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The unsteady axisymmetric flow through a circular aperture in a thin plate subjected
to harmonic forcing (for instance under the effect of an incident acoustic wave) is a
classical problem first considered by Howe (Proc. R. Soc. Lond. A, vol. 366, 1979,
pp. 205–223), using an inviscid model. The purpose of this work is to reconsider
this problem through a numerical resolution of the incompressible linearized Navier–
Stokes equations (LNSE) in the laminar regime, corresponding to Re = [500, 5000].
We first compute a steady base flow which allows us to describe the vena contracta
phenomenon in agreement with experiments. We then solve a linear problem allowing
us to characterize both the spatial amplification of the perturbations and the impedance
(or equivalently the Rayleigh conductivity), which is a key quantity to investigate the
response of the jet to acoustic forcing. Since the linear perturbation is characterized by
a strong spatial amplification, the numerical resolution requires the use of a complex
mapping of the axial coordinate in order to enlarge the range of Reynolds number
investigated. The results show that the impedances computed with Re& 1500 collapse
onto a single curve, indicating that a large Reynolds number asymptotic regime is
effectively reached. However, expressing the results in terms of conductivity leads to
substantial deviation with respect to Howe’s model. Finally, we investigate the case of
finite-amplitude perturbations through direct numerical simulations (DNS). We show
that the impedance predicted by the linear approach remains valid for amplitudes up
to order 10−1, despite the fact that the spatial evolution of the perturbations in the jet
is strongly nonlinear.

Key words: hydrodynamic noise, jets, jet noise

1. Introduction
The problem of the flow passing through a circular aperture in a plate is

encountered in many practical applications, such as for example fuel injectors, cooling
system for gas turbines or wind instruments. When subjected to harmonic forcing, for
instance under the effect of an incident acoustic wave, the vortex sheet formed at the
rim of the aperture becomes periodically modulated and acts as a spatial amplifier of
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Kelvin–Helmholtz instability, reorganizing the jet into an array of vortex rings. This
feature is an essential part of the sound production mechanism in situations where
the jet subsequently passes through a second aperture, a configuration known as
‘hole tone’ and encountered for instance in tea kettles (Henrywood & Agarwal 2013)
and bird calls (Fabre et al. 2014). The generation of vorticity is also an efficient
mechanism to dissipate the acoustic energy. As a consequence, the use of multiply
perforated plates traversed by a mean flow (or bias flow) is widely used as a sound
attenuator device in many industrial applications, such as combustion system (Hughes
& Dowling 1990; Rupp, Carrotte & Macquisten 2012).

The unsteady, periodic flow through a circular hole in a zero-thickness plate was
initially solved by Rayleigh (1945) using inviscid, potential theory. The key result
of his solution is the proportionality between the net pressure force felt from both
sides of the hole and the acceleration of the fluid, so that the whole situation can
be modelled by assuming that there is a rigid plug of fluid, with area Ah = πR2

h and
equivalent length `eff , oscillating across the aperture, where Rh is the radius of the
hole.

The case where the flow has a mean component (or bias flow) in addition to the
oscillating component was considered by Howe (1979). He introduced a key quantity,
the Rayleigh conductivity KR, defined as the ratio of the acceleration of the fluid
particles located within the aperture to the net force exerted on it. The real part of
the conductivity generalizes the concept of equivalent length `eff previously introduced
by Rayleigh, while its imaginary part is directly proportional to the flux of energy
transferred from the imposed oscillatory flow to the jet. Under the hypothesis of high
Reynolds number, low Mach number and assuming that the oscillating flow is of small
amplitude with respect to the mean (or bias) flow, Howe derived a theoretical model
describing the vorticity shed at the rim of the aperture and predicting the real and
imaginary parts of the conductivity by analytical formulas. The main features and
caveats of Howe’s model will be reviewed in § 2.5.

In recent years, a number of studies have considered the interaction between
acoustics and perforated plates in more complex situations including multiple holes
(Hughes & Dowling 1990), turbulent flows (Tam & Kurbatskii 2000; Eldredge,
Bodony & Shoeybi 2007), acoustic liners formed by a honeycomb network of
cavities (Mann et al. 2013; Zhang & Bodony 2016) and slit resonators (Tam et al.
2005). However, in the applications targeted by these works, the mean flow is
mostly tangential to the plate (grazing flow) and not across the hole. Coming back to
situations where the holes are traversed by a mean flow (bias flow), in cases where the
thickness of the hole is not small compared to its radius, experimental measurements
of the impedance (Su et al. 2015) substantially deviate from Howe’s predictions, and
a number of studies have proposed improvements of the original model to enlarge
its range of validity (Jing & Sun 2000; Bellucci et al. 2004; Yang & Morgans 2017).
In the case where the amplitude of the oscillating flow becomes comparable to that
of the mean flow, nonlinearities also lead to substantial deviations (Jing & Sun 2002;
Scarpato 2014). However, in the case of small-amplitude oscillations and short holes,
Howe’s model still constitutes the cornerstone for theoretical modelling of such flows
(Scarpato et al. 2012).

In view of the above discussed literature, we can note that all available theoretical
models are of inviscid nature and describe the vorticity production in terms of vortex
sheets, thus these models are expected to be relevant only in the large Reynolds
number limit. An alternative way, which allows us to incorporate viscous effects in
a rigorous way and to consider arbitrary values of the Reynolds number, is to use
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Acoustic impedance of a laminar viscous jet 7

linearized Navier–Stokes equations (LNSE). A number of studies have considered jet
flows under this framework. Garnaud et al. (2013) considered the spatial amplification
properties of an incompressible jet using a laminar base-flow solution for Re 6 1000.
Even more recent works have considered the case of compressible jets for Ma≈ 0.9
in the turbulent range (Re ≈ 106) using a mean flow obtained from experimental
results (Semeraro et al. 2016), Reynolds-averaged Navier–Stokes (RANS) simulations
(Jeun, Nichols & Jovanović 2016) or large-eddy simulations (LES) (Schmidt et al.
2017, 2018). However, the focus of these studies was to characterize the spatial
amplification properties of the jet and the sound radiation in the downstream domain
due to vortex-shedding effects, which are different questions to the one we are
considering here.

It should also be noted that the application of LNSE to jet flows is much more
difficult for the high Reynolds number, laminar range Re ≈ [500 − 5000] which is
considered in this paper than for the turbulent range. In effect, in the laminar range,
the shear layers bounding the jet remain very sharp far downstream, leading to strong
amplifications of convective instabilities extending very far away. It is thus difficult
to design a method capturing both the spatial growth of perturbations in the axial
direction, which can reach huge levels when the axial distance and the Reynolds
number are large, and the coupling between the flow rate and the pressure jump,
which is relevant when considering the possible coupling with an acoustical system.
On the other hand, in the turbulent range, the shear layers of the jet spread rapidly
in the downstream direction, leading to stabilization of the convective instabilities
within a distance of approximately ten diameters of the jet.

The objectives of the present paper can thus be summarized in three main points.

(i) First, we wish to design a numerical approach based on the linearized
Navier–Stokes equations, to compute the Rayleigh conductivity of the flow
through a hole in the laminar but high Reynolds number range. We will introduce
a convenient method based on a change of variable of the axial coordinate x in
the complex plane (inspired by the perfectly matching later method used in linear
acoustics) which allows us to perform accurate computations up to Re≈ 104.

(ii) Secondly, we wish to reconsider the case of a hole of zero thickness initially
investigated by Howe. We document the structure of base flow, with particular
focus on the vena contracta phenomenon. We then describe the spatial structures
corresponding to the linear response of the jet to harmonic forcing. The velocity
and vorticity components of these structures allow us to describe the spatial
amplification by the jet, while the pressure components give access to the
Rayleigh conductivity. We will compute and display the Rayleigh conductivities
(as well as the equivalent concept of impedance) as functions of forcing
frequency and Reynolds number in the range 102–104 and compare with the
inviscid predictions of Howe.

(iii) Finally, the third objective is to assess the validity of the linearized Navier–Stokes
equations with respect to perturbations of finite amplitude ε. For this purpose, we
will conduct a direct numerical simulation (DNS) of the forced axial–symmetric
Navier–Stokes equations in the range ε = [10−4–10−1]. Results show that
the impedances are effectively well predicted by linearized Navier–Stokes
equations (LNSE) up to ε= 10−1, despite the fact that the evolution of vorticity
perturbations in the jets are strongly nonlinear.

As briefly discussed in the bibliographical review, in the case where the plate is
not thin and the holes are sufficiently long, different mechanisms take place and the
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8 D. Fabre, R. Longobardi, P. Bonnefis and P. Luchini

jet can cease to act as a sound damper to become a sound generator (Jing & Sun
2000; Yang & Morgans 2017). The conductivity/impedance concepts are useful tools
to characterize the mechanisms in this case. A full characterization of the impedance
of finite-thickness holes using the method introduced here as well as a discussion of
impedance-based instability criteria will be presented in a forthcoming paper.

2. Problem definition and review of inviscid models
2.1. Problem definition

The situation considered here is the flow of a viscous fluid of density ρ and viscosity
ν through a circular hole or radius Rh and area Ah = πR2

h inside a planar thin plate
of a thickness that is negligible with respect to the radius, connecting an inner and
an outer open domain, as shown in figure 1. We note by Q the mean volumetric flow
rate across the aperture, and from that latter quantity we classically define the mean
velocity as UM =Q/Ah. Thus the Reynolds number of the flow is defined as:

Re=
2RhUM

ν
≡

2Q
πRhν

. (2.1)

When subjected to harmonic forcing with frequency ω, a second dimensionless
parameter naturally emerges: the dimensionless frequency Ω (or Strouhal number)
defined as:

Ω =
ωRh

UM
. (2.2)

The final goal of our study is to characterize the interaction of the jet with
acoustic waves, and in the general case this calls for a description using compressible
equations. However, in many situations, it is justified to consider that the flow is
locally incompressible, and hence to assume a uniform density ρ of the fluid. This
simplification is justified under two hypotheses. First, the Mach number Ma=UM/c0
based on the mean velocity of the jet must be small enough. Secondly, all length
scales charactering the aperture (here, the only relevant one is the radius Rh since the
thickness is assumed to be zero) have to be small compared to the acoustic wavelength
λac = 2πc0/ω. This latter hypothesis is often referred to in acoustic textbooks as the
acoustic compactness hypothesis. In dimensionless terms, the hypothesis can be
formulated as λac/Rh = 2π/(MaΩ) & 10, so for the largest frequencies considered
here (Ω ≈ 6) it is valid up to Ma≈ 0.1. For a flow of air through a typical hole of
radius Rh = 1 mm, the condition Ma≈ 0.1 corresponds to Re≈ 4500, confirming the
relevance of the range of parameters investigated in the present paper.

