1. In addition, the effect of θ0 on n is symmetric about
θ0 = 90◦.

Based on the above observations, we suggest a model framework to comprehensively
describe the effects of b, θ0 and ε on n, which can be written as

n = η(cos θ0)bε2 + ζ(cos θ0)bε + 1, (4.4)

where η(cos θ0) and ζ(cos θ0) are respectively given by

η(cos θ0) = a cos2 θ0 + c, ζ(cos θ0) = p cos2 θ0 + q, (4.5a,b)

with parameters a, c, p and q. These four parameters are constant for a specific surface
chemistry and can be obtained by data fitting. As an example, for a surface composed of
equal-width stripes, by fitting the data of n changing with cos θ0 in the cases of ε = 0.6
and ε = 0.8, we obtain a = 0.50914, c = 0.11071, p = 0.63546 and q = 0.65160. In order
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Figure 7. (a) The most stable contact angle θm as a function of V for cases with different b. (b) The maximum,
minimum and average values of the most stable contact angle as functions of b, where the orange dashed line
represents the Cassie–Baxter contact angle. Here θ0 = 90◦ and ε = 0.6.

to verify the model framework, n as a function of η(cos θ0)bε2 + ζ(cos θ0)bε for various
θ0 and ε is displayed in figure 6(b). It is found that all the data collapse into a universal
curve, which is consistent with (4.4). Therefore the proposed model framework is able to
describe the influence of these three factors on n correctly and systematically.

4.2.2. The most stable equilibrium configuration
The most stable equilibrium configuration is the state with the global minimum of
system free energy (e.g. point C in figure 2b), which depends on the droplet volume
and is independent of the contact line’s motion direction. The apparent contact angle
corresponding to this configuration is the most stable contact angle θm. Figure 7(a) shows
θm as a function of droplet volume in cases with different b. It can also be seen that b
affects the most stable contact angle.

Furthermore, the variations of the maximum, minimum and average values of the most
stable contact angle with b are shown in figure 7(b). Here the average most stable contact
angle is defined as

cos θm,ave = 1
	V

∫ Vi+	V

Vi

cos θm(V) dV. (4.6)

Firstly, we can see from the figure that when b is small, the maximum and minimum
most stable contact angles remain constant with an increase of b. When b is larger than a
critical value, they gradually decrease and increase, respectively, until they both approach
the average most stable contact angle as b → ∞. This means that for a limited b, the
most stable contact angle may be any value in the range [θm,min, θm,max] depending on the
location of the GLI. When the microchannel is wide enough, the dependence on location
disappears.

Another important piece of information obtained from figure 7(b) is that the average
most stable contact angle remains constant with a change of b and is always equal
to the contact angle predicted by the Cassie–Baxter equation (Cassie & Baxter 1944)
(Cassie–Baxter contact angle):

cos θCB = 1
Lx

∫
cos θidx, (4.7)
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Figure 8. (a) The average most stable contact angle θm and Cassie–Baxter contact angle θCB as functions of
b. The width ratio of the two types of stripes is 3 : 1 and θ0 = 75◦ with ε = 0.6. (b) Angles θm and θCB as
functions of b for cases of chemically heterogeneous surfaces with Gaussian-shaped defects. The wettability
distributions are shown in the insets. The filled circles and the orange dashed lines represent θm and θCB,
respectively.

where Lx is the total microchannel length. Moreover, the identity of the average most stable
contact angle and Cassie–Baxter contact angle also exists for other types of heterogeneous
surfaces, e.g. surfaces with non-equal stripe widths (see the inset of figure 8a). Suppose
the width ratio of the two types of stripes is 3 : 1, and the heterogeneities are characterized
by θ0 = 75◦ and ε = 0.6. Figure 8(a) shows that the average most stable contact angle
for different b is constant and equal to the Cassie–Baxter contact angle θCB = 83.75◦.
In addition, we also consider chemically heterogeneous surfaces with Gaussian-shaped
defects (see the inset of figure 8b), which can be expressed as

cos θi(x) = cos θ0 + 0.6
∞∑

j=−∞
exp

[
−(x − xj)

2

64

]
, (4.8)

where xj = 0.5 + j. In figure 8(b), again, we find that the average most stable contact angle
is consistent with the Cassie–Baxter contact angle for different b.

