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Vortex merging and splitting events in
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Recent experiments have reported a novel transition to elasto-inertial turbulence in the
Taylor–Couette flow of a dilute polymer solution. Unlike previously reported transitions,
this newly discovered scenario, dubbed vortex merging and splitting (VMS) transition,
occurs in the centrifugally unstable regime and the mechanisms underlying it are
two-dimensional: the flow becomes chaotic due to the proliferation of events where
axisymmetric vortex pairs may be either created (vortex splitting) or annihilated (vortex
merging). In this paper, we present direct numerical simulations, using the finitely
extensible nonlinear elastic-Peterlin (FENE-P) constitutive equation to model the polymer
dynamics, which reproduce the experimental observations with great accuracy and
elucidate the reasons for the onset of this surprising dynamics. Starting from the
Newtonian limit and increasing progressively the fluid’s elasticity, we demonstrate that the
VMS dynamics is not associated with the well-known Taylor vortices, but with a steady
pattern of elastically induced axisymmetric vortex pairs known as diwhirls. The amount
of angular momentum carried by these elastic vortices becomes increasingly small as the
fluid’s elasticity increases and it eventually reaches a marginal level. When this occurs,
the diwhirls become dynamically disconnected from the rest of the system and move
independently from each other in the axial direction. It is shown that vortex merging and
splitting events, along with local transient chaotic dynamics, result from the interactions
among diwhirls, and that this complex spatio-temporal dynamics persists even at elasticity
levels twice as large as those investigated experimentally.

Key words: Taylor–Couette flow, transition to turbulence, viscoelasticity

1. Introduction

The Taylor–Couette flow (TCF) i.e. the fluid flow contained in the annular gap between
two vertical concentric cylinders, is a prototypical system to investigate hydrodynamic
instabilities and turbulence in rotating flows. If the working fluid is Newtonian and only
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the inner cylinder is rotated, this system provides one of the best known examples of a
supercritical transition to the turbulence (Coles 1965; Fenstermacher, Swinney & Gollub
1979). When the rotation speed exceeds a critical value, the initial purely azimuthal flow,
known as circular Couette flow (CCF), becomes unstable due to a centrifugal instability,
leading to a stationary axisymmetric pattern of toroidal vortices known as Taylor vortex
flow (TVF) (Taylor 1923). As the rotation speed increases, the TVF is gradually replaced
by flows of increasing spatio-temporal complexity, giving rise eventually to a fully
turbulent state. The characteristics of the transitions and flow regimes that precede the
onset of turbulence depend on the geometry of the system (i.e. the curvature and the
length-to-gap aspect ratio). However, when the curvature is moderate, as is the case in most
experiments, the route to chaos involves a series of Hopf bifurcations, i.e. the so-called
Ruelle–Takens scenario (Ruelle & Takens 1971). The physical mechanisms underlying
these transitions, as well as the spatial and temporal properties of the pre-turbulent
flow regimes, have been widely investigated over decades and are now relatively well
understood (Jones 1981; Gorman & Swinney 1982; King et al. 1984; Marcus 1984a,b;
Jones 1985; Andereck, Liu & Swinney 1986; Hegseth, Baxter & Andereck 1996; Wereley
& Lueptow 1998; Martinand, Serre & Lueptow 2014; Dessup et al. 2018).

This archetypal transition scenario, as well as the properties of the eventual turbulent
state, are, however, substantially modified when long chain polymers (even in small
amounts) are added to the working fluid. Unlike Newtonian fluids, the response of dilute
polymer solutions to the flow stresses is not only a function of the strain, but also of the
strain rate. This time-dependent behaviour of the fluid properties, known as viscoelasticity,
often causes dramatic changes in the stability and spatio-temporal characteristics of the
flow with respect to those of the Newtonian case. The most striking manifestation of
this phenomenon is the occurrence of flow instability in the absence of inertia (Muller,
Larson & Shaqfeh 1989; Larson, Shaqfeh & Muller 1990). This instability results from the
combined effect of elasticity and curvature and produces different flow regimes depending
on the elasticity level of the working fluid. When the elasticity level is moderate, the
instability leads to a steady vortex pattern similar to the TVF (Baumert & Muller 1995,
1997; Al-Mubaiyedh, Sureshkumar & Khomami 1999). However, when the solution is
highly elastic, the flow exhibits a form of chaotic motion dubbed elastic turbulence
(Groisman & Steinberg 2000, 2004).

In parameter regimes where inertial effects are not negligible, the interplay between
elasticity and inertia leads to a rich variety of flow patterns and spatio-temporal behaviours.
The regions of existence of the different flow regimes in the parameter space defined by the
elasticity level and the rotation speed (normally quantified by the dimensionless elasticity
and Reynolds numbers, El and Re, respectively) are very sensitive to the experimental
protocols and the polymer properties. Particularly significant among these properties
is the shear thinning behaviour of the dilute polymer solution. Recent experiments
have shown that strong shear thinning may even fully suppress elasto-inertially induced
flow regimes (Cagney, Lacassagne & Balabani 2020; Lacassagne, Cagney & Balabani
2021). In cases where elastic effects prevail over shear thinning effects (e.g. Boger-like
fluids), experiments and simulations have reported a number of flow regimes. These
can be roughly divided into coherent and chaotic flow states. The most characteristic
examples of coherent states are the so-called ribbons (RB), diwhirls (DW) and oscillatory
strips (OS) (Groisman & Steinberg 1996, 1997; Baumert & Muller 1999; Crumeyrolle,
Mutabazi & Grisel 2002; Thomas, Sureshkumar & Khomami 2006; Thomas, Khomami
& Sureshkumar 2009). The RB arise from a supercritical Hopf bifurcation of the CCF
at low Re values and consist of a rotating standing wave pattern formed by two spiral
waves propagating axially in opposite senses. In contrast, DW and OS emerge from
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nonlinear instabilities (in many cases as secondary instabilities of the RB pattern) and
are vortex pairs characterized by strong inflows, which are confined within narrow axial
regions, and weak outflows, which extend over axial distances that are usually three or
four times larger than those of the inflows. The difference between DW and OS is that,
whereas the former are stationary, the latter are oscillatory. Both these structures have
the ability to merge when they are close to each other and usually appear as spatially
localized states (Groisman & Steinberg 1997). The regimes of chaotic motion can be
achieved either from the nonlinear development of these coherent flow patterns or directly
from CCF via subcritical transition. The most typical examples of chaotic dynamics are
disorder oscillations, spatio-temporal intermittency and flame-like turbulence (Groisman
& Steinberg 1996; Baumert & Muller 1997, 1999; Thomas et al. 2006, 2009; Latrache,
Crumeyrolle & Mutabazi 2012; Liu & Khomami 2013). Ultimately, when the rotation
speed becomes sufficiently large, the flow reaches a state of highly disordered motion
involving a wide range of spatial and temporal scales. This state is known as elasto-inertial
turbulence (EIT) and it exhibits structural and statistical features which are markedly
distinct from those of ordinary Newtonian turbulence (Liu & Khomami 2013; Song et al.
2019, 2021a).

In recent years, there has been a surge of interest in investigating the distinct pathways
followed by the flow to achieve the EIT state. Experimental studies have so far identified
three main types of transition scenarios. In the first type, dubbed defect-mediated (DM)
transition (Latrache et al. 2012, 2016), the route to EIT starts when the state of RB
undergoes a Benjamin–Fair instability which produces spatio-temporal defects in the flow
pattern. The number of defects grows as Re increases, creating increasingly large regions
of irregular spatio-temporal behaviour. This results first in a regime of spatio-temporal
intermittency and subsequently in a fully chaotic flow that was identified as EIT. The
DM transition takes place at low-to-moderate El values (El < 0.15) and Re values quite
below those at which the onset of TVF happens in the Newtonian case. The second
type of transition, known as transition via flames (Latrache & Mutabazi 2021), occurs
at similar Re but larger El values (0.15 ≤ El ≤ 0.3). Again, the transition is initiated from
the RB pattern, which in this case undergoes an instability that results in the emergence of
flame-like structures. These flames proliferate as the rotation speed increases, increasing
progressively the spatio-temporal complexity of the flow until the EIT regime is achieved.
The third transition scenario is dubbed the vortex merging and splitting (VMS) transition
(Lacassagne et al. 2020). Unlike the two previous transitions, the VMS occurs at Re
values where CCF is centrifugally unstable and the primary instability results in a steady
axisymmetric vortex flow that the authors identified as a TVF. Here, the spatio-temporal
complexity of the flow increases following a temporal sequence of events in which the
vortex pairs may be either annihilated or created. The frequency with which these events
occur increases with increasing Re, giving rise eventually to a highly chaotic dynamics
consistent with a EIT state.

While the experiments have shown that this VMS dynamics is of an elastic nature
(Lacassagne et al. 2020), the reasons why axisymmetric vortex pairs undergo merging
and splitting processes and why they occur at relatively high El levels are not known. This
paper aims to shed some light on these aspects. Numerical simulations of viscoelastic TCF,
using the FENE-P model to simulate polymer effects, are used to study the progressive
transformation that the vortex flow pattern undergoes as El increases from the Newtonian
limit (El = 0) up to El values well beyond the onset of the VMS dynamics. In contrast to
what was thought, the simulations reveal that the VMS dynamics is not associated with a
centrifugally driven TVF-like pattern, but with an elastically induced pattern of steady DW
that fully replaces the TVF pattern at El ≈ 0.12, where the instability mechanism changes

946 A27-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

57
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.579


Jose M. Lopez

from being centrifugal to being elastic. These elastic vortices have a striking feature that
had not been previously reported: the amount of angular momentum they carry decreases
with increasing El. It is shown that the VMS dynamics starts when El is sufficiently large
so that the contribution of these vortices to the angular momentum flux reaches a marginal
level. The distinct vortex pairs become then dynamically disconnected from the rest of the
system and begin to travel independently in the axial direction, creating the complex spatio
temporal dynamics characteristic of the VMS regime.

2. Problem formulation, dimensionless parameters and numerical methods

We consider the motion of a dilute polymer solution confined to the gap between two
vertical, rigid and concentric cylinders of height h and radii ri and ro. Hereafter, the
subscripts i and o denote the inner and outer cylinders, respectively. The inner cylinder
rotates with an angular velocity, Ωi, whereas the outer cylinder is at rest, i.e. Ωo = 0. The
dynamics of this incompressible viscoelastic fluid flow is governed by the continuity and
Navier–Stokes equations, along with an equation to describe the temporal evolution of
a polymer conformation tensor, C, which contains the ensemble average elongation and
orientation of all polymer molecules in the flow. A simple Hookean dumbbell model is
used to represent the polymer molecules (Bird, Dotson & Johnson 1980). Normalizing the
velocity with the inner cylinder velocity, Ωiri, the length with the gap size, d = ro − ri,
the pressure with the dynamic pressure, ρ(Ωiri)

2, where ρ is the fluid’s density, and the
polymer conformation tensor with kTe/H, where k denotes the Boltzmann constant, Te is
the absolute temperature and H is the spring constant, the dimensionless equations read

∇ · v = 0,

∂tv + v · ∇v = −∇P + β

Re
∇2v + (1 − β)

Re
∇ · T ,

∂tC + v · ∇C = C · ∇v + (∇v)T · C − T ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.1)

where v = (u, v,w) is the velocity vector field in cylindrical coordinates (r, θ, z), P is the
pressure, β = νs/ν indicates the relative importance between the solvent viscosity νs and
the viscosity of the solution at zero shear rate ν and Re = Ωirid/ν is the Reynolds number
based on the inner cylinder velocity. Polymers are coupled to the Navier–Stokes equations
through the polymer stress tensor T , which is calculated using the FENE-P model (Bird
et al. 1980),

T = 1
Wi

⎛
⎜⎝ C

1 − tr(C)
L2

− I

⎞
⎟⎠ , (2.2)

where I is the unit tensor, tr(C) is the trace of the polymer conformation tensor, L denotes
the maximum polymer extension and Wi is the Weissenberg number, a dimensionless
quantity that measures the ratio of the polymer relaxation time λ to the advective time
scale d/(Ωiri).