Under these two hypotheses, it is justified to assume that, far away from the hole,
the pressure levels in the upstream and downstream regions tend to uniform values
noted respectively by pin(t) and pout(t). In the harmonic regime, the upstream and
downstream pressure levels as well as the flow rate will be expanded as: pin(t)

pout(t)
q(t)

=
Pin

Pout
Q

+ ε
 p′in

p′out
q′

 e−iωt
+ c.c., (2.3)

where ε is a given amplitude of the harmonic perturbation and ω∈R is the oscillation
rate. The interaction of the jet with external systems can thus be characterized by the
sole relationship between the pressure drop [ p′in − p′out] and the flow rate q′ of the
harmonic part.
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Acoustic impedance of a laminar viscous jet 9

Rh RJ UJ

˙(x, t)

Pin + Óp�
ine-iøt

Pout + Óp�
oute-iøtQ + Óq� e-iøt

FIGURE 1. Sketch of the oscillating flow through a circular aperture in a thin plate.

Ultimately, if one wants to introduce the jet in the description of an acoustic system
of much larger dimensions, the description (2.3) can be matched with an external
solution derived from the equations of acoustics. Such a matching is not conducted
here but examples will be given in a forthcoming paper.

2.2. Steady flow
The steady flow corresponding to the present situation is globally characterized by
the mean pressure drop [Pin − Pout] and the mean flow rate Q. In the inviscid case,
a classical model to relate these quantities was proposed by Levi-Civita and Prandtl.
The model consists of a vortex sheet formed at the hole and surrounding the jet
(see figure 1). After several diameters, the jet becomes parallel, but with a radius RJ

smaller than that of the hole. We classically call the ratio of surfaces α= (πR2
J)/(πR2

h)

the vena contracta coefficient. This coefficient is classically associated with the
pressure loss across the aperture. Assuming a constant velocity UJ inside the jet (see
figure 1), the conservation of flux through the hole leads to Q = πR2

JUJ = πR2
hU2

M.
Applying the Bernoulli theorem along streamlines passing through the hole thus
leads to

[Pin − Pout] =
ρU2

J

2
=
ρU2

M

2α2
, (2.4)

that links the pressure jump across the hole and the mean velocity (or flow rate) inside
it. Theoretical inviscid calculations by Prandtl and Levi-Civita provided the value α=
0.5, that represents also the lower limit for this coefficient. Smith & Walker (1923),
instead, estimated the vena contracta coefficient α = π/(2 + π) ≈ 0.611 for round
inviscid jets discharging in open spaces. This value has been found to agree very well
with experiments (Cummings & Eversman 1983) and numerical calculations (Scarpato,
Ducruix & Schuller 2011) at very high Reynolds number.

2.3. Unsteady flow: conductivity and impedance concepts
We now consider the relationship between the pressure jump and the flow rate in
the unsteady case, under the hypothesis of harmonic perturbations (2.3). As explained
in the introduction, the Rayleigh conductivity (KR) is defined as the proportionality
coefficient between the acceleration of the fluid particles located within the hole and
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10 D. Fabre, R. Longobardi, P. Bonnefis and P. Luchini

the pressure jump across the hole. More specifically,

KR =
−iωρq′

(p′in − p′out)
. (2.5)

The conductivity is, in the general case, a complex quantity, and has the dimension
of a length. Following Howe, it is classically noted KR = 2Rh(γ − iδ). The real part
γ represents the inertia of the system, while the imaginary part δ is directly related
to the average value of the power absorbed by the hole. In effect, for harmonic
perturbations described with the convention (2.2), the power is given by

〈Π〉 = 〈([p′in − p′out]e
−iωt
+ c.c.)(q′e−iωt

+ c.c.)〉 = 2Re([p′in − p′out]q̄′), (2.6)

where the brackets 〈·〉 represent the averaging over a complete period of oscillation
2π/ω, Re means the real part and the overbar denotes the complex conjugate. Using
the definition of the conductivity, this formula directly leads to

〈Π〉 =
4Rhδ

ρω
|p′in − p′out|

2. (2.7)

So, when δ > 0, this term represents a resistance (or the ability to absorb acoustic
energy), meaning that exciting the jet at a given frequency necessitates the provision
of energy by an outer system.

As an alternative to the Rayleigh conductivity, we can also define the impedance of
the aperture (Zh) as the ratio between the pressure jump and the flow rate:

Zh =
(p′in − p′out)

q′

(
=
−iωρ

KR

)
. (2.8)

The impedance is also a complex quantity, with physical dimension Mass ·
Length−2

· Time−1. In the following we decompose it as

Zh =
ρUM

R2
h
(ZR + iZI), (2.9)

where ZR is the dimensionless resistance and ZI is the dimensionless reactance. It
is easy to verify that the equation (2.6) for the power absorbed by the hole can be
written as function of ZR as follows:

〈Π〉 = 2
ρUM

R2
h

ZR|q′|2. (2.10)

The Rayleigh conductivity and the impedance are conceptually and practically
interchangeable quantities, and both have been used in the literature to characterize
the interaction of a jet flow with acoustic fields. In the case of thin holes acting as
a sound attenuators, most authors have used the conductivity as initially introduced
by Howe. On the other hand, in cases where the jet can act as an energy source for
external acoustic systems, leading to instabilities, it proves to be more convenient to
employ the impedance (Fabre et al. 2014; Yang & Morgans 2016). In the present
paper, we will use both concepts. A more detailed discussion of impedance-based
instability criteria and a parametric study of the impedance of long holes will be
given in a forthcoming paper.
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Acoustic impedance of a laminar viscous jet 11

2.4. The classical Rayleigh solution in the absence of mean flow
The problem initially solved by Rayleigh (1945) is the simplest situation corresponding
to the absence of mean flow. In this case, the problem admits an analytical
solution under the framework of potential flow theory. This solution yields a direct
proportionality between the flow acceleration and the pressure jump, namely

(p′in − p′out)=−
iρω
2Rh

q′. (2.11)

The classical interpretation of this result is that the fluid in the vicinity of the hole
behaves as a simple solid plug with mass m = ρπR2

h`eff oscillating across the hole,
where `eff is the equivalent length of the plug given by `eff =πRh/2.

When reformulated in terms of conductivity (respectively impedance) and using
the non-dimensionalization choices introduced in the previous section, the Rayleigh
solution thus corresponds to γ = 1; δ = 0 (respectively ZR = 0; ZI = −iΩ/2). An
obvious consequence is that, under this model, the power absorbed by the hole
predicted by (2.10) is exactly zero.

2.5. Review and criticism of Howe’s inviscid model
We now review and discuss in more detail the classical model of Howe already
mentioned in the introduction. Howe models the jet as a cylindrical vortex sheet of
constant radius Rh formed at the rim of the aperture. He subsequently assumes a
vorticity perturbation of this vortex sheet with the form

ξ ′ = σH(x)δ(r− Rh) exp[−iω(t− x/Uc)], (2.12)

where δ and H are respectively the Dirac and Heaviside functions, Uc the assumed
convection velocity of vorticity structures and σ the amplitude of the vorticity
perturbation. This later parameter is determined by imposing a Kutta condition
(Crighton 1985), requiring finite velocity and pressure fluctuations at the rim of
the hole. Starting from this point, and going through a series of very technical
mathematical transformations, Howe was eventually able to predict the Rayleigh
conductivity under the following analytical form:

KR = 2Rh(γ − iδ)= 2Rh

{
1+

(π/2)I1(Ω
H)e−ΩH

− iK1(Ω
H) sinh(ΩH)

ΩH[(π/2)I1(ΩH)e−ΩH
+ iK1(ΩH) cosh(ΩH)]

}
, (2.13)

where I1 and K1 are the order-one modified Bessel functions of respectively first and
second kind and ΩH

=ωRh/Uc is the Strouhal number.
Despite its mathematical rigor, a number of starting hypotheses of Howe’s model

are questionable. The main caveats of the model can be summarized in four points:

(i) First, the study models the mean flow as a cylindrical vortex sheet with radius
Rh, and constant velocity UM, hence completely overlooks the vena contracta
phenomenon discussed above. In a subsequent step of his analysis (p. 215 of his
paper), Howe intended to incorporate partially this effect in his model, but this
a posteriori modification remains imperfect.

(ii) Secondly, Howe’s model assumes that the perturbation affects only the strength of
the vortex sheet but not its location, so that the perturbed vortex sheet is assumed
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12 D. Fabre, R. Longobardi, P. Bonnefis and P. Luchini

to remain perfectly cylindrical. A better starting point would be to assume a
vortex sheet with location given by (see figure 1):

rJ(r)= RJ + εη(x, r, t)= RJ + εη
′(r) exp[ik(ω)x− iωt], (2.14)

where k(ω)= kr + iki is a complex wavenumber which has to be determined as
a function of the frequency ω. The inviscid stability analysis of this model is a
classical problem whose solution can be found, for instance, in Batchelor & Gill
(1962) or in Abid, Brachet & Huerre (1993). For completeness, this problem is
reviewed in appendix A.

(iii) Thirdly, the starting point of Howe’s analysis (2.12) assumes that the perturbations
are convected at a constant velocity Uc which is assumed to be half the velocity
of the jet. This choice is justified by analogy with the classical result for
the Kelvin–Helmholtz instability of a planar vortex sheet. This choice is a
questionable simplification and it would seem more rigorous to predict Uc using
spatial stability analysis of the cylindrical vortex sheet model, namely Uc= kr/ω.
This analysis shows that for small frequencies the convection velocity is actually
closer to the velocity of the jet than half its value (see appendix A).

(iv) Finally, Howe completely ignores the fact that perturbations of the vortex sheet
are spatially amplified in addition to being convected.

According to the two last criticisms, it would thus seem more appropriate to replace
the starting point (2.12) by the following ansatz:

ξ ′ = σH(x)δ(rJ(r)− RJ − εη
′(r) exp[ik(ω)x− iωt]) exp[ik(ω)x− iωt]. (2.15)

We have not intended to reconstruct the whole analysis from this modified starting
point, an option which would anyway not address the first criticism discussed above
(vena contracta effect) and would remain limited to the high Reynolds number range.
Instead, our chosen approach to address the problem is to compute the impedance
(or alternatively the conductivity) through a global resolution of the linearized Navier–
Stokes equations (LNSE) for given values of the Reynolds number.

