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In this paper we prove the existence of solutions of the Keller–Segel model in chemotaxis,

which blow up in finite or infinite time. This is done without assuming any symmetry

properties of the solution.

1 Introduction

The collective behavior of the myxamoebae of the cellular slime mold Dictyostelium

discoideum has astonished many scientists since Dictyostelium was found in 1935. During

its lifecycle a Dictyostelium myxamoeba population grows by cell division as long as

there is enough food. After the food resources are exhausted, the myxamoebae spread

over the whole domain that they can reach. Then a so-called founder cell starts to exude

cyclic Adenosine Monophosphate (cAMP) which attracts the starving myxamoebae. They

start to move chemotactically positive in direction of the founder cell and are also

stimulated to emit cAMP. During this process, the myxamoebae not only produce cAMP,

but also consume it and secrete a phosphodisterase, which converts the cAMP into

chemotactically inactive AMP. According to this chemotactically positive movement to the

founder cell, the myxamoebae aggregate. At the end point of aggregation, the myamoebae

form a pseudoplasmoid, where every myxamoeba maintains its individual integrity. This

pseudoplasmoid moves phototactically positive towards light. Finally, a fruiting body is

formed and spores are spread. When the spores become myxamoebae the lifecycle is closed.

Since 1970 when Keller & Segel [17] introduced their model for the aggregation of

Dictyostelium discoideum, which is given in a simplified version by the equations

at = ∇(∇a− χ̃a∇c), x ∈ Ω, t > 0

ct = kc∆c− γc+ α̃a, x ∈ Ω, t > 0

∂a
∂n

= ∂c
∂n

= 0, x ∈ ∂Ω, t > 0

a(0, x) = a0(x), c(0, x) = c0(x), x ∈ Ω,

 (1.1)

many authors have studied the possible blow-up of the solution of system (1.1). In (1.1) the

function a(x, t) represents the Dictyostelium myxamoeba density in point x ∈ Ω at time t,

and the function c(x, t) stands for the cAMP density, which attracts the myxamoebae to

move positive chemotactically in the direction of a higher cAMP concentration. α̃, χ̃, kc
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and γ denote positive constants. Here and in the following sections, n denotes the outer

normal vector field on ∂Ω. For a detailed derivation of the equations, see, for instance,

Horstmann [12], Keller & Segel [17] or Nanjundiah [23].

That there might exist solutions which blow up for Ω ⊂ R2 has been expected in

connection with the studies concerning the conjectures by Nanjundiah [23] and Childress

& Percus [4, 5]. Nanjundiah [23] suggested in 1973 that “the end-point (in time) of

aggregation is such that the cells are distributed in form of δ−function concentration”

[23, p. 102]. Childress & Percus [4, 5] formulated the following statement for space

dimension N = 2:

• The myxamoeba density cannot form a δ−function singularity, if the total myxamoeba

density on Ω ⊂ R2 is less than a critical number dΩ .

• The myxamoeba density can form a δ−function singularity, if the total myxamoeba

density on Ω is larger than a critical value DΩ .

In the following years, one was led to believe that the equality dΩ = DΩ should hold for

the critical values mentioned in the conjecture.

If one uses the transformation

A(t, x) =
|Ω|a(t, x)∫
Ω

a0(x)dx
, C(t, x) = χ̃

c(t, x)− 1

|Ω|
∫
Ω

c(t, x)dx

 (1.2)

(see also Gajewski & Zacharias [9], Horstmann [13], Jäger & Luckhaus [15] and Nanjun-

diah [23]), and the notation αχ instead of α̃χ̃
∫
Ω

a(x, t)dx/|Ω|, we get a transformed version

of the Keller–Segel model. This transformed system is given by

At = ∇ · (∇A− A∇C), x ∈ Ω, t > 0

Ct = kc∆C − γC + αχ(A− 1), x ∈ Ω, t > 0

∂A
∂n

= ∂C
∂n

= 0, x ∈ ∂Ω, t > 0

A(0, x) = A0(x) > 0, C(0, x) = C0(x), x ∈ Ω∫
Ω

A0(x) dx = |Ω|, ∫
Ω

C(t, x) = 0, t > 0.


(1.3)

In this paper, we study the possibility that solutions of system (1.3) might blow up (which

would imply blow-up for solutions of system (1.1)). For clarity, we give the definition of

solutions of system (1.3), which we will refer to as blow-up solutions.