Actually, there has been much debate about the correctness of the Cassie–Baxter
equation (Extrand 2003; Gao & McCarthy 2007; McHale 2007; Panchagnula & Vedantam
2007; Marmur 2009). Based on the experimental evidence, some experimentalists
concluded that this equation is wrong because it cannot predict the apparent contact
angle on heterogeneous surfaces (Extrand 2003; Gao & McCarthy 2007). Afterwards,
theorists tried to defend this equation and explain its validity. According to the theoretical
and experimental results, Marmur and others (Meiron, Marmur & Saguy 2004; Marmur
2009; Marmur & Bittoun 2009) considered that the Cassie–Baxter equation is a good
approximation of the most stable contact angle if the normalized size of the GLI is
large enough, i.e. Li is much larger than β. This is consistent with our conclusion for
the microchannel system. However, Gao & McCarthy (2009) disproved the view. They
claimed that we should not be concerned with the normalized size of the GLI, and the
Cassie–Baxter equation can and should often be used to analyse the contact angle data.

Here, based on the above discussion, we propose a new viewpoint that the Cassie–Baxter
equation is a correct theory to predict the average most stable contact angle, which
does not depend on the normalized size of the GLI. Therefore, the average most stable
contact angle can be used as a characteristic parameter to describe the wetting properties
of heterogeneous surfaces, just as Young’s contact angle for homogeneous surfaces.
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Figure 9. (a) Hysteresis value H and (b) jump distance d as functions of the microchannel width b for different
heterogeneity strengths ε with θ0 = 90◦. The arrows indicate the critical points. The critical microchannel
widths for the cases of ε = 0.4, 0.6 and 1.0 are 7.4, 4.9 and 2.9, respectively.

Intuitively, for a specific heterogeneous surface, a droplet with a fixed volume will
exhibit different most stable contact angles at different locations. The average most stable
contact angle is the statistical average value of the most stable contact angles at each
possible location, which corresponds to the global spatial-averaged characteristic of the
Cassie–Baxter equation. The proposed viewpoint can also be used to explain the validity
of the Wenzel equation (Wenzel 1936) on rough surfaces. It should be noted that the above
conclusion is only supported by the limiting cases considered in the present work, i.e. 2-D
cases with symmetry phase transitions.

4.3. Contact angle hysteresis mode
To find out how the microchannel width b affects the CAH, we first define the hysteresis
as

H = 〈cos θR〉 − 〈cos θA〉, (4.9)

where 〈cos θA〉 = (1/	V)
∫ Vi+	V

Vi
cos θA(V) dV and 〈cos θR〉 = (1/	V)

∫ Vi+	V
Vi

cos θR(V) dV . Figure 9(a) displays the hysteresis H as a function of b with different
heterogeneity strengths. In addition, the corresponding jump distance d as a function of
b is shown in figure 9(b). It should be noted that the jump distances in the advancing
and receding paths are identical. The effect of microchannel width on the CAH can be
classified into two different categories. First, when b is small, both the hysteresis H and
the jumping distance d are proportional to b, i.e. H ∝ b and d ∝ b. This corresponds
to the slip–jump–slip–stick movement pattern of the contact line as described in § 4.1.
Second, as b becomes larger than a critical value bc, the hysteresis H would increase in a
nonlinear fashion with b, and the jump distance d is almost constant. This corresponds to
the slip–jump–stick pattern of contact line as mentioned in § 4.1. This piecewise linear and
nonlinear behaviour of hysteresis has also been observed in previous experimental works
(Di Meglio 1992). If we take the wettability of one kind of stripes as the background, the
other kind of stripes can be regarded as defects. Then, the two kinds of hysteresis patterns
can be considered as IDH and CDH, respectively. For the latter, CAH would be affected
by two neighbouring defects close to the contact line.

The critical microchannel width bc is dependent on θ0 and ε; bc as a function of θ0 for
different ε is shown in figure 10(a). One can see that the curves of bc are symmetric about
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Figure 10. (a) Critical microchannel width bc as a function of the reference contact angle θ0 for different
heterogeneity strengths ε. (b) Critical microchannel width bc as a function of the heterogeneity strength ε for
the case of θ0 = 90◦.

θ0 = 90◦ and reach peaks at that point. Critical width bc as a function of ε with θ0 = 90◦

is plotted in figure 10(b). We find that bc is inversely proportional to ε, i.e. bc ∼ ε−1.
To understand the relationship between θ0, ε and bc, we consider the interplay between

two forces, namely the defect force induced by surface heterogeneity and the elastic
restoring force. Analysing the forces to study CAH was proposed by Joanny & De Gennes
(1984). In our current 2-D microchannel system, there is no deformed contact line, and the
elastic restoring force induced by the deformation of the GLI is dominant (Hatipogullari
et al. 2019).