3. The viscous problem: analysis and numerical method for the linear approach
3.1. General equations

Taking the diameter of the hole Dh= 2Rh as a length scale and the mean velocity UM
as a velocity scale, the problem is governed by the axial–symmetric incompressible
dimensionless Navier–Stokes equations:

∇ · u= 0,

∂tu+ (u · ∇)u+∇p−
1

Re
∇

2u= 0,

 (3.1)

where u(x, r, t) = (ux, ur) and p is the reduced pressure. The variables x and r are
respectively the axial and radial coordinate while ux and ur represent the axial and
radial velocity components.

The flow is further decomposed into a base flow (U, P) associated with the mean
flux Q and a harmonic perturbation ε(u′, p′)e−iωt associated with the oscillating
flow rate q′e−iωt. A crucial hypothesis in this treatment is that the amplitude of the
harmonic perturbation is small, namely ε� 1. Inserting this decomposition into the
Navier–Stokes equations (3.1) and linearizing, two different sets of partial differential
equations are obtained:
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Acoustic impedance of a laminar viscous jet 13

(i) First, the leading order yields the base-flow equations:

∇ ·U= 0,

(U · ∇)U+∇P−
1

Re
∇

2U= 0.

 (3.2)

The link between the base flow (U, P) and the quantities Pin, Pout, Q introduced
in § 2 is given by the asymptotic matching conditions and flow rate definition as
follows:

P(x, r)→ Pin for
√

x2 + r2→∞ and x< 0, (3.3)

P(x, r)→ Pout for
√

x2 + r2→∞ and x> 0, (3.4)∫
S

U · n dS=Q, (3.5)

where S is any surface traversed by the flow and n a normal unitary vector
oriented in the direction of the flow.

(ii) Secondly, the ε-order yields the linearized Navier–Stokes equations (LNSE)
governing the perturbation:

∇ · u′ = 0,

−iωu′ + (U · ∇)u′ + (u′ · ∇)U+∇p′ −
1

Re
∇

2u′ = 0.

 (3.6)

The link with the quantities p′in, p′out, q′ introduced in § 2 and allowing to define
the impedance/conductivity is:

p′(x, r)→ p′in for
√

x2 + r2→∞ and x< 0, (3.7)

p′(x, r)→ p′out for
√

x2 + r2→∞ and x> 0, (3.8)∫
S

u′ · n dS= q′. (3.9)

Note that, as is customary when dealing with incompressible flows, the pressure is
defined up to an arbitrary constant. We can choose this constant by setting Pout = 0
and p′out= 0 in (3.4) and (3.8), so that the mean pressure drop and fluctuating pressure
drop are actually given by [Pin − Pout] = Pin, [p′in − p′out] = p′in.

With the addition of no-slip conditions U= u′= 0 on the upstream and downstream
surfaces of the plate (noted Γw) and symmetry conditions Ur = u′r = 0; ∂Ux/∂r =
∂u′x/∂r = 0 at the axis (noted Γaxis), the set of (3.2)–(3.9) completely defines the
nonlinear problem allowing us to compute the vena contracta coefficient α and the
linear problem allowing us to compute the impedance/conductivity.

In practice, the boundary conditions at
√

x2 + r2 have to be imposed at the
boundaries of a finite computational domain, both upstream and downstream.
Treatment of these boundary conditions requires special attention and is detailed
in the next sections.
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Lin

Rin

Rout

˝in

˝lat

˝w

Lout

˝out

˝out

˝axis ˝axis

FIGURE 2. Structure of the mesh M1 obtained at the end of the mesh adaptation process,
and nomenclature of boundaries. The mesh is adapted to both the base flow for Re= 1000
and the harmonic perturbation for ω= 2. The inset shows a zoom of the mesh structure
in the range X ∈ [−0.5; 0.8]Rh and R ∈ [0.5; 1.3]Rh. Note that owing to the coordinate
mapping, the actual dimension of the outlet domain is [xmax, rmax] = [1022+ 306i, 337].

3.2. Upstream domain
As sketched in figure 1, the upstream domain is expected to originate from an
upstream container of large dimension, and sufficiently far away from the hole.
Moreover, the flow is assumed to be radially convergent. However, in the numerical
implementation, it is necessary to specify a given geometry for this upstream domain.
Here, we chose to assume that the upstream region is a closed cavity of cylindrical
section, with radius Rin and length Lin. The volumetric flux conditions (3.5) and (3.9)
are imposed by assuming that both the base flow and the perturbation velocities are
constant along the bottom of the cavity, noted Γin (see figure 2), i.e.

U=Q/Sinn
u′ = q′/Sinn

}
on Γin, (3.10)

where Sin = πR2
in is the area of the bottom wall. The values of Q and q′ have been

selected in order to have a mean velocity equal to one into the hole, for both the
base flow and the perturbation. The pressure levels Pin and p′in, which are required
for the calculation of the mean pressure loss (and the vena contracta coefficient) and
the impedance (or conductivity), are extracted by averaging along the inlet boundary:

Pin = 2π/Sin

∫ Rin

0
P(r)r dr

p′in = 2π/Sin

∫ Rin

0
p′(r)r dr

 on Γin. (3.11)

Since the upstream cavity used in our mesh definition is expected to represent an
upper domain of infinite extend, its precise geometry has no real importance, but
is dimension has to be large enough so that the results are independent of this
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geometry. In practice we verified that the choice Lin=Rin= 10Rh fulfils this condition.
Finally, at the lateral wall of the cavity for r = Rin (noted Γlat), we simply choose
no-penetration (ur = 0) and no-stress (∂rux = 0) conditions for both base flow and
perturbation. This condition ensures that the volumetric flux imposed at the bottom
of the cavity effectively corresponds to the one traversing the hole, preventing the
occurrence of an unphysical boundary layer that would be obtained using a no-slip
condition.

3.3. Downstream domain: boundary conditions and change of coordinates
The treatment of the outlet boundary conditions is a delicate point here, as the
structure of the perturbation leads to some difficulties, especially when the Reynolds
number becomes large. In effect, due to the strongly spatially unstable nature of the
jet, all perturbations are strongly amplified along the axial direction. In particular,
the pressure field p′(x, r) can be reach huge levels (reaching 1015 or even more for
Re≈ 3000) along the axis (r= 0) for large x, and this conflicts with the necessity of
imposing the boundary condition p′out = 0 at a finite distance xmax corresponding to
the boundary of the computational domain.

To detail the origin of the problem and introduce the idea used to overcome it, let us
review the classical modelling of the Kelvin–Helmholtz instability for a planar shear
layer of zero thickness in the inviscid case. The formal derivation can be found in
any classical textbook on hydrodynamical stability (see for example Drazin & Reid
(2004) or Charru (2011)). Consider as base flow a shear layer separating two regions
of constant axial velocity, namely ux=U for r< 0 and ux= 0 for r> 0. Now assume
that the perturbation consists of a displacement of the shear layer with the form

η(x, r, t)∝ eikx−iωt, (3.12)

and assume a similar modal expansion for the velocity potential in the upper and
lower regions. Matching the two regions at the interface leads to the classical
dispersion relation:

c≡
ω

k
=

1± i
2

U. (3.13)

In a temporal stability framework, this means that a perturbation with a real
wavenumber k is convected downstream with a phase velocity U/2 and temporally
amplified with a growth rate Uk/2. On the other hand, in a spatial stability framework
which is more relevant here, a perturbation with real frequency ω will be spatially
amplified downstream with a complex wavenumber k and will diverge at x→+∞.
This divergence forbids a global resolution of the function η(x, t) when the variable x
is real. However, the problem disappears if we consider an analytical continuation of
the function η(x, t) with a complex variable x. More specifically, as arg(k) = −π/4,
the function η(x, t) becomes convergent as soon as |x| → ∞ in a direction of the
complex plane verifying π/4< arg(x)< 5π/4. These considerations suggest a possible
way to overcome the problem, namely using a complex coordinate change x= Gx(X)
which maps a (real) numerical coordinate X defined over a finite-size computational
downstream domain X ∈ [−Lin; Lout], onto the physical coordinate x in such a way
that it enters the complex plane and follows a direction where the perturbation is
spatially damped.

The coordinate mapping effectively transforms the outlet location X = Lout into a
location x = xmax = Gx(Lout) located in the complex plane. In order for the boundary
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16 D. Fabre, R. Longobardi, P. Bonnefis and P. Luchini

conditions at the outlet X = Lout of the computational domain to best represent the
physical boundary condition at |x| → ∞, it is desirable for xmax = Gx(Lout) to be as
large as possible. This can be achieved using coordinate stretching in order to have
short numerical domains and large physical ones.

Combining both ideas, namely stretching and complex mapping, we designed the
following mapping function from numerical coordinate X to physical coordinate x:

x= Gx(X) =
X[

1−
(

X
LA

)2
]2

[
1+ iγc tanh

(
X

2LC

)2
]

for X > 0,

= X for X < 0. (3.14)

This function is characterized by three parameters which have the following
interpretation. First, the parameter LC controls the transition range from real coordinate
to complex coordinate. For X � LC the mapping is almost identity (Gx(X) ≈ X) so
that the transition with the upstream, unmapped domain is as smooth as possible.
For X ≈ Lc the imaginary part of the corresponding physical coordinate x gradually
increases. For X � Lc the argument of x asymptotes to a constant value, namely
arg(x) ≈ tan−1(γc). The third parameter LA controls the stretching effect associated
with the coordinate mapping. This parameter has to be chosen so that LA > Lout.
LA →∞ means no coordinate stretching, so that the real part of xmax is the same
as the dimension Lout of the computational domain, while if LA − Lout is small the
corresponding xmax is rejected very far away in the complex plane.

Finally, although the issue is less crucial with respect to the axial coordinate, we
also used a mapping r = Gr(R) to stretch the radial coordinate from R ∈ [0, Rout] to
r ∈ [0, rout] in order to enlarge the effective radial dimension of the physical domain.
Here there is no point in using a complex deformation, so we used the following
mapping function:

r= Gr(R) = RM +
R− RM[

1−
(

R− RM

RA − RM

)2
]2 for X > 0 and R> RA,

= R otherwise. (3.15)

This function leaves the radial coordinate unchanged in the region r < RM where
the jet develops, but it stretches the limit of the domain from Rout to rout = Gr(Rout)

which is very large as soon as RA is close to Rout (with the constraint RA > Rout).
Having explained this change of coordinates, it remains to specify the numerical

boundary conditions effectively used at the boundaries of the numerical domain
R = Rout (corresponding to r = rout) and X = Lout (corresponding to x = xmax). In
the framework of finite elements, the usual way to impose outlet conditions is
to take advantage of integration by parts leading to the weak formulation. The
most natural condition emerging in this way is the zero-traction condition, namely
−pn+ Re−1∇u · n= 0. In the present case, we used the zero-traction condition as an
approximation of the physical condition p= 0 for both the base-flow and perturbation
computations. This choice is justified if the viscous stresses are negligible in the
vicinity of the boundaries of the domain, which turns out to be the case here.
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We stress that using the present method, outflow boundary conditions are effectively
applied at a location xmax located in the complex plane. The validity of the method is
not justified by rigorous mathematical argument, but only by the fact that it effectively
works. Detailed validations are given in § B.1 of this paper. In particular, we show
that at low Reynolds numbers results obtained with and without complex mapping
are identical, and are independent of the precise choice of the parameters (γc, LC, LA)
for the mapping function.