Experimental observations in Lacassagne et al. (2020) strongly suggest that the
dynamics relevant to the VMS transition is two-dimensional and occurs in the
meridional plane (r, z). Based on this assumption, the simulations were conducted in
a quasi-two-dimensional TCF system (i.e. under axisymmetric conditions), where the
velocity field does not depend on the azimuthal coordinate, θ . This choice allows
us to significantly reduce the cost of the simulations, making it possible to simulate
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the viscoelastic flow for very long periods of time. Some simulations in a fully
three-dimensional TCF system were also subsequently performed to verify that the
dynamics found in the axisymmetric simulations persists in the full domain.

Periodic boundary conditions are used in the z direction, whereas the dimensionless
boundary conditions at the cylinders are

v(ri, z) = (0, 1, 0),

v(ro, z) = (0, 0, 0).

}
(2.3)

The parameters used in the simulations have been chosen to mimic as closely as possible
those in the experiments of Lacassagne et al. (2020). The curvature of the system is the
same as in the experiments, η = ri/ro = 0.77, and all simulations have been performed at
a constant value of the Reynolds number, Re = 95, consistent with the Re value at which
the onset of complex spatio-temporal dynamics takes place in the experiments. It must
be noted that, at this Re value, the laminar Couette flow is centrifugally unstable, and
therefore the flow pattern in the Newtonian case consists of Taylor vortices (the onset of
Taylor vortices occurs at Re = 89 for this value of η). The same concentration of polymers
as in the experiments has been used, β = 0.871, and similar levels of the polymer elasticity,
quantified by the elasticity number, El = Wi/Re, have also been considered.

There are, however, other parameters and features that could not be matched. The
height-to-gap aspect ratio, Γ = h/d, in the simulations had to be reduced with respect to
that in the experiments, Γ = 21.5, to keep the computational cost affordable. The majority
of the simulations have been performed using Γ = 12.6. Simulations at other values of
Γ , spanning between 9 and 16, have also been conducted to assess the influence of this
parameter on the dynamics observed in the simulations (§ 3.5). Another difference with
respect to the experimental set-up is the absence of endplates. While secondary flows
resulting from the interaction between flow and endplates are known to often alter the
stability properties and dynamics of Newtonian TCF (Czarny et al. 2003; Avila et al.
2008; Lopez & Avila 2017), Lacassagne et al. (2020) noted that this does not seem to
be the case in their experiments. Hence, simulations in an axially periodic domain are
expected to provide a good qualitative representation of the observed dynamics. Finally,
another parameter that sets a difference with respect to the experiments is the maximum
polymer extension L. This parameter of the FENE-P model is a property of the dilute
polymer solution which cannot be easily inferred from the specifications of the polymer
used in the experiments (polyacrylamide, Sigma-Aldrich,Mw = 5.5 × 106 g mol−1). Most
of the simulations presented in this paper have been conducted using L = 100, which is
a standard value in the literature of viscoelastic TC flows (Liu & Khomami 2013; Song
et al. 2019, 2021a). The influence of varying this parameter is analysed in the § 3.5, where
simulations with L varying between 30 and 250 are presented and discussed.

To solve (2.1), we use our open source code nsCouette (López et al. 2020), which
has been recently extended to simulate viscoelastic flows using the FENE-P model. This
code is a highly scalable pseudo-spectral solver for annular flows that implements a very
efficient hybrid parallelization strategy (see Shi et al. (2015), for details). The spatial
discretization in the z direction is carried out via Fourier–Galerkin expansion, whereas
high-order central finite differences on a Gauss–Lobatto–Chebyshev grid are used in r.
A pressure Poisson equation formulation is used to decouple the pressure from the velocity
field. The free divergence condition (i.e. the continuity equation) is enforced by using an
influence matrix technique, so that this condition is satisfied up to machine error. The
time integration was carried out using a second-order accurate predictor–corrector scheme
based on the Crank–Nicolson method (Willis 2017). Further details about the time stepper
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Γ mr mz

9 128 192
10 128 256
12.6 128 256
14 128 384
16 128 512

Table 1. Number of radial nodes (mr) and axial Fourier modes (mz) used in the simulations depending on the
aspect ratio Γ of the system.

can be found in Lopez, Choueiri & Hof (2019). As customary in numerical simulations
of viscoelastic flows using pseudospectral codes, a small amount of artificial diffusion is
added to stabilize the integration. The necessity to include this diffusion arises from the
hyperbolic nature of the time evolution equation for C. The absence of a diffusive term
in this equation leads to an accumulation of numerical error that in many cases results in
numerical breakdown. To avoid this problem, a Laplacian term, (1/ReSc)∇2C, is added
to the right-hand side of that equation, where the Schmidt number, Sc = ν/κ , quantifies
the ratio between the viscous and artificial diffusivities. In the simulations presented here,
Sc = 100, which yields an artificial diffusion coefficient, 1/ReSc = 10−4. This amount
of diffusion is similar in magnitude to those used in other recent numerical studies on
viscoelastic flows (Xi & Graham 2010; Lopez et al. 2019; Song et al. 2019; Zhu et al.
2020; Song et al. 2021b; Zhu et al. 2022). It has been verified that a reduction in the
amount of diffusion does not significantly alter the results of the simulations (Sc up to 200
were tested), thereby confirming the adequacy of the diffusion used for the simulations
throughout the paper. Due to the addition of a Laplacian term, boundary conditions for
C are needed at the cylinders. To avoid introduction of artificial boundary conditions,
the values of C at the cylinders are obtained by solving its evolution equation without
the artificial diffusion term. This strategy was first introduced by Beris & Dimitropoulos
(1999) and it has been widely used since then. The number of radial nodes and Fourier
modes used in the computations are shown in table 1 for the different values of Γ
considered. The time step size had to be varied between 4 × 10−3 and 10−3 as the polymer
elasticity (i.e. El) was increased.

3. Results

3.1. Transition to the VMS regime with increasing El
We first investigate the gradual approach to the VMS regime as the elasticity of the fluid
increases. For this initial simulation, an aspect ratio of Γ = 12.56 was considered, whereas
the maximum polymer extension was set to L = 100. A Newtonian simulation (i.e. β = 1)
was initially run to calculate a TVF pattern with six pairs of counter-rotating vortices.
Using this state as initial condition, the fluid’s elasticity was slowly and steadily increased
at a uniform rate, El = 10−3t/Re, until a dynamical regime characterized by merging and
splitting events was found. We would like to stress that the protocol followed in this
simulation differs from that in the experiments, where the VMS regime is achieved by
increasing Re while keeping a constant elasticity (Lacassagne et al. 2020). Our study hence
offers a different perspective into the pathway leading to this flow regime and allows to
identify the gradual transformation the flow undergoes as the working fluid becomes more
elastic.
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Panel (a) in figure 1 provides an overview of the structural and dynamical changes
induced by the polymers on the initial TVF as El increases. It shows a space–time diagram
of the radial velocity u at mid-gap along the axial direction z, where time has been replaced
by its corresponding El value. Red areas represent fluid motion from the inner to the outer
cylinder, i.e. outflows, whereas blue regions indicate fluid moving from the outer to the
inner cylinder, i.e. inflows. Panel (b) places emphasis in the range of El values for which
a complex spatio-temporal dynamics happens. The stationary pattern of vortices becomes
unstable at El ≈ 0.29, leading to periodic oscillations of the vortex pairs along the z-axis.
The onset of the VMS regime takes place soon after, at El ≈ 0.315, as the dynamics of
the distinct vortex pairs decouples and these begin to move independently in the axial
direction. It will be shown later in § 3.5 that this threshold is sensitive to the number
of vortices of the initial condition and the aspect ratio used in the simulations. Merging
events, where two vortex pairs coalesce to form a single vortex pair, are indicated as dashed
(green) rectangles in figure 1(b). These events fully dominate the dynamics in the initial
phase of the VMS regime (for 0.32 < El < 0.34) and since they occur simultaneously at
different axial locations, the total number of vortex pairs in the system rapidly decreases.
After this initial phase (El > 0.34), merging events coexist with events where a vortex
pair branches into two, i.e. splitting events, shown as dash-dotted (purple) rectangles in
the figure, as well as with regions where the dynamics becomes transiently chaotic (see
for instance the flow region between 4 < z/d < 7 for 0.34 < El < 0.36 or 0 < z/d < 2.5
for 0.38 < El < 0.40). The number of vortex pairs fluctuates between two and four in this
phase.

It is important to note that the occurrence of VMS events does not depend on the
continuous increase of El with time. If El is held constant after the VMS regime
is achieved, the simulations show the same dynamic events just described: vortex
merging, vortex splitting and transient chaotic motion, reflecting that these are temporal
characteristics of the flow that occur when El exceeds a certain critical threshold. This is
demonstrated in figure 1(c), which shows a space–time map for a simulation where El has
been fixed to 0.32. Interestingly, the VMS events observed in simulations with constant El
are similar to those observed in simulations where El varies with time. The reason (which
will be discussed later in the paper) is that increasing El has little influence on the vortices
in this flow regime. As a result, space–time diagrams corresponding to simulations where
El changes with time not only feature the various flow regimes obtained when El is varied
but also provide an accurate representation of the VMS events.

Another important feature that is clearly illustrated in figure 1(a) is the strong impact
that increasing El has on the structure of the vortex pairs. We anticipate here that these
structural changes are key to understanding the physics underlying merging and splitting
events. Hence, before getting into detail about the dynamics in the VMS regime, it is
convenient to present a comprehensive study about the influence of elasticity on the TVF.