The dimensionless defect force and elastic restoring force are

Fd = cos θa, (4.10)

Fe = k	R. (4.11)

When the system is at equilibrium, they balance each other, i.e.

cos θa = k	R. (4.12)

In the above equations, k is the Hookean spring coefficient and 	R represents the
deformation of the GLI and is defined as 	R = R − Rs, where Rs is the base radius of
the undeformed, flat GLI of equal droplet volume. Using (2.1), (4.12) is rearranged as

cos θa = −kb
[

2θa − π + sin(2θa)

8 cos2 θa

]
. (4.13)

Therefore, the expression of the spring coefficient is obtained, i.e.

k = 8 cos3 θa

b[π − 2θa − sin(2θa)]
. (4.14)

Assuming that the heterogeneity strength ε is small, the apparent contact angle θa can be
replaced by the constant reference contact angle θ0 (Hatipogullari et al. 2019). Then we
have the spring coefficient

k = g(θ0)

b
, (4.15)

where g(θ0) = 8 cos3 θ0/(π − 2θ0 − sin(2θ0)) (see figure 11). In general, the spring
coefficient of the interface depends not only on θ0 but also on b. Specifically, it is inversely
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Figure 11. Plot of the function g(θ0).

proportional to b. It is noted that in figure 11, at θ0 = 90◦, g(θ0) reaches a peak. When
θ0 = 90◦, not only the numerator but also the denominator of the g(θ0) formula are zero
and, using L’Hopital’s rule, we have g(90◦) = 6.

The force balance (4.12) leads to a simple graphical construction as shown in figure 12.
We pay attention to the elastic restoring force curve (i.e. the black dashed line). First,
it can be seen from the figure that, for fixed θ0 and ε, the slope of the curve decreases
with an increase of b. When the droplet evaporates or condenses, the elastic restoring
force curve shifts to the left or right, respectively. The intersections of the elastic restoring
force and the defect force curves represent the equilibrium configurations of the system.
Next, when the elastic restoring force curve coincides with the point where saddle-node
bifurcation occurs, jumping behaviour is induced (red and green lines in the figure). The
IDH and CDH correspond to the cases shown in figures 12(a) and 12(c), respectively, while
figure 12(b) represents the critical state of the two hysteresis modes. From the geometric
plot, we have the critical condition

kc = g(θ0)

bc
= 2ε. (4.16)

Hence, the critical microchannel width is

bc = g(θ0)

2ε
. (4.17)

This formula is consistent with the symmetry shown in figure 10(a) and the scaling
behaviour shown in figure 10(b).

4.4. Scaling laws analysis of CAH
According to Joanny & De Gennes (1984), the influence of each defect on the contact
line behaviour is assumed to be independent (i.e. IDH). Based on this assumption, the
relationship between the hysteresis and the dissipated energy for a dilute system of defects
is derived as (Joanny & De Gennes 1984)

H = φW, (4.18)

where φ is the defect density (the number of defects per unit area) and W is the dissipated
energy per defect in a hysteresis cycle. Then the scaling law (1.1) was established through
(4.18). However, for CDH, this scaling law no longer holds. In this section, we extend the
model of Joanny and de Gennes to the CDH cases, and a scaling law for the two hysteresis
modes can be well established.
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Figure 12. Graphical construction of the force balance on surfaces with alternating equal-width stripes of
different wettabilities with reference contact angle θ0 = 90◦ for cases (a) b < bc, (b) b = bc and (c) b > bc.
The black solid lines and dashed lines represent the defect force and the elastic restoring force, respectively,
and their intersections represent the equilibrium configurations of the system. The red and green solid lines
indicate the jumping behaviour of the contact line in the receding and advancing directions, respectively. The
grey areas represent the dissipated energy in a hysteresis cycle.
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Figure 13. Hysteresis H as a function of dissipated energy in a hysteresis cycle W for different b at several
fixed ε and for different ε at several fixed b.

To this end, we first examine the relationship between H and W for both the IDH and
CDH cases in the current microchannel system. Figure 13 shows H as a function of W for
different b at several fixed ε and for different ε at several fixed b. It can be seen that (4.18)
is satisfied for both the IDH and CDH cases (here φ ≡ 1). This is reasonable since surface
heterogeneity is periodic. Therefore (4.18) does not depend on the hysteresis mode.