Note that the idea of using a complex coordinate mapping is not completely
new. Indeed, the method is conceptually similar to the perfectly matching layer
(PML) method, which is a numerical approach largely used in electromagnetics and
acoustics to impose non-reflection boundary conditions in wave propagation problems
(see Colonius (2004) for a complete review). In stability studies of incompressible
flows, complex coordinate mappings have also been used in linear problems involving
a single spatial coordinate and characterized by a critical layer singularity (see for
instance Fabre, Sipp & Jacquin 2006) and mathematical theorems are available to
justify how to choose the mapping as a function of the singularities of the problem
(see for example Bender & Orszag (2013)). However, we are not aware of any usage
of such methods to get rid of convective amplifications (which is a different issue
compared to reflexion of waves along boundaries and critical layer singularities). The
usage of complex mappings for solving a nonlinear problem (i.e. computation of the
base flow) involving two spatial coordinates is also totally new to our knowledge.

3.4. Numerical implementation
The numerical resolution of the problem was performed with a finite element method,
using the FreeFem++ (http://www.freefem.org) open source code (Hecht (2012)). The
procedure follows the classical approach initially introduced by Sipp & Lebedev
(2007). The only notable originalities are the introduction of the complex mapping
into the weak formulation, and the use of mesh adaptation using the adaptmesh
command provided by the Freefem++ (see Fabre et al. 2018 for a demonstration of
the efficiency of this method for solving linear and nonlinear problems arising from
stability analysis).

In order to solve the problem, the base flow and perturbation equations have first
to be expressed in terms of the mapped coordinates. The treatment of both sets of
equations in very similar so we document only the base-flow equations. First, the
spatial derivatives have to be modified as follows:

∂x ≡Hx(X)∂X with Hx =
1

∂XGx(X)
,

∂r ≡Hr(R)∂R with Hr =
1

∂RGr(R)
.

 (3.16)

The steady incompressible Navier–Stokes equations (3.2) thus take the following
form:

Hx∂XUx +Hr/r∂R(rUr)= 0,

C {Ux} +Hx∂XP−
1

Re
[Hx∂X(Hx∂XUx)+Hr/r∂R(rHr∂rUx)] = 0,

C {Ur} +Hr∂RP−
1

Re
[Hx∂X(Hx∂XUr)−Ur/r2

+Hr/r∂R(rHr∂rUr)] = 0,

 (3.17)
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where, from (3.15), r = Gr(R) and C {·} = UxHx∂X(·) + UrHr∂R(·). The weak
formulation is classically obtained by multiplying by test functions [U+x , U+r , P+]
and integrating over the domain. Note that this integration has to be done over the
physical domain, so in terms of the numerical variables the elementary volume of
integration is dV = 2πr dr dx = 2π(HxHr)

−1r dR dX ≡ 2π(HxHr)
−1Gr(R) dR dX. After

integration by parts of the pressure gradient and Laplacian terms of equation (3.17),
we are thus lead to the following weak formulation of the mapped Navier–Stokes
equations:

−

∫
[U+x (UxHx∂XUx +UrHr∂RUx)+U+r (UxHx∂XUr +UrHr∂RUr)] dV

+

∫
[P(Hx∂XU+x +Hr∂RU+r +U+r /r)− P+(Hx∂XUx +Hr∂RUr +Ur/r)] dV

−
1

Re

∫
[H2

x∂XUx∂XU+x +H2
r∂RUx∂RU+x ] dV

−
1

Re

∫
[H2

x∂XUr∂XU+r +H2
r∂RUr∂RU+r +UrU+r /r

2
] dV

= 0. (3.18)

Note that with this formulation, the no-traction boundary conditions at the outlet
boundary, as well as the symmetry condition at the axis and the zero tangential stress
condition at the lateral wall of the cavity are automatically satisfied thanks to the
integration by parts. The other boundary conditions are imposed by penalization.

The LNSE (3.6) is treated in a similar way, leading to the following weak
formulation:

iω
∫
[U+x u′x +Uru′r] dV

+

∫
[U+x (UxHx∂Xu′x + u′xHx∂XUx + u′rHr∂RUx +UrHr∂Ru′x)] dV

+

∫
[+U+r (UxHx∂Xur + u′xHx∂XUr + u′rHr∂RUr +UrHr∂Ru′r)] dV

−

∫
[p′(Hx∂XU+x +Hr∂RU+r +U+r /r)+ P+(Hx∂Xu′x +Hr∂Ru′r + u′r/r)] dV

+
1

Re

∫
[H2

x∂Xu′x∂XU+x +H2
r∂Ru′x∂RU+x ] dV

+
1

Re

∫
[H2

x∂Xu′r∂XU+r +H2
r∂Ru′r∂RU+r + u′rU

+

r /r
2
] dV

= 0. (3.19)

Once the weak formulation is written, the discrete matrices are assembled using
classical Taylor–Hood (P2, P2, P1) finite elements for the spatial discretization. The
use of mesh adaptation to generate a efficient mesh is done in a way very similar to
that explained in Fabre et al. (2018). The procedure is as follows:

(i) we generate an initial coarse mesh using the Delaunay–Voronoi triangulation of
the domain;

(ii) we use Newton iteration to compute a base flow at a moderate value of the
Reynolds (for instance Re= 10);
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(iii) we adapt the mesh to the base-flow solution of the previous step and recompute
the base flow on the resulting mesh;

(iv) we repeat points (ii) and (iii) for gradually increasing values the Reynolds number
up Re= 1000.
After this stage, we are guaranteed to have a mesh yielding converged results for
base-flow characteristics;

(v) we solve the linear problem for a value of ω in the range of interest, adapt the
mesh to fit with the corresponding structure and recompute the base flow on the
resulting mesh.

After this stage, we are ensured to have a mesh yielding converged results for both
the base flow and the perturbation for a given ω. For even better efficiency, it is also
possible to do the last mesh adaptation (v) for two values of ω spanning the range
of parameters in which converged results are expected.

To obtain the results presented in the next sections, two different meshes were
designed in this way. The first mesh, noted M0, is generated without the use of
complex mapping, with a large domain corresponding to Lout = xmax = 80. This mesh
was used to compute impedances at low Reynolds number (up to 1000) and to plot
the base-flow characteristics. The second, noted M1, uses complex mapping and was
used for most results at larger Reynolds number values. The structure of this mesh
M1 is illustrated in figure 2.

Additional meshes were designed for convergence tests and for demonstrations of
the robustness of the complex mapping technique. Details are given in appendix B.
The full characteristics of all meshes designed in this study (including M0 and M1)
are given in table 3, in § B.2. We mention that the number of grid points nt in M1 is
approximately half the value compared to mesh M0.

4. Results for the steady base flow
The first step in the approach is the computation of the base flow. We report two

examples of base flows calculated at Re = 500 (figure 3) and Re = 3000 (figure 4).
Here, computations are done in physical coordinates using mesh M0. In both cases
the streamlines show the transition across the hole from a radially converging flow to
a quasi-parallel flow. They also indicate an entrainment effect of the outer flow which
is also a well-known feature of such flows. Moreover, observing the axial velocity
profiles in the upper part of figures 3(b) and 4(b), we can note that the jet becomes
more parallel as the Reynolds number increases. In these figures, we also report the
velocity profile into the hole, consisting in an almost constant profile with UM= 1 and
dimensions equal to the radius of the hole Rh.

We calculated also the vorticity of the base flow as Ξ = ∂xUr − ∂rUx, reported in
the lower part of figures 3 and 4. As can be observed, the jet is bounded by a very
thin shear layer with high levels of vorticity, especially at high Reynolds numbers,
agreeing with the inviscid theory used by many authors (Howe 1979; Yang & Morgans
2016, 2017). Moreover, from the lower part of figures 3(b) and 4(b), we noted that
the vorticity reaches its highest levels near the hole and is then attenuated while it is
convected downstream.

The radius of the shear layer rs(x) can be extracted from the base-flow fields by
localizing the streamline growing up from the edge of the hole. The actual shape of
the jet has a great influence on the calculation of the impedance and many analytical
models are based on its reconstruction from experimental or numerical data (Jing &
Sun 2000; Mendez & Eldredge 2009; Yang & Morgans 2016). We reported our results
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FIGURE 3. (Colour online) (a) Base flow for Re = 500 (in physical coordinates (x, r),
without mapping). Upper part: axial velocity Ux and streamlines. Lower part: vorticity Ξ .
(b) Profiles of the axial velocity (upper) and vorticity (lower) at x= 0 (— · · —), x= 5Rh
(– –) and x= 10Rh (——).
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FIGURE 4. (Colour online) Same as figure 3 but for Re= 3000.

in figure 5 for various Reynolds numbers. For Re = 100 the jet is not parallel: the
inertia of the flow is low and the jet is accelerated only for a short distance; then,
the effect of viscosity leads to a diffusion of the jet. For higher Reynolds numbers,
instead, the inertial effects dominate the system: the fluid is accelerated for a long
distance and the radius of the jet diverges very far (not reported here). Moreover, it
is very clear that the jet is almost parallel and for high Reynolds numbers the radius
of the jet is approximately RJ ≈ 0.8.

As recalled in § 2.2, this effect is classically measured through the introduction of
the vena contracta coefficient α which is directly related to the pressure drop [Pin −

Pout]. We calculated the vena contracta coefficient by inverting the equation (2.4) as
a function of the Reynolds number. The results are shown in figure 6: we note that
the curve grows with the Reynolds number, then it reach a maximum at Re≈ 120 and
then it assumes an asymptotic behaviour as Re→∞, leading to α ≈ 0.61, which is
in agreement with classical results (Smith & Walker 1923). Finally, we estimated the
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FIGURE 5. Radius of the shear layer rs(x) for Re= 100 (——), Re= 500 (– –), Re= 1500
(— · —), Re= 2000 (— —) and Re= 3000 (— · · —). The vertical thick line represents
the edge of the hole.
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FIGURE 6. Vena contracta coefficient as a function of Re. The circles (E) indicate the
values of the vena contracta coefficient corresponing to the Reynolds number reported in
figure 5.

radius of the ideal jet at large Reynolds number using the relation RJ ≈Rh
√
α≈ 0.78,

where α is the classically assumed 0.61: this value is in very good agreement with
the value RJ ≈ 0.8 extracted from the figure 5.

