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We discuss a new stochastic ordering for the sequence of independent random variables. It
generalizes the stochastic precedence (SP) order that is defined for two random variables
to the case n > 2. All conventional stochastic orders are transitive, whereas the SP order
is not. Therefore, a new approach to compare the sequence of random variables had to
be developed that resulted in the notion of the sequential precedence order. A sufficient
condition for this order is derived and some examples are considered.
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1. INTRODUCTION

Stochastic orders are pairwise comparisons between two random variables defined over the
same probability space (for brevity, we will omit the latter description in what follows).
Numerous stochastic orders had been described and widely used in the literature including
the most popular in reliability applications the usual stochastic order, the hazard rate order
and the likelihood ratio order. The encyclopedic information on stochastic orders and their
properties can be found in Shaked and Shantikumar [13]. For the sake of completeness,
the definitions of orders that are used in our paper are given below. We also assume for
simplicity and applicability reasons that the considered in this paper random variables are
nonnegative, that is, lifetimes.

Let us first introduce the basic notation to be used throughout the paper. For an
absolutely continuous random variable T, we denote the probability density function (pdf)
by fT (·), the cumulative distribution function (cdf) by FT (·), the hazard rate function by
λT (·) and the survival/reliability function by F̄T (·).
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Definition 1.1: Let T1 and T2 be two random variables supported on [0,∞). Then, T2 is
said to be larger than T1 in the

(a) likelihood ratio (lr) order denoted as T1 ≤lr T2, if

fT2(t)/fT1(t) is increasing in t ∈ [0,∞);

(b) hazard rate (hr) order denoted as T1 ≤hr T2, if

F̄T2(t)/F̄T1(t) is increasing in t ∈ [0,∞);

(c) usual stochastic (st) order denoted as T1 ≤st T2, if

F̄T1(t) ≤ F̄T2(t) for all t ∈ [0,∞).

Using pairwise comparisons, the sequence of n independent random variables Ti, i =
1, 2, . . . , n can be also ordered as

T1 ≤ T2 ≤ · · · ≤ Tn (1.1)

in a suitable stochastic sense. For all mentioned basic stochastic orders, (1.1) is transitive
meaning that Ti ≤ Tj , for all 1 ≤ i < j ≤ n.

We now define the stochastic precedence (SP) order that was not so extensively studied
and applied as the foregoing orders (see [1, 4, 7–9, 12]).

Definition 1.2: Let T1 and T2 be two independent random variables. Then, T2 is said to
be larger than T1 in the SP order, denoted as T2 ≥sp T1, if

P (T2 ≥ T1) ≥ P (T1 ≥ T2). (1.2)

For continuous random variables, (1.2) can be equivalently written as follows:

P (T2 ≥ T1) ≥ 0.5. (1.3)

This order is relevant in numerous engineering applications when, for example, stress-
strength [5] or peak over the threshold probabilities are considered.

Remark 1.1: In fact, our usage of the word “order” is loose in this paper as formally the
SP is not an order in the formal sense since it does not satisfy the transitive property (see
below). On the other hand, (1.2) is still an ordering of two random variables.

It is also widely used for comparisons of independent coherent systems with i.i.d
components [10]. It was proved that in this case, the corresponding comparisons are
distribution-free. The setting with not necessarily identical components was considered in
Navarro and Rubio [9]. For other applications, see also Arcones et al. [1] and Hollander and
Samaniego [7]. The idea of using (1.3) as a reasonable tool for comparing random variables
probably goes to Savage [12, p. 245]. The SP order can be appropriate in some problems as
it directly describes probabilities of interest (distinct from other popular stochastic orders).
It can be easily shown that the stochastic precedence order for independent random vari-
ables follows from the usual stochastic order. Thus, it is weaker and more flexible and can
describe random variables with crossing reliability functions.
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However, if we want to order the sequence in (1.1) with respect to the SP order, that
is,

T1 ≤sp T2 ≤sp · · · ≤sp Tn, (1.4)

then, not necessarily, Ti ≤sp Tj , 1 ≤ i < j ≤ n meaning that this order is nontransitive [11].
Let us call (1.4), for convenience, the chain stochastic precedence (CSP) order.

Thus, the SP order in general can be nonapplicable for ordering sequences of random
variables. However, it can be generalized on the basis of definition (1.2) for natural ordering
of sequences of random variables. The following definition describes our approach.