Actually, W is equal to the shaded area in the force balance graphical construction
(figure 12). For the microchannel that we studied, the shaded area is a parallelogram
(figure 12a) and a parallel hexagon (figure 12c) for IDH and CDH, respectively. By
calculating their area and using (4.18), the hysteresis of the IDH and CDH modes can
be obtained as

H = bε2

g(θ0)
(4.19a)

and

H = ε − g(θ0)

4b
, (4.19b)
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(b)(a)

IDH

CDH
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E = 1.0
Eq. (4.20)

E = 0.6
E = 0.4

b = 8
b = 12
Eq. (4.21)

b = 6
b = 4

Figure 14. (a) Rescaled hysteresis H/ε as a function of b̃ for different ε. (b) Plot of Hb as a function of ε̃ for
different b.

respectively. It is seen that the formulas are quite different. For IDH, H is proportional to
bε2. However, for CDH, H is linearly dependent on ε. In addition, with an increase of b,
H increases nonlinearly and finally approaches a constant ε.

Next, we check the correctness of (4.19a) and (4.19b). Rescaling H and b with ε and bc,
respectively, we have

H
ε

=

⎧⎪⎪⎨
⎪⎪⎩

b̃
2
, b̃ � 1

1 − 1

2b̃
, b̃ > 1,

(4.20)

where b̃ = b/bc. Figure 14(a) shows the rescaled hysteresis H/ε as a function of b̃. It can
be seen that H/ε for different ε collapses into a single curve, which is accurately predicted
by (4.20). On the other hand, we also investigate the effect of heterogeneity strength on H.
Adopting 1/b and εc to rescale H and ε, respectively, we obtain

Hb =

⎧⎪⎪⎨
⎪⎪⎩

g(θ0)ε̃
2

4
, ε̃ � 1

g(θ0)

4
(2ε̃ − 1), ε̃ > 1,

(4.21)

where ε̃ = ε/εc. Figure 14(b) shows Hb as a function of ε̃. It can be seen that all data for
different b collapse into a single curve, which is consistent with the prediction, i.e. (4.21).
The quadratic dependence and the linear dependence on ε̃ are observed in the IDH and
CDH regions, respectively.

5. Three-dimensional results

In this section, the CAH in a 3-D chemically heterogeneous microchannel is numerically
studied using the LBM. We consider neutral wetting surfaces (θi = 90◦) with regularly
arranged circular hydrophilic defects (θi = 45◦). The dimensionless radii of circular
defects are r = 0.25. Here β is also the characteristic length and the contact angle of
the neutral wetting surfaces is regarded as the reference contact angle, i.e. θ0 = 90◦. The
initial droplet is symmetrically placed in the microchannel, and the centre of the droplet
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Figure 15. The average apparent contact angle θ ′
a as a function of V during (a) evaporation and (b)

condensation for cases with different b.

corresponds to the neutral wetting region of the wall (see figure 1c). In the 3-D simulations,
the computational domain of the microchannel is Lx × Ly × Lz = 7 × 1 × b. The grid
spacing is 	x = 1

48β and the corresponding mesh size is 336 × 48 × 48b. The front and
rear boundaries are periodic. Constant density is imposed on the left and right boundaries
to drive the quasi-static evaporation or condensation of the droplet. For more details of
phase transition settings, see § 4.1.

In the 3-D cases, for a specific contact line shape, the local apparent contact angle is
space-dependent in the y direction, i.e. θa = θa( y). The spatially averaged apparent contact
angle is

θ ′
a =

∫ 1

0
θa( y) dy. (5.1)

Similarly, the spatially averaged base radius can be calculated as

R′ =
∫ 1

0
R( y) dy. (5.2)

Figures 15(a) and 15(b) show θ ′
a as a function of V during evaporation and condensation,

which are the spatially averaged receding contact angle θ ′
R and advancing contact angle

θ ′
A, respectively. It can be seen that for evaporation (figure 15a), when b � bc, where

bc ≈ 11.6, θ ′
a, i.e. θ ′

R, is maintained at 90◦ for a while (there is a plateau). However,
when b � bc, the evolution trend of θ ′

R becomes different because there is no such
plateau. For condensation (figure 15b), the evolution trend of θ ′

a, i.e. θ ′
A, is identical in all

cases and not affected by b. The curves of θ ′
R for small and large microchannel widths

correspond to the slip–jump–slip–stick (IDH) and slip–jump–stick (CDH) movement
modes of the contact line, respectively. Similar to the 2-D cases, the CAH is defined as
H = 〈cos θ ′

R〉 − 〈cos θ ′
A〉, where 〈cos θ ′

R〉 = (1/	V)
∫ Vi+	V

Vi
cos θ ′

R(V) dV and 〈cos θ ′
A〉 =

(1/	V)
∫ Vi+	V

Vi
cos θ ′

A(V) dV .
During the quasi-static phase transition, both R′ and θ ′

a are uniquely determined by the
droplet volume and the deformation of the contact line. Actually, we find that θ ′

a is a
single-valued function of R′. The details are illustrated in the following.

