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SUMMARY
This paper investigates the kinematics of one new isoconstrained parallel manipulator with
Schoenflies motion. This new manipulator has four degrees of freedom and two identical limbs,
each having the topology of Cylindrical–Revolute–Prismatic–Helical (C–R–P–H). The kinematic
equations are derived in closed-form using matrix algebra. The Jacobian matrix is then established
and the singularities of the robot are investigated. The reachable workspaces and condition number
of the manipulator are further studied. From the kinematic analysis, it can be shown that the
manipulator is simple not only for its construction but also for its control. It is hoped that the results
of the evaluation of the two-limb parallel mechanism can be useful for possible applications in
industry where a pick-and-place motion is required.

KEYWORDS: Isoconstrained; Parallel manipulator; Schoenflies motion; Singularity; Condition
number.

Nomenclature

Aij : 4 × 4 matrix of transformation between the jth and (j+1)th local frames of
the ith limb.

C : cylindrical pair.
dij : translational distance between the jth and (j+1)th local frames of the ith limb.
Ei : 4 × 4 matrix of ending matrix of the ith limb.
F : degrees of freedom of a mechanism or mechanical manipulator.
f : distance between the origin of the coordinate system on end-effector and

coordinate system 4.
H : helical joint.
J : Jacobian matrix.
Jx : forward Jacobian matrix.
Jq : inverse Jacobian matrix.
L : distance between two cylindrical pairs along Z0 axis
P : prismatic joint.
pi : reduced pitch of the ith limb.
R : revolute joint.
Si : 4 × 4 matrix of initial matrix of the ith limb.
0T i : posture matrix of the end-effector for the ith limb.
XE, YE, ZE : position of the end-effector.
θij : joint angle between two adjacent normals of jth and (j+1)th local frames

on the ith limb.
φ : rotation of the end-effector.
κ( J) : condition number of matrix J.
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1. Introduction
For decades, a large amount of research has been devoted to six-degree-of-freedom (DoF) parallel
manipulators. This type of manipulator, such as the Stewart–Gough platform,1 may perform
sophisticated work where a six-DoF motion is required. However, it is not conveniently used in
industry because of its complex structure and being complicated to control. In addition, sophisticated
manipulators are not commonly applied in manufacturing operations because those manipulators with
higher mobility are not always needed in practical operations, and may suffer from a small workspace
restricted by singularities. For these reasons, some applications in industry use parallel manipulators
with lower mobility to perform tasks that do not require the six-DoF motion. For example, to
move a product in a simple pick-and-place motion may require a three-DoF manipulator with
translational motion. Alternatively, in many occasions where three translational and one rotational
motions are required, a manipulator with Schoenflies motion may suffice. Plenty of existing robots
can generate Schoenflies motion (also called X- or SCARA-motion), which consists of independent
spatial translational motions and one rotational motion.2–15 Clavel paved a new way to research on
parallel manipulators by focusing on lower mobility and proposed the Delta architecture.2,3 Angeles
et al.4,5 proposed a new overconstrained structure with Schoenflies motion. Pierrot provided a parallel
mechanism, H4,6 based on the same technology as the Delta robot. The idea of the articulated
traveling plate was investigated and new prototypes with four DoF to achieve the Schoenflies
motion were presented.7,8 Dual-49 is a concept of a parallel manipulator standing on the Archi
architecture10 which is originally a three-DoF planar robot. Richard et al.11 and Kong and Gosselin12

introduced a partially decoupled four-DoF parallel mechanism producing the Schoenflies motion, the
Quadrupteron robot, which contains revolute, prismatic, and cylindrical joints. The commercialized
“Quattro” manipulator,13 an industrial device with the fastest operations, was already developed by
ADEPT Technology. These types of manipulators are widely utilized in industry.14