Definition 1.1 A solution of (1.3) blows up or is a blow-up solution of (1.3), provided

there is a time Tmax 6 ∞ such that

lim sup
t→Tmax

||A(x, t)||L∞(Ω) = ∞ or lim sup
t→Tmax

||C+(x, t)||L∞(Ω) = ∞,

where C+(x, t) denotes the positive part of the function C(x, t). If Tmax < ∞ we say that

the solution of (1.3) blows up in finite time, and if Tmax = ∞ we will call it blow-up in

infinite time.
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Up to now, the existence of blow-up solutions of system (1.3) is only known under

a radial symmetry assumption on the solution (see Herrero & Velázquez [10, 11] and

Horstmann [14] for existence results of blow-up solutions of system (1.3) in the radially

symmetric case). There are several blow-up results for simplified versions of (1.3) (see, for

example, Jäger & Luckhaus [15], Nagai [20] and Nagai et al. [22]). However, most of

them require a radial symmetry assumption for the solution. For those simplified versions

of the Keller–Segel model, one can use techniques which are not applicable for (1.3). We

will compare our results with some of those in the concluding section.

In this article, we prove the existence of blow-up solutions of (1.3) for a smooth domain

Ω ⊂ R2, provided 4πkc < αχ|Ω| and αχ|Ω|/kc� 4πm, where m ∈ N. The proof will be

based on the same idea that has been used in Horstmann [14, 12] to prove the existence of

blow-up solutions in the radially symmetric setting of (1.3) with γ = 0 and a generalization

of results by Brézis & Merle [1] and Li & Shafrir [19], which has been done by Wang &

Wei [28].

2 Summary

In 1998, Gajewski & Zacharias [9] proved the local existence of a weak solution of (1.3),

where the definition of a weak solution is given as follows:

Definition 2.1 A pair of functions (A(t, x), C(t, x)) with

A ∈ L∞(0, T ;L∞+(Ω)) ∩ L2(0, T ;H1(Ω)), At ∈ L2(0, T ; (H1(Ω))∗),

C ∈ L∞(0, T ;L∞(Ω)) ∩ C(0, T ;H1(Ω)), Ct ∈ L2(0, T ;L2(Ω))

is called a weak solution of (1.3) if for all h ∈ L2(0, T ;H1(Ω)) the following identities

hold:

0 =

T∫
0

〈At, h〉 dt+

T∫
0

∫
Ω

(∇A− A∇C) · ∇h dx dt,

0 =

T∫
0

∫
Ω

Cth dx dt+

T∫
0

∫
Ω

(kc∇C · ∇h+ (γC − αχ(A− 1)) · h) dx dt.

(Here 〈·, ·〉 denotes the dual product between H1(Ω) and its dual space (H1(Ω))∗).)

Using the Lyapunov function

F(A(t), C(t)) =

∫
Ω

1

2αχ

(
kc|∇C(t)|2 + γC(t)2

)
+ A(t)(logA(t)− 1) + 1dx

−
∫
Ω

(A(t)− 1)C(t)dx
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and the lower estimate (see Gajewski & Zacharias [9, Lemma 4.7, p. 96])

F(A(t), C(t)) >F(C(t)) =
1

2αχ

∫
Ω

kc|∇C(t)|2 + γC(t)2 dx

−|Ω| log

 1

|Ω|
∫
Ω

eC(t)dx

 (2.1)

for t > 0, it is possible to show for a smooth domain Ω ⊂ R2 that the Lyapunov function

is bounded from below, provided
αχ|Ω|
4kcπ

< 1.

This fact is a simple consequence from a Moser–Trudinger type inequality by Chang

&Yang [2, Proposition 2.3].

Remark 2.2 Inequality (2.1) follows by minimizing

A(t)(logA(t)− 1) + 1− (A(t)− 1)C(t)

with respect to A for each C (see Gajewski & Zacharias [9, Proof of Lemma 4.7, pp.96–97]

for details).

Remark 2.3 If the boundary of Ω is piecewise C2, then one can bound the Lyapunov

function from below provided
αχ|Ω|
4kcΘ

< 1,

where Θ denotes the smallest interior angle of ∂Ω (see, for example, Gajewski &

Zacharias [9] or Horstmann [13]).

It results from the studies done by Nagai et al [21] that, in such a case, the L∞-norm

of A(x, t) and C(x, t) remains uniformly bounded for all t > 0. Gajewski & Zacharias [9]

show that, in this case, the solution converges at least for subsequences (tk)k∈N with

tk →∞ to a stationary solution of (1.3). Horstmann [13] has shown that this statement is

in fact true for t→ ∞. So we know from Gajewski & Zacharias [9] and Horstmann [13]

that for αχ|Ω| < 4kcπ:

A(t)→ A∗

in L2(Ω) and

C(t) ⇀ C∗

in H1(Ω) as t→∞, where

A∗ =
|Ω|eC∗∫
Ω

eC
∗
dx
,

and C∗ solves the nonlocal elliptic boundary value problem

−kc∆v + γv = αχ

(
|Ω|ev∫
Ω

evdx
− 1

)
, in Ω

∂v
∂n

= 0, on ∂Ω.