For the droplet’s phase transition in the 3-D heterogeneous microchannel studied here,
the deformation of the contact line may be affected by: phase transition time, b and phase
transition type (i.e. evaporation or condensation). For the specified phase transition type

949 A15-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

76
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.763


X. Chang, H. Huang, X.-Y. Lu and J. Hou

(b)(a)

Figure 16. (a) Deformed contact line during droplet evaporation for different b with R′ = 1.56, where the
black, blue, green and red dashed lines represent the cases of b = 6.6, 11.6, 16.6 and 21.6, respectively.
(b) Deformed contact line in the process of droplet evaporation and condensation with b = 1.6 and R′ = 0.61,
where the orange and blue solid lines represent the cases of evaporation and condensation, respectively.

and b, phase transition time is a single-valued function of R′. Therefore, the deformation
of the contact line may be affected by R′, b and phase transition type. However, through
the numerical simulation results, we found that the deformation of the contact line does
not depend on b and phase transition type. We illustrate this in figure 16.

Figure 16(a) shows the deformed contact line during droplet evaporation for different b
with R′ = 1.56. It can be seen that the contact lines for different b coincide, indicating
that the deformation of the contact line does not depend on b. Figure 16(b) shows a
comparison of the deformed contact line during droplet evaporation and condensation
with b = 1.6 and R′ = 0.61. It seems that the deformation is not relevant to the type
of phase transition. Therefore during the movement of the contact line, the deformation
of the contact line can be uniquely determined by R′. Actually, under the assumption of
quasi-static phase transition, the local apparent contact angle is determined by the local
capillary force balance, which is related to the surface chemical properties. So θ ′

a can
be uniquely determined by the deformation of the contact line. In other words, θ ′

a is a
single-valued function of R′.

Since θ ′
a is a single-valued function of R′, the 3-D problem can be transformed into a 2-D

problem similar to that in § 4. In the 3-D cases, due to the deformation of the contact line,
the distribution of defect force cannot be given directly according to the surface wettability.
Since the microchannel width does not influence the deformation of the contact line, by
simulating the droplet phase transition in the case of small b, e.g. b = 0.4 (the hysteresis
is negligible), we obtain the average defect force F′

d (F′
d = cos θ ′

a) as a function of R′,
and the result is shown in figure 17(a). The small oscillations at the peak of the curve in
this figure may be attributed to the polygonal approximation of circular defects in the wall
mesh. When the resolution is sufficient, the oscillations will disappear.

It can be seen that the defect force curve is close to a Gaussian-shaped distribution.
Under the assumption of local defects (defect size r is much smaller than the spatial
period of surface heterogeneity, i.e. r/β � 1), the shaded area can be calculated by
approximating it as a triangle (Joanny & De Gennes 1984; Delmas et al. 2011; Lhermerout
& Davitt 2018), while that in the case of CDH can be calculated by approximating it as
a trapezoid. However, in our simulations, the assumption of local defects is not satisfied.
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Figure 17. (a) Graphical construction of force balance on 3-D chemically heterogeneous surfaces for IDH.
The black solid line represents the defect force. (b) Hysteresis H as a function of b in the 3-D chemically
heterogeneous microchannel. The dashed line is the fitting line of linear stage, and the dash-dotted line
represents b = 12.2.

So it is difficult to perform a quantitative analysis on the correlation between CAH and
b. However, in the IDH mode, if the areas of A and B in figure 17(a) are assumed to
be equal, the area of the shaded part can be converted to that of a triangle, which is
composed of the red line and the dashed lines. In this way, from the geometric plot, we
have H = 0.5bε′2/g(θ0) (ε′ refers to the maximum value of F′

d and ε′ ≈ 0.37 here). It
seems that H increases linearly with b in the IDH mode. The formula is confirmed by our
numerical results (see figure 17b). Figure 17(b) shows that when b is small the linear data
fitting is H = 0.01b. The slope is consistent with the analytical value 0.5ε′2/g(θ0) ≈ 0.011.

On the other hand, when b is large, we can see a nonlinear relationship between H
and b, which corresponds to the 3-D CDH mode. According to figure 17(a), we have a
critical microchannel width to distinguish the two hysteresis patterns, bc = 12.2, which
can also be seen in figure 17(b). The above discussions of the 3-D cases demonstrate that
the theoretical results of 2-D cases (§ 4) can be well extended to 3-D cases.