A few types of two-limbed isoconstrained parallel manipulators that can generate Schoenflies
motion were synthesized by Lee and Hervé.15 In the paper, a method for generating isoconstrained
parallel manipulators with Schoenflies motion was proposed and a few general configurations were
enumerated. However, the paper did not consider many details about the possible application
and kinematics of any of the synthesized manipulators. More configurations relevant to possible
applications were derived from the general type and discussed in refs. [16]–[18]. Compared with
the existing 3T1R parallel robots, the two-limbed architecture of these isoconstrained parallel
manipulators is more compact in volume and easier to control. Moreover, the non-overconstrained
structure is less sensitive to manufacture errors. In fact, this type of manipulator shows a new concept
of maneuvering the orientation of the end-effector by coaxial helical pairs with distinct pitches. This
results in a more compact size of the manipulator than the existing Schoenflies-motion robots, such
as the Delta robot which needs a fourth limb to perform the rotations of the end-effector. In this
work, one of the enumerated configurations with limbs of the form, C–R–P–H joints, is investigated
for its kinematic characteristics to evaluate its potential application. The remainder of the paper is
organized as follows. The architecture of the manipulator is briefly introduced. Then, the forward and
inverse kinematics of the manipulator are derived. Subsequently, the Jacobian and inverse singular
configurations of the manipulator are also investigated. The workspace of the manipulator is discussed
in Section 5. In Section 6, a performance index is applied to help characterize the properties of the
manipulator. Finally, a conclusion of the manipulator characteristics is presented.

2. Descriptions of the Mechanism

2.1. Architecture of the robot
Figure 1 shows the schematic diagram of the manipulator where the fixed base is labeled as link 1 and
the end-effector is labeled as link 5. Two identical limbs connect the end-effector to the fixed base.
Each limb consists of three links. The three links in each limb and the end-effector are connected by
the cylindrical (C), revolute (R), prismatic (P), and helical (H) joints from proximal to distal from the
base. The joint axes of the two cylindrical pairs are not necessarily orthogonal; yet they are arranged
to be orthogonal to each other for the sake of clarity.

This new structure is derived from the general type isoconstrained parallel manipulator with
Schoenflies motion–P(HH)uPHw-//- P(HH)vPHw

15 The subscripts u, v, and w denote the orientations
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Fig. 1. Isoconstrained parallel manipulator with X- motion–CuRuPHw-//-CvRvPHw.

of the joint axes which are parallel to the X0, Y0, and Z0 axes respectively and the underscore “ ”
denotes the axes of the marked joints are coaxial. If the pitches of the helical pairs in (HH)u and
(HH)v are set to zero, a new architecture, P(RR)uPHw-//-P(RR)vPHw, can be generated in which the
subscript represents the direction of the joint axis. Furthermore, if the first and second joints, P and
R, are combined and replaced by the cylindrical pair C adjacent to the base, this results in the final
structure, CuRuPHw-//-CvRvPHw (abbreviated to CRPH). Overall, there are eight links and joints
in the manipulator. The general Grübler–Kutzbach DoF equation well predicts that the DoF of the
manipulator is F = λ(n − 1) − 4J2 − 5J1 = 6(8–1)–4 × 2–5 × 6 = 4. Therefore, the mechanism is
isoconstrained (non-overconstrained) and the mobility is less sensitive to geometry errors compared
to the overconstrained type of Schoenflies-motion robots.

In the CRPH manipulator, the C–R joints are easier to build than H–H joints in the primitive
structure.15 From a practical point of view, an actuating two-DoF cylindrical joint can be achieved by
the revolute–helical (RH) chain or the revolute–prismatic (RP) chain, or the R–H–P–R chain where
all joints are coaxial with the R joints. For the last case, the actuation of each leg can be realized
by installing the rotary actuators at the R joints on the R–H–P–R chain. In addition, the rotation
of the end-effector is caused by differential movements of the two coaxial H pairs with distinct
pitches and is controlled by the angular displacements of the two cylindrical joints. This robot has
a simple structure with two identical limbs, each limb providing two active motions. Further, one of
the actuated motions directly reflects to X (or Y) motion of the end-effector and makes the robot easy
to control in X–Y motion. In what follows, we will investigate the kinematics of this robot and show
that it has simple analytical closed-form solutions.

