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A multi-region scene matching-based localisation system for automated navigation of
Unmanned Aerial Vehicles (UAV) is proposed. This system may serve as a backup navigation
error correction system to support autonomous navigation in the absence of a global position-
ing system such as a Global Navigation Satellite System. Conceptually, the system computes
the location of the UAV by comparing the sensed images taken by an on board optical camera
with a library of pre-recorded geo-referenced images. Several challenging issues in building
such a system are addressed, including the colour variability problem and elimination of
time-varying details from the pairs of images. The overall algorithm is an iterative process in-
volving four sub-processes: firstly, exact histogram matching is applied to sensed images to
overcome the colour variability issues; secondly, regions are automatically extracted from
the sensed image where landmarks are detected via their colour histograms; thirdly, these
regions are matched against the library, while eliminating inconsistent regions between under-
lying image pairs in the registration process; and finally the location of the UAV is computed
using an optimisation procedure which minimises the localisation error using affine transfor-
mations. Experimental results demonstrate the proposed system in terms of accuracy, robust-
ness and computational efficiency.
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1. INTRODUCTION. Navigation technology plays a crucial role in the deploy-
ment of Unmanned Aerial Vehicles (UAV). A conventional Inertial Navigation
System (INS) may accumulate large errors over time and Navigation Error
Correction (NEC) is a necessary procedure to maintain the navigation error within ac-
ceptable bounds. While NEC can be obtained via the Global Position System (GPS) or
other Global Navigation Satellite System (GNSS), a vision-based navigation system
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may serve as an alternative for autonomous navigation of UAVs in the absence of GPS
(Wang et al., 2013).
Approaches for localising a UAV using a vision-based navigation system are usually

divided into three categories (Bonin-Font et al., 2008): mapless localisation (such as
visual odometry (Williams and Reid., 2010)), map-building-based localisation (such
as Simultaneous Localisation And Mapping (SLAM) (Nemra and Aouf., 2009)),
and map-based localisation (such as scene matching methods (Lincheng et al.,
2010)). These three kinds of vision navigation methods have different advantages,
drawbacks and areas of applicability. On the one hand, the mapless and map-build-
ing-based methods just need a camera mounted on the UAV, while the estimation
errors of inter-frame motions would accumulate severely (Williams and Reid., 2010).
On the other hand, scene matching methods require an extra library of pre-recorded
geo-referenced images, but allow absolute locations of UAVs to be obtained (Li
et al., 2009) without accumulative errors.
A vision-based NEC system, as illustrated in Figure 1, is our final goal to improve

navigation precision by combining localisation results of scene matching system, INS,
and GPS, with the focus on scene matching, where Ik′ and Ik denote the sensed and ref-
erence image, respectively. k signifies time index. Pk′ represents the calculated position
of Ik′ in Ik, and P0

k is the prior location of the UAV. Geo-referenced images, pre-
recorded from areas of interest, are assumed to be available. An essential part of the
scene matching system is image matching, and this has been explored in many
papers, including correlation methods (Zhao et al., 2006), edge methods (Ling et al.,
2009) and point correspondences methods (Bay et al., 2008).
In order to establish a practically robust vision-based NEC system, several issues

regarding UAV localisation via image scene matching need to be addressed. Firstly,
the pair of images to be registered are taken in different conditions at different
times. As time-varying objects may be involved in the scene, registration may yield
large errors if standard image features are used. Secondly, without specific knowledge
of the time invariant objects in the scene, a statistical model for selecting time invariant
objects is needed. Thirdly, a statistical feature in the scene of underlying images, which
is used to geometrically register image pairs containing time-varying objects, is prefer-
able for an efficient autonomous navigation scheme. Clearly, these research challenges
need to be adequately addressed.
As the position of the sun varies through the day and over seasons, the colours of

sensed images taken at different times may appear quite different from those of the ref-
erence images. This colour variability can significantly influence the precision and re-
liability of scene matching. Consequently, colour constancy processing is very
important in mitigating colour variability issues (Van De Weijer et al., 2007). In
Agarwal et al. (2006), the state of the art colour constancy algorithms are divided
into two categories: pre-calibrated and data-driven approaches. The latter categories
include methods such as grey world assumptions (Buchsbaum, 1980), Retinex-based
white patch approaches (Barnard et al., 2002), grey edge algorithm (Van De Weijer
et al., 2007), machine learning methods (Ebner, 2004), etc. When the contents in
two images are similar, colour constancy methods with satisfactory performances
can be found in Morovic et al. (2002) and Jin et al. (2015).
For many applications, partitioning an image into multi-regions rather than using