6. Conclusions

Through theoretical analysis and numerical simulation based on the diffuse-interface
LBM, the CAH in a heterogeneous microchannel is systematically studied.

Our numerical simulations accurately reproduce the CAH and complex contact line
dynamics predicted by the theory. The contact line behaviours depend on the change of
outermost equilibrium configurations with volume in the quasi-static regime. The contact
line would jump at some critical points where saddle-node bifurcations occur.

The microchannel width effect on the system’s equilibrium properties is considered. The
volume-averaged number of equilibrium configurations n is found to be linearly dependent
on the microchannel width b, and further it can be written as n = η(cos θ0)bε2 +
ζ(cos θ0)bε + 1. The average most stable contact angle does not depend on b and is always
equal to the contact angle predicted by the Cassie–Baxter equation.

Two different hysteresis regimes, i.e. IDH and CDH, are identified for small and large b,
respectively. The critical microchannel width bc separating the two hysteresis regimes is a
function of the reference contact angle θ0 and the heterogeneity strength ε. In particular,
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bc is inversely proportional to ε, i.e. bc ∼ ε−1. A graphical force balance approach is
constructed to understand the correlation between θ0, ε and bc.

Finally, based on the graphical construction of the force balance, a scaling law is
established for the hysteresis value H, which is a function of b and ε. In the IDH mode,
H ∼ bε2, while in the CDH mode, H increases linearly with ε but nonlinearly with b. We
also demonstrated that some of the conclusions for the 2-D case can be well extended to
the 3-D case.
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Appendix A. The MCMP pseudopotential LBM

A.1. Basic formulation
In our study, there are two components and the evolution equation of the density
distribution function (3.1) is applicable not only to component 1 but also to component
2. The equilibrium distribution function f σ,eq

i (x, t) can be calculated as (Huang, Sukop &
Lu 2015)

f σ,eq
i (x, t) = ωiρσ

[
1 + ei · ueq

σ

c2
s

+ (ei · ueq
σ )

2

2c4
s

− (ueq
σ )

2

2c2
s

]
. (A1)

For the D2Q9 (two dimensional nine velocities) and D3Q19 (three dimensional nineteen
velocities) models used here, the discrete velocities ei are given by

[e0, e1, e2, e3, e4, e5, e6, e7, e8]

= c
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
(A2)

and

[e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18]

= c

⎡
⎣0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

⎤
⎦ ,

(A3)

respectively. For the D2Q9 model, the corresponding weighting coefficients ωi are given
by ωi = 4

9 for i = 0, ωi = 1
9 for i = 1, . . . , 4 and ωi = 1

36 for i = 5, . . . , 8. For the D3Q19
model, ωi are ωi = 1

3 for i = 0, ωi = 1
18 for i = 1, . . . , 6 and ωi = 1

36 for i = 7, . . . , 18.
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Width effect on contact angle hysteresis

The density and macroscopic velocity of component σ can be obtained through (Shan
& Chen 1993)

ρσ =
∑

i

f σi (A4)

and

ueq
σ = u′ + τσF σ

ρσ
, (A5)

respectively, where u′ is the velocity of the whole fluid and is defined as

u′ =

∑
σ

(∑
i

f σi ei

τσ

)
∑
σ

ρσ

τσ

. (A6)

In the present work, the force term only involves the pseudopotential cohesive force that
induces the separation of the components. The force acting on component σ is (Hessling
et al. 2017)

F σ (x, t) = −Gψσ (x, t)
∑

i

ωiψσ̄ (x + ei	t, t)ei, (A7)

where σ and σ̄ denote two different fluid components. If σ denotes component 1, σ̄ denotes
component 2. The parameter G controls the strength of the cohesion force and there is a
threshold value Gc. Only when G > Gc will an initially uniform mixed system of two
immiscible fluids yield a stable separation (Huang et al. 2015). In this circumstance, we
can simulate immiscible two-component flows. More discussion of parameters G and Gc
can be found in Huang et al. (2015). The interparticle potential ψσ (x, t) is defined as
ψσ (x, t) = ρ0[1 − e−ρσ (x,t)/ρ0], where ρ0 is a constant and chosen as 1 (Shan & Chen
1993).