2.2. Verification of four-DoF Schoenflies motion
To investigate the kinematics of the CRPH manipulator, the Denavit–Hartenberg method19,20 is
adopted in this work. As shown in Fig. 2, a fixed reference coordinate system is defined as X0 −
Y0 − Z0. The local coordinate system on each link is also depicted in the figure. For the coordinate
systems chosen, the D-H parameters between two coordinate systems are given in Table I, where aij

is the offset distance between two adjacent joint axes, αij is the twist angle between two z-axes, dij is
the translational distance between two x-axes and θij is the joint angle between two adjacent normals
of a joint axis. In each parameter, the first subscript i indicates the number of limb, while the second
subscript j indicates the number of the local coordinate system on the joint. Then, the coordinate
transformation matrix between two adjacent coordinate systems, jth and (j+1)th, in the first limb can
be respectively written as
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Table I. Link parameters and variables of the CRPH manipulator.

First limb Second limb

j aij αij dij θij aij αij dij θij

1 a11 0 d11 θ11 a21 0 d21 θ21

2 0 π /2 0 θ12 0 π /2 0 θ22

3 0 π /2 d13 π /2 0 π /2 d23 3π /2
4 0 π −d14 θ14 0 π −d24 θ24

Fig. 2. Coordinate systems and parameters of CRPH manipulator. (a) The 1st limb. (b) The 2nd limb.

A11 =

⎡
⎢⎣

cos θ11 − sin θ11 0 a11 cos θ11

sin θ11 cos θ11 0 a11 sin θ11

0 0 1 d11

0 0 0 1

⎤
⎥⎦ , A12 =

⎡
⎢⎣

cos θ12 0 sin θ12 0
sin θ12 0 − cos θ12 0

0 1 0 0
0 0 0 1

⎤
⎥⎦ ,

A13 =

⎡
⎢⎣

0 0 1 0
1 0 0 0
0 1 0 d13

0 0 0 1

⎤
⎥⎦ , A14 =

⎡
⎢⎣

cos θ14 sin θ14 0 0
sin θ14 − cos θ14 0 0

0 0 −1 −d14

0 0 0 1

⎤
⎥⎦ . (1)

Note that the first local coordinate system x11 − y11 − z11 is fixed in the reference coordinate
system X0 − Y0 − Z0 and local coordinate system x15 − y15 − z15 is also fixed on the end-effector.
Therefore, a transformation matrix E1 from the end-effector to the coordinate system 5, and S1 from
the coordinate system 1 to frame 0, can be respectively written as

E1 =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 f

0 0 0 1

⎤
⎥⎦ , S1 =

⎡
⎢⎣

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎥⎦ . (2)

Meanwhile, since the direction of the x12-axis is along the common perpendicular direction between
z11 and z12, and the direction of x13-axis is determined by the vector cross product z12 × z13, the
following relation holds for the joint angles in the range from −π /2 to π /2 associated with the first
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Fig. 3. Geometric relation in joint variables. (a) The first limb, (b) The second limb.

limb as shown in Fig. 3(a).

θ11 + θ12 = π

2
. (3a)

A similar relation as shown in Fig. 3(b) can also be obtained for the second limb:

θ21 + θ22 = π

2
. (3b)

Thus, the overall D-H transformation matrix from the end-effector to the fixed frame associated
with the first limb can be attained by multiplying the above matrices as

0T 1 = S1 A11 A12 A13 A14 E1

=

⎡
⎢⎣

cos θ14 sin θ14 0 d11

sin θ14 − cos θ14 0 a11 cos θ11 + d13

0 0 −1 a11 sin θ11 − (d14 + f )
0 0 0 1

⎤
⎥⎦ . (4)

Similarly, the coordinate transformation matrices in the second limb can be obtained as

A21 =

⎡
⎢⎣

cos θ21 − sin θ21 0 a21 cos θ21

sin θ21 cos θ21 0 a21 sin θ21

0 0 1 −d21

0 0 0 1

⎤
⎥⎦ , A22 =

⎡
⎢⎣

cos θ22 0 sin θ22 0
sin θ22 0 − cos θ22 0

0 1 0 0
0 0 0 1

⎤
⎥⎦ ,

A23 =

⎡
⎢⎣

0 0 −1 0
−1 0 0 0
0 1 0 d23

0 0 0 1

⎤
⎥⎦ , A24 =

⎡
⎢⎣

cos θ24 sin θ24 0 0
sin θ24 − cos θ24 0 0

0 0 −1 −d24

0 0 0 1

⎤
⎥⎦ , (5)

and

E2 =

⎡
⎢⎣

0 1 0 0
−1 0 0 0
0 0 1 f

0 0 0 1

⎤
⎥⎦ , S2 =

⎡
⎢⎣

1 0 0 0
0 0 1 0
0 −1 0 L

0 0 0 1

⎤
⎥⎦ . (6)
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The overall D-H transformation matrix from the end-effector to the fixed frame associated with
the second limb can be derived as