5. Results for the unsteady flow
5.1. Structure of the unsteady flow for Re= 500

Let us now investigate the structure of the flow perturbation due to harmonic forcing.
Figure 7 displays this structure for a moderate value of the Reynolds number, namely
Re = 500, and for Ω = 3, computed in physical coordinates without mapping (mesh
M0). As can be observed, the effect of a periodic forcing is to generate vortical
structures in the jet which are amplified and convected in the downstream direction.
In the case plotted, the maximum level is reached at approximately x≈ 8. Progressing
further downstream, the perturbations are no longer amplified but begin to slowly
decrease, until they vanish for x & 20. This is consistent with the fact that for x & 8
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FIGURE 7. (Colour online) Harmonic perturbation for Re = 500, Ω = 3 computed in
physical coordinates (x, r) (mesh M0). Real part of the axial velocity component u′x (upper)
and vorticity ξ ′ (lower).
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FIGURE 8. Harmonic perturbation for Re = 500, Ω = 3 (in physical coordinates (x, r);
mesh M0) on the axis of symmetry. Real (——) and imaginary (– –) part of the axial
velocity component u′x (thin lines) and pressure p′ (thick lines).

the shear layer bounding the jet has diffused (as documented in figure 3b) and is not
steep enough to sustain a spatial instability.

In figure 8 we display the values taken along the axis of the jet of the axial velocity
u′x(x, 0) and the pressure p′(x, 0) associated with the harmonic perturbation previously
described. One can clearly observe that the pressure perturbation asymptotes to
different limit values in the upstream and downstream domains, allowing us to
deduce the pressure jump [p′in − p′out] which is the key parameter allowing us to
define the impedance and/or the conductivity. In the upstream region the asymptote is
reached rapidly and the pressure is almost constant with p′(x, 0)≈ p′in = 1.8− 3i for
x . −3. On the other hand, in the downstream region, the asymptotic limit (which
amounts to p′out = 0 owing to the way the boundary conditions are introduced in the
problem, see § 3) is only reached for x & 25, after the spatial growth and subsequent
decay.

5.2. Efficiency of the complex mapping technique
Figure 9 displays the structure of the perturbation for the same parameters as in
figure 7, but using the complex mapping technique (with mesh M1). Accordingly, the
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FIGURE 9. (Colour online) Harmonic perturbation for Re = 500, Ω = 3 (in numerical
coordinates (X, R) with complex mapping; mesh M1). Real part of the axial velocity
component u′x (upper) and vorticity (lower).

structure is plotted as function of the (real) numerical coordinates [X,R]. As one can
observe, the complex mapping technique completely fulfils the goal of getting rid of
the strong spatial amplification in the downstream direction.

Of course, the spatial structure displayed in figure 9 has no physical meaning as
soon as X > 0, because a point (X, R) in the numerical domain corresponds to a
point (x, r) in the physical domain for some complex x defined by x = G(X), and
there is no easy way to access the structure of the perturbation for some real x.
However, since our focus is on the impedance of the jets, we are not interested in
a full characterization of the perturbation field but only by a determination of the
associated pressure jump.

Figure 10 compares the results obtained with and without complex mapping (again
for Re= 500 and Ω = 3), focussing on the pressure component p′ (real part) of the
harmonic disturbance. In figure 10(a) the same iso-levels are used for both results
without complex mapping (upper half) and with complex mapping (lower half).
The comparison shows again that the structure computed without complex mapping
quickly grows to reach large values, saturating the iso-levels, while the structure
computed with complex mapping nicely decays to rapidly reach zero. Figure 10(b)
complements the comparison with plots of the pressure field along the axis. The
comparison confirms that in the inlet region (X < 0) the results exactly coincide. For
0<X .1.25 the results with complex mapping remain qualitatively similar to the ones
without mapping while for X & 1.25 they become completely different and rapidly
decay to zero. This not surprising, as our definition the mapping function defining
our mesh contains a parameter LC = 1.25 such that for X < LC the corresponding
physical variable x=Gx(X) is almost real while for X > LC it is fully complex.

Let us now consider the case Re= 1000, Ω = 3. The pressure p′ of the harmonic
disturbance is plotted in figure 11(a,b), with the same conventions as in figure 10.
Inspection shows that the results without complex mapping lead to the same
difficulties as for Re = 500 but the spatial growth is much more pronounced. In
this case, the pressure levels reach an amplitude of order 103 for x ≈ 15 and the
asymptotic value p′out = 0 is only reached for x & 70. This justifies that fact that, to
correctly resolve this mode, we had to design the dimension of the mesh M0 to be
as large as Lout = 80. On the other hand, results obtained with complex mapping
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FIGURE 10. (Colour online) (a) Pressure contours of the perturbation p′ computed in
physical coordinates (mesh M0; upper part) and with the complex mapping (mesh M1;
lower part). (b) Pressure of the perturbation on the symmetry axis p′(X, 0) with (——)
and without (– –) the complex mapping (Re= 500; Ω = 3).

behave very similarly as for Re = 500, and the asymptotic limit p′out = 0 is reached
quite rapidly, for X & 8.

In figure 11(b), the pressure levels of the results with and without complex mapping
are so different that it is impossible to check that the pressure p′ effectively asymptotes
to the same limits p′in and p′out in both cases. To remedy this, figure 11(c) shows a
zoom of the results in figure 11(b), in the region close to the hole. This representation
confirms that the two computations lead to identical results in the upstream region
where no mapping is used (and in particular that the upstream limit p′in is the same),
and that for the case using complex mapping the downstream limit is reached after
only a few oscillations with amplitudes of order one.

Figures 10 and 11 thus confirm that the use of complex mapping is a convenient
and efficient way to access to the pressure jump p′in − p′out associated with the
harmonic perturbation without having to deal with the strong spatial amplifications. It
is worth pointing out that in this method is also computationally economical, as the
number of point in mesh M1 is approximately half that of the unmapped case M0.
The figures also indicate that the difficulties encountered when solving the problem
in physical coordinates without mapping become worse as the Reynolds number
becomes large. In practice, as soon as Re & 1500, the huge levels reached by the
perturbations in the far-field region lead to round-off errors and it becomes impossible
to accurately resolve the near-field region. We verified that enlarging the domain of
dimension Lout to even larger than 80 does not improve the results. Using ‘sponge’
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FIGURE 11. (Colour online) Same as figure 10(a,b) but for Re = 1000. The inset (c)
displays a zoom in the near hole region in order to catch the pressure jump across
the hole.

regions with artificially large viscosity was also tried as an alternative idea to get
rid of the problems associated with huge spatial amplifications, but this idea proved
to be unsuccessful. In the end the only efficient way we found to obtain reliable
results for Re & 1500 was to use the complex mapping technique. An illustration of
the failure of the resolution in physical variables for large Reynolds is given in § B.1
(figures 20 and 21).

Note that in order to be consistent, the base flow also needs to be computed with
the same numerical coordinates. The structure of the base flow in mapped coordinates
has no physical meaning for the same reasons as the harmonic perturbation, but we
verified that the pressure jump and the associated vena contracta coefficient are
identical to the results in physical coordinates. We detail this in appendix C, and
display an example of base flow obtained in such a way in figure 25.

5.3. Impedance and conductivity
Having illustrated the structure of the perturbation due to a harmonic forcing and
justified the validity of the numerical method, we now come to the most important
result of this work, namely prediction of the impedance as function of Re and Ω .

Figure 12 displays the real and imaginary parts of the impedance, calculated
according to equation (2.8), as a function of the forcing frequency Ω at various
Reynolds numbers.
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FIGURE 12. (a) Resistance ZR and (b) reactance −ZI/Ω for Re= 100 (——), Re= 500
(– –), Re= 1500 (— · —), Re= 2000 (— —) and Re= 3000 (— · · —).

As for the resistance (panel a), only the case Re= 100 is notably different from the
other ones. On the other hand, the results obtained for Re> 1500 seem to collapse in
a unique curve, indicating that a large Reynolds number asymptotic regime is attained
after this value. The resistance is maximum in the low-frequency limit Ω ≈ 0, with a
value ZR ≈ 0.85 which will be explained in the next section. As Ω is increased, ZR
first decreases to reach a minimum for Ω ≈ 3.5 and then it reaches a quasi-constant
value equal to 0.53. Moreover, one can observe that the resistance increases with the
Reynolds number for all values of the frequency Ω . One can note that the resistance
is always positive, meaning that, according to equation (2.10), the jet is an energy sink
and so, in order to excite the jet at a given frequency, we need to provide energy from
an outer system, as recently observed by Howe (1979) for an inviscid flow.

The reactance ZI is documented in panel (b). As this quantity turns out to be a
negative and approximately linear function of Ω , it is more practical to plot −ZI/Ω as
a function of Ω . Under this representation, we can make the same observation as for
the resistance, regarding the existence of a high Reynolds number asymptotic regime
for Re& 1500, and the notable difference of the case Re= 100. Note that in the high-
frequency range, the curves indicate an asymptotic trend given by ZI/Ω ≈ 0.5. This
value matches with that predicted by the simple Rayleigh model (§ 2.3), indicating
that, for large frequencies, the impedance of the hole is at leading order the same as
in the absence of a mean flow.

We now document the results using the equivalent concept of conductivity (see
§ 2.2), and compare these with the predictions of Howe’s model. Just as for the
impedance, the results for Re & 1500 collapse onto a single curve characterizing a
high Reynolds number asymptotic regime. In figure 13 we plot with a thick line the
results obtained for Re= 3000 which are representative of this regime.

As explained in § 2.5, Howe’s expression for the conductivity (2.13) is expressed in
terms of ΩH

=ωRh/Uc where Uc is the convection velocity of the structures along the
vortex sheet, which choice is one of the most questionable points of the analysis. In
the initial model, Howe disregarded the vena contracta phenomenon and assumed a jet
with radius Rh and velocity UJ =UM. Then, assuming Uc =UM/2 leads to ΩH

= 2Ω .
The values for γ and δ obtained with this choice are plotted in the figure with dash-
dotted lines. As can be seen, in this initial version, Howe’s model rather badly agrees
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FIGURE 13. (a) Real part γ and (b) imaginary part δ of the Rayleigh conductivity. Plain
lines: LNSE results for Re= 3000. Dash-dotted lines: Howe’s original model. Dotted lines:
Howe’s modified model.

with our LNSE results. In a subsequent step of his analysis, Howe argued that the
effect of the vena contracta can be partly accounted for by using the more appropriate
choice UJ=2UM. This choice leads to Uc=UM and hence ΩH

=Ω . The predictions of
this modified model are plotted by the dashed lines in the figure. As can be seen, the
agreement with LNSE results is improved but the curves still differ notably, especially
as for the imaginary part δ (panel b) in the range Ω ≈ 2 where Howe’s modified
model underestimates the numerically computed one by approximately 30 %. On the
other hand, the model overestimates the real part γ for Ω . 2 by approximately 10 %
and underestimates it for Ω & 2 by the same amount.