 (2.2)
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3 Existence of blow-up solutions for αχ|Ω| > 4kcπ and αχ|Ω|/kc not equal to an integer

multiple of 4π

Let us now assume in the following that αχ|Ω| > 4kcπ. We set

vε(x) = log

(
ε2

(ε2 + π|x− x0|2)2

)
− 1

|Ω|
∫
Ω

log

(
ε2

(ε2 + π|x− x0|2)2

)
,

where x0 is an arbitrary point on ∂Ω. The sequence (vε(x))ε>0 belongs to the set D ≡ {v ∈
H1(Ω) | ∫

Ω

v dx = 0}. One can easily check that

F(vε)→ −∞ (3.1)

and

||∇vε||L2(Ω) →∞ (3.2)

as ε→ 0. For the explicit calculations we refer the interested reader elsewhere [13, Proof

of Lemma 2] [28, Lemma 2.2]. A consequence of these observations is that the Lyapunov

function F(A(t), C(t)) might become unbounded from below as t → Tmax. If we now can

find a constant K̂ such that

F(v) > K̂ (3.3)

holds, for all solutions of (2.2), we can construct initial data for (1.3), for which the

corresponding solution of (1.3) has to blow up in finite or infinite time. For the radially

symmetric case of (1.3) (with γ = 0) this was possible for αχ|Ω| > 8kcπ and αχ|Ω|/kc
not equal 8πm for m ∈ N (see Horstmann [12, 14] for details). That there are nontrivial

solutions of (2.2) has been proved independently [13, 28] using techniques introduced by

Struwe & Tarantello [27]. Now we use results similar to those used in Wang & Wei [28,

Section 3] to show the existence of a constant K̂ such that (3.3) holds for all solutions of

(2.2), provided αχ|Ω|/kc is not equal to 4πm, m ∈ N.

This claim will be shown by contradiction. Therefore let αχ|Ω|/kc > 4π and not equal

to 4πm, m ∈ N. If there is no constant K̂ such that (3.3) holds, then there exists a sequence

(vk)k∈N of solutions of (2.2) such that

||∇vk||L2(Ω) →∞, (3.4)

∫
Ω

evkdx→∞ (3.5)

and

max
x∈Ω

vk(x) → ∞ (3.6)

as k → ∞. If (3.6) does not hold, we get a uniform L∞-bound of the right-hand side of

(2.2) for all k, which gives us the existence of the constant K̂ .

We now use the transformation

uk = vk +
αχ

γ
.
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So each uk solves the problem

−∆uk + γ
kc
uk = µke

uk , in Ω

∂uk
∂n

= 0, on ∂Ω∫
Ω

ukdx = αχ|Ω|
γ
,

 (3.7)

where

µk =
αχ|Ω|

kc
∫
Ω

eukdx
(3.8)

and µk → 0 as k → ∞. According to the maximum principle for elliptic operators, we

notice that uk > 0 in Ω. In the following, we will show in the same way as in Wang &

Wei [28] that the (uk)k∈N contain a subsequence (for the sake of simplicity, again denoted

by (uk)k∈N) such that

µk

∫
Ω

eukdx→ 4πm (3.9)

for some integer m as k →∞. However, this would contradict the fact that αχ|Ω|/kc� 4πm,

m ∈ N. To show (3.9) we make use of the following lemma:

Lemma 3.1 [3] Let L =
2∑

i,j=1

aij
∂2

∂xi∂xj
be a uniformly elliptic operator, namely

ν0I 6 (aij)16i,j62 6 ν1I.

Then there exists a constant β = β(ν0, ν1) such that for any solution u of the following

problem:

Lu = f(x) in Ω, u = 0 on ∂Ω

we have ∫
Ω

exp

(
β|u(x)|
||f||L1(Ω)

)
dx 6 K.

Let us define the following set:

BS ≡
x ∈ Ω

∣∣∣∣∣∣
there exists a sequence µk → 0, with corresponding

solutions uk of (3.7), and a sequence (xk)k∈N(xk ∈ Ω),

such that uk(xk)→∞, xk → x as k →∞


By our assumption BS� ∅ holds. We now set

Σk ≡
∫
Ω

µke
ukdx

(
=
αχ|Ω|
kc

)
.

Since ∫
Ω

µke
uk

Σk
dx = 1

for all k, we can extract a subsequence of the uk (still denoted by uk as mentioned above)

such that there exists a finite measure µ in the set of all real bounded Borel measures on
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Ω (denoted by M(Ω)), such that∫
Ω

µke
uk

Σk
ϕ dx→

∫
Ω

ϕ dµ (3.10)

for all ϕ ∈ C∞0 (R2) as k →∞.

For each boundary point x0 ∈ ∂Ω we can strengthen the boundary (see Wang &

Wei [28] and Ni & Takagi [24] for more details) and the Laplacian becomes

Lx0
+

2∑
k=1

bl
∂

∂xl

with a uniformly elliptic operator Lx0
and |bl | 6 C = const. Using the compactness of the

boundary, we can choose a uniform β = β0 in Lemma 3.1 for all Lx0
, x0 ∈ ∂Ω. Now we

define δ-regular points of Ω.