the entire image for scene matching between a pair of images significantly reduces com-
putational complexity and improves localisation precision (Calloway et al., 1990; Li
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et al., 2009). For visual NEC applications, the multi-region scene matching approach
also appears as a necessary technique to remove local dissimilarity between a pair of
images from consideration, though this remains a difficult problem. A novel method
to extract multi-regions is to select salient regions by mimicking the visual attention
mechanism of primates (Siagian and Itti, 2009). The work in Jin et al. (2013) describes
a multi-feature fusion visual saliency model that incorporates image features suitable
for scene matching. Multi-region extraction can also be accomplished by selecting
landmarks, which are reasonably assumed to be time-invariant for scene matching.
With the colour histogram as the only extracted feature of landmarks, preliminary
work on this topic is reported in Jin et al. (2014b).
On the other hand, multi-region scene matching may yield large registration errors

or limited numbers of successfully matched sub-regions as less information is used than
matching the entire image. In Lo and Gerson (1979), a least-squares estimator is
adopted to estimate the affine transformation so as to perform positioning by global
optimisation. To achieve an optimal localisation result, geometric constraints on
multi-regions are imposed to fix reference points and infer the most accurate location
(Li et al., 2009), which improves robustness to shifts between sensed images and refer-
ence images. Following Li et al. (2009), an efficient method for sub-region selection
and matching error reduction is proposed in Jin et al. (2014a) based on visual saliency
computation and affine constraints; this performs well even under errors in scaling and
rotation between sensed images and reference images.
A multi-region scene matching-based UAV localisation algorithm is proposed for

vision navigation systems, which combines the aforementioned three image processing
techniques. The contributions of this paper are:

. The approach is fairly general in the sense that we use a statistical feature for
image registration, which enables automated scene matching using a generic land-
mark selection method and tolerates different non-landmark objects in the pair of
images.

. A recursive colour constancy algorithm that exploits the location, scaling and ro-
tation parameters extracted from the NEC system is presented to adaptively
reduce the colour variation between an image pair to be matched. This method

Figure 1. Illustration of a Vision based NEC System.
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is incorporated with the statistical landmark selection using the colour histogram
of landmarks and a multi-region scene matching algorithm.

. An estimation procedure that determines the location of the UAV using a set of
registered sub-region centres with errors using affine transformations is presented.
This approach is optimal in the sense that it minimises estimation errors by taking
all possible combination of registered region locations into account. As demon-
strated by experimental results, the estimation procedure is robust to shifting, ro-
tation and zooming between image pairs in image registration.

In principle, any image matching method, including the widely used feature point
based methods, can be used to register the selected landmark regions. Landmark selec-
tion effectively eliminates the regions possibly containing time-varying objects from
consideration before image matching. Clearly, the multi-region scene matching step
has a reduced number of feature points and computational load compared with the
registration using the entire image.

2. THE PROPOSED VISION-BASED LOCALISATION SYSTEM. The overall
idea of a reliable multi-region automatic scene matching system is illustrated in
Figure 2, where the NEC system provides the prior location of UAV P0

k, which may
be derived from the last localisation result Pk−1′ or the result of INS, GPS, or a com-
bination of these (Jwo et al., 2013).
The first phase addresses image pre-processing and colour constancy processing.

Image pre-processing reduces the scaling, rotation, and perspective differences
between the sensed image Ik′ and the reference image Ik. The colour constancy process-
ing adjusts the colour of a sensed image to overcome colour variability problems with
the reference image. The Exact Histogram Matching (EHM) algorithm in Morovic
et al. (2002) achieves colour constancy if the scene of the sensed image can be found
exactly from the geo-referenced image. The UAV location uncertainty arising from er-
roneous scene matching degrades the performance of colour constancy processing,
which in turn degrades the scene matching and thus the localisation performance.
Therefore, we adopt an iterative local EHM procedure. The sensed image is parti-
tioned into a set of non-overlapping windows. The corresponding sub-images are
extracted from the reference image with shift, scaling and rotation compensation as
shown in Figure 2. This process may iteratively update the calculated location Pk,
scaling bk and rotation αk parameters of the sensed image with respect to the reference
image before they are used for navigation.
The second phase is to extract sub-regions from the sensed image after colour con-