Definition 1.3: The sequence of n independent random variables Ti, i = 1, 2, . . . , n is
ordered in the sense of the stochastic sequential precedence (SSP) order if it gives the maxi-
mal probability, for example, to the event T1 ≤ T2 ≤ · · · ≤ Tn, as compared with probabilities
of events for all other permutations in the sequence of events {J}, that is,

P1,2,...,n ≡ P (T1 ≤ T2 ≤ · · · ≤ Tn) ≥ P{J}, (1.5)

whereas the corresponding notation will be

(T1 ≤ T2 ≤ · · · ≤ Tn)SSP.

It is clear that for n = 2, (1.5) reduces to (1.2). We shall not be concerned that the
absolute values in (1.5) can be very small, as we are interested in comparisons. It should be
noted that the issue of nontransitivity does not arise in this setting, and therefore, the use
of the term “order” is appropriate in this case.

2. MOTIVATING EXAMPLES

Example 2.1 (Nontransitivity): For simplicity of illustration, consider the case of three
independent discrete random variables with the following distributions [3]

P (T1 = 3) = 1,

P (T2 = 1) = 0.4, P (T2 = 4) = 0.6,

P (T3 = 2) = 0.6, P (T3 = 5) = 0.4.

Then, obviously,

P (T1 < T2) = 0.6, P (T2 < T3) = 0.64 and P (T3 < T1) = 0.6.

Hence, Ti �sp Tj, 1 ≤ i < j ≤ 3. Sometimes this nontransitivity for three random variables
is called a voting paradox [3].

We had just outlined this new order in our recent paper while considering the problem
of obtaining the optimal sequence of activation of components in the warm standby system.
We shall briefly refer to this meaningful example and then study some initial properties of
the SSP order.

Example 2.2 (Warm standby system): Consider 1-out-of-n warm standby system when one
of the components is activated at t= 0 (full load), and others are in the warm standby mode
(reduced load). When the activated component fails, one of the operable standby components
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is activated. The problem is to find the optimal activation sequence that maximizes the
lifetime of the system in a suitable probabilistic sense. This open (for a general case) problem
was solved in Finkelstein et al. , where it was proved that if the lifetimes of the components
are ordered in the SSP sense, then this sequence of activation (starting with the shortest
lifetime) results in a system’s lifetime that is larger than a lifetime of a warm standby system
for any other sequence of activation in the SP order sense (see also [14]).

An important feature of the developed approach is that it was shown that the ordering
of the corresponding independent realizations of components’ lifetimes, that is,

t1 ≤ t2 ≤ · · · ≤ tn (2.1)

for the considered system, maximizes realization of its lifetime, that is s1,2,...,n ≥ s{J}, where
s{J} denotes this realization for the sequence of activation {J}, whereas the corresponding
lifetimes are denoted by S1,2,...,n and S{J}, respectively. It follows from (1.5) that

P (S1,2,...,n ≥ S{J}) =
P1,2,...,n

P1,2,...,n + P{J}
≥ 0.5, (2.2)

which is the SP order.
Thus, ordering of realization (2.1) results in the maximal realization of the lifetime of

the system. However, the corresponding event has the maximal probability due to assumption
(1.5). Finally, (2.2) defines the SP order for system’s lifetimes.

The reasoning in this example prompts us that a similar logic can be followed for some
optimization problems, where the corresponding results for realizations of relevant random
variables can be derived. For instance, as in the following simple illustrative example.

Example 2.3 (Coherent system): Consider a coherent system [2] of n independent compo-
nents with lifetimes Ti, i = 1, 2, . . . , n. Let their realizations be ordered as in (2.1). Assume
that, based on the structure of the system, we know how to allocate these realizations
to n “slots” of the system in order to maximize realization of the system’s lifetime. For
illustration, let n= 3, and denote

Pijk ≡ P (Ti ≤ Tj ≤ Tk), i, j, k ∈ {1, 2, 3}; i �= j �= k.