3.2. Viscoelastic modification of the TVF
A well-known property of viscoelastic flows with curved streamlines is the appearance of
a radially inward force which is caused by the elastic stresses arising from the stretching
of the polymer molecules by the primary flow (Groisman & Steinberg 1998). This force
has been identified as the driving source of a number of instabilities in curvilinear flows of
highly elastic polymer solutions, which are usually known as purely elastic instabilities
(Shaqfeh 1996). The mechanism underlying these instabilities has been discussed in
detail and verified in many studies, particularly in flow regimes where inertial effects
are negligible (Re → 0). It is, however, reasonable to expect that this elastic force will

946 A27-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

57
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.579


Jose M. Lopez

El

(a)

(b)

u

u

u
z/d

z/d

z/d

(c)

El

0

2

4

6

8

10

12

2

0

4

6

8

10

12

2

0

4

6

8

10

12

2000

0.30 0.35 0.40 0.45 0.50

0.05 0.10 0.15 0.250.20 0.350.30 0.450.40 0.50

4000 6000 8000 10 000

0.06

0.04

0.02

–0.02

–0.04

–0.06

–0.08

0

0.06

0.04

0.02

–0.02

–0.04

–0.06

–0.08

0

0.06

0.04

0.02

–0.02

–0.04

–0.06

–0.08

0

t

Figure 1. Space–time plot representing the magnitude of the radial velocity u at mid-gap along the axial
direction z. Panels (a) and (b) correspond to a simulation performed at Re = 95 where, starting from a
Newtonian TVF, El was slowly increased with time (El = 10−3t/Re). Note that the time t has been replaced
by the corresponding El values on the horizontal axis. Panel (a) shows the variation of u from Newtonian flow
(i.e. El = 0) up to the largest El value simulated (El = 0.50), whereas panel (b) shows in more detail the range
of El values for which a complex spatio-temporal dynamics take place. Panel (c) illustrates the spatio-temporal
dynamics when El is kept constant after the VMS regime is achieved. The case exemplified corresponds to
El = 0.32. Red and blue areas indicate outflows and inflows respectively. Note that periodic boundary
conditions are used in z.
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El = 0

El = 0.03

El = 0.05

El = 0.10

El = 0.15

El = 0.25

z/d = 0z/d = 4π

ri

ro

Figure 2. Structural variation of the TVF pattern as El increases from the Newtonian case (i.e. El =
0.00) up to values near the onset of spatio-temporal dynamics. Each panel shows a colour map
of the radial velocity u in a meridional plane (z/d, r/d) ∈ [0, 4π] × [3.35, 4.35], where red regions
indicate outflows (i.e. positive velocity), blue regions represent inflows (i.e. negative velocity) and
the zero velocity has been set as grey. The colour scale is based on the maximum and minimum
values of each case and hence differs among the different panels. There are four positive and four
negative contours evenly distributed across the full range of values in each case: 1. El = 0.00, u in
[−0.037, 0.059]; 2. El = 0.03, u in [−0.043, 0.047]; 3. El = 0.05, u in [−0.048, 0.029]; 4. El = 0.10, u
in [−0.048, 0.014]; 5. El = 0.15, u in [−0.082, 0.015]; 6. El = 0.25, u in [−0.072, 0.011]. The system
is shown rotated by 90◦ in the counterclockwise direction with respect to its original position. The
location of the inner and outer cylinders, ri and ro, respectively, as well as the locations of the top
(z/d = 4π) and bottom (z/d = 0) of the system are indicated in the bottom panel.

also have an influence in parameter regimes where Newtonian flows become unstable due
to inertial forces. The stationary pattern of Newtonian Taylor vortices used as starting
solution in our calculations is one such case: it arises from a centrifugal instability of
the purely azimuthal primary flow (Taylor 1923). This instability mechanism is expected
to persist in the viscoelastic case as El is slowly increased starting from the Newtonian
limit. However, the structure of the Taylor vortex pattern is likely to be modified by
the competition between the centrifugal and elastically induced forces. Additionally, if
the fluid’s elasticity becomes sufficiently large, the elastic instability mechanism might
replace the centrifugal mechanism, leading to a flow state that is elastic in nature but
whose structure could be modified by the presence of inertial effects. In this section we
show that this is indeed the case in our simulations.

Figure 2 shows colour maps of the radial velocity, u, illustrating the dependence of
the flow structure as El increases from the Newtonian limit (El = 0) up to the regime in
which the flow exhibits spatio-temporal behaviour. Note that, to save space, in all figures
illustrating flow patterns throughout the paper, the system is shown rotated by 90 ◦ in the
counterclockwise direction, so that the inner (outer) cylinder is located at the bottom (top)
of each panel and the positive z-direction goes from right to left (see the coordinate system
in the bottom panel of figure 2). The structure of the TVF pattern in the Newtonian case
(top panel) shows a small asymmetry between outflows and inflows, as the axial extent of
the inflows is slightly greater than that of the outflows. This characteristic fully reverses
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Figure 3. Axial profiles of the elastic force Fe (left panels) and its associated work Feu (right panels) obtained
at the mid-gap for El values matching those of the last three panels in figure 2. The elastic force is calculated as
Fe = ((1 − β)/Re)(∂rTrr + (Trr − Tθθ )/r + ∂zTrz). A dashed line has been added at Feu = 0 to help identify
inflows (Feu > 0) and outflows (Feu < 0).

as elasticity comes into play. The axial extent of the inflows decreases with increasing El
and these become eventually confined to strong jets that extend over narrow regions in the
axial direction. Conversely, the axial extent of the outflows increases notably (note that
they become nearly four times larger than the inflows for El ≥ 0.12) and the magnitude
of u in these regions decreases substantially as El increases (the range of values of u
corresponding to each panel is specified in the caption).

It was postulated in a previous experimental study that this strong asymmetry between
inflows and outflows might be caused by the work done by the elastically induced force
(Groisman & Steinberg 1998). To verify this hypothesis quantitatively, figure 3 shows axial
profiles of the elastic force, hereafter denoted as Fe (panels a,c,e), and its associated work
Feu (panels b,d,f ), obtained at the mid-gap for the last three cases shown in the figure 2.
As seen, the profiles of Fe are always negative, reflecting that Fe is an inward force, and
they exhibit strong peaks in the inflows whose magnitude increases with increasing El.
Since Fe acts in the same direction as u in the inflows, it does positive work on the flow
in these regions. This circumstance implies that the strong peaks of Fe will result in large
positive work (see the peaks of Feu in panels b,d,f ), which enhances the fluid motion in the
inflows and creates the strong localized jets that appear as El increases. In the outflows,
on the contrary, Fe acts in opposition to the fluid motion and therefore does a negative
work on the flow. This characteristic explains the decay in the magnitude of u that is
observed in the outflows as El increases. The axial extent of the inward jets decreases
as the magnitude of the peaks grows, which evidently entails an increase in the axial
extent of the outflows and creates the asymmetry between inflows and outflows observed in
figure 2.

In addition to the emergence of this asymmetry, a second transformation takes place
inside the outflows. The region where the largest positive velocity occurs, which in the
Newtonian case is located at the centre of the outflows, separates in the viscoelastic cases
into two identical regions which are symmetric with respect to the central symmetry plane
of the outflow. These new regions of maximum positive velocity move away from each
other as El increases and approach progressively the adjacent inflows. When the elasticity
is sufficiently large (El ≥ 0.12), the strong inflow jets are flanked by these regions of
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Figure 4. Profiles of the radial velocity u at mid-gap along the z-axis. Panel (a) shows profiles for El < 0.12,
where profound changes in the structure of the flow pattern are observed in figure 2, whereas panel (b) focuses
on the range of El values (El ≥ 0.12) where the variation in the profiles is small. Note that in both panels u is
normalized with the largest absolute value among all cases which is obtained for El = 0.12 and corresponds to
|umax| = 0.0824.

maximum positive velocity, whereas the flow in the central part of the outflows becomes
nearly uniform in the axial direction.

A remarkable feature of this structural transition is the fact that the changes are most
pronounced in the low El regime (El < 0.12). This observation is quantitatively confirmed
by the axial profiles of u at the mid-gap shown in figure 4. Profiles corresponding to El <
0.12 (shown in panel (a)) differ markedly and clearly reflect strong changes in both the
magnitude of u (particularly in the outflows) and the axial extent of inflows and outflows.
However, for El ≥ 0.12 (see panel (b)), the differences among profiles are small and mainly
occur in the magnitude of u, which keeps slightly decreasing (increasing) in the outflows
(inflows) with increasing El. Further quantitative evidence of this behaviour is given in
figure 5. Panel (a) in this figure shows the dependence of the axial extent of the inflow and
outflow regions at the midgap with increasing El. It is apparent that the largest variation
in the extent of these regions (which are naturally inversely proportional) occur within the
low El regime, for 0.05 < El < 0.1. Likewise, the sharpest change in the ratio between the
maximal velocity of outflows and inflows (shown in panel (b)) also happens at very low El
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Figure 5. Quantification of the changes in the structure and strength of the vortices as El increases. Panel (a)
shows the variation in the axial extent of inflows and outflows at the midgap in units of the gap-width, d, as
the fluid becomes more elastic. Panel (b) displays the ratio between the maximal values of u in the outflows
and inflows as a function of El. The dashed line indicates the approximate value this ratio seems to approach
asymptotically as El increases.

values (El < 0.05), where the strength of the outflows decays strongly. These observations
clearly evidence that Fe exerts a surprisingly strong influence on the flow structure even in
weakly elastic fluids. Another interesting feature revealed by the two panels of figure 5 is
that the flow characteristics appear to exhibit asymptotic behaviour. As El increases, the
sizes of the outflows and inflows approach values close to Lout/d ≈ 1.7 and Lin/d ≈ 0.38,
respectively, whereas the ratio between the maximal velocities in outflows and inflows
appears to level off at approximately 0.13. This observation is also corroborated by the
velocity profiles, which seem to be gradually converging with increasing El (see panel (b)
in figure 4).

An important distinction between the low and high El regimes (i.e. El < 0.12 and El ≥
0.12) is the magnitude of u in the inflows. As seen in figure 4(a), the maximum velocity
of the inflows in the low El regime increases initially with increasing El, but eventually
converges to a value close to u/|umax| = −0.55. This value is substantially lower than
those shown by the profiles in the high El regime (see figure 4b), where u/|umax| ranges
from −1 at El = 0.125 (when it is maximal) to ∼ −0.78 at El > 0.25 (when the profiles
seem to converge). The transition between both regimes can be clearly identified in the
space–time plot of figure 1(a) as a sudden change in the colour intensity that takes place
at El ∼ 0.12. The abrupt nature of this transition strongly suggests that it may be caused
by a change in the physical mechanism associated with the instability of the primary flow.
To test this hypothesis we examine the integral energy budgets. For viscoelastic flows, the
energy balance reads (Dallas, Vassilicos & Hewitt 2010; Dubief, Terrapon & Soria 2013),∫

V
P dV −

∫
V
ε dV −

∫
V
Πe dV = 0, (3.1)

where P is the kinetic energy production, ε is the viscous dissipation rate and Πe denotes
the work done by the elastic stresses. These quantities were calculated using the following
expressions:

P = −u′v′ ∂v̄
∂r

+ u′v′ v̄
r
, (3.2)
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Figure 6. Variation of the integral energy budgets with increasing El before the spatio-temporal dynamics sets
in. Here, P denotes the kinetic energy production by the inertial forces, ε stands for the viscous dissipation
and Πe is the work done by the elastic stresses. The dotted (orange) vertical line indicates the El value at
which the transition between the low and high El regimes takes place. Hereafter, these regimes are denoted as
centrifugally and elasticity dominated regimes, respectively.

ε = 2β
Re

S′ : S′, (3.3)

Πe = 1 − β

Re
S′ : T ′. (3.4)

Here, the overline denotes axially averaged quantities, S′ = (∇v′ + ∇v′T)/2 is the rate
of strain tensor and the prime symbol indicates deviations of the velocity or polymer
stress tensor from their axially averaged values (v̄ = (0, v̄, 0) and T̄ ). It must be clarified
that, although this equation was derived in the context of turbulent flow, it also applies
to steady and axisymmetric vortex flow (the derivation of the equation for this particular
case is given in Appendix A). The first and second integrals in (3.1) are always positive,
meaning that they act as source and sink terms of the energy balance, respectively (note
that there is minus sign in front of the second integral). The sign of the third integral
can be positive or negative. If it is positive, this term has a negative contribution to the
balance and thus polymers act to dissipate the fluid’s kinetic energy. By contrast, if it
is negative, polymers act as an energy source. The variation of the values yielded by
these integrals with increasing El is shown in figure 6. As expected, the behaviour of
the polymers changes drastically at El ∼ 0.12, consistent with the transition between the
low and high elasticity regimes. At low El values, polymers play a dissipative role, helping
the viscous forces to damp the centrifugally induced vortices. However, at El ∼ 0.1, the
work done by the elastic stresses changes sign and the net contribution of the polymers
to the energy balance becomes positive, indicating that they inject energy into the flow
through the elastic stresses. The amount of energy that the polymers supply to the system
is initially very small (for 0.1 ≤ El < 0.12) but increases suddenly when El ∼ 0.12. After
this transition occurs, the energetic contribution of the polymers becomes the dominant
energy source and its magnitude continues increasing with increasing El. In contrast, the
energy production due to inertial mechanisms remains small and decreases very gradually
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ro
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z/d = 0z/d = 4π

El = 0

El = 0.25

Figure 7. Comparison between the flow streamlines ψ in the centrifugally (top) and elastically (bottom)
dominated regimes. Positive (negative) values are represented as red (blue), whereas the zero value is shown as
grey. The colour scale is based on the maximum and minimum values of each case and hence differs between
the panels. There are four positive and four negative contours evenly distributed across the full range of values
in each case: 1. El = 0.00, ψ in [−0.660, 0.660]; 2. El = 0.25, ψ in [−0.295, 0.295]. The system is shown
rotated by 90 ◦ in the counterclockwise direction.

as El increases. From this analysis, it is clear that the nature of the mechanism driving the
instability indeed changes from being centrifugal (El < 0.12) to being elastic (El ≥ 0.12),
a characteristic that sets a clear distinction between the two regimes investigated so far.