As discussed in § 2.5, the result of Howe is expressed in terms of a non-dimensional
frequency ΩH

=ΩRh/Uc based on the convection velocity of vorticity structures along
the vortex sheet Uc, whose precise value is questionable. In figure 13 we followed the
original choice of Howe Uc=UM which leads to ΩH

=Ω . We also tried to compare
the results using improved modellings of Uc, leading only to mild ameliorations of
the agreement.

Finally, a useful quantity which can be extracted from the impedance is the delay
angle of the pressure with respect to the velocity:

φ = arg(Zh)= tan−1

(
ZI

ZR

)
. (5.1)

This quantity has been used in a number of experiments, as it allows us to
discriminate the cases where the impedance is mainly resistive (φ ≈ 0) from the
ones where it is mainly reactive (φ ≈ −π/2). This quantity is plotted in figure 14,
confirming that the behaviour switches from purely resistive to purely reactive as the
frequency is increased. We also observe in this plot a collapse of the curves obtained
in the high Reynolds number asymptotic regime Re & 1500. The angle φ extracted
from Howe’s modified model is also plotted in the figure (note that in terms of
conductivity, the definition of φ translates into φ = π/2 − arg(KR) = −tan−1(γ /δ)).
Again, a substantial deviation is observed, especially in the range of intermediate
frequencies Ω ≈ 2 where the deviation can be as large as π/12 ≡ 15◦. Oddly, the
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FIGURE 14. Argument φ of the impedance, for Re = 100 (——), Re = 500 (– –), Re =
1500 (— · —), Re= 2000 (— —) and Re= 3000 (— · · —), and from Howe’s modified
model (· · ·).

inviscid Howe model turns out to give better predictions for the case Re= 100 than
for the high Reynolds number regime.

5.4. The quasi-static limit for Ω→ 0
We have observed that in the limit of small frequencies (Ω → 0), the impedance
becomes purely real and tends to a constant value. This limit value can be predicted
using a quasi-static approximation, and this property will be used to verify the
consistency of our impedance calculations. As explained in § 2.3 for a steady flow,
the pressure jump and the mean velocity across the hole are related through the
Bernoulli equation which can be written in the form (2.4)

1p=
ρu2

M

2α2(ReM)
. (5.2)

Assuming 1p=1P+1p′ and uM =UM + u′M, inserting into (5.2) with ReM = (UM +

u′M)Rh/ν = Re(1+ u′M/UM) and linearizing leads to

1P+1p′ ≈
ρU2

M

2α2
+
ρu′MUM

α2

(
1−

1
α

∂α

∂Re

)
. (5.3)

Remembering now that 1P = (ρU2
M)/(2α

2), this equation allows us to obtain a
prediction for the impedance which is assumed to be valid in the quasi-static limit
(Ω→ 0):

ZQS =
1p′

πR2
hu′M
=

ρUM

α2πR2
h

(
1−

1
α

∂α

∂Re
Re
)
. (5.4)

Table 1 compares the impedance computed using the method of the previous
section for a small value of the frequency, namely Ω = 10−6, to the quasi-static
prediction (5.4) obtained using the base-flow characteristics computed in § 4. One can
note that the results agree with a less than 1 % error. Finally, we can note that the
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Re ZR(Ω = 10−6) ZQS
ρUM

α2πR2
h

100 0.778957 0.778985 0.784964
500 0.828280 0.828228 0.813912
1500 0.854970 0.854510 0.843178
2000 0.860562 0.868020 0.849696
3000 0.867572 0.866437 0.857986

TABLE 1. Values of the impedance in the low-frequency range. Comparison of values
obtained numerically with a very small Ω , quasi-static approximation (5.4) and simplified
approximation obtained assuming ∂α/∂Re= 0.

term (1/α)(∂α/∂Re)Re in (5.4) is small because α is a slowly varying function of
Re. The fourth column of table 1 gives the prediction of the quasi-static impedance
obtained when neglecting this term. The comparison shows that this simplified
prediction is still an excellent approximation, and slightly overestimates the actual
value, except for the case Re = 100, where it underestimates it. This is consistent
with the fact that the α − Re curve reaches a maximum for Re≈ 120 (see figure 6).

The low-frequency limit was also addressed by Howe in the framework of his
model. A Taylor series of expression (2.13) leads to δ ≈ πΩH/4 (equation 3.15(b)
of Howe’s paper), which, when expressed in terms of impedance, translates into
ZR ≈ (2/π)(Uc/UM) ≈ 0.637(Uc/UM). Thus, the choice Uc/UM = 1 made by Howe
actually yields a prediction for ZR which underestimates the high Reynolds number
value by approximatively 37 %. Note that this mismatch can also be observed in
figure 13(b) regarding the initial slope of the curve δ(Ω). This error in the quasi-static
limit may be cancelled using an ad hoc choice of Uc/UM, but as previously explained,
such a modification does not improve substantially the agreement in other ranges
of Ω .

6. Direct numerical simulations of a harmonically forced jet

In order both to validate the linearized approach for small amplitudes and to
investigate the influence of nonlinearities for larger amplitudes, we performed direct
numerical simulations by integrating in time the Navier–Stokes equations (3.1) for a
harmonically forced jet. The DNS are performed using FreeFem++ on the same mesh
M0 as used in the previous section for resolution in physical coordinates (note that
the complex mapping technique is fitted to the resolution of the linearized problem
but is not relevant for nonlinear simulations). The numerical code used for time
integration is very similar to the one used in Marquet et al. (2008). The equations
are advanced in time using a partly implicit second-order accurate scheme. The time
derivatives are approximated using a three-step backward finite difference scheme.
The pressure, the Laplacian term and the continuity equation are implicit while the
convective terms are explicit and treated using a characteristics method (Boukir et al.
1997).

As initial conditions, we used the steady solution of the Navier–Stokes equations
[U; P] obtained as described in § 3.4. We used the same boundary conditions as for
the LNSE, namely no stress on Γw, symmetry on Γaxis, stress-free conditions on Γlat

and traction free on Γout. At the inflow, we forced the problem on the axial velocity
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FIGURE 15. (Colour online) Vorticity snapshot at (a) Ω = 0.5, (b) Ω = 2, (c) Ω = 4
for ε = 10−2, Re= 1000 and t= 25. The line with arrows is the edge of the jet, i.e. the
streamline originating from the edge of the hole.

component as follows:

ux(t)=Uin[1+ ε sin(ωt)]
ur = 0

}
on Γin, (6.1)

where Uin = Q/Sin and Q has been selected as just discussed in § 3.2. The pressure
drop 1p(t) necessary to define the impedance is then extracted using

1p(t)= pin(t)− pout(t)= 2π/Sin

∫ Rin

0
p(r, t)r dr− 2π/Sout

∫ Rout

0
p(r, t)r dr. (6.2)

For the simulations, we fixed the Reynolds number to Re= 1000 and investigated
the effect of both the frequency in the range Ω ∈ [0.5− 4] and the amplitude in the
range ε ∈ [10−4, 10−1

].
Figure 15 displays a snapshot of the vorticity for ε = 10−2 and Ω = 0.5, 2 and 4.

We also display the streamline originating from the edge of the hole, which can be
identified with the surface of the jet η(x, t) of figure 1. We can observe that, under
the effect of forcing, the shear layer bounding the jet reorganises into an array of
vortices which are convected downstream. Note that the distance at which the vortex
array appears is much larger in the lower-frequency case, because the spatial instability
of the jet is less active at low frequencies. The overall structure of the vorticity is
consistent with studies which have used DNS of a harmonically forced to characterize
the spatial amplification process (Kiya, Ido & Akiyama 1996; Shaabani-Ardali, Sipp
& Lesshafft 2017).

Figure 16 displays the time series of the pressure drop 1p(t) (panels a and c) and
the axial velocity at position (x, r)= (10,0.5), chosen to be in the region where roll-up
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FIGURE 16. (Colour online) Time series of the pressure drop 1p(t) and the velocity at
(x, r)= (10, 0.5) for Ω = 0.5 (a,b) and Ω = 2 (c,d). Full line is for ε = 0.1 and dashed
line is for ε= 0.05.

occurs. Two values of the frequency and amplitude are chosen, namely Ω = 0.5; 2 and
ε = 0.1; 0.05. The plots of the pressure drop show that this quantify is remarkably
sinusoidal, even for the largest values of the amplitude. The oscillation levels for
ε= 0.1 are approximately twice those for ε= 0.05, confirming that the pressure drop
is indeed proportional to the forcing. Remarkably, in all cases displayed, the pressure
almost instantaneously stabilizes to a sinusoidal limit cycle, and a transient regime is
almost unnoticeable, except for the very first time steps. The velocity signals show a
rather different behaviour. For Ω = 0.5, the signal is very far from sinusoidal and
displays a rich harmonic content. This confirms that the roll-up process occurring
in this region is strongly nonlinear. The limit cycle at x = 10 also takes time to
establish, a fact associated with the time of convection of vortex structures. It is finally
remarkable that the amplitude of oscillation for ε = 0.1 is not double compared to
that for ε= 0.05. This is also observed for Ω = 2, where the cases with ε= 0.1 and
ε= 0.05 saturate to a limit cycle (closer to sinusoidal in this case) of same amplitude.

The pressure signal can be analysed in a finer way by decomposing into as a Fourier
series in the form:

1p(t)=1p0 +

∞∑
j=1

1pj sin( jΩt− φj). (6.3)

In practice, approximately 10 periods of oscillations were computed and the Fourier
analysis was done after removing the first half of the time series, which is sufficient
to discard the transient effect, as documented above. Figure 17 displays the discrete
spectra, namely the absolute value of the amplitudes |1pj| as a function of j, extracted
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FIGURE 17. Discrete spectra of 1p(t) for ε= 10−1 (E), ε= 10−2 (@), ε= 10−3 (6),
ε= 10−4 (C) and (a) Ω = 0.5, (b) Ω = 2 and (c) Ω = 4.

from all performed DNS. The j = 0 component 1p0 corresponds to the pressure
drop associated with the mean flow, and is almost independent of ε. The j = 1
component 1p1 corresponds to the amplitude at the fundamental forcing frequency.
This quantity is observed to be proportional to ε, confirming that the response to
forcing is essentially linear. The components 1pj with j> 0 correspond to the higher
harmonics. These components are generally smaller than 10−4, hence negligible. The
case ε = 10−1 leads to the largest values for the higher harmonics, but they still
remain one order of magnitude smaller than the response at the driving frequency.