Thus, we have six permutations for three random variables with the corresponding probabil-
ities P123, P132, P213, P231, P312 and P321. Assume that the sequence of lifetimes is ordered
in the SSP sense, that is,

P123 ≡ P (T1 ≤ T2 ≤ T3) ≥ P{J}. (2.3)

Let “1” in the set {1, 2, 3} denotes the single series part (slot) of a system, whereas “2”
and “3” correspond to two slots in the parallel part. We can populate these slots with our
independent components with lifetimes Ti, i= 1,2,3. Let notation {T1, T2, T3} means that the
first lifetime is allocated to the slot “1,” whereas the second and the third to slots “2” and “3,”
respectively. The same notation is used for realizations {t1, t2, t3}. Assume that t1 ≤ t2 ≤ t3.
Let s{ti,tj ,tk}, i, j, k ∈ {1, 2, 3}; i �= j �= k denote the corresponding realizations of the lifetime
of the system, whereas S{ti,tj ,tk}, i, j, k ∈ {1, 2, 3}; i �= j �= k are the corresponding random
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lifetimes. It is easy to see that for this specific system, we have

s{t3,t2,t1} = s{t3,t1,t2} = t2; s{t2,t3,t1} = s{t2,t1,t3} = t2; s{t1,t2,t3} = s{t1,t3,t2} = t1.

From the structure of the system, it almost surely follows that

S{t3,t2,t1} = S{t3,t1,t2}; S{t2,t3,t1} = S{t2,t1,t3}; S{t1,t2,t3} = S{t1,t3,t2}.

Let us compare, the first lifetime S{t3,t2,t1} with any of the last four ones, for example, with
S{t1,t2,t3}. From (2.3), and similar to (2.2),

P (S{t3,t2,t1} ≥ S{t1,t2,t3}) =
P123

P123 + P321
≥ 0.5,

as P123 is the probability of the event T1 ≤ T2 ≤ T3 meaning specifically that T3 is the largest
in the defined sense. Note that, in this case, we have larger realizations of system’s lifetime
(if T3 is assigned to the slot “1”) with larger probabilities of occurring of this event. Thus, we
have the SSP order for lifetimes of components, which results in the SP order for variants
of systems when comparing allocation {3, 2, 1} (or {3, 1, 2}) with others.

On the other hand, it is well-known that the allocation {T1, T2, T3} for the considered
system is also the best when the lifetimes and the variants of systems are compared in the
sense of the usual stochastic order. Note that, as the lifetimes of the system for different
variants of allocation are statistically dependent, we cannot say now that the usual stochastic
order for these variants implies the SP order, which is true for the independent random
variables.

3. SOME PROPERTIES OF THE SSP ORDER

While considering different stochastic orders for the pair of independent random variables,
we are often interested in the relationships between them. It is well-known that for the
simplest stochastic orders for two independent random variables, we have the following
chain:

LR =⇒ HR =⇒ ST =⇒ SP.

It is interesting to obtain some relationships between the SSP order for n independent
random variables and other orders for this sequence. This topic needs further investigation.
Below we present some initial results. We start with the following example that will help
us to formulate the sufficient condition for the SSP order.

Example 3.1: Let n= 3 and we want to establish the sufficient condition for (T1 ≤ T2 ≤
T3)SSP to hold. There are six permutations. Let us consider the permutation (1 2 3) and
compare it with permutation (1 3 2). For P (T1 ≤ T2 ≤ T3) ≥ P (T1 ≤ T3 ≤ T2) to hold, the
following should hold:∫ ∞

x=0

∫ ∞

y=x

fT1(x)fT2(y)(1 − FT3(y)) dy dx ≥
∫ ∞

x=0

∫ ∞

y=x

fT1(x)fT3(y)(1 − FT2(y)) dy dx.

For this, it suffices to show that

fT2(y)(1 − FT3(y)) ≥ fT3(y)(1 − FT2(y)).

However, the last inequality means that λT2(y) ≥ λT3(y), which, obviously, defines the
corresponding hazard rate order, that is, T2 ≤hr T3.
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Thus, the first guess would be that the hazard rate order is the sufficient condition for
(T1 ≤ T2 ≤ T3)SSP. However, considering comparisons with other permutation in the same
manner as above does not lead to the hazard rate order T1 ≤hr T2.

Remark 3.1: Note that Example 3.1 does not mean that, in principle, the hazard rate order
cannot be a sufficient condition for the SSP. It means only that in this way, we cannot prove
it. We also tried (without success so far) to create a counterexample showing that the SSP
holds, whereas the corresponding hazard rate ordering does not. Thus, whether the hazard
rate ordering is the sufficient condition for the SSP or not, is still an open problem.