Finally, to facilitate comparison between the flow structure in the high El regime and
other elastically induced stationary patterns previously reported, the streamlines of the
flow ψ at El = 0.25 are shown in the bottom panel of figure 7. These are naturally very
different from those in the Newtonian case (also shown for comparison in the top panel)
and reflect again the structural changes just discussed. As seen, unlike the Newtonian case,
where the vortices are nearly equidistant, in the elastically dominated regime they appear
to be arranged in pairs, with their cores being located very close to one another. We note
that this type of structure has been previously reported in the literature and it is usually
known as DW (Groisman & Steinberg 1997; Lange & Eckhardt 2001; Thomas et al. 2006,
2009), due to its similarity to the shape of a magnetic dipole. However, there are a couple
of important differences between the structures described in previous works and the one
presented here. A characteristic shared by all previous studies is that DW appear after a
hysteretic transition, when Re is decreased starting from a flow state driven by an elastic
instability. In fact, it is often stated in the literature that flow deceleration is a necessary
condition to observe these structures (Groisman & Steinberg 1997; Lange & Eckhardt
2001; Thomas et al. 2006; Lacassagne et al. 2020). The present study shows that this is not
the case and that, at least in the regime investigated here, these structures may also appear
for a fixed Re if the elasticity of the working fluid is sufficiently large so that the elastic
instability mechanism replaces the centrifugal mechanism. In the low Re regimes where
most previous studies were conducted, DW appear to be localized in the axial direction,
i.e. there are regions where the flow is laminar interspersed between distinct DW. When
the distance between DW becomes less than 5d, they approach each other and coalesce.
This characteristic is so far absent in the present simulation. Despite the distance between
DW being substantially lower than 5d, they remain stationary and form a pattern of equally
spaced structures along the axial direction. A possible reason for such difference will be
discussed later in § 3.6. We would like to finally note that similar arrangements of DW, yet
not stationary, have also been reported in the literature, which were dubbed OS (Groisman
& Steinberg 1996; Thomas et al. 2006, 2009).

3.3. Onset of spatio-temporal dynamics
The stationary pattern of DW loses its stability at a Hopf bifurcation which takes place at
El ∼ 0.29 leading to an axial oscillation of the vortices. This is illustrated in figure 8
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A (t = 150)

B (t = 190)

C (t = 225)

D (t = 260)

E (t = 300)
ri

ro

z/d = 4π z/d = 0

Figure 8. Colour maps of u illustrating the axial oscillation of the vortex pairs that emerges from the Hopf
bifurcation. Letters from A to E are used to show the correspondence between each panel and the time series
shown in figure 9. Positive (negative) velocity is represented as red (blue), whereas the zero velocity is shown
as grey. There are four positive and four negative contours evenly distributed in u ∈ [−0.0780, 0.0095]. The
system is shown rotated by 90 ◦ in the counterclockwise direction. Note that the flow patterns shown in A and
E are identical, whereas those shown in B and D only differ in that their outflows are antisymmetric.

through colour maps of u taken at five equally spaced time instants within a period
(shown as circles in figure 9a). The displacement of the vortices is relatively small,
yet clearly discernible in the figure by looking at the axial position of the inflows. It
should be recalled that the system is shown rotated by 90 ◦ counterclockwise, and so
the upwards (downwards) motion of the inflows corresponds to leftwards (rightwards)
motion in these figures. Starting from the state where the inflows are at their lowest axial
positions (panel A), it is observed that the inflows move first axially upwards (panel B),
reach the position of maximum displacement (panel C) and subsequently move downwards
(panel D), returning eventually to the initial state (panel E, which is identical to A). A
notable difference with respect to the stationary case is the breakdown of the symmetry in
the outflows. When the vortices move axially upwards, the lower half of the outflow (see
region enclosed by the (green) dashed rectangle in the panel B) remains similar to that in
the stationary case (see bottom panel in figure 2), however, the upper half (marked by the
purple dash-dotted rectangle in panel B) notably changes due to an increase in the maximal
velocity next to the inflow. The opposite is observed when the vortices move downwards.
The upper half (shown as a green dashed rectangle in panel D) of the outflow remains as in
the stationary case, whereas the lower half (purple dash-dotted rectangle in panel D) takes
a similar form to that of the upper half during the upward motion. As a consequence, flow
states moving axially upwards and downwards, where the vortices are located at the same
axial positions, exhibit antisymmetric outflows (that is the case, for example, for states B
and D shown in the figure).

The frequency of the oscillation was determined by applying fast Fourier transform to a
time series of the axial velocity w obtained at a radial location close to the outer cylinder
(figure 9a). The power spectral density is shown in figure 9(b), where the frequency is
normalized with the elastic frequency, fe. Following Lacassagne et al. (2020), fe was
calculated as fe = 2ce/kavg, where ce denotes the wave celerity, ce = √

ν/λ, and kavg is the
average spatial wavelength of the vortex flow pattern. The spectrum shows a pronounced

946 A27-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

57
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.579


Jose M. Lopez

0 200 400 0

0.002–0.005

0.005

0.010

0.015

0

–0.010

0.004

0.006

PSDw

0.008

0.010

2/3
1/2

1/6

1/3

0.5 1.0
f/fe

1.5

t

A E

D

C

B

(b)(a)

Figure 9. Periodic motion arising from the instability of the stationary pattern of DW. (a) Time series of the
axial velocity w for El = 0.3 calculated at r/d = 4.15 and z/d = π . The circles indicate time instants for which
colour maps of u are presented in figure 8. (b) Power spectral density (PSD). The frequency is normalized with
the elastic frequency, fe.

peak at fe/3, which clearly indicates that this is the dominant frequency of the oscillation.
Other peaks with smaller amplitudes are also observed. However, they correspond in all
cases to other sub-harmonics of fe and are therefore commensurate with the dominant
frequency. It should be noted that fe/3 is the dominant frequency for the particular case
where the flow pattern has six vortex pairs. For other flow patterns with different numbers
of vortex pairs, the oscillation is characterized by other subharmonics of fe. The fact that
frequencies appear in the spectrum as subharmonics of fe is in full agreement with the
experimental observations (Lacassagne et al. 2020) and reflects once again the elastic
nature of the instabilities taking place at these El values.

From a mechanistic perspective, the periodic up and down motion of the vortices is just
a consequence of the physics described in the previous section. The distance between the
centres of the vortices on either side of the inflows keeps decreasing (albeit very gradually)
as El increases, leaving a gap between DW where the radial velocity is increasingly weak.
The axial velocity, whose role before the instability onset is simply to transport the fluid
vertically near the cylinders (see top panel in figure 10), eventually penetrates into these
intermediate regions, connecting adjacent vortices to each other in the outflow region and
giving rise to an axial wave. This wave propagates first axially upwards (middle panel in
figure 10) and subsequently reflects back and travels axially downwards (bottom panel in
figure 10), thereby creating a standing wave. The interaction between standing wave and
vortices lead to the axial oscillation of the latter illustrated above.

3.4. VMS dynamics
With a further increase in El, the dynamics of the different DW decouples and these begin
to travel independently along the axial direction. A merging event happens when two DW
move towards each other and eventually coalesce into a single entity. This phenomenon
is illustrated in figure 11, which shows the variation of the radial velocity over the initial
stage of the VMS regime in the simulation performed at constant El = 0.32. Two merging
events occur simultaneously in the time window shown (corresponding to the green dashed
rectangle in figure 1c). In the initial phase of the merging process (up to t ≈ 500), the
second and fifth DW starting from the top (indicated by black leftwards arrows) leave their
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El = 0.25

B

D

z/d = 0z/d = 4π

ri

ro

Figure 10. Colour maps of w illustrating the standing wave causing the axial oscillation of the flow pattern.
The top panel shows w for a stationary state at El = 0.25, whereas the middle and bottom panels correspond to
the states B and D indicated in figure 9. Positive (negative) values of w are shown as red (blue), whereas
that for w = 0 is shown as grey. From top to bottom, there are four positive and four negative contours
evenly distributed in w ∈ [−0.030, 0.030], [−0.026, 0.030] and [−0.030, 0.026], respectively. Two additional
contours at w = ±0.003 are also added to help visualize the axial waves. The system is shown rotated by
90 ◦ in the counterclockwise direction.

axial locations and begin to move upwards, i.e. leftwards in the rotated figure. This motion
becomes apparent by comparing the positions of the inflows between the first (t = 0) and
second (t = 475) panels. The inflows of the second and fifth DW have notably moved
towards the top of the system by t = 475 and differ from the others in that they are tilted
slightly upwards (a distinctive feature of the DW which are moving upwards). The inflows
of the other DW on the other hand remain at their axial positions and only exhibit small
oscillations caused by the instability discussed in the section above. As the cores of the DW
travelling upwards approach the cores of the adjacent DW, they experience an attractive
interaction which results in the first and fourth DW (indicated by red rightwards arrows)
travelling axially downwards, i.e. rightwards in the rotated figure. Note that, as opposed to
the DW moving upwards, the inflows of the DW moving downwards are tilted downwards.
The attractive interaction between DW becomes stronger as their cores get close to each
other, leading to a rapid increase of their travelling speeds. This characteristic results in the
typical parabolic shape exhibited by the merging events in the space–time plot shown in
figure 1. Another feature that is clearly illustrated in figure 11 is the increase in the tilting
angle of the inflows as the DW approach one another. This angle is initially very small
(see e.g. panel for t = 730) but increases rapidly as the mutual interaction between DW
becomes stronger, reaching a value of approximately 30 ◦ with respect to the radial axis by
the time when the merging of the DW takes place (see panel for t = 836).