A.2. Determination of simulation parameters
In the definitions of dimensionless parameters, the characteristic length L differs in
different flow problems. For the cases of droplet phase transition inside a heterogeneous
microchannel, L = β. The characteristic velocity Uc can be defined as follows. For the
diffusion-dominated droplet phase transition, when droplet’s base radius is much smaller
than half the length of the microchannel, i.e. R � Rb, the influence of contact angle on
phase transition rate can be neglected. Then the rate of change of droplet volume V is
(Popov 2005)

dV
dt

= − bD1δ

ρmaj(Rb − R)
. (A8)

Integrating (A8), one can get the quasi-static diffusion-dominated evaporation/
condensation model:

(V − V0)(2bRb − V − V0) = −2b2D1δ

ρmaj t, (A9)

where V0 is the initial droplet volume. Defining the characteristic velocity Uc as the
average moving velocity of the contact line in the phase transition process, according to
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(A9), we have

Uc = D1δ

2(Rb − R0)ρmaj . (A10)

It can be seen that, indeed, Uc is a linear function of δ. Here Dσ is related to the lattice
Boltzmann parameters through (Hessling et al. 2017)

Dσ = c2
s (τσ − 0.5	t)− Gc2

s

ρσ + ρσ̄
(ρσ̄ψσψ

′
σ̄ + ρσψσ̄ψ

′
σ ), (A11)

where ψ ′
σ = dψσ/dρσ (Shan & Doolen 1995). Parameter λ is the interfacial thickness. In

the MCMP pseudopotential LBM, λ can be measured from the simulations. If the region
1.05ρmin < ρ1 < 0.95ρmaj is regarded as an interfacial region, by measuring the width
of the region, λ can be obtained. In the LBM, given the value of τσ , ρmaj, ρmin, λ, γ
and Dσ are determined via G. In our simulations, τ1 = τ2 = 1. The value of G is chosen
as G = 3.6 according to Hessling et al. (2017). Then we have ρmaj = 0.7, ρmin = 0.036,
λ = 5.4, γ = 0.047 and D1 = D2 = 0.12. The non-equilibrium density mismatch is set to
δ = 0.011.

Next, we illustrate how to obtain the dimensional simulation parameters such as
diffusivity D1, surface tension γ and δ in the LBM through the specified non-dimensional
parameters.

First, suppose τ1 = τ2 = 1 is specified, then we have the viscosity of component 1,
ν1 = 0.17. Since L has been specified, from the definition of Reynolds number, i.e. Re =
UcL/ν1, we can obtain Uc.

Second, according to the definition of Péclet number (Pe), i.e. Pe = UcL/D1, we can
determine the diffusivity D1.

Third, as τ1 = τ2 = 1 is fixed, diffusivity D1 is only a function of G (see (A11)).
According to D1 and the function, we can obtain the correct choice of G. After G
is determined, the surface tension γ , interfacial thickness λ, ρmaj and ρmin can all be
determined.

Finally, through (A10), δ can be obtained. Then before we perform our simulation, we
can specify the imposed non-equilibrium density mismatch (δ), which is the driving factor
of the phase transition process.

A.3. Boundary conditions
In order to calculate the cohesive force of the fluid nodes near the solid boundary (xb in
figure 18) using (A7), we need to know the density values of wall nodes (xs), which can
be obtained by the wetting boundary condition.

To impose the wetting boundary condition on the solid wall, the order parameter is first
defined as

ϕσ (x) = ρσ (x)− ρmin

ρmaj − ρmin . (A12)

Using the finite difference method to discretize the derivative, then the wetting condition
is expressed as

nw · ∇ϕσ |xw= ϕσ (xb)− ϕσ (xs)

s + h
= −4
λ
Θϕσ (xw)[1 − ϕσ (xw)], (A13)

where nw is the unit vector normal to the solid wall and ϕσ (xw) is the order parameter
value at wall point xw. AngleΘ is related to the specified intrinsic contact angle measured
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nwxb

xw
h

s
xs

Figure 18. Schematic diagram for the implementation of condition (A13). The shaded region denotes the
solid region.

in fluid σ as Θ = cos θi for component σ and Θ = cos(π − θi) for component σ̄ . Here
s = |xw − xs|. Parameter h is the distance between the wall point xw and the boundary
node xb (see the schematic diagram in figure 18).

The order parameter at wall point xw can be obtained through

ϕσ (xw) = hϕσ (xs)+ sϕσ (xb)

s + h
. (A14)

Substituting (A14) into (A13), we have

ϕσ (xs) =
{s + h

2hm
[1 + m −

√
(1 + m)2 − 4mϕσ (xb)] − s

h
ϕσ (xb), θi /= 90◦

ϕσ (xb), θi = 90◦,
(A15)

where m = −(4h/λ)Θ . Once ϕσ (xs) is known, ρσ (xs) can be obtained according to (A12).
Then the cohesive force on the boundary nodes xb can be calculated using (A7). In the
present work, h and s are chosen as h = s = 0.5.