On the other hand, we will prove in what follows that the stronger likelihood ratio
ordering is the corresponding sufficient condition.

We begin with the following lemma.

Lemma 3.1: Let {Ti}n
i=1 be a sequence of independent random variables such that T1 ≤lr

T2 ≤lr · · · ≤lr Tn. Further, let {i1, i2, . . . , ij , . . . , ik, . . . , in} be a permutation of {1, 2, . . . , n}.
Then, for 1 ≤ ij < ik ≤ n,

P (Ti1 ≤ · · · ≤ Tij−1 ≤ Tij
≤ Tij+1 ≤ · · · ≤ Tik−1 ≤ Tik

≤ Tik+1 ≤ · · · ≤ Tin
)

≥ P (Ti1 ≤ · · · ≤ Tij−1 ≤ Tik
≤ Tij+1 ≤ · · · ≤ Tik−1 ≤ Tij

≤ Tik+1 ≤ · · · ≤ Tin
).

Proof: Note that

P (Ti1 ≤ · · · ≤ Tij−1 ≤ Tij
≤ Tij+1 ≤ · · · ≤ Tik−1 ≤ Tik

≤ Tik+1 ≤ · · · ≤ Tin
)

=
∫ ∞

t1=0

· · ·
∫ ∞

tj−1=tj−2

∫ ∞

tj=tj−1

∫ ∞

tj+1=tj

· · ·
∫ ∞

tk−1=tk−2

∫ ∞

tk=tk−1

∫ ∞

tk+1=tk

· · ·
∫ ∞

tn=tn−1

A(t1, t2, . . . , tn) dz, (3.1)

where

A(t1, t2, . . . , tn) = fTij
(tj)fTik

(tk)

(
j−1∏
r=1

fTir
(tr)

)⎛⎝ k−1∏
s=j+1

fTis
(ts)

⎞
⎠( n∏

u=k+1

fTiu
(tu)

)
,

and

dz = dtn . . . dtk+1dtkdtk−1 . . . dtj+1dtjdtj−1 . . . dt1

and

t1 ≤ · · · ≤ tj−1 ≤ tj ≤ tj+1 ≤ · · · ≤ tk−1 ≤ tk ≤ tk+1 ≤ · · · ≤ tn.

Similarly,

P (Ti1 ≤ · · · ≤ Tij−1 ≤ Tik
≤ Tij+1 ≤ · · · ≤ Tik−1 ≤ Tij

≤ Tik+1 ≤ · · · ≤ Tin
)

=
∫ ∞

t1=0

· · ·
∫ ∞

tj−1=tj−2

∫ ∞

tk=tj−1

∫ ∞

tj+1=tk

· · ·
∫ ∞

tk−1=tk−2

∫ ∞

tj=tk−1

∫ ∞

tk+1=tj

· · ·
∫ ∞

tn=tn−1

A(t1, t2, . . . , tn) dw,
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where
dw = dtn . . . dtk+1dtjdtk−1 . . . dtj+1dtkdtj−1 . . . dt1

and
t1 ≤ · · · ≤ tj−1 ≤ tk ≤ tj+1 ≤ · · · ≤ tk−1 ≤ tj ≤ tk+1 ≤ · · · ≤ tn.

Since tj and tk are dummy variables, we interchange them in the above probability
expression. Then, we get

P (Ti1 ≤ · · · ≤ Tij−1 ≤ Tik
≤ Tij+1 ≤ · · · ≤ Tik−1 ≤ Tij

≤ Tik+1 ≤ · · · ≤ Tin
)

=
∫ ∞

t1=0

· · ·
∫ ∞

tj−1=tj−2

∫ ∞

tj=tj−1

∫ ∞

tj+1=tj

· · ·
∫ ∞

tk−1=tk−2

∫ ∞

tk=tk−1

∫ ∞

tk+1=tk

· · ·
∫ ∞

tn=tn−1

B(t1, t2, . . . , tn) dz, (3.2)

where

B(t1, t2, . . . , tn) = fTij
(tk)fTik

(tj)

(
j−1∏
r=1

fTir
(tr)

)⎛⎝ k−1∏
s=j+1

fTis
(ts)

⎞
⎠( n∏

u=k+1

fTiu
(tu)

)

and
t1 ≤ · · · ≤ tj−1 ≤ tj ≤ tj+1 ≤ · · · ≤ tk−1 ≤ tk ≤ tk+1 ≤ · · · ≤ tn.