Definition 3.2 For any δ > 0, we call x0 ∈ Ω a δ-regular point if there is a function

ϕ ∈ C∞0 (R2), 0 6 ϕ 6 1, with ϕ = 1 in a neighborhood of x0 such that∫
Ω

ϕ dµ <
β0

1 + 3δ
. (3.11)

We also define the set Σ(δ) of all points in Ω which are not δ-regular:

Σ(δ) ≡ {x0 ∈ Ω | x0 is not a δ−regular point}. (3.12)

We note the following:

Lemma 3.3 For any 1 < q < 2, there is a constant Cq independent of k such that ‖∇uk‖q 6
Cq .

Proof of Lemma 3.3 Let q′ = q
q−1

> 2. We know

‖∇uk‖q 6 sup


∣∣∣∣∣∣
∫
Ω

∇uk · ∇ϕ dx
∣∣∣∣∣∣ ϕ ∈ Lq′1 (Ω),

∫
Ω

ϕ dx = 0, ‖ϕ‖
L
q′
1 (Ω)

= 1

 .

By the Sobolev embedding theorem, we have

‖ϕ‖L∞(Ω) 6 C1.

It is clear that ∣∣∣∣∣∣
∫
Ω

∇uk · ∇ϕ dx
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

∆ukϕ dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Ω

(
γ

kc
uk − µkeuk

)
ϕ dx

∣∣∣∣∣∣
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6 C1

∫
Ω

(
γ

kc
uk + µke

uk

)
dx

6 C2.

Here we have used the fact that uk > 0 in Ω. q

Now we can use exactly the same arguments as in Wang & Wei [28, Proof of Lemmas

3.2 and 3.3] and Brézis & Merle [1] to see that

(1) If x0 is a δ-regular point, then (uk)k∈N is uniformly bounded in L∞(Ω ∩ BR0
(x0)),

where BR0
(x0) denotes a ball with radius R0 centered in x0.

(2) BS = Σ(δ) for any δ > 0.

These two statements imply that 1 6 card(BS) < ∞. Let BS = {P1, ..., PM}. We

decompose BS into a boundary blow-up set BS∂Ω = BS∩ ∂Ω and an interior blow-up

set BSΩ = BS∩ Ω. For a small constant r > 0 we set

σkj (r) =

∫
Br(Pj )

µke
ukdx.

We now see that for all small r the following equality holds:

lim
k→∞

∫
Ω

µke
ukdx =

N∑
j=1

lim
k→∞ σ

k
j (r). (3.13)

This implies that

lim
k→∞

∫
Ω

µke
ukdx =

N∑
j=1

lim
r→0

lim
k→∞ σ

k
j (r), (3.14)

which would give us (3.9), and thus a contradiction to the value of αχ|Ω|/kc, provided

lim
r→0

lim
k→∞ σ

k
j (r) = 4qπ (3.15)

for some q ∈ N. However, this is true, as one can see in the following lemma, which is

similar to Lemma 3.4 in Wang & Wei [28].

Lemma 3.4 Suppose Pj ∈ BS∂Ω , then lim
r→0

lim
k→∞ σ

k
j (r) = 4π. If Pj ∈ BSΩ then

lim
r→0

lim
k→∞ σ

k
j (r) = 8π.

Proof of Lemma 3.4

We first prove the case when P ∈ BS∂Ω . Recall that the Pohozaev identity for a function

u satisfying

∆u− βu+ f(u) = 0, in U ⊂ R2
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is given by ∫
U

(−βu2 + 2F(u))dx =

∫
∂U

[
(x · ∇u)∂u

∂n
− (x · n) |∇u|

2

2

]
dS

+

∫
∂U

(x · n)
(
−β u

2

2
+ F(u)

)
dS, (3.16)

where F(u) =
u∫

0

f(s)ds.

Let f(u) = µke
u and β = γ

kc
. We may assume without loss of generality that P = 0. Now

we set Ur = Br(0) ∩ Ω̄ and consider the function wk which is a solution of the following

problem:

∆w − βw = 0 in Ur,
∂w
∂n

= ∂uk
∂n

on ∂Ur.

}
(3.17)

It is easy to see that wk = O(1) in C2(Ur), since | ∂uk
∂n
| 6 C on ∂Ur .

If we put hk = (uk −wk)/(σkj (r)), we have that hk → G(·, 0) in C2
loc(Br(0)∩ Ω̄\{0}), where

G(·, 0) satisfies

−∆G+ βG = δ0 in Ur,
∂G

∂n
= 0 on ∂Ur.

(See a proof in Ding et al. [8] for this claim.) By potential theory, it is easy to see that for

|x| small

G(·, 0) = −1

π
log |x|+ O(1).

Hence we have

uk = −σ
k
j (r)

π
log |x|+ O(1)

in C1(∂Ur) (here O(1) may depend upon r, but is uniform in k).