0T 2=S2 A21 A22 A23 A24 E2 =

⎡
⎢⎣

cos θ24 sin θ24 0 a21 cos θ21 + d23

sin θ24 − cos θ24 0 d21

0 0 −1 L − a21 sin θ21 − (d24 + f )
0 0 0 1

⎤
⎥⎦ . (7)

It can be noted that the third column of both overall transformation matrices are invariant, which
indicates the orientation of the end-effector is constant in the direction of z.

3. Kinematic Analysis

3.1. Inverse kinematics
The inverse kinematic analysis of the manipulator provides all possible solutions for the active and
passive joint variables when the positions and orientation of the end-effector are given. For the
proposed manipulator, the structural parameters L and f, the reduced pitches p1 and p2, and the initial
values 0d14 and 0d24 of two screw pairs and the position (XE, YE, ZE ,) and orientation φ(= θ14 = θ24)
of the end-effector for the CRPH mechanism are given while the translational variables di1(i = 1, 2)
and rotational variables θi1(i = 1, 2) of the cylindrical pairs, are to be found. Therefore, from Eqs.
(4) and (7), equating the elements in the last columns of the posture matrices, three sets of kinematic
equations for each limb can be obtained

XE = d11 = a21 cos θ21 + d23, (8a)

YE = d21 = a11 cos θ11 + d13, (8b)

ZE = −(d14 + f ) + a11 sin θ11 = L − (d24 + f ) − a21 sin θ21. (8c)

Here, d14 =0d14 − p1θ14 =0d14 − p1φ, and d24 =0d24 − p2θ24 =0d24 − p2φ.
From Eqs. (8a) and (8b), the translational variables of the cylindrical pairs can be directly obtained

as d11 = XE and d21 = YE . From Eq. (8c), the rotational variables of cylindrical pairs are solved as
follows

θ11 = nπ + (−1)n sin−1

[
ZE + d14 + f

a11

]
, (9)

θ21 = nπ + (−1)n sin−1

[
L − ZE − d24 − f

a21

]
. (10)

Then, with the geometric relations: θ11 + θ12 = π/2 and θ21 + θ22 = π/2, we obtain other passive
joint parameters

θ12 = π

2
− sin−1

[
ZE + d14 + f

a11

]
, (11)

θ22 = π

2
− sin−1

[
L − ZE − d24 − f

a21

]
. (12)

Finally, from Eqs. (8a) and (8b), the sliding parameters of prismatic joints can be acquired as

d13 = YE − a11 cos θ11, (13)

d23 = XE − a21 cos θ21. (14)
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3.2. Forward kinematics
In contrast to the inverse kinematics, the forward kinematics solves the positions and the rotation of
the end-effector for the CRPH mechanism when the rotary angles θi1(i = 1, 2) and the translational
displacements di1 (i = 1, 2) of the active cylindrical pairs are given. Based on the equations stated
in the previous section, the forward kinematic equations can be solved through both limbs of the
manipulator. Positions XE and YE can be obtained directly from Eqs. (8a) and (8b). Moreover, with
the relation φ = θ14 = θ24, Eq. (8c) can be rewritten as

ZE = −0d14 + p1φ − f + a11 sin θ11, (15a)

ZE = L −0d24 + p2φ − f − a21 sin θ21. (15b)

To eliminate φ in the above equations, we multiply Eq. (15a) by p2 and Eq. (15b) by p1, and subtract
the two equations. Then, this produces

ZE = p2(−0d14 − f + a11 sin θ11) − p1(L −0d24 − f − a21 sin θ21)

p2 − p1
. (16)

By substituting Eq. (16) into (15a) yields the rotation angle of φ as follows:

φ =
0d14 + f − a11 sin θ11

p1
+ p2(−0d14 − f + a11 sin θ11) − p1(L −0d24 − f − a21 sin θ21)

p1(p2 − p1)
. (17)

The passive joint variables can be obtained via Eqs. (8a) and (8b)

d23 = XE − a21 cos θ21, (18)

d13 = YE − a11 cos θ11. (19)

Finally, from Eqs. (3a) and (3b), the passive revolute joint variables is obtained

θ12 = π

2
− θ11, (20)

θ22 = π

2
− θ21. (21)

4. Jacobian and Singularity Analysis
The Jacobian matrix of a parallel manipulator can be derived by differentiating the kinematic constraint
equations imposed by the limbs. Let the kinematic equations imposed by the limbs be

f (x, q) = 0, (22)

where q is a vector containing the actuated joints and x is the pose vector of the end-effector.
Differentiating the above equation with respect to time, we acquire a relation between the input

joint rates and the output velocity of the end-effector20 as

Jx ẋ = Jq q̇, (23)

where Jx = ∂f

∂x
and Jq = − ∂f

∂q
.

Equation (23) leads to two separate Jacobian matrices, the direct Jacobian Jx and the inverse
Jacobian Jq . A direct kinematic singularity occurs when the determinant of the direct Jacobian Jx

is equal to zero, while an inverse kinematic singularity occurs when the determinant of the inverse
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Jacobian Jq goes to zero. In what follows, we will investigate the Jacobian and singular conditions
of the CRPH manipulator. Differentiating Eqs. (8a), (8b), and (16) with respect to time, we obtain

•
XE =

•
d11 = −a21 sin θ21

•
θ21 +

•
d23, (24)

•
YE =

•
d21 = −a11 sin θ11

•
θ11 +

•
d13, (25)

•
ZE = (p2a11 cos θ11)

•
θ11 +(p1a21 cos θ21)

•
θ21

p2 − p1
. (26)

Likewise, differentiating Eq. (17) leads to the following result:

•
φ = (a11 cos θ11)

•
θ11 +(a21 cos θ21)

•
θ21

p2 − p1
. (27)

Writing Eqs. (24)–(27) in matrix form derives

⎡
⎢⎢⎢⎢⎢⎣

•
XE•
YE•
ZE•
φ

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 p2a11 cos θ11

p2−p1

p1a21 cos θ21

p2−p1

0 0 a11 cos θ11
p2−p1

a21 cos θ21
p2−p1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

•
d11•
d21•
θ11•
θ21

⎤
⎥⎥⎥⎥⎥⎦

= Jq

⎡
⎢⎢⎢⎢⎢⎣

•
d11•
d21•
θ11•
θ21

⎤
⎥⎥⎥⎥⎥⎦

. (28)

It can be noted that the direct Jacobian Jx is an identity matrix and hence the manipulator has
no direct singularity. The singular configurations exist in the inverse kinematic operation of the
manipulator. Thus, the zero determinant of the inverse Jacobian matrix Jq in Eq. (28) determines the
singular conditions as

(p2 − p1) cos θ11 cos θ21 = 0. (29)

Then, we have the following inverse singularity conditions:

p1 = p2, (30)

or

θ11 = (2n − 1)π

2
(n = 1, 2, 3, . . .) , (31)

or

θ21 = (2n − 1)π

2
(n = 1, 2, 3, . . .) . (32)

Equation (30) implies that the singularity can be avoided by using distinct values of the pitches of
the helical pairs. Eqs. (31) and (32) illustrate two singular conditions for the actuated joint variables,
and Fig. 4 shows such a singular configuration. Based on the above analysis, it can be observed that
the two rotational input variables play an important role in the singularity analysis of the CRPH robot
while the sliding variables have no effect on the singular conditions.

5. Workspace Analysis
The workspace of the robot can be briefly defined as the volume of space that the end-effector can
reach. Specifically, it can be further categorized into the reachable and dexterous workspaces,20,21

where the former means that every point in the volume of the space can be reached in at least one
orientation by the end-effector, and the latter indicates every point in the volume of the workspace
can be attained in all possible orientations. Thus, the dexterous workspace is a subset of the reachable
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Fig. 4. Two inverse singular configurations.

workspace. Usually, it is not easy to determine the workspace if a parallel manipulator possesses
more than three degrees of freedom. However, by varying the design parameters, different types of
workspaces can be found. In this paper, the reachable workspace is simulated with respect to different
joint parameters for the CRPH manipulator.