stancy processing IIR,k′ . Sports fields, buildings, roads and rivers are treated as “time-
invariant” landmarks. As the shape and orientation of a landmark is generally not
known, we use colour histograms as a generic feature to distinguish landmarks from
other objects. The colour histogram of each type of landmark, denoted by HITraining,
can be obtained by training with a landmark pattern library. The training library is
selected manually from the geo-referenced image library. A likelihood map is calcu-
lated for each kind of landmark from the sensed image based on how its colour in-
tensity matches that of the training data as preliminarily discussed in Jin et al.
(2014b). In this paper, we extend previous work to include the automatic sub-region
extraction from the likelihood maps. The candidate sub-regions containing land-
marks {I1,k′ , I2,k′ , … , IM,k′ } are detected automatically by applying experimentally
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predetermined thresholds. EventuallyN≤M sub-regions are selected {I1,k′ , I2,k′ ,… , IN,k′ },
where multiple (partially) overlapped regions containing different type of landmark are
combined into one region with the centre location given by the geometrical average over
all overlapped region centres. For example, a river region might overlap a road region.
Colour constancy processing improves the quality of landmark estimation.
The final phase consists of a multi-region scene matching process and a UAV local-

isation optimisation procedure using affine transformations. The former is implemen-
ted in parallel so that the locations of sub-regions {P1r,k, P2r,k, … , PNr,k} are obtained
simultaneously. Because of the pre-processing, registration of the sensed and reference
images under identical view angles is possible, and the affine constraints are preserved
for any three matched sub-regions. As the registered locations are actually inaccurate,
three regions {Pt1r,k, Pt2r,k, … , Pt3r,k} are chosen from all the sub-regions by an opti-
misation criterion, for instance, the minimum relative estimation error. These three
sub-regions form reference points from which the optimal location Pk is calculated
using affine transformations. Initial work on this idea was reported in Jin et al.
(2014a). Note that based on the set of matched sub-region centres, we can also localise
the UAV in the world coordinate system.
The library of geo-referenced images should be built to enable a fast image query

process. For example, multiple level images for a single zone may be stored as a func-
tion of altitude and ground resolution and images between adjacent zones are required
to be partially overlapped. Apart from geo-coordinates of centre points and boundary
points, library images could also be indexed by features (Sim et al., 2002), such as
colour distribution, texture, feature points, edge map, etc.

Figure 2. The Idea of Multi-region Scene Matching.
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On receiving a sensed image, searching for the corresponding geo-referenced image
from the library can be done in one of two ways. Firstly, if we have prediction or prior
knowledge of the current location of UAV, a Bayesian estimator (Conte and Doherty,
2011) may be used to search the geo-referenced image locally from its prior geo-coor-
dinates. In the rare case that prior information is not available, an exhaustive (feature-
based) search over the entire database could be required to initialise the geo-coordinate
tracker, which will work recursively as more UAV location estimates are obtained.
Further research on this topic will be reported elsewhere.

3. AUTOMATED MULTI-REGION SCENE MATCHING METHOD. The
procedure of the proposed method (see Figure 2) consists of the following steps:

Step 1 Pre-process the sensed image with the location and attitude information of the
UAV provided by the NEC system.

Step 2 Apply local EHM-based colour constancy processing on the sensed image
according to the corresponding reference image with shift, scaling, and rotation
compensation.

Step 3 Extract sub-regions from the sensed image by selecting landmarks.

Step 4 Conduct multi-region scene matching if the number of landmarks is greater
than three. Otherwise, proceedwith the scene matching using the entire sensed image
and jump to Step 8.

Step 5 Compute the locations of sub-regions using affine transformations.

Step 6 Select three sub-regions as reference points and infer the UAV location.

Step 7 Iterate Step 2–7 until the UAV location converges.

Step 8 Output the location of the UAV to the NEC system.

Let the estimated UAV locations in two consecutive iterations (n and n–1) be denoted
by Pn

k and Pn�1
k . The stopping criterion for convergence of the localisation iteration

using an aerial image is given by

jjPn
k � Pn�1

k jj< ε ð1Þ
where j�j jj signifies the Euclidian distance and ɛ > 0 is a small number.
We denote the proposed algorithm by MRSM-CC (Multi-Region Scene Matching

with Colour Constancy). It operates automatically without human intervention.
3.1. Colour Constancy Processing on Sensed Image. The EHMmethod (Morovic

et al., 2002) transfers the original histogram of an original grey image to the target
histogram of a target grey image as illustrated in Figure 3.
The EHM method is applied locally and iteratively on the sensed image to achieve

colour constancy separately in the R, G and B channels as illustrated in Figure 4,
where the sensed image I′ is the “original image” and the geo-referenced image IR is
the “target image”. IR is obtained from the reference image I with the UAV location
parameters provided initially by NEC and in the subsequent iterations by the localisa-
tion outcomes.
In our experiments, the sensed image I′ is divided into a set of 5 × 5 non-overlapping

windows {I1′, I2′ , … , I25′ }. Their corresponding sub-images fIR1 ; IR2 ; . . . ; IR25g are also
extracted from the reference image IR. In general, the sizes of I′ and IR can be different.
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If this is the case, differences between the pair of images such as shifting, scaling, etc.
should be considered for the determination of IR. In addition, the histograms
fHIR1