After the merging events are completed, a flow pattern characterized by four DW
emerges (see panel for t = 865), which retains a discrete translational symmetry along
the z-direction (i.e. the flow pattern remains invariant if it is shifted by 2π in the axial
direction). As can be seen from figure 1(c), this flow pattern undergoes subsequent
merging events, which occur again simultaneously, when t is between 865 and 2320. After
this second pair of merging events, the axial symmetry of the flow is fully broken (not
shown) and the dynamics of the distinct DW is fully decoupled. It is only after the latter
happens that the sequence of merging and splitting events begins and the number of DW
in the system may either grow or decay. This initial cascade of merging events leading to
a complete symmetry breaking is always observed in the simulations at the beginning of
the VMS regime and can thus be interpreted as a transitional stage where the coupling
between DW is fully broken. It must be finally noted that the time scale associated with
merging events is highly variable and depends crucially on the distance between the cores
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Figure 11. Colour maps of u illustrating the simultaneous occurrence of two merging events at the beginning
of the VMS regime. They correspond to a simulation performed at constant El = 0.32, whose space–time
diagram was shown in figure 1(c). The dashed (green) rectangle in the latter figure indicates the time window
that is illustrated in the current figure. Positive (negative) values of u are shown as red (blue), whereas u = 0
is shown as grey. In each panel there are four positive and four negative contours evenly distributed in u ∈
[−0.071, 0.013]. The system is shown rotated by 90 ◦ in the counterclockwise direction.

of the two DW undergoing the merging event. They may occur very slowly, extending over
nearly 1000 advective time units, such as the merging process exemplified in figure 11,
or very quickly, within 50 to 100 advective time units, like the ones discussed in the next
paragraph.

A central aspect of the dynamics in the VMS regime is the emergence of transient
chaotic motion interspersed between merging and splitting events. As seen in figure 1,
this chaotic dynamics appears localized in the vicinity of the region where a merging
event has taken place and it is characterized by the repeated emergence of closely spaced,
weak vortices which merge shortly after they form, creating a quick succession of merging
and splitting events. The characteristic cycle of this transient dynamics is exemplified
in figure 12, which shows the evolution of the flow pattern in a narrow temporal
window of the simulation performed at El = 0.32 (see the solid line brown rectangle in
figure 1c). In this example, the chaotic dynamics occurs in the central part of the
system, framed by a dashed (orange) rectangle in the figure, and has little effect on
the DW located outside this region. When a merging event is accomplished (see upper
panel), the energy released by the DW which is eliminated is transferred to an irregular
wavy motion. This wave transports the energy axially upwards and downwards from the
location where the merging took place and results in the formation of new vortices (the
inflows of the newly created vortex pairs are indicated with arrows in the intermediate
panel). The amount of time it takes from the end of the merging event until the new vortices
are fully formed normally ranges between 20 and 30 advective time units. The new vortices
are, however, just a small distance apart from each other, so that they undergo a strong
attractive interaction and quickly merge (see lower panel). The energy released after the
new merging events is again redistributed and the process just described starts over again.
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t = 7560

t = 7592

t = 7677

ro
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z/d = 4π z/d = 0

Figure 12. Colour maps of u illustrating the flow patterns associated with the chaotic dynamics that appears
interspersed between slow merging events and splitting events. The dynamics displayed in this figure
corresponds to the simulation with constant El = 0.32, and more specifically, to the time window shown as a
solid line (brown) rectangle in figure 1(c). Positive (negative) values of u are shown as red (blue), whereas u = 0
is shown as grey. There are four positive and four negative contours evenly distributed in u ∈ [−0.073, 0.013].
The system is shown rotated by 90 ◦ in the counterclockwise direction.

The time span between consecutive merging events is of the order of 100 advective time
units, whereas the entire time period over which the chaotic dynamics typically extends
ranges from 1000 to 2000 advective time units.

The main splitting events (i.e. events where a new, strong and persistent DW is created)
are normally preceded by chaotic motion and take place when the distance between newly
created DW, as well as the distance between these and the other DW in the system, become
sufficiently large so that their mutual interaction is weak. An example of a splitting event
taking place between t = 5300 and t = 5470 in the simulation performed at El = 0.32 (see
the dash-dotted purple rectangle in figure 1c) is shown in figure 13. The splitting event
occurs in the region marked by the (red) dotted rectangle. The DW that appears within
this region in the upper panel of the figure (indicated by a leftwards arrow) is the result
of a merging event which has just completed. The other two DW in the figure (which are
enclosed in a green dashed rectangle) are moving towards each other as a part of a merging
process that will be completed after the splitting event takes place. Hence, the distance
between the core of the topmost DW and those of the other two DW becomes increasingly
large with time. This enables that when a new DW appears in the space left between them
(see intermediate panel, where the new DW is indicated by a rightwards arrow), it can be
sufficiently far apart from its neighbours to avoid a strong attractive interaction. As a result,
the new DW does not undergo any merging events shortly (in contrast to what happens
during the transient chaotic motion) and its strength increases until it becomes comparable
to that of the other DW in the system (see lower panel). The new DW is connected to the
topmost DW through the outflows, which is an indication that these DW will eventually
undergo a merging event. However, such event happens at t ∼ 5930 (see figure 1c), nearly
500 advective time units after the new DW first appeared. In general, the DW created after
primary splitting events are found to persist for several hundred advective time units, as
opposed to the vortices created during the chaotic dynamics which never persist longer
than a few tens of advective time units.

The dynamics illustrated by these examples repeats successively with time, creating a
chaotic regime characterized by continuous changes in the number of DW (the regime
that has been dubbed VMS regime). Power spectral characterization of this flow regime
is shown in figure 14. The spectra were computed by applying a fast Fourier transform to
time series of the radial velocity at the mid-gap obtained from simulations where El was
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Figure 13. Colour maps of u illustrating the occurrence of a splitting event. The example shown corresponds
to the simulation with constant El = 0.32 and it is indicated as a dash-dotted (purple) rectangle in figure 1(c).
Positive (negative) values of u are shown as red (blue), whereas u = 0 is shown as grey. There are four
positive and four negative contours evenly distributed in u ∈ [−0.077, 0.015]. The system is shown rotated by
90 ◦ in the counterclockwise direction.
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Figure 14. PSD obtained from simulations in the VMS regime at three distinct values of El. The left panels
show the spectra in a linear–log plot, with the frequency normalized with the elastic frequency, fe, whereas the
right panels show the spectra in log–log scale and the frequency is non-dimensionalized with the inverse of the
advective time.
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held constant. The PSD increases at the lowest frequencies until it reaches a maximum
(indicated as a dashed orange line in the figure). For the range of El values investigated, the
frequency at which the maximum takes place is close to fe and increases with increasing
El, from 0.87fe at El = 0.32 to 1.36fe at El = 0.5. After the peak, the PSD decreases
monotonically and exhibits to a good approximation a power law decay range with a
decay rate of −3 (the best fit to the data yields exponents ranging between −2.82 and
−3.33). This exponent is in agreement with the universal spectral decay rate that was
theoretically predicted for EIT (Fouxon & Lebedev 2003), which has been recently verified
in experiments (Yamani et al. 2021), and thereby identifies the VMS regime as a class of
elasto-inertial turbulent states. It must also be remarked that the power spectra obtained at
different El values are similar. This observation suggests that flows in the VMS regime are
not significantly affected by changes in El.

3.5. Influence of the domain size and other computational parameters
Since VMS events arise from interactions among DW, it is natural to wonder about
the impact that changes in the length-to-gap aspect ratio Γ (and consequently in the
number of DW the system may contain) may have on the findings reported in the previous
subsections. To investigate this aspect, a set of simulations where Γ was varied between
9 and 16 has been conducted. The protocol followed in these simulations is the same as
that described at the beginning of § 3.1: they are started from a Newtonian TVF and El
is slowly increased with time at a uniform rate, El = 10−3t/Re, where Re was again fixed
to 95. The influence of the initial condition has also been examined. To this end, two or
three simulations have been performed for each value of Γ considered and these have been
started from states having a different number of vortex pairs. A complex spatio-temporal
dynamics consistent with the VMS regime has been observed in all cases. However, the
El threshold at which merging events first appear changes significantly depending on
the domain size and the initial condition. This is illustrated in figure 15, which shows
space–time diagrams of u at the mid-gap along the z direction for simulations where
(a) Γ = 10 and the initial condition has five vortex pairs, (b) Γ = 14 and the
initial condition has eight vortex pairs and (c) Γ = 14 and the initial condition
has six vortex pairs. Note that, analogously to figure 1(a), time has been
replaced by its corresponding El value. As seen, the first merging events are
accomplished at notably different values of El in each case: El ≈ 0.16 in (a),
El ≈ 0.21 in (b) and El ≈ 0.28 in (c), which in turn differ from the onset of
merging events reported in § 3.1 (El ≈ 0.32 for Γ = 12.56, using a state with
six vortex pairs as initial condition). It is therefore evident that this feature is very sensitive
to the domain size and the initial condition used in the simulations. The same is true for
the onset of chaotic motion. For the Γ values and initial conditions investigated, the first
occurrence of a merging event has been found to range between El ≈ 0.15 and El ≈ 0.32,
whereas chaotic motion has been first observed at El values ranging from 0.25 to 0.42.

The characteristics of the transition towards the VMS regime are not significantly altered
by changes in Γ or the initial condition. As El increases initially from the Newtonian
limit, a centrifugally dominated regime is identified in all cases, where the axial extent of
the inflows (outflows) gradually decreases (increases) with increasing El. This behaviour
continues until the elastic instability sets in abruptly and the intensity of the inflows
becomes much higher. This can be seen in figure 15 as a sudden change in the colour
intensity that happens at El ≈ 0.125. It is interesting to note that, despite the significant
variation in the El values at which the VMS events occur, the threshold of the elastic
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Figure 15. Space–time diagrams showing the magnitude of u at the mid-gap along the z direction in
simulations where the axial length of the system and/or the number of vortex pairs of the initial condition
were varied with respect to the simulations shown in figure 1. The cases illustrated correspond to
(a) Γ = 10 using an initial condition with five vortex pairs, (b) Γ = 14 using an initial condition with eight
vortex pairs and (c) Γ = 14 using an initial condition with six vortex pairs. As in the simulations presented
in figure 1, El has been slowly increased with time (El = 10−3t/Re) and the latter has been replaced by its
corresponding El value in the horizontal axis of the space–time plots. Red and blue areas indicate outflows and
inflows respectively. Note that periodic boundary conditions are used in z.

instability remains nearly unchanged with varying Γ or initial condition (it is always
found to occur at El values ranging from 0.12 to 0.13). Another feature that is shared
by all simulations regardless of the domain size and initial condition is the existence of
an initial stage of merging events, with some of them taking place simultaneously, that
precede the appearance of chaotic motion. A previously unreported event, where three
DW merge simultaneously, has been observed in some simulations within this initial stage
(see figure 15c). This particular type of merging event occurs when there is a group
of three equal DW in which the upper and lower DW move towards the central DW.
The forces exerted by the upper and lower DW on the central DW are equal and act
in opposite senses, so that the central DW does not move and eventually the three DW
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Figure 16. Space–time diagram showing the magnitude of u at the mid-gap along the z direction in a
simulation where El was slowly decreased with time at the same rate as it was increased in the simulations
previously presented (El = 10−3t/Re). The parameters used in this simulation are the same as those used in
the simulation shown in § 3.1. The initial condition corresponds to the state obtained in the simulation where
El was slowly increased with time for El = 0.392 (indicated by an orange dashed line in figure 1a). The flow
states observed when El decreases differ from those obtained when El increases, evidencing the existence
of hysteresis. Red and blue areas indicate outflows and inflows, respectively. Note that periodic boundary
conditions are used in z.

merge simultaneously. The main difference between the transition scenarios illustrated
in figure 15 and that described in the previous subsections is the absence of the regime
characterized by the small axial oscillations of the flow pattern. This regime preceded the
onset of the VMS regime in the simulation for Γ = 12.56. The same axial oscillations
are observed in figure 15 at large El values. However, merging and splitting events occur
prior to the emergence of the oscillations in these cases. This clearly indicates that the
occurrence of these oscillations is not a necessary condition for the VMS dynamics to
exist, but an additional dynamics that occurs at large El values and may or not coexist with
the VMS events.