In order to view the useful range of the workspace of the CRPH parallel manipulator, the input
joint variables are specified as follows:

(d11)min ≤ d11 ≤ (d11)max, (33)

(d21)min ≤ d21 ≤ (d21)max, (34)

(θ11)min ≤ θ11 ≤ (θ11)max, (35)

(θ21)min ≤ θ21 ≤ (θ21)max, (36)

in which (di1)min and (di1)max (i = 1, 2) are the minimal and maximal sliding distances, and (θi1)min

and (θi1)max(i = 1, 2) represent the minimal and maximal rotational angles of the active cylindrical
pairs. All the geometric parameters and the boundary values for simulation are assumed and listed
in Table II. For the sake of illustration, maximum and minimum limits for the two sliding distances
d11 and d21 are assumed as 50 and 120 cm as shown in Fig. 5. Equations (8a) and (8b) reveal that
the reachable workspace projected to X–Y plane is determined by the translational strokes of the
actuated cylindrical joints. On the other hand, the volume of the workspace in the z direction is
governed by the angles of the active joints since the angles of both actuated joints must be restricted
between +85◦ and −85◦ to avoid boundary singularities. The ranges of the passive joint variables
of the prismatic joints d13 and d23, with respect to the active sliding parameters d11 and d21, can be
obtained as shown in Fig. 6. In fact, these values linearly change with the translational input variables.
Figure 7 shows the ranges of the ZE-position and the orientation φ of the end-effector with respect
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Table II. Numerical data for workspace simulation..

a11 = a21 = 20.0 cm, L = 43.5 cm, f = 24.0 cm, 0d14 = 24.5 cm, 0d24 = 68.0 cm,
p1 = 2.0 cm, p2 = −2.0 cm, (d11)min = (d21)min = 50.0 cm, (d11)max = (d21)max = 120.0 cm,
(θ11)min = (θ21)min > −85.0◦, (θ11)max = (θ21)max < 85.0◦

Fig. 5. Workspace in X–Y plane.
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Fig. 6. Passive joints variables vs. d11 and d21.

to active joint parameter θ11 and θ21 while the two translational parameters, d11 and d21 are fixed.
It is worth mentioning that the position along the Z axis of the end-effector is referred to as the ZE

position. It can be noted that the distance between the highest and lowest positions of ZE is just the
architectural lengths of a11 and a21. It can be concluded that the shape of the workspace is of a simple
rectangular cuboid that does not contain any voids inside the workspace. On the other hand, the
workspace formed by the existing robots with Schoenflies motion is usually complex to characterize.
For example, the workspace of Delta robots is formed by the intersection of three tori, which usually
yields voids inside the workspace and frequently contains workspace-interior singularities.22

6. Performance Index
A performance index allows us to quantify the dexterity of a robot. For a serial robot, the manipulability
index23 is commonly used where it measures the volume of the ellipsoid and is developed when
mapping from the joint vector space to the end-effector vector space. Another kind of performance
index, the condition number, is also widely used where it usually measures the shape condition of the
transmission ellipsoid.24 To measure the performance of the manipulator, the condition number of
the Jacobian was used to characterize the serial manipulator by Salisbury and Craig.25 This condition
number can assist designers to judge the isotropy of the manipulators or globally optimize the robot.
However, it should be noted that for a manipulator possessing joints of different types, the condition
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Fig. 7. Surfaces and contours of workspace vs. θ11 and θ21.

number of the Jacobian must be carefully dealt with because of the inconsistent dimensions in the
elements of the Jacobian matrix.26 In the paper, the link parameter a11 is selected as the characteristic
length to unify the dimension of the elements in the Jacobian. That is, some elements that possess
length dimension are divided by the characteristic length to become uniform in dimension. In this
paper, the condition number of the unified Jacobian based on the Euclidean norm is used to view the
performance of the robot since this norm is easier to compute and has a simple explicit expression.
The condition number using the Euclidean norm is defined as24