Truncating the Fourier series to the two first terms, i.e.

1p(t)≈1p0 +1p1 sin(ωt− φ1) (6.4)

and remembering that the flow rate can be written as

q(t)=UinπR2
in︸ ︷︷ ︸

q0

+UinπR2
inε︸ ︷︷ ︸

q1

sin(ωt), (6.5)

we can calculate the impedance using only the first Fourier component of the pressure:

ZR =1p1/q1 cos(φ1),

ZI =1p1/q1 sin(φ1).

}
(6.6)

Table 2 displays the mean pressure drop 1p0 and the impedance deduced from the
DNS results for all cases simulated, and compares them to the LNSE results of §§ 4
and 5.

As for 1p0, the LNSE results displayed in the table actually correspond to the
pressure drop associated with the base flow, namely the steady solution of the NSE,
while the DNS results correspond to the mean flow obtained by time averaging. There
is a subtle difference between these concepts (Barkley 2006), and the difference is
expected to be of order ε2. This is in agreement with the fact that deviations are only
notable for the largest amplitude ε= 10−1.

As for the impedances, it is remarkable that the LNSE results provide an excellent
approximation to the DNS results, with a relative error less than 1 % except for high
frequency and large where it increases a little (we found the maximum relative error
to be approximately 4 % at ω= 4 and ε= 0.1).
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Method, frequency ε 1p0 ZR ZI

10−1 1.315197 0.823836 0.306126
DNS, Ω = 0.5 10−2 1.308922 0.823949 0.304707

10−3 1.308850 0.823755 0.305271
10−4 1.308849 0.822438 0.305119

LNSE, Ω = 0.5 — 1.308657 0.823451 0.307814

10−1 1.318342 0.642373 0.384001
DNS, Ω = 2 10−2 1.308899 0.631512 0.379576

10−3 1.308842 0.628868 0.376664
10−4 1.308849 0.628365 0.375493

LNSE, Ω = 2 — 1.308657 0.627929 0.377853

10−1 1.332050 0.524558 0.458023
DNS, Ω = 4 10−2 1.309361 0.506036 0.467145

10−3 1.308858 0.502835 0.465519
10−4 1.308850 0.503785 0.465163

LNSE, Ω = 4 — 1.308657 0.502442 0.467931

TABLE 2. Comparison between the DNS and the linear approximation in terms of
pressure drop of the mean (base) flow and impedances.

7. Summary and discussion

The main goal of this study was to reconsider the classical problem of the response
of an axisymmetric jet through a circular aperture through a plate of small thickness
to harmonic forcing. This problem was initially considered by Howe who proposed
an inviscid model which is still the basis of most studies of this problem. However
a number of starting hypotheses of Howe’s model are questionable. In order to
reconsider the problem on more rigorous grounds, our chosen approach has been to
numerically solve the problem using the linearized Navier–Stokes equations (LNSE).

The first step of the LNSE approach consists of computing a base flow correspond-
ing to the steady laminar flow through the aperture. Section 4 was devoted to the
description of this base flow. Upstream of the aperture, it essentially consists of a
radially convergent flow, while downstream of the aperture, the flow forms a quasi-
parallel jet bounded by a thin vorticity layer originating from the rim. As classically
observed in experiments, the radius of the jet is smaller than the radius of the aperture.
We documented this effect in terms of the vena contracta coefficient α. Our numerical
results indicate an almost constant value α ≈ 0.61 in the range 103 < Re < 104, in
agreement with classical experiments.

The second step of the LNSE approach consists of solving a linear problem
for small-amplitude disturbances with harmonic temporal dependence. A standard
implementation of this method, starting from a formulation in terms of physical
coordinates (x, r) on a numerical domain ‘large enough’ to resolve correctly the
structure of the linear perturbation (typically [rmax, xmax] = [20, 80]), was first tried.
This first implementation was found to lead to difficulties in the high Reynolds
number range, leading to the impossibility of obtaining reliable results as soon as
Re & 1000. These difficulties were analysed, and the problem was found to be linked
to the strong spatial amplification properties of the jet. To overcome these difficulties,
a convenient method was designed, which consists of reformulating the problems in
terms of a mapped complex coordinate X(x). The idea of using complex coordinates
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is not new in linear acoustics, and is at the basis of the perfectly matched layer (PLM)
method to prevent reflections of the acoustic waves on the boundaries of the domain.
However, to our knowledge, the use of such a method in strictly incompressible
problems is new. We show that an appropriate choice of the mapping function allows
us to get rid of the spatial amplification of the perturbation in the axial, mapped
direction.

Although the spatial structure of the perturbation no longer has a physical
interpretation when computed using complex coordinates, we demonstrated that
the global quantities depending only on the pressure jump across the hole, such as
the vena contracta coefficient and the impedances, are well resolved. This method
thus allows us to obtain meaningful results using a much smaller numerical domain
(typically [Rmax, Lout] = [15, 15]) and incidentally a much lighter numerical grid.

Using this method, we then characterized the response of the jet to harmonic
forcing by computing its impedance, namely the ratio between the fluctuating pressure
jump and fluctuating flow rate across the aperture, which is a key quantity used by
acousticians to characterize the interaction of jet flows with acoustic fields. In all
cases the real part of the impedance was found to be positive, meaning that exciting
the jet at a given frequency necessitates the provision of energy from an outer system.
Moreover, the impedance was found to become independent of the precise value of Re
as soon as Re& 1500, indicating the existence of a high Reynolds number asymptotic
regime.

Results in this high Reynolds number regime were compared to predictions of
Howe’s model. The comparison was done in terms of the Rayleigh conductivity,
which is a concept directly related to the impedance and used by a fraction of
the acoustic community as an alternative. Comparison shows substantial deviations,
especially in the range of intermediate non-dimensional frequencies, indicating that
some of the hypotheses underlying Howe’s model are too restrictive.

Finally, to confirm the validity of our linearized approach, we also performed
direct numerical simulations considering harmonic perturbations with small but finite
amplitude ε. The spatial structure of the perturbations computed in this way showed
a rapid saturation of the spatial instability towards an array of vortex rings, very
different from the structure computed using LNSE. Despite this, the values of the
impedance extracted from these DNS, as well as the properties of the mean flow,
were found to be in excellent agreement with LNSE results, with a maximum relative
error of only a few per cent for ε = 0.1. This result confirms that the LNSE is an
efficient method to predict the impedance, even in cases where the spatial evolution
of the perturbations is rapidly dominated by nonlinear effects.

We end this discussion with a few closing remarks. First, coming back to the
complex mapping technique used in the LNSE approach, we stress that this method
was designed to overcome a mathematical difficulty linked to the linear problem,
namely strong spatial amplification extending very far away in the axial direction. As
such, this method is not suited to a direct numerical solution in the nonlinear regime,
and the DNS presented in § 6 were thus performed in physical coordinates. On the
other hand, the method is potentially usable for studying the linear stability of large
class of flows characterized by nearly parallel spatially unstable regions, such as the
wakes of blunt or profiled bodies. We are currently investigating the applicability of
complex mapping for such problems.

Secondly, since our whole approach relies on an assumed laminar base flow, one
may question the applicability of our results when considering turbulent jets. Although
the precise threshold is difficult to predict, transition to turbulence in such jets is
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typically thought to take place in the range Re∈ [103
− 104

]. However, when transition
takes place, turbulence is only observed in the downstream region located after the
near-field vena contracta region which remains essentially laminar. Having observed
in our DNS that the nonlinear evolution of vortex structures in the far field does not
affect the value of the impedance, we can postulate that the same is true regarding
nonlinear effects due to turbulence, and thus that our results, obtained under the
hypothesis of a laminar flow, are actually applicable to turbulent jets in a large range
of parameters.

Third, in the whole study, we have only considered axisymmetric disturbances to the
flow. Non-axisymmetric disturbances also exist in such flows, and in high Reynolds
number jets their signature has been detected among turbulent structures (Sasaki et al.
2017). However, such non-axisymmetric disturbances are not associated with a net
flow rate through the hole. So, they are expected to be much less coupled to acoustic
disturbances, and indeed it is not possible to describe them in terms of an impedance.

Finally, we have mentioned in the introduction that in the case where the thickness
of the plate is not small compared to the radius of the hole, the jet can cease to
act as a sound damper to become a sound generator, leading to the possibility of self-
sustained oscillations of the jet. In such a case, the impedance concept is a useful tool
to characterize the instability mechanism, and the numerical method designed in the
present paper is directly applicable to investigation of such instabilities. A parametric
study of the response of jets through plates of finite thickness to harmonic forcing is
underway and will be presented in a forthcoming paper.

Appendix A. Inviscid stability analysis of a cylindrical vortex sheet
In this appendix we review the stability analysis of a cylindrical vortex sheet, a

classical problem first addressed by Batchelor & Gill (1962).

A.1. Equations
We consider as a base flow a cylindrical jet with a top-hat profile, with radius RJ and
velocity UJ:

Ux(r)=
{

UJ if r< RJ;

0 if r> RJ.
(A 1)

This corresponds to a cylindrical shear layer. The stability analysis of this flow
can be studied by adding small perturbations in potential form, both inside (φo) and
outside (φi) the jet. These perturbations are searched in eigenmode form as follows:

φi = AIm(kr)ei(kx−ωt)
; φo = BKm(kr)ei(kx−ωt)

; η=Cei(kx−ωt), (A 2a−c)

where r= RJ + η is the location of the jet edge.
The matching conditions at r = R are continuity of the pressure (pi = po), and

kinematical conditions connecting the temporal derivative of η to the radial velocity
∂φ/∂r. Hence:

i(ω− kUJ)φi(RJ)= iωφo(RJ), (A 3)
−iωη= (∂φo/∂r)r=RJ , (A 4)

i(kUJ −ω)η= (∂φi/∂r)r=RJ . (A 5)

Eliminating constants A, B,C, we get the following dispersion relation:

D(ω, k)= (ω− kUJ)
2
+ L0(kRJ)ω

2
= 0, (A 6)
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FIGURE 18. Spatial stability analysis of a top-hat jet: – –, kr; · · · , −ki; ——,
cr = Re(ω/k).

where

L0(k)=−
I′0(kRJ)K0(kRJ)

I0(kRJ)K ′0(kRJ)
. (A 7)

Note that this dispersion relation generalizes the classical one for Kelvin–Helmholtz
instability of an infinitely thin shear layer (obtained by replacing L0(k) by one). In the
short-wavelength range (kRJ � 1), L0 is close to one and the problem is effectively
equivalent to the planar shear layer. On the other hand, in the long-wavelength range
(kRJ� 1), L0 tends to zero leading to different trends.