The strong dependence of the onset of the VMS events on the initial condition implies
that these are highly nonlinear phenomena. It is thus rational to expect that hysteretic
behaviour will be observed in the simulations if the control parameter is varied in the
reverse direction, i.e. if El is decreased with time. To examine this possibility, we have
conducted a simulation where El has been decreased with time at the same rate as it
was increased in the previous simulations. The simulation was initiated from the flow
state obtained at El = 0.392 in the simulation presented in § 3.1 (indicated by a dashed
line in figure 1a) and the same parameter values as in § 3.1 were used. To facilitate the
description, we denote the simulation in which El increases (decreases) with time as
forwards (backwards) simulation. Figure 16 shows the space–time diagram corresponding
to the backwards simulation. It becomes apparent from the comparison between this figure
and the space–time diagram of the forwards simulation (figure 1a,b) that there is a strong
hysteresis. The flow in the backwards simulation eventually returns to the initial state of
the forwards simulation (a TVF with six pairs of vortices), but it follows a completely
different path, characterized by VMS events and flow states that differ from those observed
in the forwards simulation. It is worth noting that the initial cascade of merging events that
precede the onset of chaotic motion in forwards simulations is absent in the backwards
simulation. This reflects the irreversible character of the symmetry-breaking processes
that take place over this initial stage of the VMS regime. Another notable difference is
observed in the transition between the centrifugally and elastically dominated regimes.
This occurs at a lower El value (El ≈ 0.09) than in the forwards simulations (El ≈ 0.125)
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Figure 17. Contribution of the elastic stresses to the integral kinetic energy budget Πe as a function of the
maximum polymer extension L in the range of El values where the transition between the centrifugally and
elastically dominated regimes takes place.

and not only entails a sudden change in the strength of the vortices, but also a change in
their number (from three vortex pairs in the elastically dominated regime to six vortex
pairs in the centrifugally dominated regime). Once the centrifugally dominated regime is
achieved, flow states obtained in the forwards and backwards simulations for the same
El values become identical. This observation reflects the linear nature of the centrifugal
instability and evidence that the hysteretic effects observed in the simulations are solely
due to the subcritical character of the DW.

We next examine whether the occurrence of VMS events depends on the extensibility of
the polymers used in the simulations. To this end, we have conducted a set of simulations
where the maximum polymer extension L was varied between 30 and 250 while keeping
the other parameters as in § 3.1. It has been found that the choice of L has an important
impact on the characteristics of the elastic instability. This is illustrated in figure 17, which
shows the contribution of the polymers to the integral energy budget (Πe) in the range of
El values where the elastic instability takes place. As shown earlier in figure 6, the onset
of the elastic instability leads to a marked increase in the value of Πe, which replaces
the energy production due to inertia (P) as the leading term that balances the viscous
dissipation (ε). This characteristic is absent in simulations where the extensibility of the
polymers is low (see L = 30 case in the figure). In these simulations, Πe increases very
gradually with increasing El and remains negligible with respect to P and ε for the entire
range of El investigated (up to El = 0.5). This implies that at these elasticity levels the
elastic instability does not occur in these cases. As a result, the VMS dynamics does
not take place and the flow at high El values is characterized by elastically modified
Taylor vortices (not shown). A clear increase in Πe consistent with the emergence of an
elastic instability is observed in the simulations when these are performed using L � 70.
The El threshold at which the instability sets in decreases slightly with increasing L
(from El ≈ 0.135 for L = 70 to El ≈ 0.115 for L = 250). The transition between the
centrifugally and elasticity dominated regimes is initially rather smooth (see L = 70
case) but it becomes increasingly sharp as L increases. As the transition gets sharper
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Figure 18. Space–time diagram showing the magnitude of u at the mid-gap along the z direction in simulations
where the maximum polymer extension was set to L = 70 (a) and L = 250 (b). The rest of the parameters were
kept as in § 3.1. Red and blue areas indicate outflows and inflows, respectively.

the magnitude of Πe increases substantially, leading to increasingly strong vortices and
causing the emergence of spatio-temporal dynamics right after the transition in cases
where very large extensibility is considered (see L = 250 case, where oscillations in the
value of Πe arise simultaneously with the transition).

The onset of the VMS dynamics (which has been observed in the simulations where
L ≥ 90) also takes place at smaller values of El as L increases. It is interesting that,
although the elastic instability is observed for L = 70, the space–time diagram of this
simulation (shown in figure 18a) does not show any sign of spatio-temporal complexity.
This might reflect that the emergence of VMS events requires elasticity levels higher
than those simulated here when L is close to the critical value for which the elastic
instability emerges. The most striking difference in the characteristics of the VMS regime
with respect to those observed in the previous simulations occurs when highly extensible
polymers are used. Here, after the initial cascade of merging events is accomplished, the
dynamics is characterized by a sequence of VMS events that exhibits a clear periodicity
(see figure 18(b), which shows the space–time diagram for the simulation using L = 250).
These structures are closely reminiscent of the flame-like patterns observed in previous
studies (Thomas et al. 2006, 2009; Liu & Khomami 2013), with the difference that, in
these studies, the flow was non-axisymmetric and the flame-like dynamics was superposed
with a rotating wave, whereas in the present study the flow is axisymmetric and therefore
the rotating wave is absent.

We have finally investigated the effect of varying the rate at which El is increased in
the simulations. The increase of the El value with time (El = αt/Re) can be understood
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Figure 19. Example of the dynamics observed in the simulations when α (i.e. the rate of increase in
El) is larger than 1.25 × 10−3. (a) Space–time diagram showing the magnitude of u at the mid-gap
along the z direction in a simulation where α = 1.6 × 10−3. The rest of the parameters are as in § 3.1.
(b) Space–time plot obtained when El is held constant at 0.5 in the simulation shown in (a). The dashed (red)
rectangles demarcate regions of transient chaotic dynamics. Red and blue areas indicate outflows and inflows,
respectively.

as a continuous perturbation that is imposed on the system, where the parameter α
(the rate of increase) regulates the amplitude of the perturbation. We have conducted
simulations varying α between 7.5 × 10−4 and 5 × 10−3, while keeping the other
parameters as in § 3.1. The VMS regime (with characteristics similar to those reported
in the previous subsections) was found in the simulations where 7.5 × 10−4 � α �
1.25 × 10−3. However, when α was set to higher values, the VMS dynamics did not occur.
Panel (a) of figure 19 illustrates the space–time plot as a function of El for a simulation
where α = 1.6 × 10−3. As seen, the variation of the vortex pattern with increasing El
is initially analogous to that observed when α = 1 × 10−3 (figure 1a). The transition
between the centrifugally and elasticity dominated regimes taking place at El ≈ 0.12 is
clearly identified by the sudden change of the colour intensity of the vortices. Also as in the
simulation for α = 1 × 10−3, the vortex pattern becomes unstable at El ≈ 0.29, resulting
in small axial oscillations of the DW. These oscillations persist until several merging
events take place simultaneously and break the axial symmetry of the flow pattern (which
occurs at El ≈ 0.36). However, the flow regime that emerges after the symmetry-breaking
process differs from the VMS regime. The DW remain at approximately the same axial
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z/d = 0z/d = 4π
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Figure 20. Colour map of u illustrating the instantaneous flow structure at El = 0.5 in a simulation
where α = 5 × 10−3. Positive (negative) values of u are shown as red (blue), whereas u = 0 is shown
as grey. There are 10 contours evenly distributed in u ∈ [−0.065, 0.015]. The system is shown rotated by
90 ◦ in the counterclockwise direction. Dashed (green) rectangles are used to highlight the small scale vortices
that emerge near the inner cylinder.

positions and their number does not change with increasing El, nor with time if El is held
constant, as shown in panel (b) of the same figure. Similar to the VMS regime, localized
transient chaotic dynamics is often observed in this flow regime (see regions enclosed by
the dashed red rectangles). As shown in figure 20, a particular feature of the flow structure
in this flow regime is the emergence of small scale vortices near the inner cylinder (see
regions demarcated by the dashed green rectangles). These vortices are consistent with
the elastic Görtler vortices identified by Song et al. (2019) at higher Reynolds numbers.
The finding of a flow regime distinct from the VMS regime in these simulations reflects
a well-known feature of viscoelastic TCF: the coexistence of various flow regimes for the
same values of the control parameters. The simulations may converge to one regime or the
other depending on the amplitude and type of the perturbations imposed. Our study shows
that, to capture the VMS in the simulations, the amplitude of the perturbation cannot be
too large, otherwise the VMS regime is replaced by the flow regime just described.

3.6. Variation of the angular momentum transport with increasing fluid elasticity level
An important question raised by the observations above is why the dynamics of the distinct
vortex pairs decouples when the polymer elasticity exceeds a certain threshold. It is well
known that in two-dimensional vortex systems the conservation of angular momentum
imposes strong restrictions on the motion of the vortices and the mean separation among
them remains generally nearly constant (Aref 1983; Batchelor 2000). It may therefore
appear surprising that vortex pairs in the VMS regime can freely move through the system,
either toward each other or away from each other, without drastic changes in the system’s
energy. To explain this seeming inconsistency, it is instructive to examine the impact of
increasing El in the different contributions to the flux of angular momentum (Jω) across
the annular gap. In a viscoelastic fluid flow, Jω can be split into three terms

Jω = r3

⎡
⎢⎢⎢⎣ uω︸︷︷︸

Jωc

− β

Re
∂rω̄︸ ︷︷ ︸

Jωd

− (1 − β)

Re
Trθ

r︸ ︷︷ ︸
Jωp

⎤
⎥⎥⎥⎦ , (3.5)

where ω = v/r is the angular velocity and the bar symbol indicates averaging over the
axial direction (for El values where the flow is steady) or over the axial direction and time
(when the flow is non-steady or chaotic). Here, Jωc denotes the convective transport of
angular momentum, which is associated with the vortices, Jωd is the diffusive transport
due to viscosity and Jωp is the angular momentum transport caused by polymer stresses.

Although the above equation was originally derived for turbulent flow (Eckhardt,
Grossmann & Lohse 2007; Song et al. 2019), it is straightforward to show that it also
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Figure 21. Variation of the axially and time averaged angular momentum current (Jω) and its contributing
terms, Jωc , Jωd and Jωp , obtained near mid-gap, as El increases. The (orange) vertical dotted lines demarcate the
different flow regimes observed in the present study: I. the centrifugally dominated regime, II. the elastically
dominated regime characterized by steady patterns of equally spaced DW, III. the elastically dominated regime
characterized by spatio-temporal dynamics.

applies to steady vortex flow (see Appendix B for a step by step derivation under steady and
axisymmetric conditions). Hence, it can be used to study the variation in the contributions
of the different transport mechanisms as El increases from the Newtonian limit up to the
largest value simulated within the VMS regime. This is shown in figure 21 for a radial
location near the mid-gap using the data obtained from the simulation presented in § 3.1
(similar analyses for other simulations are shown in Appendix C). Since the dynamics in
the VMS regime is chaotic and Jω is a fluctuating quantity, several additional simulations
at constant El had to be performed in order to obtain meaningful values of Jω and its
contributing terms in this flow regime. The initial conditions for these simulations were
flow states obtained in the simulation with slowly varying El. Starting from these solutions,
the El values were fixed and the chaotic flow was simulated in each case for 20000
advective time units. The momentum fluxes were then calculated by averaging over this
long time period.