In our simulations, to drive the droplet phase transition in the microchannel, a density
gradient is set in the surrounding volume by imposing a constant density ρ1 = ρmin − δ

and a zero velocity on the left and right boundaries. Meanwhile ρ2 = ρmaj + δ is set
on these boundaries to eliminate the pressure gradient, where δ is a small quantity.
Evaporation and condensation occur when δ > 0 and δ < 0, respectively. For the upper
and lower walls, we set the wetting condition (A13) and set the no-slip condition through
the half-way bounce-back scheme of f σi (Ziegler 1993). For the initial condition and the
left and right boundary conditions, f σi in the fluid domain can be obtained according to the
macroscale density and velocity. Generally, when macroscale variables ρσ and velocity
are specified, we can set f σi equal to its equilibrium value f σ,eq

i .

Appendix B. Validation

We first validate the extended contact angle model by using a benchmark problem of
droplet wetting/dewetting on a flat surface. The 2-D rectangular computational domain
Ω is bounded by the top and bottom walls. The periodic boundary condition is imposed
in the horizontal direction. Initially, a semicircular droplet with a contact angle of 90◦
and radius of R0 is placed on the bottom surface. Here R0 is the characteristic length.
The dimensions of the domain are [0, 8] × [0, 4], and the corresponding mesh size is
401 × 201. When different wettability is specified, the droplet will spread or recoil, until
reaching an equilibrium state (figure 19a–c). We perform several simulations on surfaces
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(b)

(a) (d)

(c)
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Figure 19. Droplet wetting/dewetting on a flat (a) hydrophilic, (b) neutral wetting and (c) hydrophobic
surface, where the black dashed lines and contours represent the initial and equilibrium shapes of the droplet,
respectively. (d) Analytical and numerical results of spreading length and droplet height for different inherent
contact angles θi.

with different wettability and measure the spreading length l and droplet height h. It is
noted that the interface is located where ρ1 = ρ2. By the law of mass conservation, the
analytical values of l and h are derived as

l = 2R0 sin θi

√
π

2(θi − sin θi cos θi)
, (B1a)

h = R0(1 − cos θi)

√
π

2(θi − sin θi cos θi)
. (B1b)

Figure 19(d) shows that our numerical results agree well with the analytical solutions.
To further validate the numerical method, droplet evaporation and condensation

processes in a homogeneous microchannel driven by a density gradient are simulated.
In our set-up, a droplet with a base radius R0 is initially placed in the middle of a 2-D
microchannel with width b = R0. Here R0 is the characteristic length. The characteristic
time T is the total phase transition time of the droplet. The computational domain size
is [0, 12.5] × [0, 1] and the mesh size is 501 × 41. The inherent contact angle of solid
surfaces is supposed to be 75◦. The initial equilibrium density distribution of the two
components is shown in figures 20(a) and 20(b), respectively, and the specific initial
density profiles are shown in figure 20(c).

The boundary conditions are described in Appendix A.3. The Reynolds number Re, the
capillary number Ca, the Péclet number Pe and the Cahn number Cn are taken as 0.004,
0.000025, 0.006 and 0.077, respectively. The parameters show that the simulated processes
are dominated by diffusion.

Figure 21(a,b) shows schematic diagrams of the evolution of GLI during droplet
evaporation and condensation. The evolutions of V during evaporation and condensation
are shown in figure 21(c), along with the theoretical predictions given by (A9). We find that
our numerical results are consistent with the analytical solutions with small discrepancies
at the later stage. The discrepancies may be due to the change of Laplace pressure induced
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Figure 20. (a) Distribution of the density of component 1, i.e. ρ1. (b) Distribution of the density of
component 2, i.e. ρ2. (c) Density profiles of components 1 and 2 along the dashed white lines in (a,b).
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Figure 21. Schematic diagrams of the evolution of GLI during droplet (a) evaporation and (b) condensation in
a chemically homogeneous microchannel. Red and green solid lines represent the GLI during evaporation
and condensation, respectively. (c) Evolutions of droplet volume V during evaporation and condensation.
(d) Droplet base radius R and apparent contact angle θa as functions of V during evaporation and condensation.

by droplet evaporation/condensation (Hessling et al. 2017). In addition, the evolutions of
droplet base radius R and apparent contact angle θa are shown in figure 21(d). It can be seen
that θa is equal to the supposed inherent contact angle, and the change of R is consistent
with the prediction of (2.1). In general, our numerical method is well validated.
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