;HIR2
; . . . ;HIR25

g of the sub-images from the reference image are normalised by

HN
IRi

¼
P

HI 0iP
HIRi

HIRi
; i ¼ 1; . . . ; 25: ð2Þ

Look-Up Tables (LUT) are calculated to transfer fHI 01
;HI 02

; . . . ;HI 025
g to

fHN
IR1
;HN

IR2
; . . . ;HN

IR25
g. The transformation is performed one by one along with histo-

gram bins in ascending order. At each step, two variables are calculated: the number
of pixels Nreq (m, n) required to be assigned the value n, and the number of pixels
Nrem (m, n) remaining unchanged as the value m. The number of pixels to be assigned
a new value at row m and column n in an LUT is min(Nrem (m, n), Nreq (m, n)). For
example, as shown in Figure 3 at bin number m= 1 for I′ and n= 1 for IR, we have
Nreq (m, n) = 2 and Nrem (m, n) = 3. Therefore, the number of pixels to be assigned
to the bin n= 1 is min(Nrem (m, n), Nreq (m, n)) = 2. The interested reader is referred
to (Morovic et al., 2002) for more detail. According to the LUTs, {I1′, I2′ , … , I25′ } in
the sensed image are assigned new colour distributions. The sensed image after

colour constancy processing IIR′ is obtained by combining I 01;IR1
; I 02;IR2

; . . . ; I 025;IR25

n o
.

The more accurate the location and attitude of the UAV, the better the performance
of this local EHM procedure is. After landmark detection and multi-region scene
matching, the local EHM process is repeated on the sensed image, and this process
is iterated until the location of the UAV converges.

3.2. Automatic Sub-Region Extraction by Landmark Detection. The colour histo-
gram of each type of landmark (roads, sport fields, buildings and rivers) is obtained

Figure 3. Illustration of the EHM algorithm.

Figure 4. Illustration of the local EHM operation.
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from a collection of training images. A landmark detection method based on likeli-
hood thresholding is then applied to extract the sub-regions of this type of landmark
from the sensed image for scene matching.
Let B denote the event that a pixel belongs to a type of landmark. The colour histo-

gram of the training set ITraining for this type of landmark is denoted by HITraining. Its
probability density function is approximated by normalising the colour histogram
and denoted by pB.
The colour intensity at the (i, j)th pixel in the sensed image is represented by

I 0i;j ¼ ½r; g; b�Ti;j. The likelihood that Ii,j′ originates from the landmark intensity distribu-
tion B is given by the conditional probability density function p(Ii,j′ |B) which is approxi-
mated by the normalised colour histogram of landmark pB (Ii, j′ ). Using Bayes’ rule, it is
straightforward to conclude that p(B|Ii,j′ ) for the (i,j)th pixel on the test image is propor-
tional to the likelihood of the presence of a type of landmark (P(B) >0),

PðBjI 0i;jÞ∝ pBðI 0i;jÞPðBÞ ð3Þ
Therefore, we are able to calculate a likelihood map of a given landmark based on the
sensed image.
While the feature of a landmark is characterised by the colour histogram, its spatial

information is discarded. Taking spatial information into account will certainly lead to
a better landmark characterisation. For instance, if the colour of a pixel representing a
building is white, the colours of its neighbouring pixels are also expected to be white.
Let Ir′ (i, j) be the average colour intensity in the neighbourhood N i; j of the (i,j)th

pixel, i.e.,

I 0rði; jÞ ¼
1
Ni;j

�� ��
X

s;h∈Ni;j ;s;h≠i; j

I 0ðs; hÞ ð4Þ

where |Ni, j| denotes the cardinality of Ni, j. This quantity is used to represent the local
spatial colour feature of the underlying pixel.
Let �pBðI 0rði; jÞÞ be the normalised colour histogram on a type of landmark at the (i, j)

th pixel, which can also be computed from the landmark training set. In a similar way
to Equation (3), the probability of the event B given Ir′ (i, j) is proportional to the colour
density in the neighbourhood of the (i, j)th pixel; that is,

PðBjI 0rði; jÞÞ∝ �pBðI 0rði; jÞÞ: ð5Þ
Considering Equations (3), (4) and (5), the probability that the underlying pixel

belongs to a type of landmark (i.e., event B) conditioned on the two independent
events is given by

PðBjI 0i; j; I 0rði; jÞÞ∝ PðBjI 0i; jÞPðBjI 0rði; jÞÞ∝ pBðI 0i; jÞ�pBðI 0rði; jÞÞ: ð6Þ
Using Equation (6), a likelihood map can be calculated for each type of landmark from
the sensed image. Therefore, for a given probability threshold, those sub-regions con-
taining landmarks can be extracted from the computed probability maps.