By Pohozaev’s identity, we have∫
Ur

(−βu2
k+ 2µke

uk − 2µk)dx

=

∫
∂Ur

[
(x · ∇uk)∂uk

∂n
− (x · n) |∇uk|

2

2
+ (x · n)

(
−β u

2
k

2
+ µke

uk − µk
)]

dS. (3.18)

We now estimate each term on both sides of (3.18):∫
Ur

u2
kdx = O(r1/2‖uk‖L4(Ur)) = O(r1/2‖uk‖W 1,3/2(Ω)) = O(r1/2),

∫
Ur

2µke
ukdx = 2σkj (r) + O(µk),

∫
Ur

2µkdx = O(µkr
2),
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∂Ur

(x · ∇uk)∂uk
∂n

dS =

(
σkj (r)

π

)2 ∫
∂Ur

(
(x · n)
|x|2 + O(1)

)

=

(
σkj (r)

π

)2

(π+ O(r)),

∫
∂Ur

(x · n) |∇uk|
2

2
dS =

(
σkj (r)

π

)2 (π
2

+ O(r)
)
,

∫
∂Ur

u2
kdS = O(r),

∫
∂Ur

(x · n)µkeukdS = O(µk max
x∈∂Ur

euk ) = O(µk),

∫
∂Ur

(x · n)µkdS = O(µkr).

Here we have used the statement of Lemma 3.3. Now let k → +∞ first, and then r → 0.

We see that

2 lim
r→0

lim
k→∞ σ

k
j (r) =

1

π2

π

2

(
lim
r→0

lim
k→+∞ σ

k
j (r)

)2

,

lim
r→0

lim
k→+∞ σ

k
j (r) = 4π.

The case when P ∈ BSΩ can be proved similarly. For convenience, we give a sketch

of the proof. Instead of (3.17), in this case we consider wk satisfying

∆w − βw = 0 in Ur,

w = uk on ∂Ur.

}
(3.19)

We put hk = (uk − wk)/(σkj (r)) and assume that P = 0 ∈ Ω. Similarly, hk → G(·, 0) in

C2
loc(Br(0)/{0}), where G now is a Green function with Dirichlet boundary data:

−∆G+ βG = δ0 in Br, G = 0 on ∂Ur.

In this case, the Green’s function has following expansion near 0:

G(·, 0) = − 1

2π
log |x|+ O(1).

We obtain the same estimates as in the first case when P ∈ BS∂Ω except∫
∂Ur

(x · ∇uk)∂uk
∂n

dS =

(
σkj (r)

2π

)2 ∫
∂Ur

(
(x · n)
|x|2 + O(1)

)

=

(
σkj (r)

2π

)2

(2π+ O(r)),

∫
∂Ur

(x · n) |∇uk|
2

2
dS =

(
σkj (r)

2π

)2

(π+ O(r)).
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Now applying Pohozaev’s identity again, we have in this case

2 lim
r→0

lim
k→∞ σ

k
j (r) =

1

4π2
π

(
lim
r→0

lim
k→+∞ σ

k
j (r)

)2

,

lim
r→0

lim
k→+∞ σ

k
j (r) = 8π for P ∈ BSΩ.

This completes the proof. q

From Lemma 3.4, we get the following lemma:

Lemma 3.5 Suppose αχ|Ω|/4kcπ > 1 and αχ|Ω|/kc� 4πm for m ∈ N, then there exists a

constant K̂ ∈ R (K̂ 6 0), such that for all solutions v of (2.2)

F(v) > K̂ > −∞
holds.

A direct consequence of this lemma, (3.1) and (3.2) is the following theorem, which also

collects some known facts concerning blow-up solutions:

Theorem 3.6 Let Ω ⊂ R2 be a smooth domain, and let K̂ denote the constant from Lemma

3.5. Furthermore, assume that 4kcπ < αχ|Ω|, and that

αχ|Ω|
kc
� 4πm

for m ∈ N, then there exist initial data (A0, C0), such that

K̂ > F(A0, C0)

and the corresponding solution of (1.3) blows up in finite or infinite time. For these blow-up

solutions, the following statements hold:

(1) lim
t→Tmax

||A(x, t)||L2(Ω) = ∞
(2) lim

t→Tmax
∫
Ω

A(x, t)C(x, t) dx = ∞
(3) lim

t→Tmax
||∇C(x, t)||L2(Ω) = ∞

(4) lim
t→Tmax

∫
Ω

eC(x,t) dx = ∞
(5) lim

t→Tmax
||A(x, t)||L∞(Ω) = lim

t→Tmax
||C(x, t)||L∞(Ω) = ∞

(6) If 4πkc < αχ|Ω| < 8πkc and Ω is a simply connected domain, then

lim
t→Tmax

∫
∂Ω

eC(x,t)/2dS = ∞.

Proof of Theorem 3.6

The existence of a blow-up solution follows from Lemma 3.5, (3.1) and (3.2). So let K̂ be

the constant from Lemma 3.5. We choose a ε0 arbitrary but fixed and a fixed x0 ∈ ∂Ω,
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such that

K̂ >F(Cε0 (x))

where

Cε0 (x) = log

(
ε20

(ε20 + π|x− x0|2)2

)
− 1

|Ω|
∫
Ω

log

(
ε20

(ε20 + π|x− x0|2)2

)
.