As seen in the figure, three clear stages can be distinguished in the behaviour of the
angular momentum fluxes as El increases, which are consistent with the different flow
regimes identified throughout our study. In the first stage, coinciding with the centrifugally
dominated regime, Jω remains nearly constant. While its main contribution stems from the
diffusive transport (Jωd ), the convective flux (Jωc ) also plays an important role close to the
Newtonian limit (El → 0). However, due to the dissipative nature of the polymer activity
in this flow regime, the contribution of the vortices to Jω decays with increasing El and
it is gradually replaced by the angular momentum flux due to the polymer stresses (Jωp ).
Note that, although it may seem surprising that the contribution of Jωd exceeds that of Jωc
in a Newtonian (or low El) vortex flow, this happens because the simulation is conducted
at a Reynolds number (Re = 95) which is very close to the onset of the Taylor vortices
(Re = 89). Here, the vortices are still weak and the momentum transport is dominated by
molecular diffusion (as in the laminar regime). As Re increases, the contribution of Jωc
near the mid-gap becomes increasingly large and the contribution of Jωd decreases, so that
the former eventually dominates the momentum transport in this regime (not shown). The
onset of the elasticity dominated regime (El ∼ 0.12) is accompanied by an abrupt increase
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in Jωp , which becomes the leading contribution to the angular momentum flux. Moreover,
the magnitude of Jωp keeps increasing as El increases, leading to a substantial increase in Jω
with respect to that in the centrifugally dominated regime. The convective and diffusive
fluxes, on the other hand, exhibit a slight increase and decrease, respectively, when the
elastic instability sets in, and subsequently decrease very gradually with increasing El.
The onset of the spatio-temporal dynamics (El ∼ 0.29) brings a significant drop in the
total angular momentum flux. This is mainly associated with an initial decay in Jωp that
takes place during the initial cascade of merging events where the different vortex pairs
become fully decoupled. Despite its initial decrease, Jωp is still the main contribution to Jω,
and after the initial phase of merging events, its magnitude increases with increasing El
over the entire VMS regime. The convective contribution Jωc also decays during the initial
phase of merging events. However, it appears to fluctuate around a constant value, Jωc ≈
0.013, with increasing El. A similar behaviour is observed in Jωd , which increases initially
with the emergence of the VMS dynamics but remains subsequently nearly constant as El
increases.

The analysis of the angular momentum fluxes just presented allows us to propose an
answer to the question posed at the beginning of this section. As shown, polymer stresses
are very efficient in transporting angular momentum (provided that the level of elasticity
in the working fluid is sufficiently large) and so the contribution of the vortices in this
regard, which is essential in the Newtonian case, is only marginal in the viscoelastic
case. The amount of momentum carried by the vortices becomes increasingly small as El
increases until it eventually reaches a nearly constant level, Jωc ≈ 0.013, in all simulations
where the VMS is found. On the basis of this observation, we suggest that, when the
angular momentum carried by the vortices drops to this level, the constraints imposed
by the angular momentum conservation on the vortices break and these may decouple
from the rest of the system. This limit would mark the beginning of the VMS dynamics
and could also be interpreted as the minimum amount of angular momentum that the
DW must carry to form a pattern of steady vortices. The latter interpretation offers an
explanation for the question of why the DW do not merge at lower El values. As noted
in § 3.1, arrangements of equally spaced, steady DW have not been so far experimentally
reported. In fact, it has been inferred from the experiments that two DW coalesce when the
distance between them is lower than 5d, a characteristic that would render the formation
of these arrangements of DW unfeasible. The reason for this apparent contradiction may
lie in the fact that these experiments were conducted at low values of Re, where the
flow in the Newtonian case is centrifugally stable (i.e. molecular diffusion suffices to
transport angular momentum). The amount of angular momentum carried by the DW
at these low Re is expected to be very small and hence it is reasonable to assume
that it might be below the threshold required to observe these arrangements. Another
important remark concerning the angular momentum fluxes in the VMS regime is that
the two Newtonian contributions (Jωc and Jωd ) remain nearly constant over the entire
regime. The increase in the angular momentum flux taking place in this flow regime
is thus only due to the contribution of the polymer stresses, which continue increasing
with increasing El. This circumstance strongly suggests that the dynamics in the VMS
regime is fully dominated by elastic effects (as already noted in the experimental study by
Lacassagne et al. 2020) and raises the question about a possible relationship between flow
states in the VMS regime and those driven by pure elastic instabilities in the inertialess
limit.
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4. Conclusions

We have presented numerical simulations of viscoelastic TCF aimed at elucidating
recent experimental observations of an elastically induced chaotic dynamics governed
by a successive merging and splitting of vortices, known as the VMS transition to EIT
(Lacassagne et al. 2020). Unlike the experiments, where this regime was achieved by
increasing Re while keeping a constant El level, in the present study we have fixed
Re to 95 (a value that falls within the centrifugally unstable regime of TCF) and have
increased El progressively starting from a TVF pattern in the Newtonian limit (El = 0).
This different protocol has allowed us to investigate the transformation and instabilities
that the axisymmetric vortex flow pattern undergoes as El increases and the VMS regime
is achieved.

Our simulations show that, unlike other transition scenarios to elasto-inertial turbulent
states (e.g. the transition via flame patterns (Latrache & Mutabazi 2021) or the transition
driven by defects Latrache et al. 2016), the transition to the VMS regime does not
involve any three-dimensional instability and it is associated with instabilities of an
axisymmetric vortex pattern which are induced solely by elastic effects. The centrifugal
instability mechanism giving rise to the well-known Taylor vortices is found to persist at
low-to-moderate values of El. Nevertheless, polymers induce strong dissipative effects
in this flow regime, causing drastic quantitative and structural changes in the vortex
pattern. These changes are particularly pronounced at low El values, thereby evidencing
the immediate and dramatic impact that the addition of polymers has on the flow
characteristics.

A key factor to explain the complex spatio-temporal dynamics observed at high El values
is the transformation the flow undergoes at El ≈ 0.12. Above this El threshold, polymers
inject energy into the flow through the elastic stresses and the centrifugal mechanism
inducing the vortex pattern is replaced by an elastic mechanism. The result of the elastic
instability is a steady vortex pattern where the vortex pairs are identified as DW: a type of
vortical structure similar to a dipole which is characterized by a strong asymmetry between
inflows and outflows. While these structures have been well documented in the literature
(Groisman & Steinberg 1997; Lange & Eckhardt 2001; Thomas et al. 2006, 2009), there
are some important differences between the state found in our simulations and those
previously reported. The first important distinction is the pathway we have followed to
find these structures. Previous experiments and simulations suggested that DW could only
emerge as the inner cylinder speed is decreased (i.e. as Re decreases). In our simulations,
however, DW appear at a constant value of Re as El increases, reflecting that deceleration
is not a necessary condition to observe these structures. A second and more important
distinction is the spatial arrangement of the DW. Previous studies on DW were conducted
at low Re values (in centrifugally stable regimes) where it was found that nearby DW
always approach each other and coalesce into a single entity. As a result, after a certain
time DW usually appear as solitons in these flow regimes. Our simulations reveal that, in
a centrifugally unstable regime, DW do not necessarily merge when they are close to each
other, and may appear for a wide range of El values as a steady vortex pattern.

VMS events take place when the dynamics of the distinct DW decouples and these
begin to travel freely in the axial direction. We propose that this dynamical decoupling
is possible because as El increases the amount of angular momentum carried by the
vortices reaches a marginal level (the angular momentum transport across the gap is
mainly due to the polymer stresses). This circumstance permits the vortices to break
the constraints that conservation of momentum imposes on their motion, thus making it
possible for them to be dynamically disconnected. During the onset phase of the VMS
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regime only merging events are observed, but with further increase in El, a complex
spatio-temporal dynamics characterized by a series of merging and splitting events,
which closely resembles experimental observations, is also found in the simulations.
Merging events occur when two DW move in opposite senses towards each other. As
they get close to one another, they experience a strong attractive interaction that increases
their travelling speeds and accelerates the merging process. Conversely, splitting events
occur when newly created vortex pairs move away from each other and get separated by a
distance that is sufficiently large so that their mutual interaction is weak. The occurrence
of splitting events is always preceded by local regions of transient chaotic motion which
result from merging events as a consequence of the redistribution of the kinetic energy
released by the DW that are eliminated in these events. A key feature of the VMS regime
is the existence of a power law decay range in the power spectrum with a −3 exponent.
Such a decay rate complies with the universal power law spectral decay expected for EIT
(Fouxon & Lebedev 2003; Yamani et al. 2021) and thus suggests categorizing the VMS
regime as a class of the elasto-inertial turbulent states.

Due to the highly nonlinear nature of the DW, changes in the aspect ratio and/or the
number of vortex pairs of the initial condition may notably alter the El threshold at which
the VMS regime sets in. Specifically, the onset of this regime has been found to vary
between El ≈ 0.15 and El ≈ 0.35 depending on the aspect ratio and the initial condition
used in the simulations. This range of El values is consistent with the elasticity level at
which this dynamics has been reported in the experiments, El ≈ 0.22 (Lacassagne et al.
2020). The characteristics of the VMS events, as well as the transition towards the VMS
regime as El increases, are largely similar in all simulations. The main exception is the
regime characterized by the small axial oscillations of the DW, i.e. the standing wave
described in § 3.3. This regime precedes the VMS dynamics in simulations where the
latter occurs at high El values, but it is absent in those where VMS events already occur
at moderate values of El. In these latter cases, the oscillations are also observed at high
El values, but they coexist with the VMS dynamics. Hence, it may be concluded that the
emergence of the standing wave is not a necessary condition for the onset of the VMS
regime.

We have also studied how changes in the maximum polymer extension L and the
parameter α (the rate of increase in El) modify the outcomes of the simulations. It has been
found that, if L is too small (L < 70), the elastic instability does not set in and consequently
the VMS dynamics does not take place. Conversely, if L is too large (L > 200), the
simulations converge to a different flow regime, which is consistent with the flames-like
structures previously reported in the literature (Thomas et al. 2006, 2009; Liu & Khomami
2013). The VMS regime has been found in simulations where the value of L is between 90
and 200. An appropriate choice of α is also essential to capture the VMS in the simulations.
This regime has been found in simulations where 7.5 × 10−4 � α � 1.25 × 10−3. For
α > 1.25 × 10−3, however, a different flow regime emerges at high El values. VMS events
do not occur in this regime (i.e. the number of vortex pairs remain constant) and small scale
vortices, consistent with elastic Görtler vortices (Song et al. 2019), appear near the inner
cylinder.