3.3. Location Optimisation Using Affine Transformations. Various image regis-
tration techniques available in the literature can be applied for multi-region scene
matching. In this work, we use the Normalised Cross Correlation (NCC) algorithm
(Zhao et al., 2006). Let {P1r,k, P2r,k, … , PNr,k} denote the set of locations, output
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from the multi-region scene matching algorithm, representing the centre coordinates of
the matched sub-regions. Under an affine transformation, the location of a UAV in the
2D case can be determined by three known sub-region centre locations. In this work,
more than three sub-regions in the sensed image are selected and registered with the
reference image. To minimise localisation error propagated from matching errors asso-
ciated with the registered locations of these sub-regions, we propose a location opti-
misation method which achieves a robust UAV localisation with minimum match
error by comparing all possible localisation outcomes.
For practical image registration problems, in particular for the planar case, affine

transformations provide a good approximation. Let the centre locations of the three
sub-regions be P0 = (x0, y0), P1 = (x1, y1), and P2 = (x2, y2) in the sensed image, and
the registered locations P0r= (x0r, y0r), P1r= (x1r, y1r) and P2r= (x2r, y2r) in the refer-
ence image, respectively. The affine transformation from sensed image to reference
image is given by

x0r x1r x2r
y0r y1r y2r

� �
¼ a00 a01 b00

a10 a11 b10

� �
�

x0 x1 x2
y0 y1 y2
1 1 1

2
4

3
5 ð7Þ

In view of Equation (7), the affine transformation matrix is given by

TP0r;P1r;P2r ¼ a00 a01 b00
a10 a11 b10

� �
¼ x0r x1r x2r

y0r y1r y2r

� �
�

x0 x1 x2
y0 y1 y2
1 1 1

2
4

3
5
�1

: ð8Þ

A solution exists if these three points are not collinear (i.e., the matrix inversion exists).
Assuming the registered locations of regions P0r, P1r and P2r are correct, i.e. the

affine transformation represented by Equation (8) is correct, the locations of other
sub-regions could be estimated by

x3e x4e � � � xNe

y3e y4e � � � yNe

� �
¼ TP0r;P1r;P2r �

x3 x4 � � � xN
y3 y4 � � � yN
1 1 � � � 1

2
4

3
5 ð9Þ

The relative estimation error of region P3 is

EP0rP1rP2r
3re ¼ P3eP3r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx3e � x3rÞ2 þ ðy3e � y3rÞ2

q
ð10Þ

Similarly, relative estimation errors of the other regions are expressed as follows,

EP0rP1rP2r ¼ fEP0rP1rP2r
3re ;EP0rP1rP2r

4re ; . . . ;EP0rP1rP2r
Nre g: ð11Þ

When the registered locations of sub-regions P0r, P1r and P3r are assumed to be
correct, the relative estimation errors are denoted by

EP0rP1rP3r ¼ fEP0rP1rP3r
2re ;EP0rP1rP3r

4re ; . . . ;EP0rP1rP3r
Nre g: ð12Þ

By taking all of the region-combinations under consideration, there will be C3
n sets of

relative estimation errors; that is,

fEP0rP1rP2r ;EP0rP1rP3r ; . . . ;EPðN�2ÞrPðN�1ÞrPNrg: ð13Þ

1223MULTI-REGION SCENE MATCHING BASED LOCALISATIONNO. 6

https://doi.org/10.1017/S0373463316000187 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463316000187


Three regions are selected based on the criterion that the minimum relative estimation
error is the lowest. Let the minimum relative estimation error be

fEP0rP1rP2r
min ;EP0rP1rP3r

min ; . . . ;E
PðN�2ÞrPðN�1ÞrPNr

min g ð14Þ

where, EPirPjrPkr

min ¼ minfEPirPjrPkr
s1re ; . . .EPirPjrPkr

sl re ; . . . ;EPirPjrPkr
sN�3re g, sl = 1, … , N, i≠ j, i≠ k,

j≠ k, sl≠ i, sl≠ j, sl≠ k.
Then, the selected three regions are

fPt1r;Pt2r;Pt3rg ¼ argmin
Pt1r;Pt2r;Pt3r

E
Pt1rPt2rPt3r

min ð15Þ

where, t1, t2, t3∈ [1, … , N], t1≠ t2, t1≠ t3, t2≠ t3.
Finally, the location P of the UAV is calculated by taking the selected three regions