A.2. Temporal stability analysis
In a temporal stability framework (k ∈R), the dispersion relation leads to:

c=
ω

k
=UJ

1± i
√

L0

1+ L0
, (A 8)

where c= cr + ici is the phase velocity. The real part of the phase velocity represents
the convection velocity of the disturbance, which corresponds to the term noted Uc

in Howe’s model. In the short-wave range, L0 ≈ 1 leading to cr =UJ/2, which is the
classical result for a planar shear layer. On the other hand, in the long-wave range,
the asymptotic trends becomes cr ≈UJ .

A.3. Spatial stability analysis
In a spatial stability framework, which is more relevant here, ω ∈R and the problem
has to be solved for the complex eigenvalue k. The dispersion relation has no
analytical solution but is easily solved numerically. Results are reported in figure 18.
The spatial amplification rate −ki and the real part of the wavenumber kr (related to
the wavelength) are both increasing functions of ω. In the spatial framework one can
still define the convection velocity of perturbations as cr = Re(ω/k). This quantity is
plotted in the figure with a thick line. We observe that the spatial analysis essentially
leads to the same conclusion, namely the convection velocity of perturbations is close
to UJ/2 in the high-frequency (i.e. short-wavelength) regime and close to UJ in the
low-frequency (i.e. long-wavelength) regime.
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FIGURE 19. Comparison between the results of impedances obtained using the complex
coordinate mapping (—6—, mesh M1) and without mapping with Lout = 40Rh (—E—,
mesh M8) and Lout = 80Rh (—@—, mesh M0) at Re= 500.

Appendix B. Numerical validations

In this appendix, we provide additional results obtained by varying the defining
the mesh dimensions, grid density as well as the parameters defining the complex
mapping function. All meshes used in the study are described in table 3. Meshes M0
and M1 are the reference meshes used in the paper, respectively without and with the
use of complex mapping. Meshes M2−7 are additional meshes using complex mapping,
with different choices for the dimensions, parameters and/or density. Meshes M8−9 are
additional meshes without complex mapping, with different dimensions in the axial
direction.

B.1. Complex mapping validation
We first provide a few additional results to illustrate the failure of the resolution in
physical coordinates to compute the impedance for large Reynolds numbers, and the
efficiency of the complex mapping technique to resolve it.

Figure 19 displays a comparison between the impedances for Re = 500 calculated
using the reference meshes as well as an additional mesh M8 designed without
complex mapping and a with a shorter axial dimension. As one can observe, in this
range of Reynolds number, results obtained with and without complex mapping are
almost identical: the curves are perfectly overlapped for ZR whereas for ZI a little
difference exists but with relative errors less than 1 %.

Figure 20 present a similar comparison for Re = 2000, using this time an
additional mesh without complex mapping of longer axial dimension (mesh M9
with Lout = 160Rh). From the figure, it is clear that the computation of the impedance
without the mapping is impossible. The reference mesh M0 leads to non-physical
oscillations in the range Ω & 2. Doubling the size of the domain does not lead to
notable improvements, and the use of complex mapping proves to be the only way
to obtain reliable results.

To illustrate further the failure of the numerical resolution without complex
mapping, we report in figure 21 the pressure of the perturbation on the symmetry
axis for Re= 2000 and Ω = 3. As can be seen, the amplitudes in physical coordinates
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Mesh Rin Lin Rout Lout LC LA γc RM RA xmax rmax nt

M0 10 10 20 80 — — — — — 80 20 101 403
M1 10 10 15 15 1.25 16 0.3 5 16 1022+ 306i 337 53 352

M2 10 10 15 15 1.25 16 0.5 5 16 1022+ 511i 337 26 649
M3 10 10 15 15 1.25 20 0.3 5 20 78+ 23i 38 52 587
M4 10 10 15 15 2.50 16 0.3 5 16 1022+ 306i 337 37 972
M5 15 15 15 15 1.25 16 0.3 5 16 1022+ 306i 337 54 782
M6 10 10 15 15 1.25 16 0.3 5 16 1022+ 306i 337 28 579
M7 10 10 15 15 1.25 16 0.3 5 16 1022+ 306i 337 254 093

M8 10 10 20 40 — — — — — 40 20 66 759
M9 10 10 20 160 — — — — — 160 20 182 659

TABLE 3. Description of numerical meshes M0–9 in term of dimensions, mapping
parameters and number of triangles nt.
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FIGURE 20. Impedances computed using the complex coordinate mapping (—6—, mesh
M1) and without mapping with Lout = 80Rh (—E—, mesh M0) and Lout = 160Rh (—@—,
mesh M9) at Re= 2000.

reach levels of order 107. As a consequence, round-off errors can occur, leading to
an error propagation in all the domain and so a wrong pressure level at inlet. This
is visible in the inset displaying a zoom in of the inlet region, showing a mismatch
between the results with and without complex mapping.

B.2. Robustness of the complex mapping
In order to validate the mapping and to verify its robustness, we performed a
sensitivity analysis of the impedances to geometrical and mapping parameters
variation.

In figure 22 we compare the impedances for at Re= 3000, computed with meshes
M1−5. One can observe that the curves are all overlaid on the reference curves, namely
the mesh M1 used to calculate the impedances in § 5.3, showing the robustness and
the efficiency of the mapping formula used.

Finally, the last numerical issue is about the thickness of the hole. In the whole
paper we assume a zero-thickness hole, but to generate the mesh we had to specify a
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FIGURE 21. Pressure perturbation on the symmetry axis for Re = 2000 and Ω = 3
computed with complex mapping (mesh M1; ——) and without complex mapping (mesh
M9 with Lout = 160Rh; – –).
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FIGURE 22. (a) Real part and (b) imaginary part of the impedance at Re=3000 computed
with the mesh M1 (—@—), M2 (—A—), M3 (—C—), M4 (—6—) and M5 (—E—).

small but finite value. We set it to 10−4 and we verified that results were insensitive
to this length.

B.3. Mesh convergence
The last issue to consider for numerical validation is the sensitivity of the results
to the grid density. As explained in § 3, the mesh generation process involves mesh
adaptation thanks to the adaptmesh command of the FreeFem++ software. Although
the procedure is automatic, its efficiency can be tuned by specifying an interpolation
error parameter. Mesh M1 was obtained using the default value 5 × 10−3. Two
additional meshes were designed, respectively with interpolation errors of 10−2 (mesh
M6) and 10−3 (mesh M7). Table 4 gives the number of triangles nt of each of these
meshes, as well as the corresponding number of degrees of freedom (nd.o.f ) of the
finite element discretization. In the last two columns of the table, we report the
values obtained for the vena contracta coefficient for Re = 500 and Re = 2000 with
each of these meshes. One can observe that results are accurate up to the fourth
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FIGURE 23. (a) Real part and (b) imaginary part of the impedance at Re=3000 computed
with the mesh M1 (—@—), M6 (—E—) and M7 (—6—).
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FIGURE 24. Relative error calculated on the absolute value of the impedance between the
meshes M6 −M7 (– –6– –) and the meshes M1 −M7 (—E—) at Re= 3000.

Mesh nt nd.o.f . α(Re= 500) α(Re= 2000)

M1 53 352 241 797 0.625367 0.612052
M6 28 579 129 911 0.625370 0.612059
M7 254 093 1 146 799 0.625366 0.612052

TABLE 4. Characteristic of the meshes used for the convergence analysis using the
mapping parameters reported in table 3 and convergence of the base flow. Note that nd.o.f .
is the number of degrees of freedom of the mesh.

digit. In figure 23 we compare the impedances computed with each of these meshes
for Re= 3000. The figure shows that the curves are completely overlapped. We also
quantified the relative error of the meshes M1 and M6 with respect to M7 for all
the frequencies. From figure 24 we can observe that the maximum relative error
committed using the mesh M6 is around 0.38 %, whereas the maximum error is
reduced to 0.005 % using the mesh M1.
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Case Base flow Single linear problem Full parametric study

Mesh M0, Re= 1500 11 min 15 s 1 min 55 s 144 min 25 s
Mesh M1, Re= 3000 4 min 48 s 1 min 15 s 78 min 55 s

TABLE 5. CPU time on a standard computer (MacBook Pro 2012, 2.5 GHz Intel Core i5,
4 Gb RAM) required for computation of a base flow and generation of an adapted mesh
following the procedure explained in § 4, resolution of a linear problem for a single value
of Ω and full parametric study of the impedance, including generation of base flow and
mesh, and resolution of 100 linear problems in the range Ω ∈ [0− 6].

B.4. Numerical efficiency

One of the advantages of using LNSE compared to full DNS is that the first approach
only requires resolution of a small number of linear problems, while the second one
requires time integration of the equations over a long time covering several periods
of oscillation to ensure convergence. In this section we demonstrate the numerical
efficiency of the method by indicating in table 5 the CPU time required for the various
steps of the analysis. As can be seen, the amount of time to obtain an impedance
curve Z(Ω) in the range Ω ∈ [0 − 6] (including generation of the base flow and
adapted mesh, and resolution of elementary problems for 100 values of Ω spanning
the range) on a standard computer is of the order of 15 min using resolution in real
coordinates, and can be reduced to as small as 6 min using the complex mapping
method.

As a comparison, using the DNS time stepping we have used for generating
the results displayed in § 6, using M0, a time step dt = 2 × 10−3 and performing
40 000 time steps to cover several oscillation periods required a total CPU time of
approximately 15 h, for a single value of the parameters Ω and ε.

Appendix C. The complex base flow

As mentioned in § 3 and detailed in appendix B, as soon as Re> 1500, converged
results for the impedance can only be obtained using the complex mapping technique.
In the present implementation of the method, we chose to compute the base flow in
the same coordinates. In this appendix we briefly document the structure of the base
flow when computed in this way.

Figure 25 displays the axial velocity component of the base flow Ux obtained in
this way. This quantity is actually the analytical continuation of the axial velocity
(displayed in figure 4) in the complex x-plane. The real part (upper plot) has a
structure similar to the one in real coordinates plotted in figure 4, but one can
observe that the thin shear layer rapidly enlarges as one progresses along the X
direction. This is mostly an effect of the stretching involved in the coordinate
mapping: the computation is made with Lout = 15 and LA = 16, so that the position
in the X direction corresponding to |x| → ∞ is actually just a little outside of the
computational domain.

The lower part displays the imaginary part of Ux. Here the complex coordinate
mapping is done with LC= 1.25, so the imaginary part becomes significant above this
value in the X direction.
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FIGURE 25. (Colour online) Real (upper part) and imaginary (lower part) of the axial
velocity Ux of the base flow at Re= 3000.
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