In closing, we would like to note that there are many important open questions about
this topic which have not been addressed yet. For example, a detailed study of the VMS
transition as Re increases, examining the changes the flow undergoes until it converges to
the eventual elasto-inertial state, is missing. A statistical and structural characterization of
the elasto-inertial turbulent state has not been done either, which has prevented from any
comparisons with other elasto-inertial turbulent states reported in viscoelastic TCF (Liu
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& Khomami 2013; Song et al. 2019, 2021a) or in other fluid flow systems (Dubief et al.
2013; Samanta et al. 2013). It is also unclear whether there exists a connection between
this elasto-inertial turbulent regime (which requires of pure elastic instabilities to exist)
and the pure elastic turbulent regime taking place at vanishing inertia. Finding answers to
these and other related questions guarantees that viscoelastic TCF will be an active focus
of research in the coming years.
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Appendix A. Energy balance equation for steady axisymmetric vortex flow

In this section it is shown that an equation for the energy associated with steady and
axisymmetric vortices can be derived following a line of reasoning similar to that
typically used in the derivation of the turbulent kinetic energy equation. Under conditions
of steadiness and axisymmetry (i.e. ∂t = 0 and ∂θ = 0), and using the notation and
non-dimensionalization described in § 2, the momentum equations for a viscoelastic TCF
read

0 = −u∂ru − w∂zu + v2

r
− ∂rp + β

Re

(
∇2u − u

r2

)
+1 − β

Re

(
∂rT rr + (T rr − T θθ )

r
+ ∂zT rz

)
, (A1)

0 = −u∂rv − w∂zv − uv
r

+ β

Re

(
∇2v − v

r2

)
+ 1 − β

Re

(
∂rT rθ + 2T rθ

r
+ ∂zT θz

)
, (A2)

0 = −u∂rw − w∂zw − ∂zp + β

Re
∇2w + 1 − β

Re

(
∂rT rz + T rz

r
+ ∂zT zz

)
, (A3)

where the Laplacian term is given by

∇2f = 1
r
∂r(r∂rf )+ ∂2

z f . (A4)

We first obtain the axially averaged momentum equations. To that extent, the velocity,
pressure and polymer stress tensor of the vortex flow are decomposed as

v =
⎡
⎣0
v̄

0

⎤
⎦+

⎡
⎣u′
v′
w′

⎤
⎦ , p = p̄ + p′, T =

⎡
⎢⎢⎢⎢⎢⎢⎣

T rr
T rθ
T rz
T θθ
T θz
T zz

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

T ′
rr

T ′
rθ

T ′
rz

T ′
θθ

T ′
θz

T ′
zz

⎤
⎥⎥⎥⎥⎥⎦ , (A5a–c)

where the bar symbol is used to indicate that the variables are axially averaged and the
prime symbol denotes deviation from the axially averaged value. Note that for a vortex
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flow pattern these operators satisfy the Reynolds averaged rules (i.e. f ′ = 0, f̄ = f̄ and
f̄f ′ = 0). Substituting this decomposition into the momentum equations and averaging over
the axial direction, one obtains

0 = −u′∂ru′ − w′∂zu′ + v̄2

r
+ v′2

r
− ∂rp̄ + 1 − β

Re

(
∂rT rr + T rr − T θθ

r

)
, (A6)

0 = −u′∂rv′ − w′∂zv′ − u′v′

r
+ β

Re

(
1
r
∂r(r∂rv̄)− v̄

r2

)
+ 1 − β

Re

(
∂rT rθ + 2T rθ

r

)
,

(A7)

0 = −u′∂rw′ − w′∂zw′ + 1 − β

Re

(
∂rT rz + T rz

r

)
. (A8)

Using the product rule for derivatives and the incompressibility condition, the above
equations can be rewritten as

0 = −∂ru′u′ − u′u′

r
+ v̄2

r
+ v′v′

r
− ∂rp̄ + 1 − β

Re

(
∂rT rr + T rr − T θθ

r

)
, (A9)

0 = −∂ru′v′ − 2u′v′

r
+ β

Re

(
1
r
∂r(r∂rv̄)− v̄

r2

)
+ 1 − β

Re

(
∂rT rθ + 2T rθ

r

)
, (A10)

0 = −∂ru′w′ − u′w′

r
+ 1 − β

Re

(
∂rT rz + T rz

r

)
, (A11)

which is the final form of the axially averaged momentum equations.
We now multiply equations (A1)–(A3) by the velocity field and average over the axial

direction to obtain an equation for the total kinetic energy. The resulting equation is

0 = −u∂ruu − w∂zuu − u∂rvv − w∂zvv − u∂rww − w∂zww − ∂rpu − ∂zpw

+ β

Re
(u∇2u − u2

r2 + v∇2v − v2

r2 + w∇2w)+ 1 − β

Re

(
u∂rT rr + u

(T rr − T θθ )

r

+u∂zT rz + v∂rT rθ + v
2T rθ

r
+ v∂zT θz + w∂rT rz + w

T rz

r
+ w∂zT zz

)
. (A12)

Introducing the decomposition in (A5) and subtracting equation (A10) multiplied by v̄ (i.e.
the equation for the axially averaged kinetic energy), an equation for the kinetic energy of
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the vortices is obtained

0 = −u′∂ru′u′ − w′∂zu′u′ − u′∂rv̄v′ − u′∂rv′v̄ − u′∂rv′v′ − w′∂zv′v̄ − w′∂zv′v′

− u′∂rw′w′ − w′∂zw′w′ − ∂rp′u′ − ∂zp′w′ + v̄∂ru′v′ + 2v̄u′v′

r

+ β

Re

(
u′∇2u′ − u′2

r2 + v′∇2v′ − v′2

r2 + w′∇2w′
)

+ 1 − β

Re

(
u′∂rT ′

rr + u′ (T
′
rr − T ′

θθ )

r
+ u′∂zT ′

rz + v′∂rT ′
rθ + 2v′T ′

rθ
r

+ v′∂zT ′
θz + w′∂rT ′

rz + w′ T
′
rz

r
+ w′∂zT ′

zz

)
. (A13)

With some manipulation (using again the product rule for derivatives and the
incompressibility condition), the above equation can be rewritten in the form

0 = −1
r
∂r

[
r
(

1
2
(u′u′u′ + u′v′v′ + u′w′w′)+ p′u′ − β

2Re
∂r(u′u′ + v′v′ + w′w′)

− 1 − β

Re
(u′∂rT ′

rr + v′∂rT ′
rθ + w′∂rT ′

rz)

)]
− u′v′

(
∂rv̄ − v̄

r

)

− β

Re

(
∂ru′∂ru′ + ∂zu′∂zu′ + ∂rv′∂rv′ + ∂zv′∂zv′ + ∂rw′∂rw′ + ∂zw′∂zw′ + u′2

r2 + v′2

r2

)

− 1 − β

Re

(
∂ru′T ′

rr + (u′T ′
θθ )

r
+ ∂zu′T ′

rz + ∂rv′T ′
rθ + v′T ′

rθ
r

+ ∂zv′T ′
θz + ∂rw′T ′

rz

+ ∂zw′T ′
zz

)
. (A14)

Finally, to obtain the volume average kinetic energy of the vortices that is presented in
figure 6, (A14) is integrated over the radial direction. In doing so, the first term of the
equation (i.e. the radial derivative of the quantity between brackets), which represents
energy transport due to the various transport mechanisms at play, becomes zero and the
integral kinetic energy equation reads as

0 = −
∫ 1

0

(
u′v′

(
∂rv̄ − v̄

r

))
r dr − β

Re

∫ 1

0

(
∂ru′∂ru′ + ∂zu′∂zu′ + ∂rv′∂rv′ + ∂zv′∂zv′

+∂rw′∂rw′ + ∂zw′∂zw′ + u′2

r2 + v′2

r2

)
r dr − 1 − β

Re

∫ 1

0

(
∂ru′T ′

rr + (u′T ′
θθ )

r

+∂zu′T ′
rz + ∂rv′T ′

rθ + v′T ′
rθ

r
+ ∂zv′T ′

θz + ∂rw′T ′
rz + ∂zw′T ′

zz

)
r dr. (A15)

The equation above is the same as (3.1) but written in terms of its non-zero components.
The first integral corresponds to the production of kinetic energy due to deviations of the
velocity field from the axially averaged velocity (P), the second integral is the viscous
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dissipation of the kinetic energy (ε) and the third integral represents the contribution of
the polymers (Πe), which may be a production or a dissipation term depending on the
fluid’s elasticity.

Appendix B. The angular velocity current for steady axisymmetric vortex flow

Equation (3.5), used to decompose the radial flux of the angular velocity ω as a function
of the contributions of the diffusive, convective and elastic transport mechanisms, was
originally derived by Eckhardt et al. (2007) for fully turbulent Newtonian TCF and later
extended to the viscoelastic case by Song et al. (2019). In this section, it is shown
that the same equation can also be derived for the case of steady axisymmetric vortex
flow. Following a procedure analogous to that in Eckhardt et al. (2007), the azimuthal
momentum equation (A2) is averaged over the axial direction and one obtains

0 = −u∂rv − w∂zv − uv
r

+ 1
Re

(
1
r
∂r(r∂rv̄)− v̄

r2

)
+ 1 − β

Re

(
∂rT rθ + 2T rθ

r

)
. (B1)

Using integration by parts, w∂zv = −v∂zw, and the continuity equation, ∂zw = −∂ru −
u/r, (B1) can be written as

0 = −u∂rv − v∂ru − 2uv
r

+ 1
Re

(
1
r
∂r(r∂rv̄)− v̄

r2

)
+ 1 − β

Re

(
∂rT rθ + 2T rθ

r

)
, (B2)

which can be rearranged into the form

0 = −r−2∂r(r2uv)+ r−2
[

1
Re
∂r

(
r3∂r

v̄

r

)]
+ r−2

[
1 − β

Re
∂r(r2T rθ )

]
. (B3)

If we now multiply by r2 and introduce the angular velocity ω = v/r the equation becomes

0 = ∂r

(
r3
[

uω − 1
Re
∂rω̄ − 1 − β

Re
∂r

T rθ

r

])
. (B4)

The equation above implies that the quantity

Jw = r3
[

uω − 1
Re
∂rω̄ − 1 − β

Re
∂r

T rθ

r

]
, (B5)

does not change in the radial direction. Hence, it can be interpreted as a conserved current
of the angular velocity across the annular gap. The three terms that appear in this equation
correspond to the contributions of the different transport mechanisms (from left to right:
transport due to convection, molecular diffusion and elastic stresses). Note that (B5) is
essentially the same as that derived for fully turbulent flow (Song et al. 2019), with the
only difference that while the average here is done only in space, time averaging is also
needed in the turbulent case.

Appendix C. Additional results about the variation of the angular momentum fluxes
with El

The variation of the angular velocity current, Jω, with increasing El obtained in all
simulations where the VMS regime is found is analogous to that exemplified in the
figure 21 for the simulation presented in the § 3.1. Panels (a) and (b) of figure 22 show
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Figure 22. Variation of the angular velocity current, Jω, and its components, Jωc , Jωd and Jωp , with El.
Panels (a) and (b) correspond to simulations where the VMS regime takes place, whereas panel (c)
exemplifies a case where this regime does not occur. More specifically, the data shown in panels (a) and
(b) correspond to the simulations whose space–time diagrams are illustrated in figure 15(b) and (c), whereas
the data shown in panel (c) corresponds to the simulation illustrated in figure 18(a).

the variation of Jω and its components (Jωc , Jωd and Jωp ) with El for the simulations
illustrated in figure 15(b,c). These panels show clearly the existence of the three regimes
described throughout the paper: the regime dominated by centrifugal effects (region I),
the regime dominated by elastic effects where the flow pattern is steady (region II)
and the regime characterized by spatio-temporal dynamics, including the VMS events
(region III). The appearance of the latter regime is always accompanied by a slight
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decrease in the convective contribution, Jωc (the contribution of the vortices), which
subsequently oscillates around a mean value indicated by a (black) dashed line in the
figures. It is important to note that such mean value is nearly the same in all cases, Jωc ≈
0.013, suggesting that, at the Reynolds number at which the simulations are performed,
Re = 95, this may be the critical level for which the DW fully decouple. For comparison,
figure 22(c) shows the variation of Jω with El in a simulation where the VMS regime
does not occur. More specifically, it corresponds to the simulation where L = 70, whose
space–time diagram is depicted in figure 18(a). In this simulation, after the elastic
instability sets in (zone II), the convective and diffusive contributions, Jωc and Jωd , remain
constant with increasing El, but the value at which of Jωc levels off (Jωc ≈ 0.017) is above
that corresponding to the VMS regime. This observation is consistent with the hypothesis
that DW get fully decoupled only when their contribution to the angular momentum
transport reaches a critical level.
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