{Pt1r, Pt2r, Pt3r} as the reference points as follows

TPt1r;Pt2r;Pt3r �
w=2
l=2
1

2
4

3
5 ¼ xt1r xt2r xt3r

yt1r yt2r yt3r

� �
�

xt1 xt2 xt3
yt1 yt2 yt3
1 1 1

2
4

3
5 �

w=2
l=2
1

2
4

3
5 ð16Þ

where, l and w are the length and width of the sensed image respectively, i.e. P = (w/2,
l/2).
The scaling difference between the sensed image and the reference image is

b ¼ Pt1Pt2

Pt1rPt2r
: ð17Þ

with Pt1Pt2 and Pt1rPt2r are the Euclidean distances.
By introducing two reference points P0

t1 ¼ Pt1 þ ð1; 0Þ and Pt1′ r = Pt1r + (1, 0), we
compute the rotation difference between the two images:

α ¼ ∠Pt2Pt1P
0
t1 �∠Pt2rPt1rP

0
t1r: ð18Þ

4. EXPERIMENTAL RESULTS AND OBSERVATIONS. All of the reference
images used here are taken from Google Earth. They cover both suitable scene match-
ing areas and those regions which are difficult to match. By contaminating the refer-
ence images (i.e. adding noises, adjusting colours, rotating, zooming), 24 sensed
images are obtained from the reference images for the first three experiments. These
image pairs are quite different from each other, which are used to approximate real
world situations for the validation of the performance of the proposed system. A
number of “cutouts” of roads, sports fields, buildings and rivers from Google Earth
images are used as training sets to obtain landmark histograms for each type of land-
mark. The colour histograms HITraining of the four landmark training sets are presented
in Figure 5. These histograms are clearly distinguishable from each other.

4.1. Colour Constancy Processing. Some examples of the colour constancy pro-
cessing as described in Section 3.1 are illustrated in Figure 6. Column (a) is a set of
“original” sensed images; column (b) shows the processing results using prior UAV lo-
cation and attitude information provided by the NEC system, which shows artificial
colours; images in column (c) are the results using the estimated locations and attitude
information obtained after the first iteration of the proposed system, which possess
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consistent colours with the corresponding sub-regions in the geo-referenced image
shown in column (d).
Figure 6 demonstrates that the colour constancy processing in the iteration circle of

a UAV localisation system enhances the colour consistency between sensed image and
reference image.

4.2. Sub-region Extraction. Based on trained colour histograms, sub-regions
containing landmarks are detected as described in Section 3.2. The computed land-
mark likelihood maps in the first iteration for the 18th sensed image are shown in
the first row of Figure 7, and the second row shows the selected landmark regions.
Indicated by red rectangles, five sub-regions are selected in Figure 7(a), where the
regions labelled as 2, 3, 4 and 5 contain roads and the one labelled as 1 is a false
alarm. In Figure 7(b), five sub-regions which contain sport fields are detected,
among which the sub-regions labelled 1 and 2 contain sports fields, but the Regions
3, 4 and 5 are false alarms. Figure 7(c) illustrates five landmark sub-regions selected,
all of which contain buildings. In Figure 7(d), three regions are chosen as landmark
regions of rivers. The sub-region 2 has a river, but the other two regions do not.
In the second iteration circle of the UAV localisation process, colour constancy pro-

cessing is introduced. The probability maps of landmark estimation on the 18th sensed

Figure 5. Colour Histograms of Training Sets.
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image are shown in Figure 8. Comparing with Figure 7, it is found that the overall
landmark selection performance is improved. In Figure 8(a), all ten selected sub-
regions contain the landmark of roads. In Figure 8(b), only one out of five selected
regions of sports fields (i.e., Region 5) is a false alarm. A similar situation pertains
in Figure 8(c), where one out of ten selected sub-regions (i.e., the ninth sub-region)
does not contain building landmarks. Compared with Figure 7(d), two more sub-
regions for the landmark of rivers were selected in Figure 8(d).
More examples for the landmark region selection (within the red rectangles) are

given in Figure 9. Colour constancy processing in the iterative processing circle
improves the performance of landmark estimation based on colour histograms and
reduces false detection rates as demonstrated in Table 1.

Figure 6. Colour Constancy Processing Results.