The existence of an appropriate ε0 is a direct consequence of (3.1) (resp. [13, Lemma 2]

or [28, Lemma 2.2]). We see that

Cε0 (x) ∈W 1,∞(Ω).

Let us set

Aε0 (x) =
|Ω|eCε0 (x)∫
Ω

eCε0 (x)
.

Aε0 belongs to L∞+(Ω) and

F(Aε0 (x), Cε0 (x)) =F(Cε0 (x)) < K̂.

Choosing A0(x) = Aε0 (x) and C0(x) = Cε0 (x) as initial data, we see that the corresponding

solution of the Keller–Segel model has to blow up in finite or infinite time.

The other statements of the theorem can be shown by using the Lyapunov function

F(A(x, t), C(x, t)). Denoting the blow-up set of A(t, x) with BSA and the blow-up set of

the positive part of C with BSC+, we know from Horstmann [13, Proposition 2] that if

there are initial data (A0, C0) such that the solution of (1.3) blows up, then

BSA ∩BSC+� ∅
and

lim
t→Tmax

∫
Ω

|∇C(t)|2dx = ∞, as well as lim
t→Tmax

∫
Ω

eC(t)dx = ∞.

Thus we see that statements (3) and (4) above are true for a blow-up solution of system

(1.3). Furthermore, we see by the properties of F(A,C) that

K̂ > F(A0(x), C0(x))

> F(A(x, t), C(x, t)),

and thus

1

2αχ

∫
Ω

kc|∇C(x, t)|2 + γC(x, t)2dx 6

∫
Ω

(A(x, t)− 1)C(x, t)dx+ K̂ (3.20)

holds. This inequality gives us statement (2), and using Cauchy’s inequality we also derive

statement (1). Statement (5) is a direct consequence of statements (1) and (4).

We still have to show the last statement of the theorem. Therefore, we note the

following. In Horstmann [13, Lemma 3], it was shown that if αχ|Ω|/kc < 8π, v ∈ H1(Ω)
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and p ∈ (1, 8πkc/αχ|Ω|) be arbitrary but fixed, then

log

 1

|Ω|
∫
Ω

ev

 6 p

16π

∫
Ω

|∇v|2 dx+
2

q
log

∫
∂Ω

eqv/2dS


+K(p, q, α, χ, kc, |Ω|) (3.21)

where q > 1 is such that 1 = 1/p + 1/q, and K(p, q, α, χ, kc, |Ω|) denotes a constant

depending on p, q, α, χ, kc and |Ω|. Using this inequality, we can estimate the Lyapunov

function F(A,C) for an arbitrary but fixed p ∈ (1, 8πkc/αχ|Ω|) from below by

F(A(t), C(t)) >
1

2αχ

∫
Ω

kc|∇C(t)|2 + γC2(t) dx− |Ω| log

 1

|Ω|
∫
Ω

eC(t)dx


>

∫
Ω

(
kc

2αχ
− p|Ω|

16π

)
|∇C(t)|2 +

γ

2αχ
C2(t) dx

−2|Ω|
q

log

∫
∂Ω

eqC(t)/2 dS

+K1(p, q, αχ, kc, |Ω|)

where q = p/(p− 1) and K1(p, q, αχ, kc, |Ω|) is a constant depending on the parameters in

the brackets. So in view of statement (3), we get that

lim
t→Tmax

∫
∂Ω

eqC(x,t)/2dS = ∞

for every q ∈ (8πkc/(8πkc − αχ|Ω|),∞). However, it is possible to improve this result.

Independently from Horstmann [13], Senba & Suzuki [26] improved the statement of

Horstmann [13, Lemma 3], and showed [26, Proposition 2] that for v ∈ H1(Ω) and a

simply connected, smooth domain Ω ⊂ R2, the following estimate holds:

log

 1

|Ω|
∫
Ω

evdx

 6 1

16π

∫
Ω

|∇v|2dx+
1

2|∂Ω|
∫
∂Ω

v dS

+ log

 1

|∂Ω|
∫
∂Ω

ev/2dS

+K. (3.22)

Here K is an absolute constant. Using this inequality instead of that of Horstmann [13,

Lemma 3], we get the estimate

F(A(t), C(t)) >
1

2αχ

∫
Ω

kc|∇C(t)|2 + γC2(t) dx− |Ω| log

 1

|Ω|
∫
Ω

eC(t)dx


>

∫
Ω

(
kc

2αχ
− |Ω|

16π

)
|∇C(t)|2 +

γ

2αχ
C2(t) dx

− |Ω|
2|∂Ω|

∫
∂Ω

C(t) dS − |Ω| log

 1

|∂Ω|
∫
∂Ω

eC(t)/2dS

−K|Ω|,
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which finally leads us to statement (6). q

Lemmas 3.4 and 3.5 also imply the following corollary for the radially symmetric case

of system (1.3).