κ( J) = ‖J‖ ∥∥J−1
∥∥ , (37)

with

‖J‖ =
√∑i=m

i=1

∑j=n

j=1

∣∣eij

∣∣2
,

where eij’s are the elements of the matrix J. Since the condition numbers are configuration dependent,
we will show their tendencies by placing the input values of the actuators at some locations rather
than demonstrating the numerical results in the whole reachable workspace. Three cases are studied
and the characteristics of the results are discussed. In the first case, condition numbers are calculated
as the two translational parameters d11 and d21 of actuators are fixed at a specified value and the
angular parameters θ11 and θ21 vary as shown in Fig. 8. The reciprocal of the condition number is
also plotted for the sake of comparison. In the second case, condition numbers are calculated as the
two rotational variables θ11 and θ21 are given a specified value, and d11 and d21 vary as shown in
Fig. 9. Comparing the results of Figs. 8 and 9, it can be seen that the condition numbers are subject
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(d11=d21= 94.69cm) 

 

(d11= 100cm, d21= 50cm)               

Fig. 8. Condition number and its reciprocal with fixed actuated translations. (d11 = d21 = 94.69 cm); (d11 =
100 cm, d21 = 50 cm).

Fig. 9. Condition number and its reciprocal with fixed actuated rotations. (θ11 = −80◦, θ21 = −60◦); (θ11 =
90◦, θ21 = 45◦).
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(θ21= 80 , d21= 80cm) 

(θ21= 60 , d21= 120cm) 

Fig. 10. Condition number and its reciprocal with one fixed limb. (θ21 = −80◦, d21 = 80 cm); (θ21 =
−60◦, d21 = 120 cm).

to the change of two rotational parameters θ11 and θ21, yet independent of translational parameters
d11 and d21. In the second plot of Fig. 9, where the value of θ11 is set to 90◦ on purpose, the condition
numbers show the ill conditions of the manipulator regardless of the values of d11 and d21. Actually,
the singularity of the CRPH manipulator occurs when one of the rotations of the actuators becomes
90 or 270 degrees. In the third case, the condition numbers are calculated as the first limb moves
freely while the second limb assumes a specific position as shown in Fig. 10. It can be seen that the
singularities occur at θ11 = +90◦ and −90◦.

Stan et al.27 have thoroughly studied the performance criteria dealing with workspace, quality
transmission, manipulability, and stiffness for the Delta robot with three-DoF translations. They
mentioned that all the performance criteria are related to the Jacobian matrix and to the condition
number. Compared with the figures for the condition number of the Delta robot shown by Stan et
al., the condition number shown by Figs. 8 and 10 appears to be smoother within the working area.
In addition, the plots further verify that the ill conditioned workspace is near the boundaries which
are in contrast to the existing parallel robots with translational motion whose ill conditions may
exist in the workspace.28 Note that the linear motions of the cylindrical joints have no effect on the
condition numbers. This characteristic can also be identified in the Jacobian analysis. Also, only
boundary singularities of the manipulator are found within our designated workspace boundary. The
manipulator does not contain interior singularities within the workspace.

7. Conclusion
This paper is devoted to investigating the kinematics of one new isoconstrained four-DoF parallel
manipulator with Schoenflies motion. The proposed robot has fewer limbs than the general four-DoF
fully parallel mechanisms with Schoenflies motion. In addition, the revolution of the end-effector
caused by the differential motions of coaxial helical pairs with distinct pitches results in a more
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compact structure than the conventional Schoenflies-motion mechanisms. Through the kinematic
analysis, it can be seen that the motions of the end-effector activated by the translational actuators and
rotational actuators are uncoupled. Thus, it is simple to control the input translation and rotation of
the cylindrical pairs to obtain the desired motion of the end-effector. The Jacobian and the singularity
analysis also reveal that the singular conditions solely depend on the rotational parameters of the
active joints and only boundary singularities are found. The robot is free of interior singularities. This
characteristic is also verified by the condition number of the Jacobian. It is expected that this new
type of robot has potential applications to industries when it is fully realized.
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