Figure 7. Landmark Estimation on 18th Sensed Image.
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4.3. Multi-region Scene Matching Experiment. Multi-region scene matching is
performed using the NCC method (Zhao et al., 2006) in a parallel computing struc-
ture. Contaminated images from Google Earth were used and we implemented and
compared the matching performance over three scene matching algorithms. We
denote the proposed multi-region scene matching involving the full UAV localisation
circle (see Figure 2) as MRSM-CC; and the localisation process without colour con-
stancy processing as MRSM. A scene matching algorithm which uses the whole
scene on the sensed image is also implemented and denoted by SISM (Single Image
Scene Matching).
Firstly, we present the matching error comparison of localisation results using the

three algorithms described above in Figure 10. It is clear that the proposed MRSM-
CC algorithm outperforms the other two algorithms in terms of the localisation

Figure 8. Landmark Estimation on 18th Sensed Images after Colour Constancy Processing.

Figure 9. Eight Pairs of Landmarks detected on Sensed Images before/after Colour Constancy
Processing.

Table 1. False Alarm Rates of Landmark Detection (%).

Method Roads Sports Fields Buildings Rivers

Without Colour Constancy 33·49 73·70 36·97 42·92
With Colour Constancy 15·42 67·80 17·50 39·83
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error. All the localisation errors of the MRSM-CC are within ten pixels. While the
error performance of MRSM is quite similar to that of MRSM-CC, the third scene
matching result yields a large localisation error. On the other hand, the average local-
isation error of the SISM is significantly higher than that of the other two.
Secondly, we evaluated the proposed localisation system via Monte Carlo experi-

ments. A total of 55 reference images were used, varying in scaling, rotation, shifting
and colour. The scaling parameter between the reference image and sensed image was
randomly drawn from a uniform distribution [0·9, 1·1]. Similarly, the rotation param-
eter was randomly drawn from [−10°, 10°]. We repeated the first experiment 55 times in
the presence of randomness to the scaling and rotation parameters. Table 2 is the stat-
istical comparison of scene matching results. An algorithm in a single run is counted as
a success only if the matching error is within 25 pixels (≈10 metres).
Both Figure 10 and Table 2 show that the scene matching error performances of the

proposed MRSM-CC and MRSM are significantly better than that of SISM. Clearly,
the proposed MRSM-CC algorithm has a robust localisation performance under
various “noise” environments. Without colour constancy processing, the MRSM
may yield outliers induced by inconsistent landmark colours.
Thirdly, computational complexities of the three methods are statistically compared

in terms of Central Processing Unit (CPU) time. The average size of the geo-reference
images is 897 × 838 pixels and the average size of sensed images is 400 × 300 pixels. The
sizes of all sub-regions are 64 × 64 pixels. All algorithms are implemented and run in
Matlab. The CPU of the computer used for the experiment has eight cores, but not all
cores were used. For example, if just three landmark regions are detected, the MRSM
algorithm just uses three cores in scene matching. Table 3 lists the average CPU time
consumed by SISM, MRSM, and MRSM-CC. Note that the CPU time of MRSM-
CC is for a single iteration. When n iterations of the UAV localisation process are
required, the CPU time is roughly n times. Table 3 indicates that SISM has a higher
computational complexity; the CPU time consumed by MRSM is 15·07% of SISM,
and by MRSM-CC is 23·73% of SISM for a single iteration.

Figure 10. Comparison of matching errors.
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In summary, the above experimental results indicate that the proposed localisation
algorithm MRSM-CC is the most effective and efficient method over the other two
algorithms examined in the performance comparison.

4.4. UAV trajectory estimation from a sequence of sensed images. To demonstrate
the effectiveness of the proposed MRSM-CC algorithm, we carried out an experiment
that estimates the trajectory of a UAV from a sequence of images taken from a
Phantom 3 DJI drone as shown in Figure 11, flying over the campus of
Northwestern Polytechnical University in Xi’an. Both sensed images and reference
images were taken along the same path at different dates and times. The aerial
imaging drone has a CMOS camera with 12 million effective pixels and can stably
point straight downward during flying.
The aerial imaging drone records videos as it performs level flying along a specified

path of 2·3 kilometres at a speed of 10 m/s with average height of 1200 metres. The
sensed images are sampled every two seconds from a video clip of 3 minutes and 50
seconds. Image resolution is 3000 × 3000 pixels for reference images, and 1280 × 720
pixels for sensed images. The 2D rotation differences between sensed images and the
reference image after pre-processing are within the ranges [−10°, 10°]. We present
four image pairs in Figure 12 to show that some scene details between a sensed
image and the corresponding reference image are quite different, such as the details
of buildings, shadows, and colours. Clearly these differences are caused by time-
varying ground objects in the same scene, the direction or colour of the sun, and the
location, altitude and attitude of the camera drone.
In addition to using the NCC technique (Zhao et al., 2006) as in Section 4.3, we also

considered the Speeded-Up Robust Features (SURF) method (Bay et al., 2008) for
scene matching in this experiment. The performance of MRSM-CC under either
NCC or SURF is compared with that of the scene matching algorithm using the
whole scene on the sensed image (denoted by SISM). Statistical comparisons are
shown in Table 4, where an algorithm in a single run is counted as a success if the
matching error is within 30 pixels (⩽10 metres).