Corollary 3.7 Suppose Ω ⊂ R2 is a disc of radius R, which is centered in point x0 ∈ R2.

Further, assume that γ > 0. If

αχ|Ω| > 8πkc,

then there exist radially symmetric blow-up solutions for system (1.3).

Remark 3.8 We know that 1 6 card(BS) < ∞ holds. Since

lim
r→0

lim
k→∞ σ

k
j (r) = 8π,

we see in the radially symmetric case that the claim of Lemma 3.5 is true, provided

αχ|Ω| > 8πkc. This implies the statement of Corollary 3.7.

Remark 3.9 If γ = 0 we still have to exclude in the radially symmetric case that αχ|Ω|/kc
is equal to an integer multiple of 8π. Let us briefly compare the present paper with

the results and proofs in Horstmann [12, 14]. In this paper, we used the transformation

uk = vk + (αχ/γ). We concluded via maximum principle that uk > 0. This property was

then used several times in the present paper. However, in Horstmann [12, 14] we used the

transformation

ũk = vk − log

 1

|Ω|
∫
Ω

evkdx

− αχ

4kc
|x|2.

Unfortunately, we cannot apply the maximum principle in this case. We also get some

problems with Pohozaev’s identity for our transformed problem. Thus, we still have to

exclude in the radially symmetric case of system (1.3) with γ = 0 that αχ|Ω|/kc is equal to

an integer multiple of 8π. See Horstmann [12, 14] for more details about this case.

Under the assumption that Tmax < ∞, it is known that for the solution of system (1.1)

lim
t→Tmax

||a(t) log a(t)||L1(Ω) = ∞

is true (see Senba & Suzuki [26, Theorem 1]). However, it is not clear if either Tmax < ∞
or Tmax = ∞ is true for a blow-up solution of system (1.3) (resp. system (1.1)). There is

only one example of a blow-up solution known, which blows up in finite time. This has

been constructed for the radially symmetric case by Herrero and Velázquez [11].

Suppose Tmax < ∞, then we also do not know if either

(1) inf
06t<Tmax

F(A(t), C(t)) > −∞ or

(2) lim
t→Tmax

F(A(t), C(t)) = −∞.
In fact, a numerical example for a blow-up solution of system (1.3) given by Gajewski &
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Zacharias [9] behaves in such a way that

lim
t→Tmax

F(A(t), C(t)) = −∞
(see Gajewski & Zacharias [9, Remark 4.5, pp. 94, 95]), while one can also think about

the possibility that

inf
06t<Tmax

F(A(t), C(t)) > −∞,
since we are talking about finite time blow up. Nevertheless, we can formulate the following

lemma, which gives us another result for a blow-up solution that is independent from the

questions mentioned above. (The statements from Theorem 3.6 are also independent from

these facts, as one can easily see from the proof given in the present paper.)

Lemma 3.10 Suppose the solution (A(t), C(t)) of system (1.3) blows up. Then

lim
t→Tmax

||A(t) logA(t)||L1(Ω) = ∞. (3.23)

The proof of Lemma 3.10 is similar to that in Post [25, Proof of Proposition 3.2].

Proof of Lemma 3.10 Let (A(t), C(t)) denote a blow-up solution of system (1.3). Since∫
Ω

A(t) logA(t)dx > −|Ω|
e

we see that

F(A(t), C(t)) > −|Ω|
e
−
∫
Ω

(A(t)− 1)C(t)dx+
kc

2αχ
||∇C(t)||2L2(Ω).

Furthermore, we know from Cianchi [7, Theorems 2, 3] that

||C(t)||2LΦ(Ω) 6 K̃||∇C(t)||2L2(Ω),

where Φ(s) ≡ es − s− 1 (remember ∫
Ω

C(t) dx = 0

for all t > 0). Here and in the following, LΦ(Ω) denotes the Orlicz space which corresponds

to the Young function Φ(s), and || · ||LΦ(Ω) its norm. With Ψ we denote the Young function

complementary to Φ, and consequently, with LΨ (Ω) the Orlicz space with norm || · ||LΨ (Ω)

which corresponds to the Young function Ψ . It is known that Ψ (s) ≡ (s+ 1) log(s+ 1)− s
(see Kufner et al. [18, Example 3.3.5(iii)]). For more details on Orlicz spaces, we refer

once again to Kufner et al. [18].