Further,
A(t1, t2, . . . , tn) − B(t1, t2, . . . , tn) ≥ 0 (3.3)

holds if, for tj ≤ tk,
fTij

(tj)fTik
(tk) ≥ fTij

(tk)fTik
(tj , ),

or equivalently,
Tij

≤lr Tik
, for 1 ≤ ij < ik ≤ n,

which follows from the hypothesis that T1 ≤lr T2 ≤lr · · · ≤lr Tn. Thus, on using (3.3), the
result follows from the expressions given in (3.1) and (3.2). �

Theorem 3.1: Let {Ti}n
i=1 be a sequence of independent random variables such that T1 ≤lr

T2 ≤lr · · · ≤lr Tn. Then (T1 ≤ T2 ≤ · · ·Tn)SSP.

Proof: Note that a set of n random variables could be arranged in n! different ways by
interchanging any two of them. Thus, the proof follows from repetitive use of Lemma 3.1.
For instance, let us consider n = 3. Then, from Lemma 3.1, we have

P (T1 ≤ T2 ≤ T3) ≥ P (T1 ≤ T3 ≤ T2) ≥ P (T3 ≤ T1 ≤ T2). (3.4)

Again,
P (T1 ≤ T2 ≤ T3) ≥ P (T3 ≤ T2 ≤ T1) (3.5)

and
P (T1 ≤ T2 ≤ T3) ≥ P (T2 ≤ T1 ≤ T3) ≥ P (T2 ≤ T3 ≤ T1). (3.6)

On using (3.4), (3.5) and (3.6), we get (T1 ≤ T2 ≤ T3)SSP. �
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In the following intuitively clear theorem, we show that the SSP order is stronger than
the CSP (1.4).

Theorem 3.2: Let {Ti}n
i=1 be a sequence of independent random variables. Then, the SSP

order (1.5) implies the CSP order (1.4), that is,

SSP ⇒ CSP.

Proof: Let N be a “sufficiently large” number of trials for the sequence {Ti}n
i=1, whereas

N1,2,...,n denote the number of realizations (out of N ), that result in (2.1).
Select Ti and Ti+1, i = 1, 2, . . . , n − 1. Inequalities (2.1) correspond to the case when

their realizations are ordered as ti ≤ ti+1. Now we consider realizations where ti ≥ ti+1

with all other realizations of other random variables being the same as for the previous
case. Denote the overall number of realizations of the latter kind by N1,2,...,i−1,i+1,i,i+2,...,n.
From our assumption (T1 ≤ T2 ≤ · · · ≤ Tn)SSP, it follows that

N1,2,...,i−1,i+1,i,i+2,...,n ≤ N1,2,...,n.

But this means that

Ni+1,i ≤ Ni,i+1,

where Ni,i+1 and Ni+1,i are the numbers of realizations for the pair of random variables Ti

and Ti+1 for which Ti ≤ Ti+1 and Ti ≥ Ti+1, respectively. But this, in fact, means the SP
order for this pair by definition. We can perform this reasoning for all adjacent pairs and
arrive at (1.4). �

4. CONCLUDING REMARKS

The SP order is natural in various engineering applications when, for example, stress-
strength or peak over the threshold probabilities are considered. It can be attractive for
probabilistic description of real-life problems as it directly describes probabilities of interest
(distinct from other popular stochastic orders). It is well-known that the usual stochastic
order implies the SP order, which gives the corresponding sufficient condition.

However, distinct from the conventional stochastic orders (e.g., the usual stochastic
order, the hazard rate order and the likelihood ratio order) that are transitive when ordering
the sequence of random variables, the SP order in this case, can be nontransitive.

Therefore, in this note, we discuss the new stochastic ordering for the sequence of
independent random variables that is called the SSP order. It generalizes the SP order that
is defined for two random variables to the case n > 2.

We show that the likelihood ratio ordering is the sufficient condition for the SSP ordering
of the sequence of the independent random variables. Moreover, the SSP order implies the
SP in this sequence (CSP). It is interesting to consider the following open problem: either
to prove that the hazard rate ordering can be a “better” sufficient condition for the SSP,
or to construct the corresponding counterexample.
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