Table 3. CPU Time Comparison (s).

Functions SISM MRSM MRSM-CC

Colour Constancy Processing — — 2·459
Multi-Region Extraction — 0·481 0·481
Image Registration 28·422 3·794 3·794
Localisation via Affine Transformation — 0·008 0·008
Total 28·422 4·283 6·742

Table 2. Statistical Comparison of Scene Matching (Unit: pixel).

Method Mean Matching Error Success Rate of Scene Matching

SISM 85·01 39·58%
MRSM 21·16 94·17%
MRSM-CC 6·31 96·67%
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From Table 4, it is clear that the proposed MRSM-CC method performs better than
the SISMmethod. Because of the differences of shadows, colours, objects appearances,
and shifting, scaling, 2D rotational differences between the image pair, it is difficult to
match the entire scene of a sensed image with the reference image. On the other hand,
using the proposed MRSM-CC system we obtained the required localisation results
with an acceptable localisation error by either NCC or SURF.
In Figure 13, we present two examples that show the sensed images and registered

locations in the reference image computed using different algorithms. It is observed
that while the proposed statistical landmark-based matching algorithms, i.e.
MASM-CC (NCC) andMASM-CC (SURF), produce acceptable results, the standard
image registration approaches (via correlation or feature), i.e. SISM (NCC) and SISM
(SURF), fail. We have frequently observed similar situations when some details in the

Figure 12. Four pairs of sensed images and reference images.

Figure 11. The Phantom 3 DJI camera drone used for data collection.

Table 4. Statistical Comparison of Scene Matching (Unit: pixel).

Method Mean Matching Error Success Rate of Scene Matching

SISM (NCC) 55·30 81·90%
MRSM-CC (NCC) 11·99 98·28%
SISM (SURF) 75·20 80·17%
MRSM-CC (SURF) 15·30 93·97%
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common scene are different between the pair of images. These two examples demon-
strate the robust performance of the proposed MASM approach which uses a statistic-
al landmark model to eliminate time-varying objects.
Figure 14 shows the estimated UAV trajectories based on a sequence of images taken

by a Phantom 3 DJI drone using the proposed MRSM via NCC and SURF respect-
ively. The trajectory estimated by MRSM-CC(NCC) is slightly better than that by
MASM-CC(SURF).

Figure 13. Two examples of sensed images and their registered locations in the reference image.

Figure 14. Trajectories of sensed images in reference image.
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4.5. Observations. Our experimental results strongly suggest that:

. The proposed MRSM-CC system is robust in two ways. First, the local EHM
colour constancy processing enables sensed images to be taken in different light-
ing conditions from the reference image. Secondly, the use of a statistical model in
landmark detection effectively eliminates time-varying objects from consideration
in image registration.

. The scene matching-based UAV localisation is independently performed based on
each of the sensed images. There are no accumulated errors as could be the case
with INS (Wang et al., 2013), visual odometry or SLAM (Williams and Reid,
2010). In addition, localisation outliers may be eliminated via a tracking filter.

. The MRSM-CC algorithm achieves satisfactory performance using either the
NCC or SURF algorithms and outperforms the SISM method.

5. CONCLUSIONS AND FUTURE WORK. We propose a vision-based UAV
localisation system where the multi-region scene matching technique under a statistical
landmark region selection criterion plays a key role in registering a sensed image with a
geo-referenced image. As demonstrated in our experiments, the proposed algorithm
has a robust localisation performance in that: it includes colour constancy processing
to eliminate the impact of colour differences between an image pair; time-varying
objects can be removed from consideration by detecting landmark regions and an op-
timisation procedure is applied to minimise localisation error by taking into account
all possible multi-region matching results using affine transformations.
It is worth mentioning that the performance of the proposed MRSM-CC algorithm

also depends on the statistical model for training of landmarks. Issues associated with
this vision-based localisation system, such as incorporating infrared images, and inte-
gration with other navigation sensors are under investigation by the authors.
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