Using Hölder’s inequality for Orlicz spaces [18, Theorem 3.7.5, p. 152], we see that

F(A(t), C(t)) > −|Ω|
e
−
∫
Ω

(A(t)− 1)C(t)dx+
kc

2αχ
||∇C(t)||2L2(Ω)

> −|Ω|
e
− ||C(t)||LΦ(Ω)||A(t)− 1||LΨ (Ω) +

kc

2αχ
||∇C(t)||2L2(Ω)
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> −|Ω|
e
− K̃

4ε
||A(t)− 1||2LΨ (Ω) +

(
kc

2αχ
− ε
)
||∇C(t)||2L2(Ω),

where ε < kc
2αχ

. However, this gives us – together with Gajewski & Zacharias [9, Lemma

6.3] and ∫
Ω

A(t) dx = |Ω| (for all t > 0),

the claim of Lemma 3.10. q

Remark 3.11 We obtain

||A(t) logA(t)||L1(Ω) 6 K||A(t)||Lp(Ω) (3.24)

for every 1 < p (see Kufner et al. [18, Theorem 3.17.1, p. 185]), and consequently,

lim
t→Tmax

||A(t)||Lp(Ω) = ∞
for a blow-up solution of system (1.3).

Remark 3.12 All statements (statement (6) excepted) of Theorem 3.6 and Lemma 3.10

are also true for blow-up solutions of (1.3) if Ω ⊂ R2 has a boundary, which is piecewise

C2.

4 Conclusions

After submitting the present paper, we became aware of a paper by Kabeya & Ni [16],

where they prove the existence of nontrivial solutions of the equation

0 = ∆v − γv + α̃λeχ̃v, in Ω,

v > 0, in Ω,
∂v
∂n

= 0, on ∂Ω

 (4.1)

using a mountain pass type argument. To prove their results [16], they assume that the

constants α̃λ and γ are of the same order, that γ is sufficiently large and

t =
α̃λeχ̃t

γ

has two positive solutions, where λ denotes a positive constant. Kabeya and Ni [16] also

prove that these solutions (which correspond to those nontrivial stationary solutions of

(2.2) found by Horstmann [13] and Wang & Wei [28]) have only one single maximum

which lies on the boundary of Ω, provided that γ is large enough. Kabeya’s and Ni’s

results, and Theorem 3.6, indicate that for αχ|Ω|/4kcπ > 1 and sufficiently large γ, there

exist solutions of (1.3) that blow up in finite or infinite time, provided γ and αχ are of

the same order. We believe that this is also true for small γ, but we have no proof for

this conjecture. However, this would also correspond to the biological situation where a

certain threshold for the myxamoeba density is desired to initiate the aggregation of the

myxamoebae. In Cohen & Robertson [6], a threshold value of 5 · 104 myxamoebae per

cm2 is given for Dictyostelium discoideum. From the biological point of view, it makes
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no sense to exclude certain values beyond that threshold. However, we have to exclude

the integer multiples of 4π for technical reasons. As we have mentioned above, we believe

that there are blow-up solutions of (1.3) if αχ|Ω|/4kcπ > 1, without excluding other values

for αχ|Ω|/kc. However, to prove this claim one has to show that the solutions of (2.2) have

only one single maximum which lies on the boundary of Ω for all possible values of γ.

Furthermore we believe that the blow-up time of a blow-up solution is finite. This has

been conjectured by several authors, and was first shown for a simplified version of the

Keller–Segel model by Jäger & Luckhaus [15] under a radial symmetry assumption on

the solution. Jäger & Luckhaus [15] studied the asymptotic behavior of the solution of

At = ∇ · (∇A− A∇C), x ∈ Ω, t > 0

0 = ∆C + αχ
kc

(A− 1), x ∈ Ω, t > 0
∂A
∂n

= ∂C
∂n

= 0, x ∈ ∂Ω, t > 0

A(0, x) = A0(x) > 0, C(0, x) = C0(x), x ∈ Ω∫
Ω

A0(x) dx = |Ω|, ∫
Ω

C(t, x) = 0, t > 0.


(4.2)

They prove that radially symmetric solutions of (4.2) can blow up in finite time for suitable

initial data. Nagai [20] shows that there exist radially symmetric initial data such that the

solution of

at = ∇(∇a− χ̃a∇c), x ∈ Ω, t > 0

0 = kc∆c− γc+ α̃a, x ∈ Ω, t > 0
∂a
∂n

= ∂c
∂n

= 0, x ∈ ∂Ω, t > 0

a(0, x) = a0(x), c(0, x) = c0(x), x ∈ Ω,

 (4.3)

blows up in finite time, if ∫
Ω

a0(x)dx >
8πkc
α̃χ̃

.

In a recent work Nagai et al. [22] study (4.3) without assuming any symmetry of the

solution. However, to prove their results [22] they have to assume that the solution blows

up in finite time. There is no proof that such solutions do really exist.

The fact that the second equation of (4.2) and (4.3) is elliptic allows us to decouple

the system, which seems to be impossible in the case of two parabolic equations. As

mentioned in the introduction, there are only the results by Herrero & Velázquez [10, 11]

where finite time blow-up of a radially symmetric solution of (1.3) is shown. Thus our

results presented in the present paper are new, and show that there are nonsymmetric

initial data such that the solution of (1.3) blows up in finite or infinite time.
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